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Abstract 

The Sustainable Development Goals (SDGs) 6.1 and 6.2 measure the progress of urban and rural populations in their 

access to different levels of water, sanitation and hygiene (WASH) services, based on multiple sources of information. 

Service levels add up to 100%; therefore, they are compositional data (CoDa). Despite evidence of zero value, missing 

data and outliers in the sources of information, the treatment of these irregularities with different statistical techniques has 

not yet been analyzed for CoDa in the WASH sector. Thus, the results may present biased estimates, and the decisions 

based on these results will not necessarily be appropriate. In this article, we therefore: i) evaluate methodological 

imputation alternatives that address the problem of having either zero values or missing values, or both simultaneously; 

and ii) propose the need to complement the point-to-point identification of the WHO/UNICEF Joint Monitoring Program 

(JMP) with other robust alternatives, to deal with outliers depending on the number of data points. These suggestions 

have been considered here using statistics for CoDa with isometric log-ratio (ilr) transformation. A selection of illustrative 

cases is presented to compare performance of different alternatives.  
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1. Introduction 

Monitoring access to WASH services is a multiscale process involving bodies from the local level —to support the 

planning (Giné-Garriga et al., 2013, 2015) and implementation of government public policies (Jiménez Fdez. de Palencia 

and Pérez-Foguet, 2011)— to the international level (WHO/UNICEF, 2017). WASH monitoring has evolved substantially 

over the last 15 years. A key point is the movement from the use of single indicators of performance (such as coverage of 

water and sanitation by improved and unimproved technologies) to multidimensional frameworks that understand WASH 

in relationship with concepts such as poverty (Giné-Garriga and Pérez-Foguet, 2013a, 2019) and human rights (Baquero 

et al., 2015; Giné-Garriga et al., 2017), or from the perspective of vulnerable and marginalized groups (Redman-Maclaren 

et al., 2018; Ezbakhe et al., 2019; Anthonj et al., 2020a). Integrating these concepts leads to a much higher complexity 

than simple coverage of a population by one technical solution or another. 

This multidimensional nature was first measured through aggregated indicators such as the WASH poverty index (Giné-

Garriga and Pérez-Foguet, 2013a, 2013b) that extended the seminal proposal of the Water Poverty Index (Sullivan, 2002; 

Sullivan et al., 2003; Giné-Garriga and Pérez-Foguet, 2010; Pérez-Foguet and Giné-Garriga, 2011). Likewise, some 

limitations of aggregated indicators, such as the compensability between dimensions and the lack of mechanisms to 

consider cross-influences between dimensions, has been tackled with different techniques (Ezbakhe and Pérez-Foguet, 

2018; Giné-Garriga et al., 2018), mostly within the approach of supporting specific decision making processes.  

Some of these ideas are currently integrated into the international WASH ladder monitoring driven by the JMP, which has 

moved from a coverage perspective to a service level approach. Here, a safe management category for water and for 

sanitation, and the hygiene ladder, are as main novelties. However, the basic framework for local and international 

monitoring still needs trend analysis of the percentage of population expressed by single categories (e.g., the primary 

indicators; WHO/UNICEF, 2018), whose particular characteristic is that they describe the parts of a whole with a sum of 

100% (or 1, if they are proportions). This approach overlooks that data are compositional and require a particular statistical 

approach (Aitchison, 1986; Egozcue and Pawlowsky-Glahn, 2005; Lloyd et al., 2012; Pérez-Foguet et al., 2017; Ezbakhe 

and Pérez-Foguet, 2019). Further, the compositional nature of data is not addressed in the proposed alternatives for 

multidimensional monitoring or by the JMP for global WASH monitoring (WHO/UNICEF, 2018), which may lead to 

spurious correlations between the parties (Pérez-Foguet et al., 2017). 

Fuller et al. (2016) classified the temporal evolution of access to water and sanitation according to the linearity or non-

linearity of trends and proposed the use of Generalized Additive Models (GAM) when data are at a minimum. The 

compositional nature of the population percentages is included in the analysis presented by Pérez-Foguet et al. (2017), 

which concluded that using GAM for the isometric log-ratio (ilr) transformations of the usual follow-up variables is suitable. 

In this way, the non-linearity of the sum restrictions equal to constant is adequately treated. This is especially relevant 

when parts of the total tend to values near the extremes of all or nothing. However, the proposal does not address 

common situations, such as the presence of values reported as zero, or missing data in parts of the total, thereby 
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preventing a direct application of the compositional approach. 

Data with a value of zero are commonly presented in countries that have made significant progress in the provision of 

improved water and sanitation services; as a consequence, populations with access to unimproved sources have been 

drastically reduced, with the number in many cases at or near zero. The ilr transformations in the data therefore cannot be 

carried out if the zero values are not first excluded or imputed. Exclusion is an easy alternative to address the problem, but 

if the amount of data in the sector is low, this can affect the predictive capacity of the models. Thus, in the literature, 

alternatives have been proposed for the imputation of zero values in each situation according to the CoDa properties, 

including rounded zeros (Palarea-Albaladejo et al., 2007; Palarea-Albaladejo and Martín-Fernández, 2008; Martín-

Fernández et al., 2012; Templ et al., 2016; Chen et al., 2018), count zeros (Martín-Fernández et al., 2015) and essential 

zeros (Aitchison and Kay, 2003)). 

The techniques related to rounded zeros are the more convenient imputation alternatives for the WASH sector, given that 

even in more developed countries, there are likely to be at least small percentages of populations that do not have access 

to any kind of water services. Simple replacement and multiplicative replacement have already been addressed in 

previous studies of the sector (Pérez-Foguet et al., 2017; Ezbakhe and Pérez-Foguet, 2019). Despite their simplicity in the 

application, these methods tend to underestimate the variability of data; therefore, it is advisable that they are only used 

when the presence of zeros is low (Palarea-Albaladejo and Martín-Fernández, 2008). In the presence of large amounts of 

zero values, other imputation alternatives are recommended, according to the variability of data that exist in the time 

series. 

