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Abstract

In this thesis we take an existing polynomial algorithm to compute the malnormal closure
of a finitely generated subgroup of a free group and improve its time complexity. In the last
section we describe a graphical way to represent finitely generated subgroups of finitary free
product of finite groups and cyclic groups, a family of groups containing the free groups. Using
this graphical representation we can compute the malnormal closure of these subgroups with
a similar algorithm to the one for the free groups, with the same time complexity.
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1 Introduction

In [9] Stallings presented a geometrical approach to study finitely generated subgroups of free
groups. Some years later, Kapovich and Myasnikov presented a combinatorial view of this concept
and related some properties of the so-called Stallings graphs with properties of the subgroups they
were representing. This was done in [4]. In this same paper they proved that malnormality and the
malnormal closure computation where decidable problems for subgroups of the free group. In [8],
Silva and Weil presented a polynomial algorithm to compute the malnormal closure for subgroups
of the free group.

This thesis focus is the improvement of the time complexity of the algorithm for malnormal closure
computation presented by Silva and Weil. After that, in the last section, we extend this algorithm
to finitely generated subgroups of finitary free product of finite groups and cyclic groups. To do
so, we will develop a geometric representation for these subgroups and then extend our algorithm
to work with this new geometric representation.

The work is divided in 5 sections, the first 3 are introductory. The work will be divided as
follows:

• Malnormality. In this section we will define the concept of malnormal subgroup and malnor-
mal closure.

• Labeled graphs. For the geometric representation of subgroups we will be using labeled
graphs, we will define them and prove some useful properties.

• Data structures and methods. To improve the algorithm time complexity we will need some
well known data structures. In this section we will do a brief presentation for each of these
data structures.

• Free group. The first part of this section is the presentation of Stallings graph. After that
we relate them to malnormality and present the first algorithm from Silva and Weil. After
that, we develop some methods and use them to improve the time complexity.

• Finitary free product of cyclic and finite groups. As the previous one, the first part of the
section is focused in the development of a geometrical representation for finitely generated
subgroups. After that we relate the geometrical view of subgroups to malnromality and show
a first algorithm. The last part is an improvement of the time complexity of this algorithm
using the same new methods as for the free group.

During the first 3 sections and the first half of the fourth section, until the presentation of
Silva’s and Weil’s algorithm, we will be presenting previous concepts and algorithms that will be
useful for our new work. The last part of the fourth and the fifth section are part of the new work
developed in this thesis.

2 Malnormality

In this section we define the basic concepts of malnormality and some useful lemmas that we will
use in further sections.

Definition 2.1 (Malnormal subgroup). Let H ≤ G, we call this subgroup malnormal if for all
g ∈ G \H we have gHg−1 ∩H = 1.

Fact 2.2. G is a malnormal subgroup of G.

Fact 2.3. Let H,K ≤ G be two malnormal subgroups, then H ∩K is a malnormal subgroup.

Now we can define the malnormal closure of a subgroup.
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Definition 2.4 (Malnormal closure). Let H ≤ G and let Hmal be defined as follows:

Hmal = ∩{K | H ≤ K ≤ G with K malnormal in G}

We call Hmal the malnormal closure of H.

Lemma 2.5. If g ∈ G \H satisfies gHg−1 ∩H 6= 1 then g ∈ Hmal.

Proof. Suppose that g /∈ Hmal, then g ∈ G \Hmal. But 1 6= gHg−1 ∩H ≤ gHmalg
−1 ∩Hmal = 1

leads to a contradiction, so g ∈ Hmal.

Corollary 2.6. If g ∈ G \H satisfies gHg−1 ∩H 6= 1 then H ′mal = Hmal, where H ′ = 〈H, g〉.

Proof. From Lemma 2.5 we have H ≤ H ′ ≤ Hmal, with this and the Definition 2.4 we get H ′mal =
Hmal.

3 Labeled graphs

In this section we are going to define the different types of graphs we are going to use to represent
subgroups of the different types of subgroups. In each section we will define new operations on
graphs to work with the subgroups of that family of groups.

Definition 3.1 (Graph). A graph Γ consists of two sets E(Γ) and V (Γ), and two functions E(Γ)→
E(Γ) and E(Γ) → V (Γ): for each e ∈ E(Γ) we have an element e ∈ E(Γ) and an element
ι(e) ∈ V (Γ), such that e = e and e 6= e. The elements of E(Γ) are called edges, and an e ∈ E(Γ)
is a directed edge of Γ, e is the reverse (inverse) edge of e. The elements of V (Γ) are called
vertices, ι(e) is the initial vertex of e, and τ(e) = ι(e) is the terminal vertex of e. We call them
the endpoints of the edge e. We call the degree of a vertex v ∈ V (Γ) the number of different edges
e ∈ E(Γ) with ι(e) = v.

We will represent the graphs graphically using circles with an identifier inside to represent
vertices and arrows to represent edges. An arrow that goes from point x and is pointing to point
y represents a directed edge e ∈ E(Γ) such that ι(e) = x and τ(e) = y.

1 2 3

Figure 1: A graph with three vertices and four edges, each edge has an inverse

Definition 3.2 (Subgraph). A subgraph of Γ is a graph C such that V (C) ⊆ V (Γ) and E(C) ⊆
E(Γ). In this case, we write C ⊆ Γ.

Given a finite set X = {a1, a2, ..., an} we define the set X−1 as a set with |X| = |X−1| and
X ∩X−1 = ∅. We can create a bijection between the elements fo X and X−1, and then for each
a ∈ X there is an a−1 ∈ X−1, for each a ∈ X−1 there is an a−1 ∈ X and for each a ∈ X ∪X−1 we
have a = (a−1)−1. We denote the set X ∪X−1 as X±.

Definition 3.3 (Labeling). Given a graph Γ and a finite set X±, a labeling is a function

lab : E(Γ)→ X±

such that for each e ∈ E(Γ), lab(e) = lab(e)−1.

Definition 3.4 (Labeled graph). Given a graph Γ and a labeling lab of this graph, we call the pair
(Γ, lab) a labeled graph.
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The last equality of the labeling definition allows us to represent the labeled graph Γ using only
the X-labeled edges, because the X−1-labeled edges can be deduced immediately from them.

1 2 3

a

a−1 b

b−1

(a) Diagram with all the edges

1 2 3
a

b

(b) Diagram with only the X-labeled edges

Figure 2: Both directed diagrams represent the same labeled graph

Definition 3.5 (Well-labeled graph). A labeled graph Γ is well-labeled if

ι(e1) = ι(e2), lab(e1) = lab(e2)⇒ e1 = e2

1 2

3 4

a

b

b
b

a

(a) Not well-labeled graph

1 2

3 4

a

b

b
a

a

(b) Well-labeled graph

Figure 3: The first graph is not well-labeled because there are two edges with lab(e) = b−1 and
ι(e) = 2

Definition 3.6 (Path). A path p in a graph Γ is a sequence

{v0, e1, v1, e2, v2, ..., en−1, vn−1, en, vn}

such that vi ∈ V (Γ), ei ∈ E(Γ) and also ι(ei) = vi−1 and τ(ei) = vi. We call n the length of the
path. We denote ι(p) = v0 and τ(p) = vn.

Definition 3.7 (Distance). Given two vertices of the graph Γ, u, v ∈ V (Γ), we define the distance
between u and v as the minimum length of a path p that has ι(p) = u and τ(p) = v.

Definition 3.8 (Path concatenation). If we have two paths p1 and p2 fo Γ such that τ(p1) = ι(p2)
we can concatenate both paths and obtain a new path

p = p1p2 = {v1
0 , e

1
1, ..., e

1
n1
, v1
n1

= v2
0 , e

2
1, ..., v

2
n2
}

Definition 3.9 (Reverse (inverse) path). Given a path p = {v0, e1, ..., vn}, we define the reverse
(inverse) path in Γ as the sequence

p = {vn, en, vn−1, en−1, ..., v1, e1, v0}

that is obviously a path because for each e ∈ E(Γ) we have ι(e) = τ(e).
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Definition 3.10 (Closed path). A path p is closed if ι(p) = τ(p).

Definition 3.11 (Reduced path). A reduced path is a path where there is no i such that ei = ei+1.

Definition 3.12 (Word). Given a finite set X±, a word on X± is the concatenation of a nonneg-
ative number of elements of X±.

Definition 3.13 (Word length). If we have a word on X± w = x1x2...xn, we say that w has
length n, and we represent it by |w| = n.

Definition 3.14 (Inverse word). If we have a word on X± w = x1x2...xn, we call w−1 =
x−1
n ...x−1

2 x−1
1 the inverse word of w.

Definition 3.15 (Freely reduced word). A word over a finite set X±, w = a1a2...an, is called
freely reduced if there is no i such that ai = a−1

i+1.

Definition 3.16 (Path label). Given a path p = {v0, e1, ..., vn} on a labeled graph Γ, we define
the label of p as the word:

lab(p) = lab(e1)lab(e2)...lab(en) ∈ (X±)∗

Remark 3.17. Given a path p on a labeled graph Γ, we have that lab(p) = lab(p)−1.

Definition 3.18 (Freely reduced path). Given a path p on a labeled graph Γ, we call p freely
reduced if lab(p) is a freely reduced word.

Remark 3.19. Let p be a path on the labeled graph Γ. If p is freely reduced, p is reduced. If Γ is
well-labeled, p is freely reduced if and only if p is reduced.

Definition 3.20 (Connected graph). A graph Γ is connected if for every pair of vertices v, u ∈
V (Γ) there is at least one path p with ι(p) = v and τ(p) = u.

Definition 3.21 (Connected component). Given a graph Γ, we call a maximal connected subgraph
a connected component of Γ.

Definition 3.22 (Tree). We call a graph Γ a tree if for every pair of vertices v, u ∈ V (Γ) there is
exactly one reduced path p with ι(p) = v and τ(p) = u.

Definition 3.23 (Spanning tree). Let Γ be a connected graph, we call a spanning tree of Γ a
subgraph T ⊆ Γ that V (T ) = V (Γ) and T is a tree.

Definition 3.24 (Pointed graph). A pointed graph is a graph Γ with a distinguished vertex v0 ∈
V (Γ) called the basepoint. We represent that as (Γ, v0).

1 2 3
a

b

a

Figure 4: A pointed labeled graph with 1 as basepoint

We will represent the pointed graphs as normal graphs but with a double circle at the basepoint,
as in Figure 4.
Now, given a group G = 〈X | R〉, we know that the elements of G are equivalence classes of words
over X±. We will use the notation ”≡” to say that two words are the same, and ”=G” to say that
two words represent the same element of G.
Given a pointed labeled graph (Γ, v0), we define Loop(Γ, v0) and Lab(Γ, v0) as follows:

Loop(Γ, v0) = {p | p is a path in Γ with ι(p) = τ(p) = v0}

Lab(Γ, v0) = {g | g ∈ G and there is p ∈ Loop(Γ, v0) with lab(p) =G g}
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Lemma 3.25. Lab(Γ, v0) = H, where H is a subgroup of G.

Proof. It is obvious that Lab(Γ, v0) ⊆ G, so we have to check that it is also a group. For each
p ∈ Loop(Γ, v0) we have p ∈ Loop(Γ, v0). And from the Definitions 3.9 and 3.4 we have that if
lab(p) =G g then p =G g−1, so g ∈ H ⇒ g−1 ∈ H. Obviously the path {v0} ∈ Loop(Γ, v0), so
1 ∈ H. For each pair p1, p2 ∈ Loop(Γ, v0) we have τ(p1) = ι(p2) = v0 so we can concatenate
them and obtain p = p1p2, with lab(p) = lab(p1)lab(p2). If lab(pi) =G gi, lab(p) =G g1g2, so
g1, g2 ∈ H ⇒ g1g2 ∈ H.

Definition 3.26 (Core graph). Let Γ be a graph, the core of Γ at v ∈ V (Γ) is the subgraph
Core(Γ, v) induced by the union of the reduced closed paths in Γ starting at v.

It is easy to see that Core(Γ, v) is a connected subgraph of Γ containing v. If Core(Γ, v) = Γ
we say that Γ is a core graph with respect to v.
The following lemma lists some properties of core graphs.

Lemma 3.27. Let Γ′ = Core(Γ, v). Then:

1. Γ′ is connected and contains the vertex v.

2. Γ′ has no degree-one vertices, except possibly for the vertex v.

3. If Γ is a labeled graph then Lab(Γ′, v) = Lab(Γ, v).

Proof. The path p = {v} is obviously reduced and closed at v, so v ∈ V (Γ′). As each vertex
u ∈ V (Γ′) is part of a closed path starting at v, there is one path from v to every other vertex of
Γ′, so it is connected.

Each vertex u ∈ V (Γ′) with u 6= v is part of a reduced path p closed at v, so there are two
edges e1, e2 ∈ E(Γ′) with ι(ei) = u and e1 6= e2.

