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Kick&kill strategies combining drugs aiming to reactivatethe viral reservoir with
therapeutic vaccines to induce effective cytotoxic immuneresponses hold potential
to achieve a functional cure for HIV-1 infection. Here, we report on an open-label,
single-arm, phase I clinical trial, enrolling 15 early-treated HIV-1-infected individuals,
testing the combination of the histone deacetylase inhibitor romidepsin as a
latency-reversing agent and the MVA.HIVconsv vaccine. Romidepsin treatment resulted
in increased histone acetylation, cell-associated HIV-1 RNA, and T-cell activation, which
were associated with a marginally signi�cant reduction of the viral reservoir. Vaccinations
boosted robust and broad HIVconsv-speci�c T cells, which were strongly refocused
toward conserved regions of the HIV-1 proteome. During a monitored ART interruption
phase using plasma viral load over 2,000 copies/ml as a criterium for ART resumption,
23% of individuals showed sustained suppression of viremiaup to 32 weeks without
evidence for reseeding the viral reservoir. Results from this pilot study show that the
combined kick&kill intervention was safe and suggest a rolefor this strategy in achieving
an immune-driven durable viremic control.
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INTRODUCTION

Current antiretroviral therapy (ART) e�ectively suppresses HIV-
1 replication, thus preventing disease progression. However,the
infection remains chronic given that a latent HIV-1 reservoir,
established early after infection, persists despite suppressive
ART (1). Upon ART discontinuation, integrated replication-
competent proviruses in the reservoir drive a rapid viral rebound
(2). Therapeutic vaccination has been proposed as a possible
approach to induce an e�ective immune control able to contain
rebounding virus (3).

Most therapeutic vaccines tested in the past expressed one or
several HIV-1 proteins, which expanded HIV-1-speci�c CD8C

cytotoxic T lymphocyte (CTL) responses to varying levels.
However, the responses were ine�ective in controlling viremia
after ART interruption, likely because of their suboptimal
magnitude, breadth, width, speci�city, and/or polyfunctionality
(4–8), raising the need for novel immunogens and delivery
methods to tackle HIV-1 diversity and the virus' ability to escape.
New vaccines strategies are being developed to maximize the
vaccine coverage of circulating viruses using multivalentmosaic
immunogens designedin silico (9, 10). Alternatively, vaccines
designs are tested that aim to focus the CTL responses toward
more conserved and protective regions of the virus, which are
less likely to mutate and escape the T-cell response (11–15).
Among the latter, the HIVconsv immunogen is one of the most
advanced vaccine candidates in clinical development. HIVconsv
immunogen consists of a chimeric protein assembled from
14 highly conserved domains derived from HIV-1 genes Gag,
Pol, Vif, and Env alternating, for each domain, the consensus
sequence of the four major HIV-1 clades A, B, C, and D (12).
Upon delivery to both HIV-1-negative and positive individuals
by heterologous prime/boost regimens as DNA or in simian
adenovirus of chimpanzee (ChAdV) and poxvirus MVA vectors,
HIVconsv vaccines were safe and induced CD8C T cells with
broad inhibitory capacity of HIV-1in vitro, but showed no e�ect
on the viral reservoir (16–23).

To overcome the limitations of therapeutic vaccines -
administered alone- in targeting the viral reservoir, vaccines
are combined with latency reversing agents (LRA) in the
so called kick&kill strategies (24). This approach intends to
activate transcription of HIV-1 using small molecules able to
disrupt the viral latency and facilitate e�ective sensing and
clearance of infected cells by vaccine-elicited HIV-1-speci�c
CTL (25, 26). Histone deacetylase inhibitors (HDACi) have
been proposed as potential HIV-1 LRA (27–31). Romidepsin
(RMD; IstodaxR , Celgene Ltd.) is a potent HDACi approved for
the treatment of cutaneous and peripheral T-cell lymphomas,
which has been shown to induce HIV-1 transcription both
in vitro and in vivo (32, 33). The REDUC trial combined
RMD with Vacc-4x and rhuGM-CSF in chronically suppressed
HIV-1-positive individuals, resulting in a mean reduction of
39.7% in total HIV-1 DNA (34). However, this intervention
failed to delay viral rebound after ART interruption, suggesting
that the reservoir-purge e�ect was not su�cient and/or the
vaccine-induced response was unable to eliminate cells actively
replicating HIV-1. In fact, the increase in cell-associatedHIV-1

RNA inversely correlated with time to rebound, supporting that,
in the absence of an enhanced HIV-1-speci�c CTL response,
viral reactivation might facilitate viral rebound once ARTis
interrupted (35).

Here, in this single-arm, open-label, phase I, proof-of-concept
study, referred to as BCN02 trial (NCT02616874), we assessed
the safety, tolerability, immunogenicity and e�ect on the viral
reservoir of a kick&kill strategy consisting of the combination
of HIVconsv vaccines with RMD in suppressed early-treated
HIV-1-infected individuals. Participants were rolled-over from
the therapeutic vaccine trial BCN01 (NCT01712425), in which
individuals who started ART during acute/recent HIV-1 infection
had received a prime/boost regimen of the ChAdV63.HIVconsv
and MVA.HIVconsv vaccines (CM) (20). Three years after,
BCN01 participants who had shown sustained viral suppression
and who accepted to participate in BCN02 study were immunized
with two doses of MVA.HIVconsv, before and after three weekly-
doses of RMD, followed by a monitored antiretroviral pause
(MAP) for a period of 32 weeks to assess the ability of the
intervention to control viral rebound.