The lack of data defining the composition is also a topic of special importance in the sector, as it affects some categories 

of analysis. For example, according to the national survey (PNAD17) in the rural sector of Brazil, 88.4% of the population 

have access to improved drinking water sources (and 82.7%, by pipe), but no information is given about access by surface 

sources (WHO/UNICEF, 2019a). The lack of one or more data points for a specific year means that the ilr transformation 

cannot be applied directly, so that the information of that year is lost in the follow-up of all parts (Quispe-Coica and Pérez-

Foguet, 2018). A first alternative is to exclude incomplete data from the analysis, but this can lead to biases (Strike et al., 

2001), severe loss of information, inaccurate estimates that do not help managers make the best decisions, etc. There are 

different alternatives based on completing the missing data, including a multiplicative replacement by Martín-Fernández et 

al. (2003), a modified EM alr-algorithm by Palarea-Albaladejo and Martín-Fernández (2008) and a classic and robust 

method imputation by Hron et al. (2010); however, the most appropriate techniques for the specific cases of the WASH 

sector have not yet been determined. 

Finally, the quality of available data can be classified in many cases as low or very low. The JMP validates data and 

metadata (data source information) one-by-one to determine what can be used. Discrepancies between data are not per 

se a reason for exclusion. To cite one example, the percentage of the population with access to piped water in rural 
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Indonesia was reported to be 6.6% by the National Socio-economic survey in 2016, but another source of information 

reported that it was 41.5% (Performance Monitoring and Accountability; PMA16) (WHO/UNICEF, 2019b). This stems from 

the use of multiple sources of information and is not easily remedied automatically, yet it directly influences the estimates 

obtained under any model. Recently, Ezbakhe and Pérez-Foguet (2019) proposed a method to deal with uncertainties that 

originate in statistical sampling, using compositional models of trends as applied to water and sanitation data. However, 

completing the punctual validation of the JMP with techniques and procedures for the detection of outliers or other data 

errors other than sampling (Bain et al., 2018) is still pending. Therefore, evaluating identification alternatives for the 

sector's CoDa is necessary. 

When working with CoDa, outliers cannot be identified for a variable independently of the rest. Multivariate analysis 

methods are necessary to facilitate the adequate detection of outliers and to enable data with evident errors to be 

identified, which can alter the estimates (Filzmoser and Hron, 2008; Filzmoser et al., 2009, 2012). Filzmoser and Hron 

(2008) proposed the use of robust identification techniques based on the Mahalanobis distance (MD). The proposal 

applies to general regression models, such as GAM. Nevertheless, the low amount of data that some countries have can 

limit the use of this application. Other alternatives, such as ordinary least squares (OLS) regression, provide a better 

option in those cases. However, direct application of OLS is not convenient, as it can be negatively influenced by the 

presence of outliers. Therefore, it is necessary to apply robust estimators for linear regression models. Several methods 

for this exist in the literature, including M-estimation and S-estimation (Rousseeuw and Yohai, 1984), MM-estimation 

(Yohai, 1987; Koller, 2011) and others (see overview in Maronna et al., 2019). In this study, the MM-type estimators are 

applied, based on the good results obtained with them in other studies. It should be added that robust estimates do not 

necessarily exclude outliers, but rather modulate their influence on the calibrated model, which gives it a strong advantage 

for use with limited data. 

This work proposes and analyzes different coupled strategies for the treatment of zeros, missing data and outliers in 

compositional trend models, as applied to the international monitoring of the WASH sector, completing the previous work 

in this regard and facilitating its practical application to the available data. Specifically, it addresses the following 

objectives: 

­ Evaluate alternatives for the treatment of zeros or missing data, or both simultaneously, using robust methods; 

­ Identify and treat outliers by robust methods in a differentiated way for contexts with few or many (more than six) 

different temporal data, according to the Fuller et al. (2016) classification. 

For this, a set of twelve trends has been selected, with different characteristics, that are internationally representative and 

within the set of situations in the sector for both urban and rural WASH settings. 

2. Method 
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The algorithm proposed and shown in Figure 1 follows statistical procedures and techniques for CoDa that can be easily 

applied and replicated in any sector or area of analysis. To understand them, one must first know some basic concepts, 

such as: i) CoDa represent vectors, with D representing strictly positive components, and the sum is a constant ―k‖, as 

shown in Eq.( 1); ii) its sample space is the simplex S
D
; for statistical analysis, it is necessary to move to the Euclidean 

space using ilr transforms, which requires that D components be passed to (D–1).  

1
( ,........, )     0,   1,2,....,       

i

DD
i D i iX

S X X X X i D X k


       ( 1) 

k: can be 1, 100, or any other positive constant. 

These concepts and terms, although they seem simple, are not common in the WASH sector. Therefore, it is necessary to 

be clear about them, to understand the method of analysis in CoDa. 
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Figure 1. Statistical analysis for CoDa of the WASH sector. 

STEP I. Preparation of compositional data (CoDa)  

If the information is in population (P) units, the proportions of the service categories are formed according to Eq. ( 2). 

Subsequently, vectors are constructed with the parts, in which the sum is a constant ―k‖ (100% if it is given as a 

percentage, or 1 if given in proportions). In vectors for which data are missing, "NA" is used. 

4
4 1
1 4

1

P
(%) 100

P

 
i i

x
 

 ( 2) 

1 2 3 4 100   x x x x  ( 3) 

Countries with 
data that form 
composition

NZ = Number of zero values
NM = Number of missing values

NZ = 0
NM = 0

No

Yes

Data ≥ 6

GAM (ilr)

OLS (ilr)-robust

Inverse 
transformation

Results and 
quality test

No Yes

STEP I:

STEP II:

STEP III:

STEP IV:

STEP V:

NZ > 0

NM = 0 

Treatment 
zero   
values

Treatment 
missing 
values

Treatment 
missing and zero 
simultaneously

Outliers:
Mahalanobis 
distance (MD)

NZ = 0
NM > 0 

NZ > 0
NM > 0 

Yes Yes

No No

Preparation of 
compositional data 

(CoDa) 
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1 2 3 100  h h hx x x  ( 4) 

Indicators are formed according to Table 1. Water and sanitation are represented in Eq.( 3) and each comprise four parts, 

while hygiene indicators are represented in Eq.( 4) and comprise three parts. 

Table 1. Composition indicators for water (W) and sanitation (S).  

Water (W): piped, other improved, surface or other unimproved. 