As Γ′ ⊆ Γ we have easily that Lab(Γ′, v) ⊆ Lab(Γ, v). Let p ∈ Loop(Γ, v), we call p = p1.
Now we build the sequence p1, p2, ..., pn where pi is obtained from pi−1 after removing a contin-
uous subsequence of the form {v1, e, v2, e}. As p is finite, this sequence is also finite and pn is
obviously reduced and so pn ∈ Loop(Γ′). Now, as lab(e) = lab(e)−1 we have that, if gi =G lab(pi),
gi = gi+1, and so Lab(Γ, v) ⊆ Lab(Γ′, v).

Lemma 3.28. Let Γ′ = Core(Γ, v), where (Γ, v) is a pointed graph. Then every reduced path p in
Γ′ such that ι(p) = v can be extended with another path p′ such that τ(p′) = v and pp′ is reduced.

Proof. If τ(p) = v we are done. Let τ(p) = u, from the definition of Core graph we have that there
is a reduced closed path at v that goes through u, t = t1t2, where τ(t1) = u. As t is reduced, the
first edge of t1 and the first of t2 cannot be the same, so at least one of them is not equal to the
first edge of p, let us call this path, t1 or t2, t′, then pt′ is a reduced closed path at v.

Definition 3.29 (Morphism of labeled graphs). Let Γ and ∆ be two X± labeled graphs. We call
the map π : Γ → ∆ a morphism of labeled graphs if π sends vertices to vertices, edges to edges,
preserves labels for directed edges and the following holds

ι(π(e)) = π(ι(e)) and π(e) = π(e),∀e ∈ E(Γ)

Definition 3.30 (Embedding). We call a morphism of labeled graphs an embedding if it is injective.
If there is an embedding from Γ to ∆ we say that Γ embeds ∆.

Definition 3.31 (Morphism of pointed labeled graphs). Let (Γ, v0) and (∆, u0) be two pointed
X± labeled graphs. We call the map π : Γ → ∆ a morphsim of pointed labeled graphs if π is a
morphism of labeled graphs and sends v0 to u0.

Lemma 3.32. Let (Γ, v0) and (∆, u0) be two X± pointed labeled graphs and H = Lab(Γ, v0) and
K = Lab(∆, u0) two subgroups of the group G〈X | R〉. If there exists a morphism of pointed labeled
graphs π : Γ→ ∆, then H ≤ K.
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Proof. Let p be a path in Γ, we have that lab(p) ≡ lab(π(p)) and if p is closed and ι(p) = v0 then
π(p) is closed and ι(π(p)) = u0. With this we have Loop(Γ, v0) ⊆ Loop(∆, u0) so H ≤ K.

Lemma 3.33. Let (Γ, v0) and (∆, u0) be two X± connected pointed labeled graphs, if ∆ is well-
labeled there is at most one morphism of pointed labeled graphs π : Γ→ ∆.

Proof. We will use induction to prove that there is at most one way to map the vertices of Γ to
the ones on ∆. We will do induction over the distance n from v ∈ V (Γ) to v0. When n = 0 we
have v = v0 so π(v0) = u0 always. Now, suppose that there is only one way to map the vertices
with distance less than n > 0, if v ∈ V (Γ) has distance to v0 equal to n there is a path p of length
n with ι(p) = v0 and τ(p) = v. Let vn−1 be the vertex just before v in this path, this vertex has
distance to v0 less than n, so there is only one way to map it. If en is the last edge of the path p,
we have that there is only one edge e ∈ E(∆) with ι(e) = π(vn−1) and lab(e) = lab(en), so v con
only be mapped to π(v) = τ(e).

Remark 3.34. Let (Γ, v0) and (∆, u0) be two X± pointed well-labeled graphs, if they are isomorphic
there is only one isomorphism π : Γ→ ∆. We denote it (Γ, v0) ∼= (∆, u0).

Definition 3.35 (Labeled product graph). Given two labeled graphs Γ and ∆, we define the labeled
product graph as the graph Γ×∆, with V (Γ×∆) = V (Γ)× V (∆). We define E(Γ×∆) as

{e1 × e2 | e1 ∈ E(Γ), e2 ∈ E(∆), lab(e1) = lab(e2)}

with the following definitions: ι(e1 × e2) = ι(e1) × ι(e2), e1 × e2 = e1 × e2 and lab(e1 × e2) =
lab(e1) = lab(e2).

Definition 3.36 (Pointed labeled product graph). Given two pointed labeled graphs (Γ, v0) and
(∆, u0), we define the pointed labeled product graphs as (Γ×∆, v0 × u0), were Γ×∆ is the labeled
product graph of Γ and ∆.

1 2 3

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1

2

3

a

b

b

a

a

b

a

a a

a a

b

b

Figure 5: A labeled product graph

Lemma 3.37. Given two well-labeled graphs Γ and ∆, then Γ×∆ is also well-labeled.

Proof. Suppose that Γ × ∆ is not well-labeled, there exists one vertex u × v with two edges
e1 = e1

1 × e1
2 and e2 = e2

1 × e2
2 with ι(e1) = ι(e2) = u × v, lab(e1) = lab(e2) and e1 6= e2. This

implies that at least one of these holds: e1
1 6= e2

1 or e1
2 6= e2

2, from this we get that at least one of Γ
or ∆ is not well-labeled.
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Proposition 3.38. Given two connected graphs Γ and ∆, With E(Γ) = n and E(∆) = m, we can
compute Γ×∆ in O(nm).

Proof. As Γ and ∆ are connected V (Γ) is O(n) and V (∆) is O(m). Then V (Γ × ∆) is O(nm).
For each pair of edges from Γ and ∆ we have to check if they have the same label, and hence they
correspond to an edge in Γ×∆. There are exactly n ·m pairs so E(Γ×∆) is O(nm).

4 Data structures and methods

In this section we will describe, explain and analyze some data structures and methods that will
be useful in the future for an efficient implementation of the algorithms. All the algorithms and
methods we will be describing in this section and further information about them can be found in
[3].

4.1 Linked list

The first and most basic data structure we will be using is the linked list. This data structure
allows us to store elements with insertion and deletion operations that run in O(1).
In a linked list we will have two data types, the list base and the list elements. The base element
has a pointer next pointing to the first element of the list, if the list is empty the pointer is empty
to. Each list element has two pointers, next and prev. As the names suggest, the next pointer
points to the next element on the list, or it is empty if the element is the last one, and the prev

pointer points to the previous element of the list or to the base list if it is the first element.
In the example of the Figure 6 we can see that a.prev is the list base because a is the first element
and e.next is empty because e is the last element.

Base a b c d e ∅
prev prev prev prev prev

next
nextnextnextnextnext

Figure 6: A linked list with five elements

Every time that we will work with lists or use lists in a method or algorithm, we will be working
with the list base. So when we say that we pass a list as argument in some method or that some
element is pointing to a list, we are talking about the list base.

Now we can easily describe insertion and deletion methods, note that as each element has in-
formation from the previous and next element we can delete it preserving the relative order of
the other elements. Also, as we alway can work with the list base, we can always store the new
elements at the beginning of the list an preserve the order of the other elements.

Method 1: Insert new element to a list
Input : L – linked list (list base)

x – list element we want to insert
1 Function INSERT(L,x) is
2 if L.next 6= ∅ then
3 x.next← L.next
4 L.next.prev← x

5 end
6 x.prev← L
7 L.next← x

8 end

The basic two methods for a linked list will be insert and delete, the first one will need the list
and the new element we want to insert and the second one only the element we want to delete.
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Method 2: Delete element from a list
Input : x – list element we want to delete

1 Function DELETE(x) is
2 if x.next 6= ∅ then
3 x.next.prev← x.prev
4 end
5 x.prev.next← x.next

6 end

We can see easily that both methods run in O(1) time. In Figure 7 we can see an example of
how the list change when we insert or delete some elements.
As we will see in future sections, list elements or list bases can have more pointers or parameters,
but the only ones that will interfere with the lists methods are next and prev, the last one only
for list elements.

L ∅
next

(a) Empty list

L a ∅
prev

next
next

(b) List L after INSERT(L, a)

L b a ∅
prev prev

next
nextnext

(c) List L after INSERT(L, b)

L c b a ∅
prev prev prev

next
nextnextnext

(d) List L after INSERT(L, c)

L c a ∅
prev prev

next
nextnext

(e) List L after DELETE(b)

Figure 7: Example of how the linked list changes after the methods application

4.2 Queue

A queue is a data structure that works with the first in, first out concept. That means that we
can do to operations, add one element to the queue or take one element from the queue. Every
time we take one element we are taking the first element that has been inserted from the elements
that are at this moment in the queue.
We will implement this data structure using a small modification of the linked list we described
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before. The difference will be that the base element will also have a prev pointer pointing to the
las element, an last elements next will point to the base point. Initially, when the queue is empty,
the base element will be pointing to himself with next and prev. With this modification we have
to change the insert method a bit, and the take method will delete and return the last element of
the list.
For convention we will call the queue insert method PUSH and the take method POP, this will help
to differentiate them from the list ones. We have that both methods have O(1) time complexity.

Method 3: Insert new element to a queue

Input : Q – Queue (queue base)
x – queue element we want to insert

1 Function PUSH(Q,x) is
2 x.next← Q.next
3 Q.next.prev← x
4 x.prev← Q
5 Q.next← x

6 end

Method 4: Take the last oldest from a queue

Input : Q – Nonempty queue
Output: The oldest element in insertion order that is in the queue

1 Function POP(Q) is
2 x← Q.prev
3 x.prev.next← Q
4 Q.prev← x.prev
5 x.next← ∅
6 x.prev← ∅
7 return x

8 end

4.3 Disjoint sets

Given a set of elements, this data structure allows us to maintain information about disjoint subsets
of this elements and we can also merge two subsets in one in an efficient way. Each of the elements
has a pointer parent that initially points to himself and and integer rank that is initially set to 0.
This data structure has two basic methods, the first one is to find the representative of the element’s
subset. This representative is always an element of the subset and only changes when we merge
two subsets, that one of the representatives become the representative of the new subset. This
first method is called FIND-SET. The second method is UNION, and as the name says it unifies two
subsets in one new subset. We just need one element from each subset, is not necessary that they
are the representatives.

Method 5: Finds the representative of the subset of x

Input : x – set element
Output: The representative of the subset of x

1 Function FIND-SET(x) is
2 if x.parent = x then
3 return x
4 else
5 x.parent← FIND-SET(x.parent)
6 return x.parent

7 end

8 end

9



Note that initally each element belongs to its own subset, so each element is the representative
of its own subset.

Method 6: Merges the subsets of x and y

Input : x – set element
y – set element

1 Function UNION(x,y) is
2 x← FIND-SET(x)
3 y← FIND-SET(y)
4 if x 6= y then
5 if x.rank > y.rank then
6 y.parent← x
7 else
8 if x.rank = y.rank then
9 y.rank← y.rank + 1

10 end
11 x.parent← y

12 end

13 end

14 end

In [1] we can find a proof that this data structure works in O(m log∗n) amortized time com-
plexity, where n is the number of elements in the set and m the numbers of times we call the
methods.

Definition 4.1. The function log∗ : N → N assigns to each natural namber n the least natural
number k such that:

log ◦ log ◦ ... ◦ log︸ ︷︷ ︸
k times

(n) ≤ 1

From the definition of log∗ we can see that this function is growing really slowly. If we take the
base-2 logarithm we have that log∗(265536) = 5, where 265536 is an integer much more larger than
the bits of storage space of a normal computer. So, in practical sense we can consider this data
structure as amortized linear in the number of times we use the methods.

4.4 Vertices and edges

Most of the time, in our algorithms, we are going to be working with vertices and edges of labeled
graphs. That is way we need an efficient way to represent this concepts.
As we noticed in the previous section, we only need the directed X-labeled edges to represent a
X± labeled graph. That is way we are going to consider as the same element the X-labeled edge
e and the corresponding X−1-labeled edge e when we do operation such as modifying some edges
endpoints, adding or deleting an edge. So when we modify in some way the edge e we will also
modify the edge e.
To do that, each vertex v is going to have a linked list called edges with all the edges e such that
ι(e) = v. It is easy to see that each edge it will be at exactly one linked list. We will also assume
that we have a pointer from e to e, so that when we modify one of the edges the other one gets
modified too.

5 Free group

We will first present the free group and some properties, all we are going to present about the free
group is based on [5].
Informally, a group is free on a set of generators if no relation holds among these generators except
the trivial relations that hold among any set of elements in any group.
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Definition 5.1 (Free group). Let X be a subset of a group F . Then F is a free group with basis
X if the following holds: if φ is any function from the set X into a group H, then there exists a
unique extension of φ to a homomorphism φ∗ from F to H.

Remark 5.2. The requirement that the extension be unique is equivalent to requiring that X
generates F .

We can now prove one of the basic properties of free groups.

Proposition 5.3. Let F1 and F2 be free groups with bases X1 and X2. Then F1 is isomorphic to
F2 if and only if X1 and X2 have the same cardinal.

Proof. Suppose that f1 is a one-to-one correspondence mapping X1 onto X2, and let f2 = f−1
1 .