MATERIALS AND METHODS

Study Design and Interventions
The BCN02 clinical trial was an investigator initiated phase
I, open-label, single-arm, multicenter, single-country study
to assess the safety, tolerability and e�cacy of a combined
kick&kill strategy in suppressed HIV-1-infected patients that
had initiated ART during acute/recent HIV-infection. Individuals
were rolled over from vaccine trial BCN01 (20) and invited
to participate after 3 years on suppressive ART. A complete
list of inclusion/exclusion criteria is available in the Study
Protocol (Appendix). The study took place between February
2016 and October 2017 at two HIV-1 units from universitary
hospitals (Hospital Universitari Germans Trias i Pujol -HUGTIP,
Badalona and Hospital Clínic, Barcelona) and a community
center (BCN-Checkpoint, Barcelona). Before inclusion in the
study, all participants signed an informed consent previously
discussed, reviewed and approved by the Community Advisory
Board of the Barcelona-based vaccine program (HIVACAT).
The study was approved by the institutional ethical review
board of the participating institutions (Reference Nr AC-15-
108-R) and by the Spanish Regulatory Authorities; and was
conducted in accordance to the principles of the Helsinki
Declaration and local personal data protection law (LOPD
15/1999). The MVA.HIVconsv vaccine was GMP manufactured
at IDT Biologika GmbH, Germany, and supplied for the
study under an investigator initiated clinical trial contract
agreement. Risk of Genetically Modi�ed Organism release to
the environment was evaluated by the Spanish Ministry of
Environment (B/ES/12/09). RMD was supplied for the study
by Celgene Ltd. (Couvet, Switzerland) under an investigator
initiated clinical trial contract agreement.

The BCN02 trial design is summarized inFigure 1A.
After their inclusion in the study (week 0), all participants
received a �rst dose of 2� 108 plaque-forming units (pfu) of
MVA.HIVconsv (MVA1) administered intramuscularly, followed
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FIGURE 1 | Trial design.(A) Schematic study design.(B) Consolidated Standards of Reporting Trials (CONSORT) �ow diagram for the trial. *Viral rebound during MAP
was de�ned as pVL > 20 copies/ml and # criteria for ART resumption included pVL over 2,000 copies/ml in two consecutive determinations, CD4C cell counts
decrease over 50% and/or below 500 cells/mm3 and/or development of clinical symptoms suggestive of an acute retroviral syndrome. MVA, MVA.HIVconsv vaccine;
RMD, romidepsin; MAP, monitored antiretroviral pause; ART, antiretroviral therapy; pVL, plasma HIV-1 viral load.

by three weekly doses of RMD of 5 mg/m2 BSA infused
intravenously over 4 hours (RMD1� 2� 3), and by a second dose
of 2 � 108 pfu of MVA.HIVconsv (MVA2) 4 weeks after RMD3

to compensate for any potential impairment in the previous
vaccine-induced response caused by RMD. Following RMD
prescription information, participants received prophylactic
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antiemetic treatment with ondasetron before and during 3 days
after each RMD dose.

Eight weeks after MVA2 (week 17), eligible participants
initiated a MAP for a maximum of 32 weeks (MAP0� 32) or
until any ART resumption criteria were met. To be eligible for
the MAP, participants had to maintain undetectable HIV-1 pVL
and meet the immune futility criteria, de�ned as showing a
net increase in HIVconsv-speci�c immune response with MVA2
boost measured in anex vivoIFN-g ELISPOT assay. During
MAP, participants were allowed to choose either the hospital
units or BCN-Checkpoint community center for the follow
up visits. Symptoms suggestive of acute retroviral syndrome
and sexually transmitted diseases were solicited and viralload
was tested using the �nger-tip Xpert HIV-1 Qual kit (Cepheid,
Sunnyvale, CA, US) in all visits. When a positive result was
obtained in the Xpert HIV-1 Qual, participants were called
in for a con�rmatory quantitative pVL within the next 24 h.
If pVL was con�rmed to be over 20 copies/ml, a visit was
scheduled 3 days after to closely monitor viral rebound and be
able to o�er prompt ART resumption if required. Details on
viral load management during MAP are described in the Study
Protocol (Appendix). After ART ressumption, participants were
followed at 4, 12, and 24 weeks to assure that they re-attained
viral suppression.

Study Population
BCN02 participants were adult (� 18 years) HIV-1-infected
individuals, who had initiated ART> 6 months after estimated
date of HIV-1 acquisition and who had received a prime/boost
heterologous vaccination regimen using ChAdV63.HIVconsv-
MVA.HIVconsv in the parental BCN01 study (20). To be
eligible for BCN02, participants had to maintain optimal HIV-
1 suppression during at least 3 years and CD4C cell counts
� 500 cells/mm3 at BCN02 baseline visit. Main exclusion criteria
included active hepatitis B or C, history of AIDS-de�ning
disease, treatment for cancer or lymphoproliferative disease
within 1 year before study entry or use of immunosuppressants
within the 3 months prior to the screening visit. Concomitant
treatment with strong CYP3A4 inhibitors was not permitted, but
switching ART to a non-boosted integrase-inhibitor raltegravir-
or dolutegravir-based regimen at least 4 weeks before baseline
visit was allowed for those patients receiving ART containing
ritonavir or cobicistat at screening.

Study Endpoints
The primary endpoint of this study was to assess the safety,
tolerability and the e�ect on the viral reservoir size of the
combined treatment with HIVconsv vaccines and RMD given
as a latency reversing agent. Secondary endpoints included the
extent and speci�city of the CTL response and the e�ect of the
intervention in controlling viral rebound after ART interruption.
Other secondary endpoints included RMD pharmacokinetics
and the e�ects of RMD on histone acetylation in lymphocytes,
induction of viral transcription, changes in T-cell activation
surface markers, and quanti�cation of plasma viremia.

Safety and tolerability were evaluated by the development of
grade� 3 and serious adverse events (AE). Local and systemic AE

were solicited prospectively for a minimum of 7 days following
each immunization and RMD administration. Both local and
systemic AE were graded according to the Division of AIDS
(DAIDS) Table for Grading the Severity of Adult and Pediatric
Adverse Events, version 2.0, November 2014, accessible online
at https://rsc.niaid.nih.gov/sites/default/�les/daids-ae-grading-
table-v2-nov2014.pdf. AE were speci�ed as unrelated, unlikely,
probably or de�nitely related to the investigational productsby
the investigator.