                   Sanitation (S): sewer, other improved, open defecation or other unimproved 

Services Indicator 

W
a
te

r 
a
n
d
 s

a
n
it
a
ti
o

n
 

Improved (I) 

X1 (piped or sewer) X1 

X2 (other improved; W or S) I - X1 

Unimproved (U) 

X3 (surface or open defecation) X3 

X4 (other unimproved; W or S) U-X3 

H
y
g
ie

n
e
 

Handwashing facility on 

premises (H) 

Xh1 (basic services) Xh1 

Xh2 (limited services)  H - Xh1 

No handwashing facility  Xh3 (no services) 100 - H 

The composition vectors that present irregular data (e.g, that are zero, missing, or both zero and missing data 

simultaneously) and outliers are treated with functions that involve ilr transformations according to Eq.( 5) of Egozcue et al. 

(2003), each with particularities in the balances V. This procedure is also applied to generate the models. 

( )
Y ln

( )


 

 

m r

m s

g Xr s
ilr

r s g X

 ( 5) 

r = number of positive variables in the balance V 

s = number of negative variables in the balance V 

gm(-) = geometric mean of variables 

However, to illustrate the behavior of the models in the transformed data, a type of balance is carried out, consistent with 

the usual form of analysis in the WASH sector. For example, global monitoring is based on the classification of access to 

improved and unimproved water and sanitation services, which are subsequently subdivided into service categories 

(WHO/UNICEF, 2017; Turman-Bryant et al., 2018); Likewise, both inequalities in access to water and sanitation (Yang et 

al., 2013; Bain et al., 2014; UNICEF/WHO, 2019; Anthonj et al., 2020b; Chitonge et al., 2020) as well as studies of access 

to WASH and its relation to health (Prüss-Ustün et al., 2014; Freeman et al., 2017; Ashole Alto et al., 2020; Hasan and 

Alam, 2020; Patel et al., 2020) imply in one way or another the classification of improved and unimproved services. 

Therefore, the order of the balances (Egozcue and Pawlowsky-Glahn, 2005) is defined under this criterion, with the 

breakdown of each part as follows: 
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The water and sanitation balances each comprise four parts and follow the same procedure     , with the balance carried 

out between the proportion of the population: 

i. with access to improved (X1 × X2) and unimproved (X3 × X4) services; 

ii. next, with access to network services (X1) and other improved (X2) forms of access; 

iii. finally, with access to services (X3) and other unimproved (X4) forms of access. 

Hygiene balances comprise three parts and are performed under the following procedure      , with the balance carried 

out between the proportion of the population: 

i. with a handwashing facility on premises (Xh1 × Xh2) and no handwashing facility (no service) (Xh3); 

ii. next, with access to basic services (Xh1) and limited service (Xh2). 

 

Figure 2. Balances in WASH. 

The results of balances and transformations are shown in Table 2. 

Table 2. Transformations ilr 

A. Water and Sanitation B. Hygiene 

1/2

1 2
1 1 1/2

3 4

( )2 2
Y ln

2 2 ( )


 

 

t X X
ilr

X X

 

1
2 2

2

( )1 1
Y ln

1 1 ( )


 



t X
ilr

X

 

3
3 3

4

( )1 1
Y ln

1 1 ( )


 



t X
ilr

X

 

1/2

1 2
1 1

3

( )2 1
Y ln

2 1 ( )


 



t h h
h h

h

X X
ilr

X

 

1
2 2

2

( )1 1
Y ln

1 1 ( )


 



t h
h h

h

X
ilr

X

 

 

STEP II.  Treatment of values of zero, missing data and zero plus missing data simultaneously 

Countries with data that include values of zero, missing values or values of zero plus missing values simultaneously are 

approached in a differentiated way with robust statistical techniques, as the low quality of data from the sector can 

influence the imputations (Hron et al., 2010; Martín-Fernández et al., 2012; Maronna et al., 2019). For the three cases 

mentioned, two treatment alternatives are compared. The number of zeros is denoted by NZ, and the number of missing 

values, by NM. 

i) NZ = 0, NM = 0: no pre-processing of data is performed. 

ii) NZ > 0, NM = 0: treatment of zero values with two variants of the log-ratio expectation-maximization (EM) algorithm; 

lrEM function (Palarea-Albaladejo and Martín-Fernández, 2015) and impRZilr (Templ et al., 2019). 

1 2 3 4

1
1

2

3

1 1 1 1

1 1 0 0

0 0 1 1

ilr X X X X

ilr
V

ilr

ilr

 
 

     
   
 

   

1 2 3

1 1

2

1 1 1

1 1 0

h h h

h h

h

ilr X X X

V ilr

ilr

 
 

     
    

 1 
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iii) NZ = 0, NM > 0: treatment of missing values through least trimmed squares (LTS) (Hron et al., 2010), implemented in 

the impCoda function, or with the same log-ratio EM algorithm used for the case (ii) (NZ > 0 and NM = 0); lrEM 

function.  

iv) NZ > 0, NM > 0: treatment of zero and missing values simultaneously, also with two alternatives. One is to consider 

zero values as a special type of missing values (Palarea-Albaladejo and Martín-Fernández, 2008; Martín-Fernández 

et al., 2011) and apply the same LTS algorithm as before (e.g., the impCoda function). The opposite should not be 

considered because the missing values are not necessarily zero values. The other alternative is using the extended 

version of the log-ratio EM algorithm, the lrEMplus function, presented by Palarea-Albaladejo and Martin-

Fernandez (2020). 

STEP III. Models and estimates 

Countries are classified into two groups according to the amount of data, with six being the separation limit. This 

classification is described in Fuller et al. (2016). However, as the low quality of data also affects the predictive capacity of 

the models, we opted to carry out robust models in both groups as detailed below: 

For countries with data points < 6: the models are built using the robust OLS regression method on transformed data from 

Table 2B, for which the lmrob function is used, which calculates a regression estimator of the MM type as previously 

described (Yohai, 1987; Yohai et al., 1991; Koller and Stahel, 2011). Evaluation of the influence of outliers in linear 

regression models is carried out using robustness weights. On the other hand, standard linear regression models are 

added to transformed and non-transformed data, for comparison with the robust alternative. 