The maps f1 and f2 determine maps φ1 : X1 → F2 and φ2 : X2 → F1. These have extensions
to homomorphisms φ∗1 : F1 → F2 and φ∗2 : F2 → F1. Now φ∗2φ

∗
1 : F1 → F1 acts as the identity

f2f1 = iX1 on X1, and hence is an extension of the inclusion map X1 → F1. Since the identity
iF1 : F1 → F1 also extends this inclusion map, by uniqueness we have φ∗2φ

∗
1 = iF1 . Similarly

φ∗1φ
∗
2 = iF2

. It follows then that φ∗1 is an isomorphism from F1 onto F2.
It remains to show that F determines |X|. The subgroup N of F generated by all squares of
elements in F is normal. This is because if w2 is an element of the generating set for N , and
x ∈ F , then xw2x−1 = (xwx−1)2 ∈ N , so for every x ∈ F xNx−1 ⊆ N , hence N is normal. Also
F/N is an elementary abelian 2-group. This is because every nontrivial element fo F/N has order
2. We have then that the elements of X form a basis for the vector space F/N over F2. So if X is
finite |F/N | = 2|X| and if it is infinite |F/N | = |X|.

Corollary 5.4. All bases of a given free group F have the same cardinal, the rank of F .

Now we will prove the existence of free groups in a constructive way. We will be using the set
of words (X±)∗ together with a relation ∼. We first need to define an operation to get one word
from another.

Definition 5.5 (Elementary transformation). Given a word on X± w = x1x2...xn, we call an
elementary transformation removing or adding a factor xx−1 with x ∈ X± to some position of w.

With this definition we can now define the relation ∼ as: given two words w1, w2 ∈ X±, we
have w1 ∼ w2 if an only if we can get from w1 to w2 using elementary transformations. Note that
this is an equivalence relation and also holds that if u1 ∼ u2 and v1 ∼ v2 then u1v1 ∼ u2v2, and
also if u1 ∼ u2 we have u−1

1 ∼ u−1
2 .

Given a word w ∈ (X±)∗, we will denote the equivalence class of w in (X±)∗/ ∼ by [w]. Now we
will prove that we can use the freely reduced words to represent the elements of (X±)∗/ ∼.

Proposition 5.6. Given a finite set X±, in each equivalence class of (X±)∗/ ∼ there is exactly
one freely reduced word.

Proof. Given a word w, if we iteratively apply the removing elementary transformation we will get
to one freely reduced word, so at [x] there is at least one freely reduced word.
Now suppose that we have two freely reduced words w 6= w′ with [w] = [w′]. That means that
there is a sequence of words {w1, w2, ..., wn} with w1 = w ans wn = w′ such that we can get
from wi to wi+1 with an elementary transformation. Let this sequence be the one with minimum
N =

∑n
i=1 |wi|, we obviously have that |wi| 6= |wi+1| and that n ≥ 3 because we cannot go from w to

w′ using only one elementary transformation. It must be true that |w1| < |w2| and |wn−1| > |wn|,
so there is one word wi with |wi| > |wi−1|, |wi+1|. This means that we are getting from wi to
wi+1 and wi−1 using a removing elementary transformation. If it is the same transformation it
means that wi+1 = wi−1 which contradicts the minimality of N . If they intersect, we have that wi
contains the subsequence xx−1x with x ∈ X± and that in both transformation the result of this
subsequence is x, so again wi+1 = wi− 1. The last case is when they don’t intersect, that means
we remove a subsequence aa−1 to get from wi to wi−1 and a subsequence bb−1 to get from wi to
wi+1. We can replace wi for w′i consisting of wi after removing both aa−1 and bb−1, the sequence
of words is still valid but with N ′ = N − 4 contradicting the minimality of N again.
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Given a word w ∈ (X±)∗, we will denote the only freely reduced word of [w] by w.

Proposition 5.7. F = (X±)∗/ ∼ is a free group with basis the set [X] of equivalence classes of
elements from X, and |[X]| = |X|. We will denote this group by F (X).

Proof. Let H be any group, and let φ map the set [X] of equivalence classes [x] of elements
x ∈ X into H. To show that |[X]| = |X|, we observe that if x1, x2 ∈ X and x1 6= x2, then
[x1] 6= [x2], since the two words are freely reduced. Then φ determines a map φ1 : X → H
with φ([x]) = φ1(x). We can define an extension φ∗1 fo φ1, from (X±)∗ into H as φ∗1(w) =
φ∗1(xe11 x

e2
2 ...x

en
n ) = φ1(x1)e1φ1(x2)e2 ...φ1(xn)en , with xi ∈ X and ei = ±1. If w1 and w2 are

equivalent, then φ∗1(w1) = φ∗1(w2), whence φ∗1 maps equivalent words onto the same element of H.
That induces a map φ∗ : F → H which is clearly a homomorphism and an extension of φ. As [X]
generates F , φ∗ is unique.

Corollary 5.8. If X is any set, there exists a free group F with X as basis.

Proposition 5.9. If a group is generated by a set of n of its elements (n finite or infinite), then
it is a quotient group of a free group of rank n.

Proof. Let G be a group generated by S ⊆ G, with |S| = n. Let φ be a one-to-one map from a set
X onto S. Let F be a free group with X as basis, then φ : X → G extends to a homomorphism
φ∗ : F → G. Since the image S of X generates G, φ∗ maps F onto G.

5.1 Stallings graphs

Here we are going to present the Stallings graphs, a geometric approach to study subgroups of free
groups. This idea was first presented by Stallings in [9] and latter revised in a more combinatorial
way by Kapovich and Myasnikov in [4].
The idea of Stallings graphs is to associate a unique pointed well-labeled core graph to each
subgroup H ≤fg F (X), we will call it Γ(H), that will allow us to solve problems like the word
problem efficiently. In this section we will explain an algorithm to calculate efficiently Γ(H) from
a finite set of generators H = 〈h1, h2, ..., hm〉 in time O(n2), where n =

∑m
i=1 |hi| and |h| is the

length of the freely reduced word on X± that represents h. There is a faster algorithm [10] that
runs in O(n log∗n), but the use of this algorithm instead of the other one won’t change the final
complexity of the malnormal closure calculation algorithm.

Definition 5.10 (Folding). Let Γ be a labeled graph but not well-labeled, then there is one vertex
v ∈ V (Γ) and two different edges e1, e2 ∈ E(Γ) such that ι(ei) = v and lab(e1) = lab(e2). We call
a folding of edges e1 and e2 the operation that gets Γ, e1, e2 and gives us the labeled graph ∆, where
∆ is defined as follows:

V (∆) = {V (Γ) \ {τ(e1), τ(e2)}} ∪ {u}
E(∆) = {f(e) | e ∈ E(Γ) \ {e1, e2, e1, e2}} ∪ {e′, e′}

Where f is a function f : E(Γ)→ E(∆) such that lab(f(e)) = lab(e), if ι(e) ∈ {τ(e1), τ(e2)} then
ι(f(e)) = u, else ι(e) = ι(f(e)). It holds that f(e) = f(e), so we define τ(f(e)) = ι(f(e)). And we
define e′ and his inverse e′ as ι(e′) = v, lab(e′) = lab(ei) and ι(e′) = u.

a

b

b
b

a

(a) Not well-labeled graph before Stallings
folding

a

b b

a

(b) Well-labeled graph after Stallings fold-
ing

Figure 8: We go from the first graph to the second doing a Stallings folding
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We can see that if we have a labeled graph Γ and we fold edges e1, e2 ∈ E(Γ), we get a graph ∆
with |E(∆)|+ 1 = |E(Γ)| and |V (Γ)| − 1 ≤ |V (∆)| ≤ |V (Γ)|, where |V (∆)| = |V (Γ)| only happens
if τ(e1) = τ(e2).
One thing to notice is that if we are doing a folding in a pointed labeled graph (Γ, v0) and we get
(∆, u0), then if v0 ∈ {τ(e1), τ(e2)} then u0 = u, else u0 = v0.

a

b

b
b

a

(a) Not well-labeled pointed graph before
Stallings folding

a

b b

a

(b) Well-labeled pointed graph after
Stallings folding

Figure 9: We go from the first graph to the second doing a Stallings folding, we can see how we
change the basepoint

Proposition 5.11. Let (Γ, v0) be a pointed labeled graph. If we fold the edges e1, e2 ∈ E(Γ) and
we get the pointed labeled graph (∆, u0), then Lab(Γ, v0) = Lab(∆, u0).

Proof. There is an obvious morphism f : (Γ, v0) → (∆, u0), that for each vertex v ∈ E(Γ) \
{τ(e1), τ(e2)} is the identity and f(τ(ei)) = u, this follows the definition of morphisms of pointed
labeled graphs and, from Lemma 3.32, Lab(Γ, v0) ≤ Lab(∆, u0).
Let p ∈ Loop(∆, u0), Let us split p into the maximum number of paths p = p1p2...pn such that
if i > 1 then ι(pi) = u and if i < n then τ(pi) = u. As n is maximum, u /∈ pi \ {ι(pi), τ(pi)}
for all 0 ≤ i ≤ n. So, for each i, there is a path p′i from Γ such that f(p′i) = pi and if i > 1
then ι(p′i) ∈ {τ(e1), τ(e2)} and if i < n then τ(p′i) ∈ {τ(e1), τ(e2)}. Now we can create a path
p′ = p′1t1p

′
2t2...tn−1p

′
n where ti = {τ(p′i), e

′
1, v, e

′
2, ι(p

′
i+1)}, having v = ι(ei), e

′
1 ∈ {e1, e2} and

e′2 ∈ {e1, e2} depending on the values of τ(p′i) and ι(p′i+1). We have that p′ is a path in Γ. It
could happen that p1 = pn = {u} if v0 ∈ {τ(e1), τ(e2)}, then we choose p′1 = p′n = {v0}. So now
we have that p′ ∈ Loop(Γ, v0) and lab(ti) =G 1 so lab(p′) =G lab(p) which means Lab(Γ, v0) ≥
Lab(∆, u0).

Proposition 5.12. Let (Γ, v0) be a pointed well-labeled graph. Then for each word w ∈ lab(Loop(Γ, v0))
we have w ∈ lab(Loop(Γ, v0)).

Proof. Let p ∈ Loop(Γ, v0), then as Γ is well-labeled we have that lab(p) is freely reduced if and
only if p is reduced from Remark 3.19. So, if we have the sequence p1, p2, ..., pn where p1 = p, pn
is reduced, and we get pi from pi−1 after removing two consecutive edges such that ej = ej+1,
then it is obvious that pi ∈ Loop(Γ, v0) and also that [lab(pi)] = [lab(p)]. And as pn is reduced
lab(pn) = lab(p).

We now can present a method that given a labeled graph Γ it will check if it is well-labeled,
and if it is not, it will return two edges to fold.
As we said on Section 4.4, we are going to modify the edges e and e together and each vertex will
have a linked list (explained in Section 4.1) called edges to store the edges with ι(e) = v. For this
purpose we are going to have a disjoint set data structure (explained in Section 4.3) to store the
equivalence classes of vertices.
We are going to use a memory storage that we will call Label, it will have an entry for each element
of X± and the direct access to each position will have O(1) time complexity.
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Method 7: Checks if the labeled graph Γ is well-labeled

Input : Γ – labeled graph
Output: e1– edge to fold

e2– edge to fold
1 Function IS-WELL-LABELED(Γ) is
2 foreach v ∈ V (Γ) do
3 if v = FIND-SET(v) then
4 foreach x ∈ X± do
5 Label[x]← ∅
6 end
7 e← v.edges.next
8 while e 6= ∅ do
9 if Label[lab(e)] 6= ∅ then

Result: (Label[lab(e)], e)
10 end
11 Label[lab(e)]← e
12 e← e.next

13 end

14 end

15 end
Result: ∅

16 end

Now we need a method to merge the two edges found by the previous method. As before, we
are representing the vertices with a disjoint set data structure to know which ones we still have.
That means that every time we do a folding we are going to merge vertices τ(e1) and τ(e2) into
the new vertex u. So we won’t have to change the ι and τ values of any edge and we will only have
to remove one of e1 and e2.

Now we have to prove that there exists a core pointed well-labeled graph for each subgroup
H ≤fg F (X), also that this graph is unique and find an effective algorithm to calculate it.

Lemma 5.13. Let (Γ, v) be a core pointed well-labeled graph that when related to F (X) we have
Lab(Γ, v) = H. For every prefix w of a reduced word representing an element h ∈ H there is a
unique path p in Γ with ι(p) = v, and lab(p) = w.

Proof. The uniqueness comes from the fact that the graph is well-labeled. And the existence is
obvious if we take p to be the initial part of length |w| of the closed path at v with label h, whose
existence follows from Proposition 5.12.

Proposition 5.14. Let F (X) be the free group with finite basis X and let K ≤ H ≤ F (X) be
two subgroups of F (X). Suppose (Γ1, v1) and (Γ2, v2) are core pointed well-labeled graphs such that
Lab(Γ1, v1) = K and Lab(Γ2, v2) = H.
Then there exists a unique morphism of pointed labeled graphs φ : Γ1 → Γ2.

