
Improving Learning Automata-based Routing in
Wireless Sensor Networks

E. Ahvar
Information Technology

and Communication Department
Payame Noor University, Iran

M. Yannuzzi, R. Serral-Gracià
E. Marı́n-Tordera, X. Masip-Bruin
Advanced Network Architectures Lab

Vilanova i la Geltrú, Spain

S. Ahvar
Electrical and Computer
Engineering Department

Isfahan University of Technology, Iran

Abstract—Recent research in the field of Wireless Sensor Net-
works (WSNs) has demonstrated the advantages of using learning
automata theory to steer the routing decisions made by the sen-
sors in the network. These advantages include aspects such as
energy saving, energy balancing, increased lifetime, the selection
of relatively short paths, as well as combinations of these and
other goals. In this paper, we propose a very simple yet effective
technique, which can be easily combined with a learning au-
tomaton to dramatically improve the performance of the routing
process obtained with the latter. As a proof-of-concept, we focus
on a typical learning automata-based routing process, which aims
at finding a good trade off between the energy consumed and
the number of hops along the paths chosen. In order to assess
the performance of this routing process, we apply it on a WSN
scenario where a station S gathers data from the sensors. In this
typical WSN setting, we show that our combined technique can
significantly improve the decisions made with the automata; and
more importantly, even though the proof-of-concept particular-
izes somehow the automata and their behavior, the technique
described in this paper is general in scope, and therefore can
be applied under different routing methods and settings using
learning automata.

I. INTRODUCTION

In the past few years, a plethora of research works have
shown the advantages of using learning automata in the field
of Wireless Sensor Networks (WSNs). The literature in the
topic is large and diverse, but a good sample of the strengths
of applying learning automata in the context of WSNs can be
found in [1], [2], [3], [4], and [5].

While the theory of learning automata is well understood, in
practice, a designer that aims at exploiting the functionality of
a learning automaton within a sensor faces multiple challenges,
some of which are not easily solvable. On the one hand, most
of the relevant problems in the context of WSNs have a multi-
objective nature, which poses complex challenges during the
design phase of the automata. For instance, the designer needs
to define a probability set, which needs to capture somehow
the chances to succeed in the selection of one candidate that
best fits the multi-objective problem to be solved. On the other
hand, the probability set needs to be maintained and updated
upon receiving feedback from the environment, and this is typ-
ically handled on the basis of a reward/penalty scheme which

This work was supported in part by the Spanish Ministry of Science and
Innovation under contract TEC2009-07041, and by the Catalan Government
under contract 2009 SGR1508.

also needs to be defined and tuned. In general, these decisions
strongly condition the behavior of the automata, and therefore,
the performance ultimately obtained with them.

In this paper, we focus on a typical WSN setting, where
the routing process running in each sensor is supported by
a learning automaton. In this framework, we target a twofold
objective, which is to find a good trade off between the energy
consumed by the sensors and the number of hops along the
paths chosen by these latter.

Overall, this paper makes the following contributions. First,
we question somehow the effectiveness of the automata to suc-
ceed in the achievement of the set objectives. To this end, we
put ourselves in the shoes of the designer and describe a typ-
ical learning automata-based routing process. After that, we
propose a very simple technique which can work in combina-
tion with the learning automata, and show that the combined
routing technique can actually outperform the automata. We
show that with our synergetic and simple routing scheme, the
energy savings are significant. We also show that the com-
bined technique works much better than each of its parts in
isolation.

The rest of the paper is organized as follows. In Section II,
we introduce the WSN model used, including the processes
for discovering neighbors and for maintaining the data that
will be used by the automata. Section III describes a typical
learning automata-based routing scheme for a WSN. Section
IV describes the combined technique proposed in this paper,
which is later on evaluated in Section V. Finally, Section VI
concludes the paper.