Determination of RMD Pharmacokinetics
The concentration of RMD in plasma was determined, for
RMD1, at the end of the infusion (4 h) and 4.5, 5, 6, 8, 12,
and 24 h after and, for RMD2 and RMD3, at the end of the
infusion and 12 h after. RMD concentrations were measured by
liquid chromatography-mass spectrometry/mass spectrometry
(LC-MS/MS), according to a validated method. A population
pharmacokinetic model for RMD was developed using non-
linear mixed-e�ects modeling with the computer program
NONMEM version 7.3 (Icon Development Solution, Ellicot City,
MD) (36). Bayesian estimates of the individual parameters of
RMD were used to simulate individual drug concentrations,
and RMD area under the concentration-time curve (AUC0-
inf) was calculated for each individual on each occasion using
a non-compartmental approach (Winnonlin software; Phoenix,
version 7.0).

Flow Cytometry Determination of acH3 and
Activation of T Cells
The levels of histone H3 acetylation in lymphocytes (based
on FSC/SCC scatter) were determined by �ow cytometry from
samples taken before (0 h) and at the end of each RMD infusion
(RMD1� 2� 3) (4 h), at 8 and 24 h (C1 day) RMD1, and at 72 h (C3
days) and 7 days after (RMD1� 2� 3). Cryopreserverd PBMC were
thawed 4 h before use, and 500,000 cells were blocked with 600 ul
of PBS/10% FBS for 20 min and stained with polyclonal rabbit
anti-acetyl histoneH3 (10mg/ml, MerckMillipore #06–599) or
normal rabbit serum (control stain, LifeTechnologies #10510)
for 30 min. Cells were washed and subsequently incubated
with donkey anti-rabbit IgG(HCL) (6mg/mL, LifeTechnologies
#A21206) for 30 min at room temperature in the dark. Cells
were washed, re-suspended in 150ml PBS and analyzed.� 50,000
events were acquired per sample. The median �uorescence
intensity (MFI) for each sample was calculated by substracting
the background MFI (isotype control stain) from the anti-acetyl
histoneH3 stain.

Activation of T cells was determined based upon HLA-DR
expression on CD3C T cells. Cryopreserved PBMC were thawed,
and 1,000,000 cells were stained with CD3 APC-Cy7, CD4 FITC,
CD8 BV510 and HLA-DR PECy7 (BioLegend #344818, 300538,
301048, and 307616, respectively). Cells were collected on an
LSRII instrument (BD), and data analyzed according to the
gating criteria shown inSupplementary Figure 1using FlowJo
10 software.
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Quanti�cation of Cell-Associated (CA)
HIV-1 RNA in CD4 C T Cells
Cell-associated HIV-1 RNA was quanti�ed in peripheral CD4C

T cells by ddPCR (One-Step RT-ddPCR Advanced Kit for
Probes, BioRad) from samples taken before (0 h) and at the
end of each RMD infusion (4 h), at 8 and 24 h (C1 day) after
RMD1, and 72 h (C3 days) and 7 days after RMD1� 2� 3. CA
HIV-1 RNA was quanti�ed using two di�erent primers/probe
sets annealing to the 50LTR and GAG conserved regions of
HIV-1, to circumvent potential primer mismatch in individuals'
viral sequence as previously described (37). HIV-1 transcription
levels were normalized to the housekeeping gene TATA-binding
protein (TBP) and shown as relative to levels before RMD1.

Ultra-Sensitive Determination of Residual
Viremia
To evaluate HIV-1 RNA below 20 copies/ml, 4–8 ml of plasma
samples taken before (0 h) and at the end of each RMD infusion
(4 h), at 8 and 24 h (C1 day) after RMD1, and 72 h (C3 days) and
7 days after RMD1� 2� 3 were ultracentrifugated at 170,000 g at
4� C for 30 min and viral RNA was extracted automatically using
the m2000sp Abbot device. HIV-1 RNA copies were quanti�ed
using the Abbott Real-Time HIV-1 assay (Abbott Molecular Inc.)
and in-house calibration curve sets as described (38). The limit
of detection (2 HIV-1 RNA copies/mL) was calculated relative to
the plasma volume.

Vaccine Immunogenicity
Total HIV-1 and HIVconsv-speci�c T cells were assessedex vivo
using cryopreserved PBMC obtained the day of vaccination and
1 week afterwards, 3 weeks after MVA1, and 4 weeks after MVA2
using an IFN-g-detecting enzyme-linked immunoabsorbent
spot assay (ELISPOT IFN-g Mabtech kit). 15-mer peptides
overlapping by 11 amino acid were combined into 6 pools of
32–33 peptides per pool corresponding to the HIVconsv vaccine
insert (P1-P6, totaln D 166 peptides, IN pools) (Figure 3A)
and 12 pools of 39–67 peptides per pool spanning the rest
of the HIV-1 viral protein sequences (OUT pools for “outside
the immunogen,” obtained through the NIH AIDS Reagent
Program). All peptides pools were tested in duplicates. The
�nal concentration of individual peptides in the ELISPOT assay
was 1.57mg/ml. Medium only was used as no-peptide negative
control in quadruplicate wells, and PHA (50mg/ml) and a
CEF peptide pool (2mg/ml) consisting of 23 previously de�ned
human CD8C T-cell epitopes from cytomegalovirus, Epstein-
Barr virus and in�uenza virus (C.T.L. OH, USA) were added as
positive controls.

To address the breadth of the vaccine-induced response at
the peak immunogenicity time point, an IFN-g ELISPOT assay
with in vitro expanded T cells was performed on stored samples
from week 10 and 13 to test individual overlapping peptides
covering the HIVconsv immunogen sequence (n D 166 OLP).
Brie�y, cryopreserved PBMC were thawed and incubated for 3 h
at 37� C in R10 before stimulation with an anti-CD3 monoclonal
antibody during 2–4 weeks in RPMI 1640 supplemented with
FBS and penicillin/streptomycin with 50 U/ml of recombinant

IL-2 (39). Before their use in ELISPOT assays, the expanded cells
were washed twice with R10 and incubated overnight at 37� C in
the absence of IL-2 and individual OLP were added at 5mg/ml.
100,000 cells were used per well as in the directex vivoassay.