Proof. The uniqueness follows from Lemma 3.33. We have to prove that such π exists.
As Γ1 is a core graph, every vertex in V (Γ1) is part of a reduced path. Let w be the prefix of a
reduced word representing an element h ∈ K. From Lemma 5.13 we have that there is a path p1

in Γ1 with ι(p1) = v1 and lab(p1) = w, and also a path p2 in Γ2 with ι(p2) = v2 and lab(p2) = w.
We define φ(τ(p1)) = τ(p2), and the image of the edges as the only possible edge following the
morphism conditions as graphs are well-labeled, we need to check that this is well defined.
For each vertex of Γ1 we will consider w as the shortest word holding the conditions and we will
be doing induction over the length of the word. The base case is the basepoint which is obviously
true.
Suppose we take another prefix w′ 6= w of a reduced word representing an element of K such
that the path p′1 in Γ1 with ι(p′1) = v1 and lab(p′1) = w′ has τ(p′1) = τ(p1). We will see that the
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equivalent path p′2 in Γ2 has τ(p′2) = τ(p2). As p1 and p′1 are freely reduced paths, we have that
lab(p1p′1) 6=F (X) 1. Now we have two options, if the last edges of p1 and p′1 are the same, let u be
the last edge in p1 and p′1 before τ(p1), then φ(τ(p1)) is well defined if φ(u) is well defined, that
holds for the induction assumption. So let us suppose that the last edge is not the same. Then
p1p′1 is a reduced path, hence is freely reduced. So lab(p1p′1) ∈ K. From Proposition 5.12 we have
that there is a closed at v2 reduced path p in Γ2 with lab(p) = lab(p1p′1) = lab(p2p′2), so we have
τ(p2) = τ(p′2).

Method 8: Folds two edges on the pointed labeled graph (Γ, v0)

Input : Γ – labeled graph
v0– basepoint
e1– edge to fold
e2– edge to fold

1 Function FOLD(Γ,v0,e1,e2) is
2 u1 ← FIND-SET(τ(e1))
3 u2 ← FIND-SET(τ(e2))
4 UNION(u1, u2)
5 u← FIND-SET(u1)
6 if v0 ∈ {u1, u2} then
7 v0 ← u
8 end
9 if u = u1 then

10 foreach e ∈ u2.edges do
11 DELETE(e)
12 if e 6= e2 then
13 INSERT(u.edges, e)
14 end

15 end

16 else
17 foreach e ∈ u1.edges do
18 DELETE(e)
19 if e 6= e1 then
20 INSERT(u.edges, e)
21 end

22 end

23 end

24 end

Proposition 5.15. Let F (X) be a free group with finite basis X. Let H ≤fg F (X) be a subgroup
of F (X). Then there exists a core pointed well-labeled graph (Γ, v0) such that Lab(Γ, v0) = H.

Proof. Let us consider the labeled graph ∆ where we have a bijection f between right cosets of
H in F (X) and the elements of V (∆). The edge e with ι(e) = v1, τ(e) = v2 and lab(e) = x with
v1, v2 ∈ V (∆) and x ∈ X± is in E(∆) if and only if f−1(v1)x = f−1(v2), where f−1(vi) is the
right coset assigned to each vertex.
This graph is connected. Let us call v0 = f(H) ∈ V (∆), for each vertex v1 = f(Hh), with
h ∈ F (X), there is a reduced path p with lab(p) = h, ι(p) = v0 and τ(p) = v1.
∆ is well-labeled. Suppose we have e1, e2 ∈ E(∆) with lab(e1) = lab(e2) = x and ι(e1) = ι(e2) = v,
and ui = τ(ei). Then we have f−1(u1) = f−1(v)x = f−1(u2), so u1 = u2 and hence e1 = e2.
Now let us see that Lab(∆, v0) = H, from the definition of ∆ it is obvious that Lab(∆, v0) ≤ H
because every element h ∈ F (X) such that Hh = H must satisfy h ∈ H. Let h ∈ H and p a
reduced path such that ι(p) = v0 and lab(p) = h, if τ(p) 6= v0 we have that H = Hh = Hk, where
k ∈ F (X) \H, which is impossible. So Lab(∆, v0) ⊇ H.
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If we define (Γ, v0) = Core(∆, v0), from Lemma 3.27 we have that this graph holds all the condi-
tions.

Proposition 5.16. Let F (X) be a free group with finite basis X and let H ≤fg F (X). Sup-
pose (Γ1, v1) and (Γ2, v2) are connected core pointed well-labeled graphs and Lab(Γ1, v1) = H =
Lab(Γ2, v2). Then there exists a unique isomorphism of pointed labeled graphs π : Γ1 → Γ2.

Proof. The uniqueness of π follows from Lemma 3.33.
Since H ≤ H, by Proposition 5.14 there is a morphism of pointed graphs π : (Γ1, v1) → (Γ2, v2).
We claim that π is an isomorphism of pointed graphs. Proposition 5.14 implies there is a morphism
of pointed graphs π′ : (Γ2, v2)→ (Γ1, v1). Therefore π′ ◦π : (Γ1, v1)→ (Γ1, v1) is a morphism, from
Lemma 3.33 it is unique, namely the identity map on (Γ1, v1). We can use a symmetric argument
to show that π ◦ π′ is the identity map on (Γ2, v2). Therefore π is an isomorphism.

Definition 5.17. Given a finite set X and a subgroup H ≤fg F (X), we call the unique pointed
well-labeled core graph (∆, v0) such that Lab(∆, v0) = H, the Stallings graph of the subgroup H,
and we denote it by Γ(H).

Using the Stallings graph Γ(H) we can find a basis of the subgroup H efficiently. For that we
will use a spanning tree T of the graph Γ(H). we will denote by [v, u]T the only reduced path from
v to u in T .

Proposition 5.18. Given a subgroup H ≤fg F (X), let T ⊆ Γ(H) be a spanning tree. Let v0 be
the basepoint of the pointed graph Γ(H). We define the sets:

E+
T = {e | e ∈ E(Γ(H)) \ E(T ) and lab(e) ∈ X}

YT = {pe ∈ F (X) | lab([v0, ι(e)]T e[τ(e), v0]T ) =F (X) pe with e ∈ E+
T }

We have that 〈YT 〉 = H.

Proof. We can extend the definition of YT to YT using all the edges e ∈ E(Γ(H)) instead of only
the ones if E+

T . We can see that YT ⊆ YT . It is easy to see that pe = p−1
e , so we will only consider

the elements pe ∈ YT with lab(e) ∈ X+.
It is obvious that 〈YT 〉 ≤ H, so we will prove that every element h can be expressed as a product of
elements from YT . Given an element h ∈ H there is a word w in (X±)∗ such that lab(w) =F (X) h
and w is freely reduced. From Proposition 5.12 we have that there is path p closed at v0 with
w = lab(p). If e1, . . . , en is the sequence of edges in the path p, we will define uδii as ui = pei and

δi = 1 if lab(ei) ∈ X+ or ui = pei and δi = −1 in the other case. We have that uδ11 u
δ2
2 ...u

δn
n = h.

All the ui ∈ YT , we can see that if ui /∈ YT then ui = 1, so h is a product of elements of YT .

Theorem 5.19. Let {h1, h2, . . . , hm} be a generator set for the subgroup H ≤fg F (X). There is
an algorithm that builds Γ(H) in O(n2), where n =

∑m
i=1 |hi|.

Proof. First we will create the called Flower graph F(H), it is a pointed graph with disjoint
cycles that represent a closed path at v0 with label hi, one cycle for each. It is easy to see that
Lab(F(H)) = H. Now, we will keep applying Method 7 and Method 8 until we get a pointed graph
that is well-labeled, we will call this graph G(H). G(H) is a pointed well-labeled graph such that
Lab(G(H)) = H, by Proposition 5.11. If we iteratively remove the vertices with degree 1 we will
end up with a core well-labeled pointed graph G′(H) such that Lab(G′(H)) = H. By Proposition
5.16 we have that G′(H) = Γ(H).
As Method 7 runs in O(n) and Method 8 runs in O(log∗(n)) amortized time, and we at most use
these methods O(n) times, the total running time is O(n2).
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(d) The graph after folding the two edges
with label b and terminal point at the ver-
tices identified with 2 and 3

Figure 10: The folding process from the flower graph to the Stallings graph

5.2 Malnormal closure algorithm

First we are going to see some relations between malnormality of a subgroup H ≤fg F (X) and
some properties of Γ(H). After that we will be able to present an algorithm that runs in O(n3) to
get the malnormal closure. This algorithm was first presented in [8] by P. V. Silva and P. Weil.
The first proposition gives some conditions on Γ(H) × Γ(H) that are equivalent to H being a
malnormal subgroup.
From now on, we will call the diagonal connected component of Γ(H) × Γ(H) the connected
component that contains all the vertices (v, v) with v ∈ V (Γ(H)). It is easy to see that this
subgraph is isomorphic to Γ(H).

Proposition 5.20. Let H ≤fg F (X), H is malnormal if and only if all the connected components
of Γ(H)× Γ(H) except the diagonal are trees.

Proof. Suppose that Γ(H) × Γ(H) has a connected component, which is not the diagonal, that
has a reduced cycle. If (v1, v2) is a vertex of this component, v1 6= v2 because it is not the
diagonal component, we have a reduced nonempty path p closed at (v1, v2) with freely reduced
label w = lab(p). That means we can do the same path in Γ(H) from v1 to itself and the same
for v2. Let w1 be the label of a reduced path from v0 to v1, and the same definition for w2. Let
g, g1, g2 represent the elements of H corresponding to w,w1, w2. We have g ∈ g−1

1 Hg1 ∩ g−1
2 Hg2

which implies g2gg
−1
2 ∈ H∩g2g

−1
1 H(g2g

−1
1 )−1, 1 6= g2gg

−1
2 because w is a freely reduced nonempty

word, and g2g
−1
1 /∈ H because v1 6= v2, so H is not malnormal.

Now suppose H is not malnormal, then we have g /∈ H, such that H ∩ gHg−1 6= 1. Let w be
a reduced word representing g and w = uv, where v is the longest prefix of w that we can get
as a label of a path in Γ(H) starting at v0, ending at v1. Then all the freely reduced labels of
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closed paths at Γ(gHg−1) are of the form utu, where t is a freely reduced nonempty word. We
have H ∩ gHg−1 6= 1, so there is h 6= 1 with uHhu

−1
H ∈ H ∩ gHg−1, where uH ∈ H is the element

represented by the word u. If wh is the freely reduced word representing h, we have that uwhu is
freely reduced, and there is a path p in Γ(H) closed at v0 such that lab(p) = uwhu. This means
that there is a path pu starting at v0 in Γ(H) that has lab(pu) = u and τ(pu) = v2. If v1 = v2 we
have that g ∈ H, so v1 6= v2. It is easy to see that there are two closed reduced paths p1, p2 with
lab(pi) = wh and ι(pi) = vi, so the connected component of Γ(H) × Γ(H) containing (v1, v2) has
a reduced cycle and hence is not a tree.

Corollary 5.21. Let H ≤fg F (X), given Γ(H) there is an algorithm that finds some g ∈ F (X)\H
such that gHg−1 ∩H 6= 1 or determines that H is a malnormal subgroup of F (X) in O(n2) time.

Proof. As seen in Theorem 5.19 and Proposition 3.38 we can compute Γ(H) and Γ(H)× Γ(H) in
O(n2). We can check for cycles in Γ(H)×Γ(H) except the diagonal component in O(n2). If there
is no cycle, H is malnormal. If there is one, we take a vertex (v1, v2) from the component that has
the cycle. Let u and v be the words from the proof of Proposition 5.20, we can find them in O(n2)
time and then the word w = uv represents an element g ∈ F (X)\H such that gHg−1∩H 6= 1.

Lemma 5.22. Let H ≤ G. If g ∈ G \H satisfies gHg−1 ∩H 6= 1 then g ∈ Hmal.

Proof. Suppose that g /∈ Hmal, then g ∈ G \Hmal. But 1 6= gHg−1 ∩H ≤ gHmalg
−1 ∩Hmal = 1

leads to a contradiction, so g ∈ Hmal.

Now we can prove the first proposition showing that the malnormal closure computation for
finitely generated subgroups of free groups has a polynomial solution. This proposition was first
proved by P. V. Silva and P. Weil in [8].

Proposition 5.23. Let 〈h1, . . . , hm〉 = H ≤fg F (X), we can compute Hmal in O(n3). Where
n =

∑m
i=1 |hi|.

Proof. We will prove that we can get a sequence H = H0 ≤ H1 ≤ ... ≤ Hk = Hmal, with k ≤ n
and that we can get Γ(Hi+1) from Γ(Hi) in O(n2).
As we saw in Theorem 5.19 we can construct Γ(H) in O(n2). Suppose now we have Γ(Hi), as
Corollary 5.21 says, we can check if Hi is malnormal or find an element g that contradicts the
malnormal definition in O(ni

2). If Hi is malnormal, we are done and Hmal = Hi. If not, as
in the proof of Corollary 5.21, we can find g =F (X) uv such that v and u can be read in Γ(Hi)
from v0, ending at qv and qu with qv 6= qu because g /∈ Hi. Now, as we saw in Lemma 5.22,
〈g,Hi〉 ≤ Hmal, because Hi ≤ Hmal. We define Hi+1 = 〈g,Hi〉, Γ(Hi+1) can be computed from
Γ(Hi) by identifying vertices qv and qu and doing the necessary foldings, this process takes O(ni

2)
time.
We have seen that each step takes O(ni

2), but also if ni is the number of edges of Γ(Hi), ni+1 ≤ ni,
so each of the k steps runs in O(n2). But Γ(Hi+1) has at least one vertex less than Γ(Hi), so k ≤ n
as we wanted.