II. THE NETWORK MODEL

Let us consider a WSN composed of a set of sensor nodes
and a station S, where the latter gathers data from the sensors.
The station S may be either a fixed or a mobile node, and it
is assumed to be the one connecting the WSN to a commu-
nications infrastructure through which a user can access the
collected data. All the packets forwarded in this sensor net-
work are tagged with a message type. This is to distinguish
the broadcast messages that need to be flooded along the net-
work from unicast messages encoding the events sent from the
sensors toward the station S.

In this paper, we shall focus on a setting in which the rout-
ing process running in each sensor is supported by a learning

Globecom 2012 - Ad Hoc and Sensor Networking Symposium

189

Rectangle

automaton. In these cases, the automata in the sensors will
typically compute and maintain a set of probabilities, which
will determine the selection of the best possible neighbor dur-
ing the packet forwarding process. As mentioned above, the
automata present in our WSN will consider two metrics while
computing these probabilities: energy levels and the number
of hops to reach the station S—the details about these metrics
and their role in the computation of the probabilities will be
described later on in Section III.

In order to supply the required information for the opera-
tion of the learning automata, every node i maintains a ba-
sic “Neighbor List”, which consists of four fields storing the
following data associated to each neighbor: 1) the ID of the
neighbor, jID, with j = 1, . . . , Ni, where Ni denotes the num-
ber of neighbors of node i, and thus the size of the list; 2) the
energy level Ej(t) at time t of neighbor j (except for j = S,
since the station’s energy is assumed to be unlimited com-
pared to that of the sensors); 3) the hop count Hj(t) through
neighbor j to the station S at time t; and 4) the probability
Pj(t) associated with neighbor j as computed by the learning
automaton in node i. Note that the routing protocols supported
by learning automata usually make forwarding decisions based
on the highest probability associated to its neighbors, and thus
this is the approach followed in this paper.

In this scenario, the processes for neighbor discovery and
population of the Neighbor Lists can be summarized as fol-
lows. When a node i receives a message for the first time
from a neighbor j, this message produces a new entry in its
Neighbor List— note that the neighbor j could perfectly be
the station S if node i is within the radio reach of S. Each
message piggybacks the data that is needed to populate and to
update the fields in the Neighbor List. Indeed, the messages
distributed through the WSN are processed at each hop j, so
the message originally sent by the source is piggybacked with
the energy level of node j, and the list of hop IDs from j to
S (including jID). Observe that the latter has a twofold pur-
pose. First, to serve for the hop count; and second, similarly to
the case of the Border Gateway Protocol (BGP), it provides a
straightforward mechanism to prevent forwarding loops in the
sensor network. When node i receives the message, it swaps
node j’s energy with its own energy level and also appends
its own ID to the list of hops before forwarding the message
to its neighbors. In stationary state, every node in the network
will know the energy levels of their neighbors and the hop
counts reported from these latter to the station S.

III. LEARNING AUTOMATA AND UPDATE STRATEGY

Consider a routing process steered by a learning automaton
running on each sensor i. We assume that the decision criterion
of the automaton in node i considers both the energy levels and
the hop counts reported by its neighbors. Observe that these
are two traditional goals for decision making when exploiting
learning automata for routing purposes in WSNs. Indeed, the
objective of a typical automaton could be to balance the load
among the different sensors with a twofold goal: i) avoid that

the sensors run out of battery; ii) while keeping the routes
toward the destinations relatively short.

To this end, we consider a learning automaton that operates
as follows. Based on the energy levels and hop counts stored
in the Neighbor List, the automaton in i associates a proba-
bility Pj(t) to each neighbor j, which is also stored in the
Neighbor List and which we assume is computed according
to expression (1).