Spots were counted using an automated Cellular Technology
Limited (C.T.L., OH, USA) ELISPOT Reader Unit. The threshold
for positive responses was set at� 50 SFC/106 PBMC (5 spots per
well),> the mean number of SFC in negative control wells plus 3
SD of the negative control wells, or> 3� the mean of negative
control wells, whichever was higher. To avoid overestimating
the breadth of responses, positive responses to two consecutive
15-mer overlapping peptide were counted as one response. The
highest magnitude of the sequential responses was taken as the
magnitude for each identi�ed response.

Quanti�cation of HIV-1 Reservoir
To quantify the size of the peripheral blood proviral reservoir,
lysed extracts from CD4C T cells were used to measure total
CA HIV-1 DNA by ddPCR. Primers and probes for the RPP30
cellular gene were used for input normalization.

Statistical Analysis
Qualitative variables were represented as mean absolute
and relative frequencies, whereas quantitative variableswere
represented as mean or median and range. Safety endpoints
are summarized by the number and percentage of participants
reporting local and systemic AE and their grading. The Wilcoxon
signed rank test was used to test whether the viral reservoirand
the immune parameter changed as an e�ect of the intervention,
without correction for multiple comparisons. The maximum
breadth of the T-cell response per individual was estimated
as the number of P1-P6 pools eliciting a positive response
throughout the study and the number of individual OLP eliciting
a response at peak immunogenicity time point from the mapping
assay. Reservoir size and immunogenicity were analyzed using
GraphPad Prism (v5.01) for Mac OS X (San Diego, CA).

To evaluate the e�ect of the intervention on viral rebound,
a positive pre-de�ned e�cacy signal was established if at
least over 20% of patients remained with pVL below 2,000
copies/ml at week 12 of MAP, considering previous data
suggesting that early treatment initiation could favor delayed
viral rebound/spontaneous viral control in up to 15% of
individuals (40). However, BCN02 was an exploratory pilot trial
and, due to the absence of a control arm and its �nal small sample
size, the nature of this study only allowed to detect trends in
virological e�ects, which collectively, could be useful to design
future studies. To detect possible factors associated to theviremic
control observed during the MAP phase, univariate log-binomial
regression models were used (41). This model uses the logarithm
as a link function, and is a generalized lineal model for a binary
outcome where the error terms follows a binomial distribution.
The e�ect size measure of the model is the relative risk. Because
of the low number of MAP-C (n D 3), multivariate log-binomial
regression models were not �tted. The signi�cance threshold
for all univariate analyses was set at a two-sideda D 0.05. The
analyses were performed with R Core Team (42) (v3.0.2).
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RESULTS

Participants Enrolled in the Study
Between February 29th and September 15th 2016, 15 out of
the 22 eligible BCN01 participants were enrolled in BCN02.
Seven declined to participate due to their inability to attendall
the scheduled visits. Baseline characteristics of trial participants
are summarized inTable 1. All 15 participants received two
doses MVA.HIVconsv (MVA1� 2) and three doses of romidepsin
(RMD1� 2� 3) as shown in the study chronogram (Figure 1A),
and were included in the safety, immunogenicity and reservoir
analyses. One participant was not eligible for MAP due
to immune futility pre-de�ned criteria and 14 participants
underwent a MAP for a maximum of 32 weeks. Retrospective
analyses of stored plasma samples obtained during MAP revealed
the presence of antiretroviral drugs in some samples from one
participant, whose MAP data were censored for the viral rebound
kinetics analyses (Figure 1B).

Safety of MVA.HIVconsv and RMD
Administrations
All participants reported adverse events (AE) related to both
study investigational medicinal products. A total of 333 AE were
recorded during the study intervention phase, 129 after MVA1� 2
and 204 after RMD1� 2� 3, which were mostly mild or moderate
(grade 1-2) (n D 318, 95%). The most frequent AE related
to MVA.HIVconsv, summarized inTable 2, were local pain at
the injection site and a �u-like syndrome consisting of fatigue,
headache, myalgia, and/or low-grade temperature (< 38� C).
Regarding AE related to RMD (Table 3), the most common
grade 1–2 events were headache, fatigue, and gastro-intestinal
symptoms. Despite prophylactic ondansetron treatment, 4 (27%)
individuals vomited the days of RMD administration. One
participant experienced a grade 4 AE consisting in a sepsis
by Shigella sonneithat required hospital admission for 24 h,
thus ful�lling the criteria of serious adverse event (SAE).The

TABLE 1 | Demographic, clinical, and treatment characteristics of study patients
at study entry (n D 15).

Age (years) 43 (33–51)

Gender (M/F),n 14/1

MSM/HTS, n 14/1

Time since HIV-1 acquisition to ART (days) 92 (28–164)

Pre ART log10 HIV-1 RNA (copies/ml) 4.9 (3.2–5.8)

Time on ART (years) 3.23 (3.03–3.77)

ART regimen,n (%)

TDF/FTC/RAL 11 (73)

ABC/3TC/RAL 2 (13)

ABC/3TC/DTG 2 (13)

CD4C T-cell counts (cells/mm3) 728 (416–1,408)

Ratio CD4/CD8 1.37 (0.97–1.93)

Median (range) is shown unless otherwise described. M, male; F, female; MSM,
men who have sex with men; HTS, heterosexual; ART, antiretroviraltherapy; TDF,
Tenofovir Disoproxil Fumarate; FTC, Emtricitabine; RAL, Raltegravir; ABC, Abacavir; 3TC,
Lamivudine; DTG, Dolutegravir.

symptoms started within 4 h after RMD3 and therefore, the SAE
was considered as possibly related to RMD.