Countries with data points ≥ 6: the model-fitting procedure combines the outlier identification method as part of the 

preprocessing and then excludes these data from the analysis to generate robust models, as described below: 

i. Outliers in multivariante data are identified by calculating the robust Mahalanobis distance (Eq.( 6)) in isometric log-

ratio coordinates of Eq.( 5). For the computational calculation, the outCoDa function is applied (Templ et al., 2011).  

     
1/21MD    –  '  –   1,2,....,   n

i i iY Y T C Y T i nfor 
 

  ( 6) 

where T and C are estimators of location and the covariance, respectively (Mahalanobis, 1936). Robustness is 

achieved by exchanging T and C for the minimum covariance determinant (MCD), which are robust estimators 

(Filzmoser and Hron, 2008). Potential outliers are those that have robust MD (square) greater than the cut-off value, 

which is the 0.975 quantile of the 
2

1D   distribution with D-1 degrees of freedom (Rousseeuw and van Zomeren, 

1990). In the case of water and sanitation, the degree of freedom of the chi-square distribution is three, and the cut-

off value is 3.0575. Points that are above the threshold distance are not taken into account in subsequent estimates (

 
2 2

3, 0.975MD   iY 
). 

ii. After identifying outliers, regression models are constructed with GAM, with four degrees of freedom (k = 4), on the 

transformed data in Table 2A. The analysis is performed for data both with and without the presence of outliers. The 
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predictive capacity of the model between the two is compared with the adjusted coefficient of determination (R-adj); 

values near to one the predictive capacity of the model is better. The computational calculation to generate the 

models is done with the gam function. 

STEP IV. Inverse transformation 

The interpolation or extrapolation values in the transformed data are returned to the simplex space, for which the inverse 

transformation is performed with Eq.( 7). 

1(Y ) tX ilr  ( 7) 

X = Vector of Eq.( 3) or Eq.( 4).  

For the WASH sector, it is important to see the interpolations and extrapolations of the models in the different categories 

of access to WASH. Therefore, performing an inverse transformation is mandatory. 

STEP V. Results and quality test 

The whole process of the algorithm described up to STEP IV allows the interpolations and extrapolations of the different 

alternatives in the categories of access to WASH to be evaluated and compared, using quality metrics. In order to see the 

impact of the alternatives in STEP II on the scale of data, the root mean square error (RMSE) metric is applied to models 

expressed in terms of X. On the other hand, the evaluation of the predictive capacity of the models in the data is carried 

out through the non-dimensional indicator goodness of fit of Nash Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) 

applied to the observed and estimated X of the model. If NSE = 1, the fit of the model is perfect, while NSE < 1 suggests 

that the observed mean is a better predictor than the model (Ritter and Muñoz-Carpena, 2013). 

The statistical computation of Figure 1 is performed through R Core Team (2019) (v.3.6.3). Preprocess of data and 

integration of each calculation stage are presented in Quispe-Coica and Pérez-Foguet (2020). The following packages are 

used: robCompositions (v2.2.1) by (Templ et al., 2011) for impRZilr, impCoda, and outCoDa; zCompositions (v1.3.4) 

by (Palarea-Albaladejo and Martín-Fernández, 2015) for lrEM and lrEMplus; robustbase (0.93-5) by (Maechler et al., 

2019) for lmrob; mgcv (v1.8-31) of Wood (2019) for gam; and compositions (v1.40-3) by (Boogaart et al., 2019).  

3. Data features 

To test the algorithm proposed in Figure 1, we selected ten different countries for data on access to water and sanitation, 

and two countries for the hygiene case. Annual data are extracted from the JMP database from 2000 to 2019, in which 

both the amount of data and the presence or absence of irregularities vary in different proportions, allowing the various 

situations that arise in the WASH sector to be covered (see Table 3). Appendix A illustrates the implication in the 

correlation matrix of not using adequate techniques for CoDa. 

Table 3. Access to Water, Sanitation and Hygiene (WASH) 

Region Country Sector Service Data points Zero  Missing  
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 (X)
 a 

value value 

Sub-Saharan Africa South Africa Rural Sanitation 30 (×4) 0.00% 1.67% 

Latin America and the Caribbean Brazil Urban Water 27 (×4) 0.00% 44.44% 

Eastern and south-eastern Asia Indonesia Rural Water 26 (×4) 0.00% 0.00% 

Sub-Saharan Africa Nigeria Rural Water 22 (×4) 1.14% 0.00% 

Latin America and the Caribbean Paraguay  Urban Water 21 (×4) 7.14% 0.00% 

Central and Southern Asia Bangladesh Rural Sanitation 20 (×4) 1.25% 30.00% 

Sub-Saharan Africa Zambia Rural Sanitation 16 (×4) 0.00% 6.25% 

Northern Africa and Western Asia Egypt Urban Water 15 (×4) 10.00% 30.00% 

Latin America and the Caribbean Uruguay Urban Water 15 (×4) 15.00% 3.33% 

Sub-Saharan Africa Benin Rural Sanitation 10 (×4) 0.00% 10.00% 

Sub-Saharan Africa Benin Rural Hygiene 5 (×3) 0.00% 0.00% 

Sub-Saharan Africa  Ghana Rural Hygiene 4 (×3) 0.00% 0.00% 

a
 The year's data points are represented by three or four levels of WASH service to which the population has access. 

The countries that do not present data irregularities are represented by Benin and Ghana for access to hygiene, and by 

Indonesia for access to rural water. For hygiene, the low amount of data is mainly due to the recent incorporation of this 

into the Sustainable Development Goals (SDG 6.2) as part of the monitoring indicators (Craven et al., 2013); in contrast, 

access to water and sanitation has been monitored since 1990 (Bartram et al., 2014). In this type of data, STEP II of the 

algorithm does not apply. 

Data with irregularities are presented in three different forms: 

i) The first case is represented by Nigeria and Paraguay, which have values of zero in the data, of 1.14% and 7.14%, 

respectively. The categories of Paraguay reveal that this occurs when the provision of water services by improved 

sources is high (Figure 3A); consequently, indicators of access to unimproved water have zero trends or zero values. 

Another peculiarity that can be seen in Paraguay is that the zero value is presented only in the X3 indicator, while in 

Egypt, it is presented in X3 and X4. 

ii) The second case concerns countries with missing values in data and are represented by South Africa, Zambia, Brazil 

and Benin. Brazil has the highest percentage of missing values (of 44.44%), which are distributed in the same 

proportions in the X3 and X4 indicators (Figure 3B). 

iii) The third case refers to countries with both values of zero and missing values in data and are represented by 

Bangladesh, Egypt and Uruguay. Egypt is shown as an example in Figure 3C for data with zero values, and in Figure 

3D for data with missing values. In both graphs, data with zero values and missing values are in the categories of X3 

and X4. 