Pj(t)=
1

2

(
Ej(t)∑Ni

m=1 Em(t)
+

1/Hj(t)∑Ni

m=1 1/Hm(t)

)
j ≤ Ni (1)

where Em(t) is the energy level advertised by neighbor m, Ni
is the size of node i’s Neighbor List, Hm(t) is the hop count
advertised by neighbor m to the station S (including node
m), and the sums in the denominators represent the terms to
normalize the probabilities. The rationale of using (1) is that
it provides a reasonable balance between energy and the hop
count, although it comes at the cost of the potential recompu-
tation of the probabilities right after receiving a message from
a neighbor, since

∑Ni

j=1 Pj(t) = 1, ∀ t. Note, however, that
this is always the case when the energy states are involved in
the computation of the probabilities.

It is worth highlighting that since the energy levels are re-
ported (piggybacked) by the neighbors, in our model the values
Em(t) that are stored in the Neighbor List are already adjusted
considering the energy that is actually required to transmit the
packet from node m to node i.

Under this configuration, we assume that the learning au-
tomaton in node i will decide to forward the packets to the
neighbor with the highest probability.

A. The Update Strategy

In a nutshell, any learning automaton will make a decision
based on the information at hand (e.g., select the next-hop
from a list of candidates and send data packets to it), and will
then wait for feedback about the outcome of its selection or
action. The materialization of this feedback process basically
consists in the update of the probability set, often in the form
of a penalization or rewarding strategy, which is what will
ultimately define the behavior of the automaton.

In our case, we consider the feedback process shown in Fig.
1. The automaton in node i selects the node with the high-
est probability as the next-hop (node j in this case), and then
it sends the packets to it. When node j receives the packets,
it updates the energy level and hop count of node i in its
Neighbor List, and it may also update the probability Pi(t)
depending on the energy and hop count reported by node i to
the station S. As shown on the left-hand side of Fig. 1, all the
other neighbors in the range of i can overhear the response and
potentially perform the same updates as j, though discarding
the packets right after processing them. When j forwards the
packets to k (see the right-hand side of Fig. 1), node i and
the rest of the neighbors of node j can overhear the transmis-
sion and thereby update the energy level and hop count of the

190

Rectangle

i j k i j k

Fig. 1. Updating the energy levels, the hop counts, and the probabilities
through piggybacking and overhearing techniques. (Left-hand side) The neigh-
bors of node i perform the updates. (Right-hand side) Idem for node j.

latter. Overall, we consider a basic setting in which the learn-
ing automata can efficiently update the probabilities in their
Neighbor Lists based on simple piggybacking and overhearing
techniques.

In the example shown in Fig. 1, if the metrics in the feed-
back received from node j are acceptable, then node j is re-
warded by the learning automaton in i, and the probability as-
sociated to j is increased in node’s i Neighbor List. Otherwise,
j is penalized and its probability is decreased. To formalize
this, let x = {xj} be the behavioral vector, where we define:

xj =
Ej(t)

<Ei(t)>
<Hi(t)>

Hj(t)
(2)

in which <Ei(t)>=
∑Ni

m=1 Em(t)/Ni represents the average
energy of all neighbors of node i, and Ej(t) stands for the en-
ergy level obtained from j. Likewise, <Hi(t)> represents the
average hop count of all neighbors of i to the station S, while
Hj(t) denotes the hop count to S reported by node j. De-
pending whether the behavioral variable xj is below or above
these averages, the learning automaton in i will reward or
penalize node j using the functions α(xj) and β(xj), respec-
tively (these functions will be described in more detail in the
next few paragraphs). This is a standard approach in learning
automata theory, and in our model we consider four behav-
ioral zones for rewarding or penalizing a neighbor, which are
captured through the incentive function I(xj):

I(xj) =


β(xj) if xj < 1 (max. penalty)
β(xj)/2 if xj = 1 (half penalty)
α(xj)/2 if 1 < xj < 1.5 (half reward)
α(xj) if xj ≥ 1.5 (max. reward)

(3)

We proceed now to describe in more detail the typical in-
centive mechanism outlined above.
Reward function—The reward function α(xj) is part of the
update strategy, and it is used to increase the priority of the
neighbors with more possibilities to deliver the packets. In our
model, the function is computed using α(xj) = λα + δαxj ,
where λα is the minimum reward granted to a well-positioned
node, and δα is the limiting factor for the reward.
Penalty function—Similarly, we use β(xj) = λβ + δβx

−1
j ,

where analogously to the reward mechanism, λβ is the min-
imum penalty, and δβ is the limiting factor. Note that in (3),
the better (worse) the energy–hop count relationship xj the
greater the reward (penalization) assigned to node j.