5.2.1 Product Stallings foldings

In this section we are going to present the product Stallings foldings, these foldings will allow us
to obtain Γ(H ′)× Γ(H ′) from Γ(H)× Γ(H) efficiently if Γ(H ′) is obtained from Γ(H) by a series
of vertex identifications and the consequent Stallings foldings. We will first describe the product
Stallings folding operation, then we will describe the product vertex identification and prove the
correctness of both operations.
From now on, we will be working with well-labeled pointed graphs such as Γ with the property
that V (Γ) = Q×Q, where Q is a finite set. Given p, q ∈ Q, with p 6= q, we will define the Product
Stallings folding of elements p and q as PSF(p, q).
This operation will give us a new graph Γ′, with V (Γ′) = Q′ × Q′, where Q′ = Q \ {q}. This
graph will be obtained from Γ after merging the vertices (q, t) to (p, t) and (t, q) to (t, p), with
t ∈ Q \ {p, q}, and merging (p, q), (q, p), (q, q) to (p, p). We can see that the first two types of
merges are symmetric, and that the last one can be explained in three simple merges: (q, q) to
(p, q), (q, p) to (p, p) and (p, q) to (p, p). We will use this symmetry to explain only the merges of
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vertices (q, t) to (p, t), and the rest follows from this definition.
The intuition for the merging of (q, t) to (p, t) is that during all this section Γ ⊆ ∆×∆, where ∆
is a labeled, not necessary well-labeled, pointed graph with V (∆) = Q. When we are performing
PSF(p, q) we are getting Γ′ ⊆ ∆′ × ∆′ where ∆′ is obtained from ∆ after performing a normal
Stallings folding that ends up merging the vertices p and q. E(Γ′) ⊆ E(∆′ ×∆′) is such that Γ′ is
well-labeled.
As we said in previous sections, when we work with edges doing an operation such as deleting,
crating or changing endpoints, we are in fact applying this operation to the edge e and to the
corresponding edge e.

Now we can explain how the merge of (q, t) to (p, t) will work. As they will end up being the
same vertex, we have to move all the edges e ∈ E(Γ) with ι(e) = (q, t) to a new edge e′ with
τ(e) = τ(e′) and lab(e) = lab(e′) and ι(e′) = (p, t). In some cases it can happen that we already
have an edge e1 with ι(e1) = (p, t) and lab(e1) = lab(e). In this case we can see that in the graph
∆, after identifying vertices q, p, let τ(e) = (k1

1, k
1
2) and τ(e1) = (k2

1, k
2
2), if we apply the Stallings

folding algorithm until ∆ is well-labeled we will end up identifying k1
i with k2

i . So in this case we
store that we have to identify the pairs (k1

i , k
2
i ) and remove the edge e because we already have an

edge that at the end of the algorithm will be equivalent.
We have a special case if we want to move an edge e ∈ E(Γ) with ι(e) = (q, t) = τ(e). In this case
we have to check if (p, t) already has edges with lab(e′) = lab(e) or lab(e′) = lab(e). If none of
these edges exits we move e from (q, t) to (p, t). If some or both of this edges exists, we remove e
and we will store that we have to identify (p, ki1) and (t, ki2), where (ki1, k

i
2) where i = 1 is the end

point of the edge ι(e′) = (p, t), lab(e′) = lab(e), and i = 2 is the end point of the edge ι(e′′) = (p, t),
lab(e′′) = lab(e), if they exist.

As we did with the Stallings folding algorithm we are going to present the method to perform
the Product Stallings folding. In Method 8 we had as input the pointed graph and the two edges
we wanted to fold, in this case, as we already presented, we need the graph Γ and the two vertices
p, q ∈ V (∆) that we are identifying, we also will need the basepoint of ∆, v0, to maintain it. As we
did with the Stallings folding, we will use the data structure for disjoint sets, explained in Section
4.3, to keep the actual set of vertices of ∆. We will also have a queue Q where we will store
the future pairs of vertices that we have to identify, queues are explained in Section 4.2. In addi-
tion we will have S, that is a list of the remaining vertices in V (∆), lists are presented in Section 4.1.

In lines 4 and 5 of Method 9 we are swapping the values of q and p in case, if we do the dis-
joint set union on them, p would be merged on q, we want the opposite, q merged on p. Of course
this code is not complete as we are missing the cases with (t, q) merging on (t, p), this is an equiv-
alent for loop that can be done inside the one in line 7 or just after that for loop. Another thing
to notice is that to handle correctly the merging of the group (q, q), (p, q), (q, p), (p, p) we need to
make sure that in the for loop of line 7 the iteration with t = q happens before t = p, this can be
done with an extra if condition avoiding the case with t = p and doing it at the end of the for loop.
One last thing that we have to consider is when we find a loop in line 17, in this case if we are
analyzing edge e we will skip the iteration of e as we already deleted it in line 16. This happens
because we apply the same operations to e and to e.
One fact about this algorithm is that every time we delete an edge of Γ and we don’t insert another
one we add at most two pairs of vertices to the list Q. This is because when we remove a self loop
we are in fact deleting two edges at the same time. As we don’t insert anything to Q when we
move the edge without deleting it, we can say the the size of Q increases at most 2 ∗ d, where d is
the number of deleted edges.
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Method 9: Performs a Product Stallings folding on vertices p and q
Input : Γ – well-labeled product graph

v0– basepoint of ∆
p – vertex to identify
q – vertex to identify
Q – queue
S – list of vertices

1 Function PRODUCT-FOLD(Γ,v0,p,q,Q,S) is
2 p← FIND-SET(p)
3 q ← FIND-SET(q)
4 if p.rank < q.rank then
5 SWAP(p, q)
6 end
7 foreach t ∈ S do
8 t← FIND-SET(t)

9 foreach x ∈ X± do
10 Label[x]← ∅
11 end
12 foreach e ∈ (p, t).edges do
13 Label[lab(e)]← τ(e)
14 end
15 foreach e ∈ (q, t).edges do
16 DELETE(e)
17 if τ(e) = (q, t) then
18 if Label[lab(e)] = ∅ and Label[lab(e)] = ∅ then
19 INSERT((p, t).edges, e)
20 Label[lab(e)]← (p, t)
21 Label[lab(e)]← (p, t)

22 else
23 if Label[lab(e)] 6= ∅ then
24 (k1, k2)← Label[lab(e)]
25 PUSH(Q, (p, k1))
26 PUSH(Q, (t, k2))

27 end
28 if Label[lab(e)] 6= ∅ then
29 (k1, k2)← Label[lab(e)]
30 PUSH(Q, (p, k1))
31 PUSH(Q, (t, k2))

32 end

33 end

34 else
35 if Label[lab(e)] = ∅ then
36 INSERT((p, t).edges, e)
37 Label[lab(e)]← τ(e)

38 else
39 (k1, k2)← Label[lab(e)]
40 PUSH(Q, (p, k1))
41 PUSH(Q, (t, k2))

42 end

43 end

44 end

45 end
46 if q = v0 then
47 v0 ← p
48 end
49 DELETE(q)
50 UNION(q, p)

51 end

Now we can define a new method that will use the Product Stallings foldings. For this method
we will consider a graph Γ = ∆×∆ where delta is a well-labeled pointed graph, notice that in the
Product Stallings foldings we only needed ∆ to be labeled and Γ ⊆ ∆ × ∆ with Γ well-labeled.
This method is called Product vertex identification, and will get us from Γ to Γ′ = ∆′ × ∆′,
where ∆′ is ∆ after identifying two vertices and doing the corresponding Stallings foldings to get
a well-labeled graph. The straightforward solution for this problem would be to get ∆ from Γ, the
diagonal connected component, perform the vertex identification and the foldings in ∆ to get ∆′,
and calculate Γ′. This solution has a time complexity of O(n2), where n = E(∆) + V (∆). We can
get a more efficient solution using Product Stallings foldings.
The algorithm is really simple, suppose we want to identify vertices p, q ∈ V (∆), we will add (p, q)
to an empty queue Q. After that, while the queue Q is not empty, we will take the first element
(k1, k2) and if they don’t represent the same element we will perform a Product Stallings folding on
them and add the corresponding new values to Q. When Q is empty, we are done and Γ′ = ∆′×∆′.
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Proposition 5.24. Let ∆ be a finite well-labeled pointed graph and Γ = ∆×∆. Let p, q ∈ V (∆).
The Product vertex identification of p and q on Γ is finite.

Proof. Every time we do a Product Stallings folding we reduce the number of vertices of ∆ by one.
As ∆ is finite we only do a finite number of Product Stallings foldings, each of them is finite so
the Product vertex identification is finite too.

Method 10: Product vertex identification of vertices p and q

Input : Γ – well-labeled product graph
v0– basepoint of ∆
p – vertex to identify
q – vertex to identify
S – list of vertices

1 Function PRODUCT-IDENTIFY(Γ,v0,p,q,S) is
2 PUSH(Q, (p, q))
3 while Q.next 6= ∅ do
4 (k1, k2)← POP(Q)
5 if FIND-SET(k1) 6= FIND-SET(k2) then
6 PRODUCT-FOLD(Γ, v0, k1, k2, Q, S)
7 end

8 end

9 end

To prove the correctness of this method we are going to use the following notation: let p ∈ V (∆),
as we will be identifying different vertices using the data structure for disjoint sets, we are going
to consider the vertices as equivalence classes. So, if we have p, q ∈ V (∆) holding that in ∆′ they
represent the same vertex we will say that [p] = [q]. In fact V (∆′) = {[p] | p ∈ V (∆)}. During the
Product vertex identification method, we will perform some number of Product Stallings foldings,
after each folding the equivalence class will be different. We will denote [p]i the equivalence class
after the i Product Stallings foldings. It is easy to see that, let p, q ∈ V (∆), if p 6= q then
[p]0 6= [q]0, if [p]i = [q]i then [p]i+1 = [q]i+1, and if the Product vertex identification performs
exactly n Product Stallings foldings we have [p] = [q] if and only if [p]n = [q]n.
With that we can now prove the following proposition:

Proposition 5.25. Let ∆ be a finite well-labeled pointed graph and Γ = ∆×∆. Let p, q ∈ V (∆).
The Product vertex identification of p and q on Γ has as result Γ′ = ∆′ × ∆′, where ∆′ is ∆
after identifying vertices p and q and doing the corresponding Stallings foldings until the graph is
well-labeled again.

Proof. Let us suppose that the Product vertex identification performs n Product Stallings foldings.
Let us denote Γi the graph that we have after i Product Stallings foldings and ∆i the graph ∆
after the equivalent i Stallings foldings. We will prove that after each Product Stallings folding,
the following holds:
For each pair of edges e1, e2 ∈ E(∆i), not necessarily distinct, such that lab(e1) = lab(e2) having
v1 = ι(e1), v2 = ι(e2), v3 = τ(e1) and v4 = τ(e2) we have four sequences {sk0 , tk0 , sk1 , tk1 , ..., sknk

, tknk
},

1 ≤ k ≤ 4, with [skj ]i = [tkj ]i, the unordered pair (tkj , s
k
j+1) ∈ Q, where Q is the queue used in the

method, and vk = sk0 . Let uk = tknk
, we want to see that there is e ∈ E(Γi) with lab(e) = lab(e1) =

lab(e2), ι(e) = (u1, u2) and τ(e) = (u3, u4). We will call these sequences lke , it can be more than
one sequence ending at these edge so this is a name for the set of these sequences, not only one.
If this holds we have that at the end, when Q is empty, all nk = 0. So E(Γ′) ⊇ E(∆′ ×∆′). From
the algorithm it is easy to see that E(Γ′) ⊆ E(∆′ × ∆′) and V (Γ′) = V (∆′ × ∆′), so we would
have Γ′ = ∆′ ×∆′.
Let us prove it by induction, when i = 0 we have that Γ0 = ∆0 ×∆0 so is obviously true. Now,
suppose that after i iterations it is still holding and Q is not empty. Let us look at the next
element of Q, (v1, v2). If [v1]i = [v2]i we don’t have to do the Product Stallings folding, because
they already represent the same element, and all the sequences that have (tj , sj+1) = (v1, v2), as

21



unordered pairs, they also hold that [sj ]i = [tj+1]i from the definition of the sequences. So we can
remove these two elements from these sequences. In the case where [v1]i 6= [v2]i we perform the
Product Stallings folding of these two vertices. As we are identifying these two vertices we will
have [v1]i+1 = [v2]i+1, so as before we can remove all the pairs (tj , sj+1) = (v1, v2) from all the
lists. Now we will look at each edge e ∈ E(Γi) that we have to move or remove. If we move e, we
are changing ι(e) from (v2, t) to (v1, t), so if we change the last element of the sequences l1e from v2

to v1 the condition is still holding, in case we are changing from (t, v2) to (t, v1) it will be l2e . If we
remove e, it means that there is an edge e′ with the same label and ι(e) = (v2, t), ι(e

′) = (v1, t),
τ(e) = (k1, k2) and τ(e′) = (k3, k4). As before we will change the last element of the sequences l1e ,
l2e in the symmetric case, from v2 to v1. Now, as we are adding (k1, k3) and (k2, k4) to Q, we will
add two k3 at the end of the sequences l3e and two k4 at the end of the sequences l4e . Notice that
in this second case all the sequences of lke are now in lke′ after the modifications.