No laboratory abnormalities related to MVA1� 2 were
reported. All laboratory abnormalities related to RMD were grade
1-2 (n D 22), the most frequent being hypophosphatemia (8
events) and thrombocytopenia (5 events), except from one case
of grade 4 creatinine kinase elevation with normal eGFR which
resolved within 7 days without sequelae. Noteworthy, CD4C T-
cell counts showed a transient decrease by a median of 248
cells/mm3 3 days after each RMD administration which was not
fully recovered by day 7 after RMD3 (Supplementary Figure 2).
Overall, both MVA.HIVconsv and RMD at the regimen
and dose administered in this study were well-tolerated
and safety pro�les were consistent with data previously
reported (20, 34).

During the MAP, 12 (86%) participants reported a total of 58
AE, which were all grade 1-2 and not suggestive of acute retroviral
syndrome (not shown). Grade 1 anxiety was observed in one
participant who repeatedly declined psychological support (same
participant with protocol violation during the MAP).

RMD Pharmacokinetics and
Pharmacodynamics
Pharmacokinetics of RMD was comparable to previously
described data (43). A population pharmacokinetic model
adequately describing RMD concentrations in plasma was
developed (36). According to the individual pro�les simulated
using the model, each infusion was followed by a rapid and
polyexponential decline in RMD concentrations in plasma,
reaching nearly undetectable levels by 24 h after dosing
(Figure 2A).

Regarding the direct e�ect of RMD on chromatin and
induction of viral transcription, histone H3 acetylation (acH3)

TABLE 2 | Summary of adverse events related to MVA.HIVconsv vaccinations
(n D 15).

Grade 1
n

Grade 2
n

Grade 3
n

Grade 4
n

Total
n (%)

Injection site reaction

Local pain 7 4 2 0 13 (87)

Redness 1 0 0 0 1 (7)

Induration 0 0 0 0 0 (0)

Systemic adverse events

Fatigue 7 4 2 0 13 (87)

Headache 5 3 1 0 9 (60)

Myalgia 4 3 2 0 9 (60)

Fever 5 0 0 0 5 (33)

Anorexia 3 0 1 0 4 (27)

Sweating 2 2 0 0 4 (27)

Nausea 2 0 1 0 3 (20)

Abdominal pain 0 1 1 0 2 (13)

Flatulence 1 0 0 0 1 (7)

Somnolence 1 0 0 0 1 (7)
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TABLE 3 | Summary of adverse events related to RMD1� 2� 3 treatment (n D 15).

Grade 1
n

Grade 2
n

Grade 3
n

Grade 4
n

Total
n (%)

Headache 9 5 0 0 14 (93)

Fatigue 9 5 0 0 14 (93)

Nausea 4 7 0 0 11 (73)

Anorexia 8 1 0 0 9 (60)

Abdominal pain 5 2 0 0 7 (47)

Metallic taste 5 1 0 0 6 (40)

Constipation 4 2 0 0 6 (40)

Abdominal
distension

4 1 0 0 5 (33)

Vomits 4 0 0 0 4 (27)

Sweating 2 2 0 0 4 (27)

Palpitations 3 0 0 0 3 (20)

Myalgia 1 1 0 0 2 (13)

Rash 0 2 0 0 2 (13)

Dry mouth 1 0 0 0 1 (7)

ECG: ST-elevation 1 0 0 0 1 (7)

Anxiety 0 1 0 0 1 (7)

Libido decrease 0 1 0 0 1 (7)

Somnolence 1 0 0 0 1 (7)

Sepsis byShigella
sonnei (SAE)

0 0 0 1 1 (7)

Hypotension 0 1 0 0 1 (7)

increased rapidly during each RMD infusion, remained high
during 4 h, and returned to baseline values 3 days after each
dose (Figure 2B), which is consistent with previous reports (33,
34). HIV-1 transcription transiently increased in parallel, with
changes more pronouned after RMD2 and RMD3 (Figure 2C).
These changes were more evident without normalization
for house-keeping genes (Supplementary Figure 3) possibly
re�ecting the general increase in histone acetylation levels (44)
induced by RMD. Increases in T-cell activation, measured by the
proportion of CD3C /HLA-DRC cells, were observed 3 days after
each RMD dose. Over the course of the three RMD doses, T-cell
activation increased in a progressive manner and was maintained
up to 1 week after RMD3 (Figure 2D), suggesting a cumulative
e�ect of RMD.

To evaluate changes in levels of quanti�able plasma HIV-
1 RNA, an ultrasensitive single copy assay was used. Kinetics
of plasma HIV-1 RNA levels did not follow a clear pattern
(Figure 2E), despite the increasing percentage of participants
with detectable low-level viremia at the end of each RMD dose
(Supplementary Figure 4). Collectively, we reproduced e�ects
on acH3, HIV-1 transcription and T cell activation previously
reported in chronically infected individuals (34), suggesting that
a lower viral reservoir level achieved by early-treatment initiation
does not preclude the reactivation potential of RMD.

MVA.HIVconsv Immunogenicity
Total HIV-1 and HIVconsv-speci�c T cells were assessedex vivo
by an IFN-g-detecting enzyme-linked immunoabsorbent spot

(ELISPOT) assay using 6 peptide pools covering the HIVconsv
immunogen sequence (P1-P6) on week 0 (day of MVA1), 1, 3 (day
of RMD1), 9 (day of MVA2), 10, and 13. A total of 90 samples
were obtained, of which 3 (3%) were censored due to low positive
controls and/or high background. All 15 participants showed
an absolute increase in HIVconsv-speci�c IFN-g-producing T
cells during the study, either after MVA1 (Wilcoxon signed-rank,
p D 0.0007) or after MVA2 (Wilcoxon signed-rank,p D 0.0017)
(Figure 3B). Median (range) total frequencies of HIVconsv-
speci�c T cells reached 1,965 (530-6,901) spot-forming cells
(SFC)/106 PBMC at the peak immunogenicity time point,
which represented an absolute median increase of 1,600 (300–
6,621) SFC/106 PBMC from baseline (Wilcoxon signed-rank,
p < 0.0001).