Once the energy and hop count metrics are updated for node
j, the learning automaton in node i will proceed to update the

probabilities of its Ni neighbors based on equations (4) and
(5). This is a standard procedure, where (4) applies for the
rewarding cases, i.e., either when I(x) = α(x)/2 or I(x) =
α(x), while (5) corresponds to the penalization cases, that is,
when I(x) = β(x) or when I(x) = β(x)/2.Pj(tn+1) = Pj(tn) + I(xj)(1− Pj(tn))

Pm(tn+1) = (1− I(xj))Pm(tn) ∀ m 6= j
(4)


Pj(tn+1) = (1− I(xj))Pj(tn)

Pm(tn+1)=
I(xj)
Ni − 1

+(1− I(xj))Pm(tn) ∀ m 6= j
(5)

After describing this rather standard application of learning
automata in the context of routing in WSNs, we proceed to de-
scribe first the combined routing technique, and then to assess
the performance gain obtained with this synergetic strategy.

IV. COMBINED ROUTING TECHNIQUE

In this section, we describe a very simple yet effective tech-
nique that, as we shall show later in Section V, can signifi-
cantly improve the performance obtained with a learning au-
tomaton. The basics of this technique are illustrated in Fig. 2,
and it works as follows. When a sensor i receives a packet,
the routing process is invoked, and the Learning Automaton
(LA) selects the ID of the next-hop, ID(LA), based on the
probability set stored in the Neighbor List. In parallel, a sep-
arate module with access to the Neighbor List also selects the
next-hop based on an alternative criterion. Due to its effec-
tiveness and simplicity, one possibility is to rely on one of the
criteria that is widely used in operational networks, namely,
a compound metric. In this paper, we follow this approach,
which is represented as the Compound Metric (CM) module
in Fig. 2. Thus, this module selects in parallel the next-hop,
which we denote as ID(CM). Figure 2 shows that a Decision
Maker module selects the next-hop that will be finally used.

The main contribution of this paper is that we show that this
combined selection outperforms each of the two possible se-
lections working in isolation. Indeed, we show that even when
the majority of the decisions made by the Decision Maker
module fall on LA side, the small fraction of decisions that
fall on the CM side have a significant impact on the energy
and the lifetime of the sensors.

!"#$%&'())
*#+,))

'-).'/")i

0'12'3./)4",(#5)

6.7#('.1".,)

*"8(.#.$)93,'18,'.)
!":,;%'2 <"5#+#'.))

48="()

ID (LA)

ID (CM)

>))))))))))))))))))))))))))))))))))?)) , HID !!!
(LA) !ID !!!!!!!

(LA) , HID !!!
(CM) , !ID !!!!!!!!

(CM)

Fig. 2. Combined Decision Technique.

191

Rectangle

This combined technique has also two features that are
worth highlighting. On the one hand, in Figs. 3 and 4 we
shall show that the additional energy consumption posed by
the parallelized processing more than pays for itself. On the
other hand, irrespectively of the behavioral definition of the
learning automata or the parallelized module used, our results
suggest that even very simple synergetic techniques, such as
the one described here, are sufficient to improve the routing
decisions made by a learning automaton.