5.2.2 The algorithm

Now we will improve the time complexity of Proposition 5.23, to do that we will use Product
vertex identification. Before doing that, we will need an extra data structure to store information
about the connected components of Γ(H) × Γ(H). We will use a data structure for disjoint sets,
explained in Section 4.3, to keep the set of vertices corresponding to the connected components.
We can initialize this data structure unifying all the endpoints of each edge.
Another thing that we will need is some indicator that tells us if each component is a tree (Defini-
tion 3.22) or not. To do that, we will have a table that we will call cycle : V (Γ(H)× Γ(H))→ Z.
Initially all vertices p ∈ V (Γ(H) × Γ(H)) will have cycle(p) = 0. We will only care about the
value of cycle of the elements in V (Γ(H) × Γ(H)) that are representative elements of some set
(connected component). For that reason every time we merge two connected components into
one we will update the value of cycle for the representative of the new component. Let us say
we have a connected component C ⊆ Γ(H) × Γ(H), with representative Cr ∈ V (Γ(H) × Γ(H)),
then cycle(Cr) = |E+(C)| − |V (C)| + 1, where E+(C) are the edges e of the component C with
lab(e) ∈ X+. We can see that cycle(Cr) ≥ 0 and cycle(Cr) = 0 if and only if C is a tree. So now
we have an easy way to check if a component is a tree.
Once we have Γ(H)×Γ(H), the first thing we will do is to update the disjoint set data structure for
V (Γ(H)×Γ(H)) to store the connected components and calculate the corresponding value of cycle
for each component. This can be done in time O(ne +nv · log∗(nv)) where ne = |E(Γ(H)×Γ(H))|
and nv = |V (Γ(H) × Γ(H))|. As we want to find the components that are trees, we will have a
linked list T with the representatives of the connected components that have cycle(Cr) = 0.

During each Product Stallings folding the connected components and the values of cycle of some
components will change, now we will describe how to update them efficiently and how to keep T
updated.
Every time we identify the vertices (p, t) and (q, t) we have two cases: if they are already at
the same component we are in fact removing a vertex, so if they are at component C we do
cycle(Cr)← cycle(Cr) + 1. If they are from different components Cp and Cq, we will merge them
and get the component C with cycle(Cr) ← cycle(Cpr ) + cycle(Cqr ). Now, when we are moving
the edges from (q, t) to (p, t), every time we remove an edge and we don’t add it again we will do
cycle(Cr) ← cycle(Cr)− 1. We can see that the time complexity of the Product Stallings folding
is O(Pc + n · log∗(n)), where Pc is the original complexity and n = |Γ(H)|, and we keep cycle and
the connected components updated.
To keep T updated we have to notice that, although after each Product vertex identification the
graph will be a product graph and for each connected component C we will have cycle(Cr) ≥ 0, we
might have cases with cycle(Cr) < 0 during the Product Stallings foldings. This is because until
the end of the Product vertex identification the graph is not the whole product graph, as we saw
in the proof of Proposition 5.25, so the sets of the disjoint set data structure might not represent
connected components in the intermediate steps of the Product vertex identification. So, we will
still keep in T only the components (or sets) with cycle(Cr) = 0, to do that before identifying (p, t)
and (q, t) we will do the following: if cycle(Cpr ) = 0 we will do DELETE(Cpr )), and if Cp 6= Cq we
will do the same for Cqr . Now, after updating the value of cycle(Cr), if cycle(Cr) = 0 we will do
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INSERT(T,Cr). This way we will keep T updated without changing the original time complexity
of the Product Stallings folding.

With these extra data structures we can now prove the final complexity of our algorithm, but
first we need to prove the complexity of the Product vertex identifications.

Proposition 5.26. Let ∆ be a connected well-labeled pointed graph and let Γ = ∆ ×∆. We can
do all valid sequences of Product vertex identifications in Γ with time complexity O(n2), where
n = |E(∆)|.

Proof. First, it is easy to see that as ∆ is connected |V (∆)| is O(n). Let Γ = Γ0,Γ1,Γ2, ...,Γk = Γ′

be the sequence of graphs that we get after each Product Stallings folding, and let Γi ⊆ ∆i ×∆i.
It is true that |V (∆i)| = |V (∆i+1)| + 1, so we will do O(n) Product Stallings foldings. As |X±|
is constant, each Product Stallings folding has amortized complexity O(n + log∗(n)), because we
identify O(n) pairs of vertices of Γ, and we unify one pair of vertices of ∆. So in the end, we have
indeed time complexity O(n2).

Now, we can prove the final theorem.

Theorem 5.27. Let H ≤fg F (X) and H = 〈h1, h2, ..., hk〉 with n =
∑k
i=1 |hi|. We can compute

Hmal in O(n2 · log∗(n)).

Proof. As we did in the proof of Proposition 5.23, we will prove that we can get a sequence
H = H0 ≤ H1 ≤ ... ≤ Hk = Hmal with k ≤ n, such that we can get from Γ(Hi) × Γ(Hi)
to Γ(Hi+1) × Γ(Hi+1) using one Product vertex identification. The first thing we have to do is
calculate Γ(H)×Γ(H) and initialize the values of T and cycle, this can be done in O(n2 · log∗(n)).
Now, suppose that we have Γ(Hi) × Γ(Hi) with T and cycle updated, if there is an element
(p, q) ∈ T with [p]i 6= [q]i, it means that we have a connected component, that is not the diagonal,
with a cycle. From Proposition 5.20 we know that if u is the element of F (X) represented by the
label of a reduced path from v0 to p in Γ(Hi) and v the same for q, then Hi ∩ gHig

−1 6= 1, where
g = uv−1. So 〈g,Hi〉 ≤ Hmal. Let Hi+1 = 〈g,Hi〉, we can get Γ(Hi+1) × Γ(Hi+1) from doing a
Product vertex identification of p and q on Γ(Hi) × Γ(Hi). From Proposition 5.26 and using the
fact that if we update T and cycle then the total complexity gets multiplied by log∗(n), we have
that the total complexity is O(n2 · log∗(n)).

6 Finitary free product of cyclic and finite groups

In this section we will be working with subgroups of a finitary free product of cyclic groups and
finite groups. We are going to develop a way to represent these subgroups graphically using labeled
graphs similar to the ones used for the free group. Once we have that, we are going to see how
can we use these graphs for determining if a subgroup is malnormal. Like in the previous section,
we will describe an algorithm to calculate the malnormal closure of a subgroup and then we will
improve it using Product Stallings foldings (Section 5.2.1).

First we will define the free product and some theorems about it that will help us build the
Extended Stallings graph.

Definition 6.1 (Free product). Let A and B be groups with presentations A = 〈a1, . . . ; r1, . . .〉 and
B = 〈b1, . . . ; s1, . . .〉 respectively, where the sets of generators {a1, . . .} and {b1, . . .} are disjoint.
The free product A ∗B of groups A and B is the group A ∗B = 〈a1, . . . , b1, . . . ; r1, . . . , s1, . . .〉.

Now we will define normal forms, a way to represent the elements of this type of groups.

Definition 6.2 (Normal form). A reduced sequence or normal form is a sequence g1, . . . , gn, n ≥ 0,
of elements of A ∗B such that each gi 6= 1, each gi is in one of the factors A or B and successive
gi and gi+1 are not in the same factor.

We can now prove that normal forms are a good way to identify the elements of A ∗B.
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Proposition 6.3. Consider the free product A ∗B. Then the following two equivalent statements
hold.

• If w = g1g2 . . . gn, n > 0, where g1, . . . , gn is a normal form, then w 6= 1 in A ∗B.

• Each element w ∈ A∗B can be uniquely expressed as a product w = g1 . . . gn where g1, . . . , gn
is a normal form.

Proof. First of all we will show that both statements are equivalent. In the second statement, it
is understood that 1 is the product of the empty sequence. Hence, the second statement implying
the first one is immediate. Assume the first statement holds. Let w = g1 . . . gn and w = h1 . . . hm
be reduced. Then 1 = g1 . . . gnh

−1
m . . . h−1

1 . In order for the sequence g1, . . . , gn, h
−1
m , . . . , h−1

1 not
to be reduced, it is necessary that hm be in the same factor as gn and 1 = gnh

−1
m , so gn = hm. As

induction argument n = m and gi = hi. So both statements are equivalent.
We prove the proposition by using a homomorphism into a permutation group. Let W be the set
of all reduced sequences from A ∗ B. For each element a ∈ A, define a permutation a of W as
follows. If a = 1, a is the identity. If a 6= 1 and (g1, . . . , gn) is a reduced sequence then:

a((g1, . . . , gn)) =


(a, g1, . . . , gn) if g1 ∈ B
(ag1, . . . , gn) if g1 ∈ A, ag1 6= 1

(g2, . . . , gn) if g1 = a−1

To verify that a is a permutation of W we note that a−1 is the inverse of a. An easy check shows
that if a, a′ ∈ A then aa′ = aa′. The map φ : a → a is thus a homomorphism of A into S(W ),
the group of permutations of W . Define a homomorphism ψ : b → b similarly. We thus have a
homomorphism φ ∗ ψ : A ∗ B → S(W ). Now any element w of A ∗ B can certainly be written as
some product w = g1 . . . gn where g1, . . . , gn is reduced. Note that the permutation φ ∗ψ(w) sends
the empty sequence to the sequence (g1, . . . , gn). Thus w 6= 1 if n > 0.

We will be working with subgroups of groups of the form G1 ∗ G2 ∗ . . . ∗ Gn. Where Gi are
finite groups or Z. We can see that Fm ∼= Z ∗ Z ∗ . . . ∗ Z︸ ︷︷ ︸

m times

, so we can also describe the groups with

G1 ∗ G2 ∗ . . . ∗ Gn ∗ Fm. Where Gi are finite groups, and Fm is a free group with a basis of m
elements.

6.1 Extended Stallings graphs

In this section we will present a different type of labeled graphs that will allow us to represent
finitely generated subgroups of groups of the form G1 ∗ G2 ∗ . . . ∗ Gn geometrically. The idea of
this type of graphs is inspired in the work of Markus-Epstein with geometric representation of
subgroups of amalgamations of two finite groups in [6]. As with the Stallings graph, we want a
bijection between these type of graphs and the subgroups of G1 ∗G2 ∗ . . . ∗Gn. To do that we will
need to prove equivalent propositions to Propositions 5.14, 5.15 and 5.16.
To do that, instead of working with freely reduced paths we will be working with normally reduced
paths.
From now on, when we define a group G = G1 ∗ . . . ∗ Gn and we let X = X1 ∪ . . . ∪ Xn be a
generator set, we are assuming that each Xi generates Gi and that they are disjoint.

Definition 6.4 (Normally reduced word). Let G = G1∗. . .∗Gn be a group and let X = X1∪. . .∪Xn

be the set of generators of this group. We call a word w ∈ (X±)∗, w = a1 . . . am with ai ∈ X±,
normally reduced if there is no nonempty subword w′ = aj1aj1+1 . . . aj2−1aj2 with ai ∈ X±k for
j1 ≤ i ≤ j2 satisfying w′ =G 1.

Notice that the definition of normally reduced words is stronger than the one for freely reduced
words. Also, in the free group these two definitions are equivalent as we don’t have any relation.
Now we can define a normally reduced path in the obvious way:

Definition 6.5 (Normally reduced path). Let G1 ∗ . . . ∗Gn be a group and let X = X1 ∪ . . .∪Xn

be the set of generators of this group. Let Γ be a labeled graph, with labels on X±. We call a path
p in Γ normally reduced if the word lab(p) is normally reduced.
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From now on, when we are talking about labeled graphs, we will be talking about graphs with
labels on X±, where X = X1 ∪ . . . ∪Xn is the generator set of the group G1 ∗ . . . ∗Gn, where Gi
are finite groups or Z.
Now we will define a concept equivalent to core graph for normally reduced paths.

Definition 6.6 (Normal core graph). Let Γ be a labeled graph, the normal core of Γ at v ∈ V (Γ)
is the subgraph NCore(Γ, v) induced by the union of the normally reduced closed paths in Γ closed
at v.

As we showed in Lemma 3.27 for the core graph, we can do the same for normal core graphs
and the proof is equivalent.

Lemma 6.7. Let Γ be a labeled graph. Let Γ′ = NCore(Γ, v). Then:

1. Γ′ is connected and contains the vertex v.

2. Γ′ has no degree-one vertices, except possibly for the vertex v.