Data irregularities must be addressed in STEP II, by using the imputation functions most appropriate for each case. 
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Figure 3. A) Paraguay: patterns of zero values. B) Brazil: patterns of missing values. (C and D) Egypt: zero values 

and missing values simultaneously, with values of zero shown in C), and missing values shown in D). 

4. Results and discussion 

In this section, we discuss and compare work alternatives to treating values of zero, missing values and values of zero 

and missing values simultaneously that are usually present in the data. Subsequently, we analyze the influence of outliers 

on the model. 

4.1. Countries with values of zero, missing values or values of zero and missing values simultaneously in the 

data 

Of the different characteristics of the data presented in Section 3, countries with irregular data have gone through 

differentiated treatment methods in STEP II. For instance, Paraguay and Nigeria have zero values of zero in their data, of 

7.14% and 1.14%, respectively (Table 4A). The analysis under the RMSE metric of the imputation functions lrEM and 

impRZilr that replace the zero values with small values do not show any significant differences that would allow us to 

discard any of the two alternatives completely; therefore, both functions can be applicable, as either of them helps to 

overcome the problem of not being able to perform the ilr transformations of Eq.( 5). 

Nevertheless, when dealing with the missing values in data (Table 4B), differences in the metrics should be taken into 

account, which makes us choose the impCoDa function or the lrEM function depending on the country of analysis. For 
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example, metrics in the impCoDa function are better for Benin and South Africa, while the lrEM function is better for 

Brazil; in contrast, no significant differences between either function (impCoda or lrEM) are present for Zambia. 

Table 4. Quality metrics to select the method 

Country Sector Service 
Zero 

value 

Missing 

value 

Method – RMSE (%) Selected 

method impCoda  lrEM lrEMplus impRZilr  

A. Case II: Data with zero values 

Paraguay  Urban Water 7.14% 0.00% - 0.0026
 

- 0.0027 lrEM 

Nigeria Rural Water 1.14% 0.00% - 0.0060
 

- 0.0033 impRZilr 

B. Case III: Data with missing values 

Benin Rural Sanitation 0.00% 10.00% 1.826 3.094
 

- - impCoda 

Brazil Urban Water 0.00% 44.44% 0.648 0.321
 

- - lrEM 

South Africa Rural Sanitation 0.00% 1.67% 0.015 0.026
 

- - impCoda 

Zambia Rural Sanitation 0.00% 6.25% 8.435 8.227
 

- - lrEM 

C. Case IV: Data with zero values and missing values simultaneously  

Bangladesh Rural Sanitation 1.25% 30.00% 7.621 (
a
) - 8.690 - impCoda 

Egypt Urban Water 10.00% 30.00% 0.254 (
a
) - 0.269 - impCoda 

Uruguay Urban Water 15.00% 3.33% 0.052 (
a
) - 0.048 - lrEMplus 

Note: 
a 

Data with values of zero are considered missing values (―0‖ → ―NA‖); therefore, imputation methods with the 

impCoda function are applied. 

On the other hand, in countries with values of zero and missing values simultaneously (see Table 4C), the alternative of 

replacing zero values with "NA" and addressing them as ―missing values‖ with the impCoda function gives better results 

for Bangladesh and Egypt. This occurs when there is a higher percentage of data with missing values than zero values. 

However, the opposite situation occurs in the data set from Uruguay, which has 15% of zero values and 3.33% of missing 

values, and for which the lrEMplus function is a better alternative. 

Finally, while it is true that any of the methods evaluated is adequate for at least one of the cases (depending on each 

case), the methods are all already better than the multiplicative imputation alternatives or other simple alternatives, as they 

allow variability to exist in the imputed data. This advantage is more significant when the data points show a higher 

percentage of these irregularities. If no alternative is applied (either simple or one of those shown in this paper), many 

countries in the sector should be excluded from the analysis. This is especially important if the loss of information is 

significant (as happens in South American countries; Quispe-Coica and Pérez-Foguet, 2018). On the other hand, once the 

new Sustainable Development Goals were agreed upon (United Nations General Assembly, 2015; UN Water, 2016), each 

country assumed the responsibility of reducing the population's access to unimproved services of WASH. To this end, 

many countries are defining and implementing public policies that close these gaps, in which case data will tend to go to 

extreme values, making it even more necessary to use imputation alternatives for zero values. 
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4.2. Outliers 

4.2.1. Countries with data points < 6 

This section addresses the case of countries with little data, where the influence of outliers is penalized in the coupled 

model. The access of rural populations to the different levels of hygiene services in Benin and Ghana illustrates this 

situation. In Figure 4A and Figure 4B, we present the model fit in data transformed by standard and robust linear 

regression. The regression lines of both methods are similar in the transformations of ilr2, and differ for both methods in 

ilr1 (with more drastic changes in Figure 4E). The difference is mainly due to the fact that, in the robust method, points 1 

and 5 of Ghana and Benin, respectively, have a strong degree of negative influence on the model, so that it assigns zero 

value robustness weights.

 

Figure 4. Model and estimations in CoDa of hygiene. (A, E) Two different models are fitted in transformed data: i) standard OLS (blue and 

black solid lines) and ii) robust OLS (blue and black dashed lines). (B–D, F–H) Three different models are fitted in CoDa: i) standard OLS 

in original data (black solid line), ii) inverse of standard OLS of transformed data (blue solid line) and iii) inverse of robust OLS of 

transformed data (blue dashed line). 
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How the influence of data is modulated creates significant differences in the estimates of the categories of hygiene 

services that the population accesses. In the case of Ghana, the effect in each category is even greater if we compare it 

with the other alternatives (Figure 4F–H). Likewise, in both Benin and Ghana, the curve generated by robust OLS (ilr) best 

fits the data. On the other hand, looking at the results qualitatively, it is more reasonable to exclude point 1 in Ghana and 

point 5 in Benin, which supports the affirmation that the robust linear regression alternative is an excellent alternative for 

regression models in the presence of data with outliers. 