In this paper, the compound metric chosen is the following:

Cij(t) =


ωEj(t)

(
1− Hj(t)

Hmax

)
Ej(t)

<Ei(t)>
> 1

0
Ej(t)

<Ei(t)>
≤ 1

(6)

where ω is a control parameter that simply limits the energy
factor ωEj(t) to the interval [0,1] ∀ j, and Hmax is the max-
imum number of hops reported among all the neighbors of
node i. Note that the energy threshold used in (6) is to remove
from the selection process the neighbors j whose energy level
is below the average. The rationale of using (6) is that again,
it produces a good balance between energy and the hop count
in the form of a simple compound metric.

The processing of the Decision Maker module is summa-
rized in Algorithm 1. Note that if the selections made by the
LA and CM modules match, then the node selected is chosen
as the next-hop. Otherwise, the Decision Maker runs a basic
sequence of tie-breaking rules until the next-hop is selected.

V. PERFORMANCE EVALUATION

In this section, we test the performance obtained with the
combined routing technique depicted in Fig. 2. To this end, we
analyze the performance of the Learning Automata (LA) and
the Compound Metric (CM) modules separately, and compare
the results to the case when they operate together. Hereafter,
we shall refer to the joint operation to as the Combined Tech-
nique (CT). In order to widen the analysis, we also compare
the performance of the LA, CM, and CT routing processes

Algorithm 1: The Decision Maker

Inputs : {ID(LA), E(LA)
ID , H

(LA)
ID }, {ID(CM), E(CM)

ID , H
(CM)
ID }

Output: next-hop node

1 foreach packet to be forwarded do

2 if ID(LA) == ID(CM) then
3 send the packet to the selected neighbor;
4 // If IDs do not match then run tie-breaking rules;

5 else if (E(LA)
ID > E(CM)

ID) && (H
(LA)
ID < H

(CM)
ID) then

6 choose ID(LA) as the next-hop;

7 else if (E(LA)
ID < E(CM)

ID) && (H
(LA)
ID > H

(CM)
ID) then

8 choose ID(CM) as the next-hop;
9 else choose the one with the highest energy;

with state of the art alternatives that especially target the opti-
mization of energy and the hop count in flat sensor networks.
In the evaluations shown in this paper, we considered the Max-
imum Available Power (MAP) [6], and the Minimum Hop
Routing (MHR) [7] schemes. These fall under the same cate-
gory of the routing scheme described in this paper, i.e., under
the family of source-initiated routing protocols. The assess-
ments described here were carried out by means of simulation,
and the tool chosen for running the tests was the Glomosim
simulator developed by UCLA [8].

A. Simulation Model

The performance of the different routing schemes is evalu-
ated using a surface of 1000m2, with a radio range of 198.5m
and a TX-power of 5.0 dBm. The available bandwidth used
was 2Mbps, in a network based on IP over 802.11. To ensure
the repeatability of the tests under the same conditions, in our
first round of simulations all the nodes involved were randomly
placed on the surface, and we used the same positioning of
the sensors while evaluating the remaining routing schemes.
Under this configuration, we performed a total of five different
tests separated into two different scenarios which are described
below. Each test was repeated 10 times, and the results shown
in Figs. 3 and 4 correspond to the averages obtained.

In the different experiments carried out, we also evaluated
the effects of the amount of nodes in the network. Thus, we
ran all the simulations in three sets of rounds with 1000, 1200,
and 1400 nodes. For each round, the procedure for generating
traffic in the network works as follows. After the discovery
phase (i.e., once every node knows the IDs, the energy levels,
and the hop counts of its neighbors), a sensor is randomly se-
lected every 10 seconds, which initiates a packet transmission
to one of its neighbors toward the station S.
Scenario I—In this scenario, we assume a critical situation,
where the energy level for transmission mode is very low
(0.00055 mW in our case). Under these conditions, we eval-
uate the different routing schemes considering three different
tests:

• Test 1: Time until the first node runs out of battery—
This test is one of the indicators of the effectiveness of
the routing schemes in terms of energy management. In
general, those with the capacity to balance the energy
consumed should last longer without node failures.