3. Lab(Γ′, v) = Lab(Γ, v).

Definition 6.8 (Complete graph). Let G = G1 ∗ . . . ∗Gn be a group and let X = X1 ∪ . . .∪Xn be
the set of generators of this group. Let (Γ, v) be a labeled pointed graph. Let Lab(Γ, v) = H ≤ G.
We call this graph complete if for every normally reduced word w representing an element of H,
there is a path p closed at v in Γ with lab(p) = w.

Fact 6.9. Let (Γ, v) be a complete graph, then NCore(Γ, v) is also complete.

We can now start proving the equivalent propositions for the existence and uniqueness of the
Extended Stallings graphs. First, as normally reduced is stronger than freely reduced, we have
that from Lemma 5.13 follows the following lemma with the same proof.

Lemma 6.10. Let (Γ, v) be a complete normal core pointed well-labeled graph with Lab(Γ, v) = H.
For every prefix w of a normally reduced word representing an element h ∈ H there is a unique
path p in Γ with ι(p) = v, and lab(p) = w.

Let us define some useful concepts to represent groups and cosets of a subgroup graphically.
The first concept is the Cayley graph of a group, first presented by A. Cayley in [2].

Definition 6.11 (Cayley graph). Suppose that G is a group and X is a generating set of G. The
Cayley graph Cayley(G) is a well-labeled graph constructed as follows:

• Each element g ∈ G is assigned a vertex: the vertex set V (Cayley(G)) is identified with G.

• The edges are labeled with the set X±.

• For any g ∈ G and x ∈ X±, the vertices corresponding to the elements g and gx are connected
by and edge e with lab(e) = x, initial vertex g and terminal vertex gx.

Now let us define a similar concept for cosets of a subgroup on a group. It was first presented
by O. Schreier in [7].

Definition 6.12 (Schreier graph). Suppose that G is a group, X is a generating set of G and
H ≤ G. The Schreier graph Schreier(G,H) is a well-labeled graph constructed as follows:

• Each coset Hg, with g ∈ G, is assigned a vertex: the right cosets of H in G are identified
with V (Schreier(G,H)).

• The edges are labeled with the set X±.

• For any g ∈ G and x ∈ X±, the vertices corresponding to the elements Hg and Hgx are
connected by and edge e with lab(e) = x, initial vertex Hg and terminal vertex Hgx.

We can see that Cayley(G) = Schreier(G, 1). Also, we can consider Cayley(G) and Schreier(G,H)
as pointed graphs, with basepoints corresponding to the elements 1 and H respectively.
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Convention 6.13. When we apply a morphism of labeled graphs φ to the Cayley graph of some
group G, Cayley(G). The image of this morphism has to be also a well-labeled graph. So it will
always be the Schreier graph of the cosets of some H ≤ G.

Lemma 6.14. Given a complete normal core well-labeled graph Γ. If v ∈ V (Γ) and there is an
edge e ∈ E(Γ) with ι(e) = v and lab(e) ∈ X±i , where Gi is finite, then for every word w ∈ (X±i )∗

with w =Gi
1 there is a path p in Γ closed at v with lab(p) = w.

Proof. As Γ is a complete normal core graph, for every edge there is a normally reduced closed
path at the basepoint passing trough it. Let wgw′ be a normally reduced word representing an
element of Lab(Γ), with g ∈ (X±i )+ and the last element of w and the first of w′ not in X±i . Let
us look at the Cayley graph of Gi. Cayley(Gi) is a well-labeled pointed core graph. If we take the
path p in Cayley(Gi), with ι(p) = v0, the basepoint, and lab(p) = g, we get the vertex v1 = τ(p).
Now, for all the normally reduced paths p′ in Cayley(Gi), paths without cycles, with ι(p′) = v0

and τ(p′) = v1 we have that wlab(p′)w′ is a normally reduced word representing the same element
as wgw′, so there is a closed path with this label on Γ. From that we can get that all the maximal
connected subgraphs of Γ with edges labeled only in X±i are isomorphic to φ(Cayley(Gi)) where
φ is a morphism of well-labeled graphs.

The morphism φ is defined by comparing closed paths v
u′−→ q′

u′′−−→ v and v0
u′−→ q

u′′−−→ v0 in
Cayley(Gi) and Γ, respectively, making φ(q) = q′. Here v is the terminal vertex of the path
starting at the basepoint in Γ with label w. We can see that φ is a well-defined morphism since
x =Gi 1 implies that there is a path in Γ closed at v with label x. Note that this morphism is
different for each maximal connected component with edge labels in X±i of Γ.

Proposition 6.15. Let G = G1 ∗ . . . ∗ Gn be a group and let X = X1 ∪ . . . ∪ Xn be the set of
generators of this group. Let K ≤ H ≤ G. Suppose (Γ1, v1) and (Γ2, v2) are complete normal core
well-labeled graphs such that Lab(Γ1, v1) = K and Lab(Γ2, v2) = H. Then there exists a unique
morphism of pointed labeled graphs φ : Γ1 → Γ2.

Proof. The uniqueness follows from Lemma 3.33. We have to prove that such π exists.
As Γ1 is a normal core graph, every vertex in V (Γ1) is part of a normally reduced path. Let w
be the prefix of a normally reduced word representing an element k ∈ K. From Lemma 6.10 we
have that there is a path p1 in Γ1 with ι(p1) = v1 and lab(p1) = w, and also a path p2 in Γ2 with
ι(p2) = v2 and lab(p2) = w.
We define φ(τ(p1)) = τ(p2), and the image of the edges as the only possible edge following the
morphism conditions, it is unique because the graphs are well-labeled. We need to check that this
is well defined.
For each vertex of Γ1 we will consider w as the shortest word holding the conditions and we will
be doing induction over the length of the word. The base case is the basepoint which is obviously
true.
Suppose we take another prefix w′ 6= w of a reduced word representing an element of K such
that the path p′1 in Γ1 with ι(p′1) = v1 and lab(p′1) = w′ has τ(p′1) = τ(p1). We will see that the
equivalent path p′2 in Γ2 has τ(p′2) = τ(p2). Let p = p1p′1, this is a closed path but maybe it is not
normally reduced. If it is not, there is a subpath p′ such that p = tp′t′, where t is a strict prefix of
p1 and t′ a strict prefix of p′1, that has all the edges at some X±i and with lab(p′) =G 1. If Gi ∼= Z
then we can see that the last edge of p1 is the same as the last edge of p′1, so if u is the initial
vertex of this edge we have that if φ(u) is well defined then φ(τ(p1)) is well defined, that holds
for the induction assumption. Now if Gi is finite, from Lemma 6.14 we have that p′ is a closed
path, so φ(τ(p1)) if φ(ι(p′)) is well defined, that holds for the induction assumption. In the case p
is normally reduced, it represents an element of K ≤ H so there is also a closed path with label
lab(p) in Γ2, hence φ(τ(p1)) = φ(τ(p′1)).

Proposition 6.16. Let G = G1 ∗ . . . ∗ Gn be a group and let X = X1 ∪ . . . ∪ Xn be the set of
generators of this group. Let H ≤fg G. There is a complete normal core well-labeled pointed graph
Γ, such that Lab(Γ) = H.

Proof. Let us consider the labeled graph ∆ where we have a bijection f between right cosets of
H in G and the elements of V (∆). The edge e with ι(e) = v1, τ(e) = v2 and lab(e) = x with
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v1, v2 ∈ V (∆) and x ∈ X± is in E(∆) if and only if f−1(v1)x = f−1(v2), where f−1(vi) is the
right coset assigned to each vertex.
This graph is connected. Let us call v0 = f(H) ∈ V (∆), for each vertex v1 = f(Hg), with g ∈ G,
there is a path p with lab(p) =G g such that ι(p) = v0 and τ(p) = v1.
The graph is complete. From the construction fo the graph, for each vertex v ∈ V (∆) and each
x ∈ X±, there is an edge e ∈ E(∆) with ι(e) = v and lab(e) = x. So for each normally reduced
word w there is a path p with ι(p) = v0 and lab(p) = w. If w represents an element h ∈ H, we
have that τ(p) = f(Hh) = f(H) = v0.
∆ is well-labeled. Suppose we have e1, e2 ∈ E(∆) with lab(e1) = lab(e2) = x and ι(e1) = ι(e2) = v,
and ui = τ(ei). Then we have f−1(u1) = f−1(v)x = f−1(u2), so u1 = u2 and hence e1 = e2.
It is obvious from the definition of the graph that Lab(∆, v0) = H
If we define Γ = HCore(∆, v0), from Lemma 6.7 we have that this graph holds all the conditions.

Proposition 6.17. Let G = G1 ∗ . . . ∗ Gn be a group and let X = X1 ∪ . . . ∪ Xn be the set
of generators of this group. Let H ≤fg G. Suppose (Γ1, v1) and (Γ2, v2) are complete normal
core pointed well-labeled graphs and Lab(Γ1, v1) = H = Lab(Γ2, v2). Then there exists a unique
isomorphism of pointed labeled graphs π : Γ1 → Γ2.

Proof. The uniqueness of π comes from Lemma 3.33.
Since H ≤ H. by Proposition 6.15 there is a unique morphism of pointed graphs π : (Γ1, v1) →
(Γ2, v2). We claim that π is an isomorphism of pointed graphs. Proposition 6.15 also implies there is
a unique morphism of pointed graphs π′ : (Γ2, v2)→ (Γ1, v1). Therefore π′ ◦π : (Γ1, v1)→ (Γ1, v1)
is a morphism, from Lemma 3.33 it is unique, namely the identity map on (Γ1, v1). We can use
a symmetric argument to show that π ◦ π′ is the identity map on (Γ2, v2). Therefore π is an
isomorphism.

Now that we know the existence and uniqueness of the Extended Stallings graph of a subgroup
H we can define:

Definition 6.18. Let G = G1∗. . .∗Gn be a group and let X = X1∪. . .∪Xn be the set of generators
of this group. Let H ≤fg G. We call the unique complete normal core pointed well-labeled graph
(∆, v0) such that Lab(∆, v0) = H, the Extended Stallings graph of the subgroup H, and we denote
it by Γ(H).

Notice that we gave the same name to the extended graph as the Stallings graph for free groups.
This is because free groups are also of the form G1 ∗ . . . ∗Gn and the Extended Stallings graph is
the same as the Stallings graph for them.

Theorem 6.19. Let {h1, h2, . . . , hm} be a generator set for H ≤ G1 ∗ . . . ∗Gn, where Gi are finite
or cyclic groups. There is an algorithm that builds Γ(H) in O(n2), where n =

∑m
i=1 |hi|.

Proof. As with the standard Stallings algorithm, we build the flower graph F(H). We know that
Lab(F(H)) = H. Now we will create the extended flower graph E(H) from F(H). For each
e ∈ E(F(H)) with lab(e) ∈ Xi, where Gi is finite, we will attach one copy of the graph Cayley(Gi)
at ι(e) by merging ι(e) to some vertex of Cayley(Gi). Still Lab(E(H)) = H.
If we now do the standard folding process until we get a well-labeled pointed graph G(H), we
know that Lab(G(H)) = H, and we can easily see from the construction of E(H) that G(H) is a
complete normal core graph. So G(H) = Γ(H).
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(a) The flower graph F(H) where H = 〈aba−2, ba−1b−1a, ba〉
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(b) We attach the Cayley graph of 〈b | b3〉 at the vertices with an outgoing edge with label b
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(c) The graph after folding the necessary edges. This graph is Γ(H).

Figure 11: The folding process from the flower graph to the Extended Stallings graph of a subgroup
of G = 〈a |〉 ∗ 〈b | b3〉.

6.2 Malnormal closure algorithm

As with the free group, first we are going to see some relations between a subgroup H being
malnormal and some properties of Γ(H). Right after that we will be able to describe an algorithm
to calculate the malnormal closure of H. Using Product Stallings foldings (Section 5.2.1) we will
improve the time complexity of the algorithm finding our final result.
Before starting with the properties we need to define some extra concepts.

Definition 6.20 (Colored component). Let G = G1 ∗ . . .∗Gn be a group and let X = X1∪ . . .∪Xn

be the set of generators of this group. Let Γ be a labeled graph. We call a colored component of Γ,
a maximal connected component where all the edges are labeled with generators of the same factor
Gi, X

±
i . We will call this a Gi-colored component.

28



Notice that given a labeled graph Γ, each v ∈ V (Γ) can be part of more than one colored
component but at most one Gi-colored component for each i.

Definition 6.21 (Auxiliary graph). Let G = G1 ∗ . . . ∗Gn be a group and let X = X1 ∪ . . . ∪Xn

be the set of generators of this group. Let Γ be a labeled graph. We define the Auxiliary graph
of Γ, A(Γ), as the not labeled graph obtained from Γ by the following process: for each Gi-colored
component of Γ, where Gi is a finite group, we remove all the edges of the component and add one
extra vertex connected to all the previous vertices of the Gi-colored component with edges with no
label. At the end we remove the labels of the edges from infinite groups.

a

a

a

a

(a) Cayley graph of G = 〈a | a4〉

CG

(b) G−colored component in the Auxiliary
graph

Figure 12: The two G−colored component are equivalent, one in the labeled graph and the second
one in the Auxiliary graph

Notice that the auxiliary graph is not labeled, all the edges we add have no label, and we
remove the label from the edges that remain the same.