Another feature to consider is that with OLS (ilr) or robust OLS (ilr), extrapolations of the service categories in 2000 and 

2017 never exceeded the extreme limits of 0 and 100% (Table 5). This happens because the inverse transformation has a 

closing value (Eq.( 4)) that allows estimates to be made in the time series without restrictions. The opposite occurs when 

extrapolation is performed with standard OLS. Here, the negative values of Benin (–0.726) and Ghana (–1.594) in the 

basic service category of the year 2000 exemplify this situation; in these cases, the JMP applies restrictions of 0 

(WHO/UNICEF, 2018). 

Table 5. Comparison of estimated values with different methods 

Hygiene 

Country 
Method 

Estimation year (2000)   Estimation year (2017)  

Basic service Limited service
 

No service  Basic service Limited service
 

No service 

Benin OLS (ilr) 0.162 2.740 97.098  13.862 13.868 72.270 

 OLS (ilr)-robust 0.105 1.752 98.142  27.959 28.968 43.073 

 OLS 
a 

–0.726 3.638 97.088  6.466 17.351 76.183 

 JMP website 
b 

0.000 2.912 97.088  6.043 16.544 77.413 

Ghana OLS (ilr) 4.712 36.629 58.659  23.431 32.464 44.104 

OLS (ilr)-robust 0.009 0.069 99.923  33.675 46.319 20.006 

OLS 
a
 –1.594 44.893 56.701  24.890 30.010 45.100 

JMP website 
b
 NA NA NA  36.576 43.491 19.933 

a 
OLS regression on untransformed data.

 b 
Data available at JMP website (Benin and Ghana, Excel tab ―Regressions‖). Negative values 

are underlined. NA: not available. 

On the other hand, the results of the 2017 estimates with robust OLS (ilr) differ significantly from the other linear 

alternatives in all Benin categories. In Ghana, only robust OLS (ilr) and JMP regression give very similar results in all three 

categories. Although the estimation alternatives differ, there is a high percentage of the rural population that does not have 

handwashing facility (specifically, 43.07% in Benin, and 20% in Ghana), if we take into account the results of robust OLS 

(ilr). In both countries, this rate is expected to decrease, given the positive effects of handwashing with soap and water in 

the reduction and prevention of diseases, such as diarrhea, coronavirus disease 2019 (COVID-19), acute respiratory 

infection and impetigo, among others (Luby et al., 2005; Cairncross et al., 2010; Hirai et al., 2017; Prüss-Ustün et al., 

2019; Brauer et al., 2020; Ma et al., 2020). 

4.2.2. Countries with data points ≥ 6 
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The possible reasons for outliers in data can be diverse. However, in the data analyzed here, it is evident that outliers 

commonly occur when there are different sources of information. To better illustrate this point, we present the case of the 

rural population of South Africa, for which information for the sewer categories in 2011 comes from three different sources: 

the Census (CEN) reported 6.03% access, the Income and Expenditure of Homes survey (IES) reported 44.16% access, 

and the General Household survey (GHS) reported 5.07% access. Based on the significant difference between data from 

IES and that from the other two sources of information (CEN and GHS), it is normal to assume that it is an outlier without 

needing to apply any validation methods. On the other hand, as the census data and the EEG survey only differ by 0.96%, 

it is difficult to know if either value is atypical or not. 

Given the doubt that is generated, robust MD can applied to the country's time series. The results obtained show that only 

the IES data point is an outlier (Figure 5A.2), which confirms the previous assumption. The punctual validation carried out 

by the JMP (2019) (see Excel tab ―Data Summary/Sanitation for 2011‖) identifies and excludes the CEN and IES data 

points from the model. These differences in identification that are manifested for a specific country and year can also 

occur for other countries when a time series is analyzed. 

Table 6. Identification of outliers in WASH 

Country Sector Service 
Data points 

(X) 

Method 

RMD 
a
 

JMP 
b
 

Improved X1 X3 

South Africa Rural Sanitation 30  7 3 7 3 

Brazil Urban Water 27 1 0 0 0 

Indonesia Rural Water 26 9 3 4 3 

Nigeria Rural Water 22 3 1 0 1 

Paraguay  Urban Water 21 8 0 1 0 

Bangladesh Rural Sanitation 20 7 2 1 2 

Zambia Rural Sanitation 16 3 3 6 5 

Egypt Urban Water 15 1 0 0 0 

Uruguay Urban Water 15 4 1 1 1 

Benin Rural Sanitation 10 3 0 0  0  

a 
Robust Mahalanobis distance represents all parts at a single point, and those that exceed the threshold are considered outliers. 

b 
The JMP performs the punctual validation of data for each country. Data available at the JMP website (Country/Excel tab ―Data 

Summary‖).  

The coherence and contradictions in the number of outliers identified through the two methods, the robust MD and the 

JMP, are shown in Table 6. The number of outliers identified by the robust MD is higher than that identified by JMP in nine 

of ten countries, with Paraguay showing the greatest difference, while the opposite is seen for Zambia in categories X1 
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and X3. In contrast, in both South Africa and Zambia, the number of identified outliers is the same between the two 

alternatives (robust MD and JMP) in categories X1 and improved, respectively.  

These differences suggest that identifying outliers under the usual JMP analysis method is insufficient and requires 

additional tools. Therefore, the robust MD method both reinforces and complements the usual form of analysis. 

Furthermore, it allows current and other atypical values to be methodically identified, which reduces the identification bias. 

The disadvantage of the MD method is that the calculated distance represents the four parts (see Figure 5A.2, 5B.2 and 

5C.2), and therefore the exclusion of points that exceed the threshold leads to the loss of information for all four categories 

of the year. This does not happen with either the JMP method or the univariate statistics identification methods. 

Following the sequence of the algorithm (Figure 1), STEP III can be applied (Figure 5). In Indonesia and South Africa, 

exclusion of outliers improved the quality of the models of all transformed data (Figure 5A.3 and B.3). R-adjusted quality 

metrics confirm this affirmation. However, in Uruguay, quality metrics only improved in ilr3 transformations; this 

demonstrates the flexibility of GAM, which seeks to adjust to the data, regardless of whether it has outliers or not. On the 

other hand, although the models are generated in transformed data, it is more important in the WASH sector to see the 

quality of the predictive capacity in each category of analysis. Therefore, it is necessary to return the interpolations and 

extrapolations of the model to the space of the simplex, without ruling out that everything that happens in the transformed 

data will influence the results of the different levels of service. 