• Test 2: Number of nodes that run out of battery—This test
computes the total number of sensors that fail for each
routing scheme during a simulation period of 2 hours.
This simulation provides an indicator of the capacity of
the routing schemes for saving energy.

• Test 3: Fraction of active neighbors of the station S at the
end of the simulation—This test shows the ability of the
different routing schemes to keep the station S connected.
As in the case of Test 2, the simulation period for this
test is of 2 hours.

Scenario II—In this scenario, the energy levels of the sen-
sors are set sufficiently high so as to avoid experiencing node
failures during the simulation runtime. Our goal in this case,

192

Rectangle

is to compare the fairness in terms of energy consumption. In
order to avoid bias in the comparison, we ensure that all the
routing schemes assessed transmit the same amount of data,
and that this occurs without node failures. We carry out two
tests to examine how the routing schemes save and manage
energy in regular operation mode.

• Test 4: Average energy consumption—This test provides
another indicator of which routing scheme is more effi-
cient at managing energy.

• Test 5: Variance in the remaining energy levels for the
neighbors of the station S—This test will allow to exam-
ine which routing scheme is able to perform better energy
balancing among the nodes close to the station.

In summary, for the two considered scenarios, we have
strongly focused on the assessment of the energy aspects of
the different routing schemes, since this is the most impor-
tant metric in many practical WSN settings. In particular, for
source-initiated routing protocols, where the sensors basically
need to report and distribute new events to the station S, other
metrics such as delay, hop count, etc., are often less critical
than the batteries lifetime. In these cases, the hop count is
usually used to avoid that the energy balancing strategy ends
up yielding excessively large routes to reach the station S.

B. Simulation Results

1) Scenario I: Fig. 3(a) details the outcome of Test 1, i.e.,
the time elapsed until the first node depletes its battery. These
results provide a first indicator of the performance obtained
with the five different routing schemes under test. As it can
be noted, when using the LA in isolation, the first sensor fails
after ∼ 40 to ∼ 60 minutes depending on the number of nodes

present in the network. It can also be observed that the instant
in which the first node runs out of battery is relatively similar
for LA and MAP, and significantly shorter for MHR. However,
this performance can be dramatically improved through the
utilization of a simple compound metric (CM), with which
the first node failure occurs after almost 2 hours. Although at
first sight the results shown in Figs. 3 and 4 could demystify in
part the effectiveness of using learning automata in the route
selection process, it is worth discussing a number of issues in
order to avoid reaching premature conclusions.

Firstly, even though in Section III we have made an effort to
describe a typical learning automata-based routing scheme, the
computation of the probabilities in (1) as well as the incentive
function in (3) are anyway particular, and thus condition the
performance ultimately obtained with the LA. Secondly, the
compound metric chosen in (6) is also particular; and thirdly,
the WSN model and its application are also somehow partic-
ular, all of which bias the comparisons made in Figs. 3 and
4. Despite this, it is worth noting that any designer exploiting
learning automata in the routing process of a sensor network
will face the same kind of decisions, including deciding on
how to compute the probabilities, their update, and so on.

Therefore, the relevance of our results resides in the qualita-
tive analysis rather than in the quantitative one. Indeed, instead
of comparing the particular values obtained in each figure, the
most important conclusions that can be extracted from Figs.
3 and 4 as a whole are basically the following. The results
show that even the addition of a very simple module can help
the designer of a routing process supported by a learning au-
tomaton to significantly improve its performance, and more
importantly, the combined operation might work better than
each module in isolation. These are in essence the main con-

1000 1200 1400
0

2000

4000

6000

8000

10000

Node Number

T
im

e
 (

s
)

MAP MHR LA CM CT

(a) Test1: Time until the first node runs out of
battery.