All the connected components in Γ are connected components in A(Γ), but maybe with different set
of edges and new vertices. It is easy to see that we can compute A(Γ) from Γ in O(|E(Γ)|+ |V (Γ)|).
We can now start with the malnormality conditions.

Convention 6.22. When we say that a labeled graph Γ not pointed is complete, it means that
(Γ, v) is complete for each v ∈ V (Γ).

Lemma 6.23. Let (Γ, v0) be a complete normal core pointed well-labeled graph, all the connected
components of Γ × Γ are complete well-labeled graphs with all the Gi-connected components, Gi
finite, isomorphic to the image of some morphism applied to Cayley(Gi).

Proof. As we saw in Proposition 6.17, (Γ, v0) is the only complete normal core pointed well-labeled
graph with Lab(Γ, v0) = H up to isomorphism. So, from the construction of this graph in Theorem
6.19 we know that all the Gi-colored components with Gi finite are isomorphic to the image of
some morphism applied to Cayley(Gi).
It is easy to see that all the Gi-colored components with Gi finite in Γ× Γ are also isomorphic to
the image of some morphism applied to Cayley(Gi). This is a sufficient condition for a well-labeled
graph to be complete.

Lemma 6.24. Let Γ be a complete connected well-labeled graph where all the Gi-connected components,
with Gi finite, are isomorphic to the image of some morphism applied to Cayley(Gi). We have
Lab(Γ, v) = 1 for each v ∈ V (Γ) if and only if A(Γ) is a tree and each Gi-connected component,
with Gi finite, is isomorphic to Cayley(Gi). If for some v0 ∈ V (Γ) we have Lab(Γ, v0) 6= 1, then
Lab(Γ, v) 6= 1 for all v ∈ V (Γ).

Proof. First, let us see that we have Lab(Γ, v) = 1 for each v ∈ V (Γ) or Lab(Γ, v) 6= 1 for each
v ∈ V (Γ). If there is some vertex v0 ∈ V (Γ) with Lab(Γ, v0) 6= 1 it means there is a path p closed
at v0 with lab(p) 6=G 1. As Γ is connected, for all v ∈ V (Γ), let pv be a path from v to v0, we have
that lab(pvppv) 6=G 1 so Lab(Γ, v) 6= 1.
Now, let us see that there is one closed normally reduced path p with 1 6= lab(p) ∈ Gi with Gi finite

29



if and only if the Gi-colored component containing p is not isomorphic to Cayley(Gi). First of all,
as p is normally reduced and lab(p) ∈ Gi, from Proposition 6.3 we have that p is fully contained in
a Gi-colored component. It cannot be that the colored component is isomorphic to Cayley(Gi),
because then lab(p) = 1. If there is a Gi-colored component with Gi finite that is not isomorphic
to Cayley(Gi), then there is a closed path in it with 1 6= lab(p) ∈ Gi. All this follow from the
Convention 6.13 about the morphisms applied to Cayley(Gi).
There is a closed normally reduced path p such that lab(p) is not fully contained in one finite factor
if and only if A(Γ) has a closed reduced cycle. Let us start with the case where p is a closed normally
reduced path, we can divide the path in p = p1p2, ..., pn where each pi is a maximal subpath in a
Gi-colored component. We will get a closed reduced path in A(Γ) p′ = p′1p

′
2, . . . , p

′
n as follows. If

pi is in an infinite group colored component, then p′i = pi. If it is from a finite group, let cGi
be

the central extra vertex of the colored component in A(Γ), we define p′i = {ι(pi), e1, cGi
, e2, τ(pi)},

where e1, e2 are the corresponding edges from the center to the endpoints of pi. So we can see that
p′ is a valid closed reduced path in A(Γ). If we want to go from a closed reduced path in A(Γ) to
a normally reduced closed path in Γ we just do the reversed transformations.

Proposition 6.25. Let G = G1 ∗ . . . ∗ Gn and H ≤fg G. H is malnormal in G if and only
if the connected components of A(Γ(H) × Γ(H)), that are not the diagonal, are trees and each
Gi-connected component of Γ(H)×Γ(H) not in the diagonal component, with Gi finite, is isomor-
phic to Cayley(Gi).

Proof. From Lemma 6.23 we know that Γ(H) × Γ(H) is a complete well-labeled graph where all
the Gi-connected components, Gi finite, are isomorphic to the image of some morphism applied
to Cayley(Gi).
Suppose that we have a connected component C of Γ(H)×Γ(H) such that A(C) has a reduced cycle
or there is some Gi-connected component in C not isomorphic to Cayley(Gi), Gi finite. There is a
path p in C closed at (v1, v2) with lab(p) 6=G 1. That means that at Γ(H) we have the same closed
path p, closed at v1 and at v2. Let g =G lab(p), and ui be the label of a path from v0 to vi in Γ(H).
Let gi =G ui, we have g ∈ g−1

1 Hg1 ∩ g−1
2 Hg2. From here we get g2gg

−1
2 ∈ H ∩ g2g

−1
1 H(g2g

−1
1 )−1.

As g 6= 1 we have so g2gg
−1
2 6= 1, and also g2g

−1
1 /∈ H because that would mean v1 = v2 and (v1, v2)

is not in the diagonal component so H is not malnormal.
Now suppose H is not malnormal. Then we have g ∈ G \ H such that H ∩ gHg−1 6= 1. Let
w be a normally reduced word representing g and w = uv, where v is the longest prefix of w
that we can get as a label of a path at Γ(H) starting at v0, ending at v1. Then every element
from gHg−1 has a normally reduced path p, with a label representing this element, in Γ(gHg−1)
closed at the basepoint, with lab(p) = utu, where t is a normally reduced word. We have that
H∩gHg−1 6= 1 so there is a normally reduced word h 6= 1 with uhu representing an element x such
that x ∈ H ∩ gHg−1 and uhu is normally reduced. So we have a path at Γ(H) from v0 to v2 with
label u. As we have a normally reduced closed path with the same nonempty label closed at v1

and v2. We have that Loop(Γ(H), v1)∩Loop(Γ(H), v2) 6= ∅, and so Loop(Γ(H)×Γ(H), (v1, v2)) 6=
∅ =⇒ Lab(Γ(H) × Γ(H), (v1, v2)) 6= 1. So from Lemma 6.24 we have that there is at least one
connected component C in Γ(H) × Γ(H) that is not the diagonal with A(C) not a tree or some
Gi-connected component, with Gi finite, not isomorphic to Cayley(Gi).

Corollary 6.26. Let G = G1 ∗ . . . ∗ Gm and H ≤fg G. Given Γ(H) there is an algorithm that
finds some g ∈ G \H such that gHg−1 ∩H 6= 1 or determines that H is a malnormal subgroup of
G in O(n2).

Proof. As seen in Theorem 6.19 and Proposition 3.38 we can compute Γ(H) and Γ(H)× Γ(H) in
O(n2), we also can compute A(Γ(H)× Γ(H)) in O(n2). We can check for cycles in the connected
components that are not the diagonal in A(Γ(H) × Γ(H)), if we find a cycle component, we take
a vertex (v1, v2) from it that is not one of the extra vertices of the Auxiliary graph. This can be
done in O(n2). If we don’t found any, we check all the Gi-colored components of finite factors not
in the diagonal. If the number of vertices in the component is equal to |Gi|, it is isomorphic to
Cayley(Gi), if the number is less we take one vertex (v1, v2) from it. This can also be done in
O(n2), because every vertex is at most at m colored components, where m is constant.
If we don’t found any vertex (v1, v2) then H is malnormal. Let u1 and u2 be the words from
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the first part of the proof of Proposition 6.25, we can get them in O(n2) time and then the word
w = u1u2 represents an element g ∈ G \H such that gHg−1 ∩H 6= 1.

Proposition 6.27. Let G = G1 ∗ . . . ∗Gk with Gi finite or cyclic, and 〈h1, . . . , hm〉 = H ≤fg G.
we can compute Hmal in O(n3). Where n =

∑m
i=1 |hi|.

Proof. The proof is exactly the same as for Proposition 5.23. Using Corollary 6.26 and Lemma 5.22
we can define the sequence H = H0 ≤ . . . ≤ Ht = Hmal with t ≤ n. Where Hi+1 = 〈gi, Hi〉, with
gi the element found by Corollary 6.26. From the proof of Proposition 6.25 we know that adding
this element to Hi ends up with a vertex identification in Γ(Hi), so |V (Γ(Hi+1))| < |V (Γ(Hi))|,
that is why t ≤ n.

6.2.1 The algorithm

In this section we will use the Product Stallings foldings explained in Section 5.2.1 to improve the
time complexity of the Proposition 6.27. As we did in Section 5.2.2, we will need some extra data
structures to keep them updated and to know which vertices to fold or when we are done.
Similarly to the free group algorithm, we will use the disjoint-set data structure to keep the con-
nected components of Γ(H)×Γ(H). Also, as we are interested in colored components, for each Gi
finite, we will have another disjoint-set data structure of the Gi-colored components. In this case,
if a vertex is not part of any Gi-colored components we will store him as a separate component
but we won’t store any information about him.
Also in this case, we need to check if some components are trees or not. We will also have the table
cycle : V (Γ(H)× Γ(H))→ Z. But this time if C ⊆ Γ(H)× Γ(H) is a connected component with
representative Cr ∈ V (Γ(H) × Γ(H)), and Caux ⊆ A(Γ(H) × Γ(H)) is the equivalent connected
component in the auxiliary graph, we will store cycle(Cr) = |E+(Caux)| − |V (Caux)| + 1. This is
because we are interested in finding cycles in the auxiliary graph.
We will have another table similar to cycle that will be graphi : V (Γ(H)×Γ(H))→ Z, there is one
table for each Gi finite. For each Gi-colored component Ci ⊆ Γ(H)×Γ(H), and his representative
Cir ∈ V (Γ(H)× Γ(H)), we will have graphi(C

i
r) = |Gi| − |V (Ci)|. From the previous propositions

we know that when this value is 0, then Ci ∼= Cayley(Gi).
We will also have two lists, Lt and Lc, the first one will store a representative of each connected
component of Γ(H)× Γ(H) that has cycle(Cr) = 0. The Lc list will store a representative of each
colored component with graphi(C

i
r) 6= 0.

To initialize the values of cycle we will first create the sets of the connected components in the
disjoint-set data structure. Then we will compute A(Γ(H)×Γ(H)) and count the number of edges
and vertices in each component to get the values of cycle. For the graphi we just calculate the
disjoint-set data structure for each Gi and we keep in graphi the number of vertices of each col-
ored component. At the end with the actual value in graphi and |Gi| we get the final value. After
getting the values of the table we can initialize the lists Lt and Lc.
Every time we identify the vertices (p, t) and (q, t) we have to update two different values. The
first thing we have to look is if they are already in the same connected component. If they are,
we will just do cycle(Cr) ← cycle(Cr) + 1 because we are deleting one vertex from the compo-
nent. If they are from two different connected components Cp and Cq that will merge to C, we
do cycle(Cr) ← cycle(Cpr ) + cycle(Cqr ). Now every time we delete and don’t copy one edge of
(q, t) and this edge is labeled with a generator of an infinite factor, as we are removing one edge
from the connected component of the auxiliary graph, we do cycle(Cr) ← cycle(Cr) − 1. One
extra thing is if, for each finite Gi, (p, t) and (q, t) were part of the same Gi-colored component.
If one of them was not part of any Gi-colored component the value stays the same. If both are
part of the same Gi-colored component Ci we do graphi(C

i
r) ← graphi(C

i
r) + 1, and also if C

is the connected component where they are, as we are removing one edge of the auxiliary graph,
the one connecting (q, t) with cGi , we do cycle(Cr) ← cycle(Cr) − 1. The last case is when
they are from different Gi-colored component Ci,p and Ci,q, then they merge to Ci and we do
graphi(C

i
r)← graphi(C

i,p
r ) + graphi(C

i,q
r )− |Gi|+ 1.

Every time we modify one connected component or Gi-colored component, we first take the rep-
resentative out of the corresponding list, Lt or Lc, if they are in them, and then add the resulting
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representatives back to the corresponding list if it is necessary.

With these data structures we can now show the final theorem:

Theorem 6.28. Let G = G1 ∗ . . . ∗ Gk where Gi are finite or cyclic groups. Let 〈h1, . . . , hm〉 =
H ≤ G. Then we can compute Hmal in O(n2 · log∗(n)), where n =

∑m
i=1 |hi|.

Proof. We will be doing the same process as in Proposition 6.27. As we did in Theorem 5.27 we
will be using the data structures that we defined to go from Γ(Hi)× Γ(Hi) to Γ(Hi+1)× Γ(Hi+1)
and keeping them updated to decide which vertex to fold or if we finished. When checking each
list Lt or Lc for elements not in the diagonal, we will have to iterate at most over O(n) elements,
as it is the maximum number of colored components that the diagonal component can have.
So from Proposition 5.26 and knowing that the disjoint-set data structure has an amortized time
complexity of O(log∗(n)), we will have that the total complexity is O(n2 · log∗(n)).
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