Over the intervention phase, participants responded to median
(range) of 5 (2–6) peptide pools (Supplementary Figure 5).
To map the maximum vaccine-induced breadth at peak
immunogenicity time point (weeks 10–13),in vitro expanded
T cells responding toward individual OLPs covering the
HIVconsv immunogen were assessed. Median (range) of 8
(3–16) IFN-g-producing responses to individual OLPs were
found, with a dominance in Pol-speci�c T cells, consistent with
the immunogen composition (Figure 3C).

The dominance of HIVconsv-speci�c responses was calculated
at each time point as the percentage of HIVconsv-speci�c T-
cell frequencies divided by the total HIV-1 proteome-speci�c
T-cell frequencies. At the moment of HIV diagnoses, HIVconsv
responses were subdominant (< 10% being HIVconsv-spec�c)
and peaked after the CM vaccination reaching a median
(range) of 58% (7%� 100%) of the total anti-HIV-1 T-cell
responses (BCN01 parental study) (20). In BCN02, 2 years from
the last HIVconsv vaccination, the increase in the frequency
of HIVconsv-speci�c T-cell responses after MVA1 or MVA2
further shifted the patterns of T-cell immuno-dominance toward
HIVconsv with median (range) of 85% (54%–100%) of the total
anti-HIV-1 T-cell responses at peak immunogenicity time point
being HIVconsv speci�c (Figure 3D).

Effects on the HIV-1 Reservoir
All participants had detectable viral reservoirs, as measured by
total CD4C T cell-associated HIV-1 DNA, throughout the study.
Results from 2 samples out of a total of 60 were considered
invalid and were censored. At BCN02 study entry, median
(range) reservoir size was of 140 (17–752) HIV-1 DNA copies/106

CD4C T-cells (Figure 4). Proviral DNA showed a tendency to
further decrease from baseline to week 17 (Wilcoxon signed-
rank, p D 0.0599,Figure 4) to median (range) levels of 120
(11-680) copies/106 CD4C Tcells.

Monitored Antiretroviral Pause (MAP)
Participants undergoing MAP were monitored weekly for the
�rst 12 weeks and every 2 weeks thereafter for a maximum
of 32 weeks (MAP0� 32). Criteria for ART resumption included
pVL over 2,000 copies/ml in two consecutive determinations,
CD4C cell counts decrease over 50% and/or below 500 cells/mm3

and/or development of clinical symptoms suggestive of an acute
retroviral syndrome.
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FIGURE 2 | Pharmacokinetic and pharmacodynamic effects of RMD.(A) Mean individual predictions of RMD plasma concentrations.(B) Levels of histone H3
acetylation in peripheral lymphocytes.(C) Viral transcription levels expressed as changes from pre-RMD1 levels of cell-associated HIV-1 RNA in peripheral CD4C

T-cells. (D) Levels of T-cell activation (CD3C /HLA-DRC cells).(E) individual determinations of pVL. Median of frequencies and IQR (error bars) are represented.
Wilcoxon signed-rankp-values compare each represented time point with the corresponding values preceding each RMD administration. *p < 0.05. **p < 0.01.
***p < 0.001 and ****p < 0.0001. The p value resulting from the comparison between the value at day0 of RMD1 and 7 days after RMD3 is shown in red.
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FIGURE 3 | Vaccine immunogenicity.(A) Schematic representation of the selected regions in the HIV-1 proteome from different clades included in the HIVconsv
immunogen and distribution of 6 peptide pools (P1-P6) and individual overlapping 15-mer peptides (OLP) used in the IFN-g ELISPOT assays.(B) Magnitude (sum of
SFU/106 PBMC to pools P1-P6) of vaccine-induced responses over the BCN02 study. Horizontal and error bars represent median and IQR, respectively, andp-values
correspond to comparisons between the indicated time points using the Wilcoxon signed-rank test.(C) Breadth of vaccine-elicited responses toward individual OLP
included in the indicated HIVconsv regions. Horizontal and error bars represent median and IQR, respectively.(D) Average distribution of total HIV-1 T-cells according
to their speci�city at the indicated time points. HIVconsv-speci�c responses are shown in blue. Pie charts are scaled according to the total frequencies of responses.
IN are peptide pools corresponding to the HIVconsv vaccine insert and OUT peptide pools spanning the rest of HIV-1 proteome “outside the immunogen”.

All participants rebounded (detectable pVL over 20 copies/ml)
during MAP (Figure 5A). Median (range) time to �rst detectable
pVL was 13 (7–35) days with median (range) of �rst detectable
pVL of 122 (28–3,410) copies/ml. Ten participants resumed ART
before MAP12 (MAP-NC for MAP-Non-controllers) with median
(range) time to resume ART of 28 (16–59) days. All MAP-NC
resumed ART due to the viral load criteria, with median (range)
pVL of 19,250 (2,900–179,000) copies/ml at the moment of ART
resumption (Figure 5B). None of the participants resumed ART
due to immune or clinical criteria. A “late-rebounder” presented
the �rst detectable pVL 5 weeks after ART interruption (MAP5,
pVL of 59 copies/ml) and was able to maintain viral load below
2,000 for 3 more weeks, resuming ART at MAP8. In addition
to the “late-rebounder,” 3 (23%) other participants remained
o� ART with sustained pVL < 2,000 copies/ml for a total of

32 weeks (MAP-C, from MAP-Controllers). Highest peak pVL
determination in the MAP-C was of 3,110 copies/ml at week
12 of MAP in the absence of symptoms followed by 2,460 and
1,100 three and six days later (participant decision to stay o�).
At week 32, two out of the three MAP-C accepted to stay o�
cART out of the protocol and were followed under standard of
care. One MAP-C showed a late rebound after 48 weeks o� cART
and the other one, voluntary resumed cART after 1.5 years o�
cART despite sustained low-level viremia. All participants who
restarted ART reached viral re-suppression within 6 months. No
evidence of emergence of drug resistance was detected.