The results of applying the inverse transformation in STEP IV of the algorithm are shown in Figure 6. The presence of 

outliers influenced the fit of the models in a differentiated way; this affected the estimates. In Indonesia, the estimate of the 

percentage of rural population that have access to piped water in 2020 is 10.8% if the model was generated with data that 

includes outliers; however, this value decreased to 5.7% if outliers were excluded from the analysis, resulting in a 5.1% 

difference between the two estimates. In South Africa, this difference increased to 7.2% if we analyzed the category of the 

rural population that has access to sanitation through other improved forms.  
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Figure 5. (A.2, B.2 and C.2) Robust Mahalanobis distance. Distances greater than the cut-off value (dashed lines) are considered outliers. 

(A.3, B.3 and C.3) Two different models are fitted in transformed data: i) GAM with outliers (solid lines) and ii) GAM without outliers 

(dashed lines). 
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Figure 6. (D, E and F) Two different models are fitted in CoDa: i) Inverse of GAM transformed data with outliers (dashed lines) and ii) 

inverse of GAM transformed data without outliers (solid lines). 

For the 2020 estimates for Uruguay, there is no significant difference between the two alternatives (models with outliers 

included and without outliers). For example, for the category of access to piped water service, the difference between the 

two models was 0.004%. The remaining three categories also did not differ from these statements. It appears that in 

countries that have covered almost all water service provision, modeling and comparison are no longer relevant. 

Nonetheless, it cannot be ruled out that modeling is necessary for trend data to extreme values, as small proportions 

passed to population units can have significant effects, such as in China and India. On the other hand, we must 

emphasize two things: i) the estimates cannot exceed the extreme values of 0 and 100% in any service category; and ii) it 

is very important to use adequate statistical techniques, such as in STEP II, to treat values of zero, according to the 

variability of the time series data, as this allows models to be built without excluding data. 

Table 7. Quality metrics estimates for access to water and sanitation 

Country 

Data points 

() 

Metric NSE 

With outliers (NSE1) Without outliers (NSE2) 

X1 X2 X3 X4 X1 X2 X3 X4 

South Africa–rural sanitation 30 (4) –0.002 0.59 0.84 0.12 0.39 0.91 0.93 0.70 

Brazil–urban water 27 (4) 0.27 0.28 0.13 0.08 0.29 0.28 0.51 0.20 

Indonesia–rural water 26 (4) –0.02 0.17 0.65 0.61 0.66 0.95 0.92 0.95 

Nigeria–rural water 22 (4) 0.17 0.29 –0.30 –0.09 0.24 0.61 0.79 0.08 

Paraguay–urban water 21 (4) 0.75 0.63 0.19 0.66 0.75 0.75 0.14 0.64 

Bangladesh–rural sanitation 20 (4) 0.15 0.24 0.83 0.41 0.38 0.41 0.81 0.68 

Zambia–rural sanitation 16 (4) –0.04 0.03 0.05 0.16 0.07 0.07 0.01 –0.003 

Egypt–urban water 15 (4) –0.06 –0.04 –9.78 –0.02 –0.07 –0.08 –1.61 –0.02 

Uruguay–urban water 15 (4) 0.15 0.54 –0.03 0.06 0.88 0.75 0.44 0.88 

Benin–rural sanitation 10 (4) 0.22 0.54 0.68 0.45 0.22 0.74 0.70 0.52 

NSE2 values less than NSE1 are shown in gray; negative values are underlined. 

The quality metrics in Table 7 reinforce the hypothesis that outliers influence the quality of the models. The metrics of the 

four indicators are the same or better when outliers are excluded in six of the ten countries (namely, South Africa, Brazil, 

Indonesia, Nigeria, Uruguay and Benin). Of these countries, South Africa, Indonesia and Uruguay have NSE2 metrics 

near to 1, which indicates the high predictive capacity of the models in these countries, according to the indicator. The 

opposite is seen in Egypt, where the observed average is a better predictor than the model in the four analysis categories, 

in both models with or without outliers. In Bangladesh, Paraguay and Zambia, the improvement was only present in some 

categories. 
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On the other hand, the temporal trends of the service categories show the inequalities that exist in access to water and 

sanitation between the urban and rural sectors. In Indonesia and South Africa, access to water and sanitation by other 

improved forms is increasing (Figure 6D.2 and 6E.2); however, in Uruguay, this category tends towards values of zero 

(Figure 6F.2). If we compare only Indonesia and Uruguay, the rural–urban gap in the category of access to piped water is 

further increased, mirroring the world situation reported in the literature with respect to disparities that exist in access to 

water and sanitation in both sectors (Bain et al., 2014; Chitonge et al., 2020). That said, and in the context of the SDGs 

that seeks to ensure that no one is left behind (United Nations General Assembly, 2015), the rural sector in both Indonesia 

and South Africa is faced with a greater challenge in the provision and safe management of water and sanitation services. 

Finally, after outliers have been identified, it is not recommended to eliminate them automatically, as this can lead to loss 

of relevant information that helps explain the specific situation or time series of the country. Additionally, there are other 

factors that the analyst does not value when excluding data (such as the cost of obtaining data through a survey, census 

or other alternatives that is representative of the country); therefore, the essential thing before excluding outliers would be 

to understand why the values are anomalous. An alternative that would help to understand the presence of these data 

could be to consult the institutions of origin for the information sources. Nevertheless, obtaining answers becomes 

complicated when it depends on third-party institutions (for instance, for reports to the SDG, the associated countries 

generally have statistical or other specialized institutions that are responsible for collecting, processing, and sharing 

information to interested parties). In these cases, exclusion is simply a necessity because of the improvements it brings to 

the models. 

5. Conclusions 

The existence of values of zero, missing values or both simultaneously makes it necessary to treated data in a 

differentiated manner, for which distinct treatment options are available. While these options are not equivalent, no clear 

criteria exist for choosing exactly which one to use, with all alternatives potentially equally good. Further, these options are 

suitable for analyzing data with variations in temporal evolution, which is not possible if we apply the multiplicative 

replacement (Martín-Fernández et al., 2003). 