To assess re-seeding of the viral reservoir during the MAP,
total HIV-1 DNA was measured at MAP0 (n D 13), on the day
of ART resumption (n D 10), and 6 months after for the 10 MAP-
NC (n D 8 available), and at MAP32 for the three MAP-C. We did
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FIGURE 4 | Viral reservoir.(A) Total HIV-1 DNA copies/106 CD4C T cells for each participant are shown at study entry (week 0), week 3 (day of RMD1), and week 6 (1
week after RMD3) and at week 17 (8 weeks after MVA2). Horizontal and error bars represent median and IQR, respectively, andp-values correspond to comparisons
between the indicated time points using the Wilcoxon signed-rank test. (B) Changes in proviral DNA throughout the study with respect tobaseline (week 0), which is
considered to be 1.

not observe any signi�cant change in total HIV-1 DNA during
MAP in participants with early ART resumption (Wilcoxon
signed-rank,p D 0.5759 for MAP-NC) and, noteworthy, nor
in the three participants with sustained low level viremia for
32 weeks. Moreover, one of the three MAP-C showed a 2-fold
reduction in the HIV-1 DNA (from 34 at MAP0 to 16 copies/106

CD4C cells at MAP32, Figure 5C). This was the only participant
undergoing MAP carrying HLA alleles associated with natural
HIV control (HLA-B � 27:01/HLA-B� 51:01) (45, 46).

Factors In�uencing Viral Rebound Kinetics
Supplementary Table 1 shows the summary of variables
explored to explain the binary outcome de�ned as MAP-NC
vs. MAP-C. The estimated relative risks obtained from the
log-binomial models for di�erent covariates analyzed are shown
in Figure 5D.

Univariate log-binomial regression models used to detect
factors associated with virologic control during MAP revealed
that pVL before ART initiation (pre-ART pVL) was the only
factor statistically signi�cantly associated with control of viral
rebound after ART interruption. For each log increase on the
pre-ART pVL, the probability of becoming a MAP-C decreased
by 66% (RR 0.34; 95% CI 0.14, 0.79). Interestingly, albeit not
statistically signi�cant in the univariate models, the 3 MAP-C
had among the lowest reservoir levels at treatment interruption
time point (16, 54 and 122 copies/106 CD4C T cells) –consistent
with lower pre-ART pVL– and showed the highest shift in CTL
immunodominance pattern after vaccination (> 700 HIVconsv-
speci�c SFC/106 PBMCs and> 75% of HIVconsv dominance at
peak immunogenicity time point,Supplementary Figure 6).

DISCUSSION

In this single-arm, open-label, phase I, proof-of-concept
trial performed in HIV-1-infected ART-suppressed individuals

treated during acute/recent HIV-1 infection, we show that
combination of the HIVconsv vaccines with RMD as a latency
reversing agent was safe, highly immunogenic, and induced
bursts of viral transcription. The combined intervention resulted
in a tendency toward a reduction in proviral DNA levels and was
followed by a prolonged viremic control in 23% of participants
after ART interruption without evidence of reservoir re-seeding.

Early-treated individuals typically show less immune
exhaustion (47) and reduced frequency of immune-escaped
viral variants compared to individuals initiating ART at
later stages of HIV-1 infection (48), o�ering a potentially
favorable setting to induce a protective immune response
upon therapeutic vaccinations. In the parental BCN01 trial,
a prime/boost vaccine regimen with ChAdV63.HIVconsv
and MVA.HIVconsv induced high frequencies of T cells with
high in vitro suppressive capacity that markedly shifted the
focus of the CD8C CTL response toward HIVconsv sequences
that are subdominant during natural infection (20). In the
BCN02 trial, after 3 years of viral suppression and 2 years
since the last vaccination in BCN01, booster MVA.HIVconsv
vaccinations were still immunogenic and further increased
breadth, magnitude and immunodominance of CTL responses
toward HIVconsv sequences.

Along with a strong vaccine-elicited CTL activity (“kill”), the
ability to simultaneously induce reactivation of the viralreservoir
(“kick”) is a critical feature for the success of the kick&kill
strategy (24). A 3-dose regimen of weekly RMD at 5 mg/m2

BSA was selected based on results from previous trials (33, 34).
Consistently, we observed a directin vivo e�ect of RMD in
histone 3 acetylation upon each RMD dose, which was followed
by changes in cell-associated HIV-1 RNA levels. Conversely,a
placebo-controlled dose-escalating trial (ACTG 5315) testing 3
RMD doses (5 mg/m2 BSA) administered every two weeks in
chronically suppressed individuals, did not show changes in viral
transcription (49). The weekly administration regimen and the
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FIGURE 5 | Monitored antiretroviral pause.(A) Individual pVL during MAP is shown for each participant in different colors (n D 13). Lines are interrupted on day of ART
resumption. Dotted lines represent detection limit and threshold for ART resumption (20 and 2,000 copies/ml, respectively).(B) Proportion of individuals remaining off
ART during MAP.(C) Total HIV-1 DNA copies/106 CD4C T cells are shown for each participant at MAP initiation, at day of ART ressumption, and 24 weeks after ART.
P-value corresponds to comparison between MAP initiation and the day of ART resumption for each individual using the Wilcoxon signed-rank test. Individuals with
sustained low-level viremia over 32 weeks are shown in red.(D) Estimated relative risks and 95% con�dence intervals for thedurable control of pVL during MAP
obtained from univariate log-binomial regression models.

intensive sampling after each RMD dose in our study allowed
us to detect increases in CA HIV-1 RNA above 2-fold in 80% of
individuals at any time point after RMD administrations. These
changes were followed by consistent increases in T cell activation
markers, which remarkably, were maintained one week after
RMD3, likely re�ecting a direct and cumulative e�ect of weekly
RMD dosing and an e�ective induction of viral transcription.
Noteworthy, changes above 2.1-fold in CA-RNA have been
estimated to occur in< 5% of repeated measurements in an
individual (50).

Despite the induction of viral transcription, the kinetics of
plasma HIV-1 RNA followed an unclear pattern, similar to
previous studies showing variable changes in plasma viremia
following LRA administration (34, 51, 52). This variability might
re�ect suboptimal potency of the agents tested so far and/or the
reactivation of predominantly defective proviruses. In the context

of the current study, elimination of reactivated cells by vaccine-
elicited T cells may have additionally blunted quanti�cation of
plasma viremia.