In countries with low amounts of data, we concluded that robust linear regression (robust OLS (ilr)) is suitable for the 

analysis of WASH sector data, since it limits the influence of outliers on the calibrated model. Both quantitatively and 

qualitatively, the declaration of outliers can be validated. 

In countries with ≥ 6 data points, the identification of outliers with the robust Mahalanobis distance tends to give us more 

than the qualitative classification made with the JMP (and specifically, for nine of the ten countries evaluated), which 

reinforces the usual classification of the JMP. However, we must bear in mind that, in the robust Mahalanobis distance 

method, all parts of the year are excluded, while in JMP, only part of the composition is likely to be excluded. This 

conclusion goes hand in hand with the GAM adjustments to data, for which excluding outliers from the analysis generally 

leads to a higher reliability of the interpolation and extrapolations results. 
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Furthermore, for all cases (e.g., < 6 or ≥ 6 data points), interpolation and extrapolation of the models in the service 

categories can never exceed the limit value of 0 or 100%. This affirmation concurs with and extends the conclusion 

obtained by Pérez-Foguet et al. (2017), as we now have analyzed a wide range of data with different irregularities and 

include analysis of access to hygiene. 

Finally, the algorithm proposal that integrates models for a wide range of linear and non-linear data, with outliers included, 

is expected to contribute to improving data analysis in the sector, and especially those for which sources of information are 

different. This work complements the proposal made by Pérez-Foguet et al. (2017) and continued by Ezbakhe and Pérez-

Foguet (2019), on the statistical analysis for CoDa in the WASH sector. 
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Appendix A: Spurious correlation 

As already discussed previously (Pérez-Foguet et al., 2017; Ezbakhe and Pérez-Foguet, 2019), the statistical techniques 

applied for international monitoring of WASH are performed using CoDa. The peculiarities of this type of data suggest that 

there may be a spurious correlation if the appropriate statistical techniques are not applied in the analysis. However, in the 

WASH sector, this statement has not yet been tested. Thus, a correlation analysis of the population with access to 

different levels of WASH services should be carried out, as exemplified by the following situation. 

Two external organizations want to know the access of a population to water or to rural sanitation with different levels of 

services in Indonesia and South Africa, respectively. For this, organization A requests population data from the four 

categories [X1, X2, X3, X4], while organization B only needs to know data for three of the four categories [X1*, X3*, X4*]. With 

the information obtained, organization A makes proportions to visualize the percentage of the population that each 

category represents in the composition. Organization B follows a similar procedure for all three categories of services. 

Subsequently, each organization performs a correlation analysis of the selected categories, reaching consistent and 

contradictory conclusions, according to the category of analysis. 

Table A1. Correlation matrix of data on access to water and sanitation. 

1) Water 

A X1 X2 X3 X4 B X1* X3* X4* 

X1 1.00 –0.82 0.27 –0.52 X1* 1.00 –0.75 –0.99 

X2 
 

1.00 –0.70 –0.07 X3* 
 

1.00 0.67 
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X3 
  

1.00 0.53 X4* 
  

1.00 

X4 
   

1.00   
   

2) Sanitation 

A X1 X2 X3 X4 B X1* X3* X4* 

X1 1.00 –0.59 –0.03 –0.36 X1* 1.00 –0.52 –0.66 

X2 
 

1.00 –0.71 –0.36 X3* 
 

1.00 –0.30 

X3 
  

1.00 0.40 X4* 
  

1.00 

X4 
   

1.00   
   

Notes: The analysis category for water and sanitation is the same as in Table 1. The correlation matrix is 

performed with data from the country's time series before pre-processing. 

From Table A1-1, organization A infers that the correlation of the categories of access to water between X1w and X3w is 

positive and low (correlation = 0.27), while organization B concludes that the correlation between X1w* and X3w* has a high 

degree of relationship, but negative (correlation = –0.75). For the population with access to sanitation (Table A1-2), an 

analysis similar to that described, organization A concludes that the relationship between X3s and X4s is positive 

(correlation = 0.40), and organization B, that it is negative (correlation = –0.30). Therefore, for the same categories of 

analyses of both cases, the different methods of analysis give different conclusions. 

Table A2. Composition and subcomposition of WASH data 

Category Source 
Full composition ―A‖ 

[X1, X2, X3, X4] 

Proportion 

Subcomposition ―B‖ 

[X1*, X3*, X4*] 

Proportion 

X1 

X3 

X4 

X3 

X1* 

X3* 

X4* 

X3* 

Water 
a 

SUS01 [6.51, 60.45, 5.72, 27.32] 1.14 4.78 [16.46, 14.46, 69.08] 1.14 4.78 

SUS02 [6.17, 62.31, 5.46, 26.06] 1.13 4.77 [16.37, 14.49, 69.14] 1.13 4.77 

DHS03 [7.90, 57.09, 6.00, 29.01] 1.32 4.83 [18.41, 13.98, 67.61] 1.32 4.83 

Sanitation 
a 

 IES00 [5.95, 46.93, 25.23, 21.88] 0.24 0.87 [11.21, 47.55, 41.24] 0.24 0.87  

CEN01 [7.10, 47.23, 27.70, 17.97] 0.26 0.65 [13.45, 52.49, 34.05] 0.26 0.65 

WHS03 [30.59, 43.49, 13.00, 12.92] 2.35 0.99 [54.13, 23.00, 22.86] 2.35 0.99 

a
To exemplify both water and sanitation, only data from the first three rows are shown. 

On the other hand, when proportions are compared between categories for both organization A and organization B, the 

result is the same (Table A2). For example, for water access data, the ratio of [X4w / X3w] equals [X4w* / X3w*], and the 

same is true with the proportions of access to sanitation. Therefore, the alternatives for statistical analysis of CoDa are 

based on a log-ratio relationship approach (Aitchison, 1986; Egozcue et al., 2003), each with its own particularities. As the 

WASH sector is familiar with the assumptions made, the application of adequate statistics for CoDa becomes mandatory. 
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Highlights 

 WASH data require preprocessing to adjust trends with compositional regression 
models 

 Outliers need to be treated differently based on amount of data from time series 

 Robust OLS of hygiene trends is recommended over standard OLS 

 Detection and exclusion of outliers improves quality measures of GAM regressions 
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