A critical objective of the use of LRA in a kick&kill
strategy is to mobilize and ultimately reduce the viral reservoir.
Our �ndings showed that, despite robust immunogenicity of
HIVconsv vaccines and at least partial reactivation of the viral
reservoir induced by RMD, the net e�ect on the proviral DNA
levels was modest. All participants had detectable levels of
HIV-1 DNA at the time of treatment interruption although a
tendency toward a decrease by 19.3% from baseline to week 17
(Wilcoxon signed-rank,p D 0.0599) was detected. Conversely,
a mean 39.7% decrease in reservoir size was observed in
the REDUC trial (34). This discrepancy between REDUC and
BCN02 results may be explained by the inclusion of early-
treated individuals in our study, in which already baseline

Frontiers in Immunology | www.frontiersin.org 11 May 2020 | Volume 11 | Article 823



Mothe et al. Control After Kick&Kill and Early-cART

levels of proviral DNA were substantially lower, challenging the
quanti�cation of the e�ects of the intervention on HIV-1 DNA
levels. We acknowledge that the translation of HIV-1 protein
expression into antigen presentation—even in case of defective
proviruses (1)—upon LRA reactivation is poorly understood.
Likewise, the ability of LRA-induced HIV-1 protein expression
to e�ectively induce recognition and killing by CD8C T cells
remains to be fully elucidated (53) and therefore, the potential
e�ects of further RMD administrations on the viral reservoir
are to be determined. A potential signi�cant toxicity—suggested
in in vitro assays (54)—on vaccine-induced T cells might also
have limited our capability to observe a further reduction in
the reservoir size in our study. This hypothesis is consistent
with the fact that HIVconsv vaccines induced higher levels
of activated T cells compared to Vacc-4x vaccination in the
REDUC trial. Nevertheless, the potential toxicity of RMDin vivo,
its relationship with RMD exposure and, ultimately, whether
vaccine-induced T cells were able to sensor and remove infected
cells in response to HIV-1 reactivation remains to be determined.

To attain a functional cure, a persistent immune-mediated
control of residual HIV-1 might be as relevant as achieving an
absolute reduction on the proviral DNA levels. In this regard,
the three BCN02 MAP-C, were among the subjects with both
lower viral reservoir levels at MAP and higher vaccine-induced
responses. In our study, having lower pre-ART pVL was the only
outstanding marker associated with viral control during MAP,
which correlates with the size of the viral reservoir after ART
suppression. These relationships are consistent with previous
studies suggesting a role of a low viral reservoir on analytical
treatment interruptions (ATI) outcomes (55, 56). Furthermore,
after ART discontinuation, MAP-C did not show an initial burst
in pVL followed by a fast post-peak control as described in
several post treatment controllers (PTC) (8, 57). Collectively,
the �ndings from this and other studies suggest that a small
reservoir size, resulting from early ART or another intervention,
may be essential to achieve sustained post-intervention control
(55) but also, that a potent vaccine-induced immune pressure
might contribute to prevent a peak burst of viremia and maintain
suppressed viremia for a substantial period of time. This control,
mediated by immune pressure, is supported by the absence of re-
seeding of the viral reservoir in the BCN02 MAP-C, in contrast
to reports from previous ATI trials (58, 59).

The interpretation of the outcome of kick&kill studies may
be confounded by individuals controlling HIV rebound after
treatment interruption without the need for a prior therapeutic
intervention. The prevalence and mechanisms driving such PTC
in natural HIV infection are not well-understood. A recent
metanalysis (CHAMP study) including 14 interruption trials
estimated a 13% rate of PTC among early-treated individuals
(57). Importantly, and in contrast to the three BCN02 MAP-C
who did not show a transient high burst of viremia, 32% of the 61
PTCs analyzed in the CHAMP metanalysis had peaks of viremia
ranging from 1,000 to over 10,000 copies/ml within the �rst
24 weeks after treatment interruption. Thus, in addition to the
di�erent behavior of the 3 MAP-C (23%) with respect to the PTC,
according to this metanalysis, the BCN02 trial may have missed
additional MAP-C due to the conservative ART resumption
criteria used (two consecutive pVL over 2,000 copies/ml).

The safety and tolerability pro�les of MVA.HIVconsv and
RMD were similar to those reported in previous studies (19,
20, 34). However, there was a SAE in one participant. This case
highlights the need for planning intensive monitoring in this
kind of pilot trials, even if not powered to detect low-frequency
AE, and points toward the need for a trade-o� between the
number of participants potentially put at risk in well-powered
controlled trials and for caution with the use of uncompletely
characterized agents in large numbers of individuals. Given that
natural PTC rates are considered to be up to 13% in early-
treated individuals, powering trials to show viral control e�cacy
after an ATI becomes challenging (60). Despite frequent clinical
monitoring for pVL and access to psychological support, protocol
violation during MAP occurred in one individual, probably due
to anxiety secondary to the antiretroviral interruption. This case
warrants close psychological management in longer term ATIs.

We fully acknowledge the limitations of the small sample
size and lack of a control arm in the present study. Therefore,
we interpret these results with caution and regard this study
only as hypothesis-generating trial for future interventions.
BCN02 eligibility was restricted to vaccinated participants in the
parental open-label BCN01 trial. This intrinsic restrictionlimited
the sample size to a small number of previously vaccinated
individuals and precluded the inclusion of a control arm.
At the time of trial design, interventional trials including an
ATI were typically small and included very conservative ART
resumption criteria (58, 61). Furthermore, ATI acceptability
by participants, risks of HIV-1 transmission to others in the
absence of available PrEP, and potential viral re-seeding upon
treatment interruption were of special concern in early-treated
individuals, who had limited viral reservoirs both in size and
diversity (48).

Altogether, the results from this pilot study suggest a
potential role for kick&kill strategies in inducing durable
immune-mediated HIV-1 control in a proportion of early-
treated individuals. In view of these results, future controlled
studies to identify the mechanisms underlying sustained HIV-1
suppression are warranted.
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