1000 1200 1400
 0

 10

 20

 30

 40

Node Number

F
a

il
u

re
s

MAP MHR LA CM CT

(b) Test2: Number of nodes that run out of
battery.

1000 1200 1400
 0.0

 0.2

 0.4

 0.6

 0.8

 1

Node Number

A
c
ti
v
e

 N
e

ig
h

b
o

r
R

a
ti
o

MAP MHR LA CM CT

(c) Test3: Fraction of active neighbors of S.

Fig. 3. Tests results for Scenario I.

1000 1200 1400
0

0.5

1

1.5

x 10
−4

Node Number

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 [
m

W
H

]

MAP MHR LA CM CT

(a) Test4: Average energy consumption.

1000 1200 1400
0

1

2

3

4

5

6

7
x 10

−7

Node Number

V
a

ri
a

n
c
e

MAP MHR LA CM CT

(b) Test5: Variance.

1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Number of Nodes

F
ra

c
ti
o
n
 o

f
H

it
s

Both Sel. LA Sel. CM Sel.

(c) Decision Ratio.

Fig. 4. Tests results for Scenario II.

193

Rectangle

clusions that can be drawn from our results, and hence our
main contributions in this work.

These assertions are supported by Figs 3(b) and Fig 3(c),
where we detail the total amount of nodes that ran out of
battery, and the fraction of active neighbors of the station at
the end of the simulations, respectively. From Fig. 3(b), it
can be noted that the number of nodes that fail with the CT
scheme is minimum compared to the rest. Indeed, for 1000
and 1400 nodes, the CM and CT schemes show no failures at
all. The results observed in Fig 3(c) are consistent with these
findings, since the CM and CT schemes outperform the other
alternatives. Also note that, for all the tests shown in Scenario
I, the CT scheme performs always better than the LA and CM
separately.

2) Scenario II: In this second scenario, the focus resides on
the evaluation of the fairness in terms of energy consumption.
As mentioned before, in this case the batteries are not in a
critical state, and thus, we can examine the evolution of the
energy consumed by the different routing schemes (in mWH)
as well as their variance over time.

To this end, in Fig. 4(a) we detail the average energy con-
sumption in mWH for the different routing schemes. As it
can be observed, the scheme with the highest energy consump-
tion on average is MAP, while the most efficient on average
is MHR, with all the alternatives proposed in this paper in-
between of these two. However, the variances shown in Fig.
4(b) reflect the fact that MAP shows a very low variance in
general, while MHR shows the largest one. This is because,
MAP provides a fairer distribution of energy consumption (it
is a balancer scheme), whereas MHR aims at routing over the
least number of hops and thus tends to consume more energy
over a subset of given nodes. By examining the variances, we
observe that the CT scheme again provides a fairer distribu-
tion of the energy consumed than the LA, though this better
balancing comes at the cost of a slightly higher consumption
of energy on average.

To conclude, Fig. 4(c) shows the breakdown of decisions
made by the Decision Maker, indicating the fractions when
the selection coincides with the one made by the LA, by the
CM, as well as the fraction in which both agree in the selection
of the neighbor. More precisely, the legends in Fig. 4(c) indi-
cate the following: i) Both Sel.: means that the LA and CM
modules in Fig. 2 yield the same neighbor ID (steps 2 and 3
in Algorithm 1); ii) LA Sel.: means that the Decision Maker
prefers the neighbor chosen by the automaton (steps 5 and 6
in Algorithm 1); while iii) CM Sel.: means that the Decision
Maker prefers the neighbor chosen by the CM module (steps 7
and 8 in Algorithm 1). Note that for 1400 nodes, the LA mod-
ule provides around 85% of the neighbor selections (i.e., Both
Sel. plus LA Sel.), however, Fig. 4(b) shows that the variance
obtained with LA is large, and thus the resulting distribution
of energy consumption is quite unfair. Conversely, with CT the
variance is only about 50% of that of the LA scheme, which
suggests that even a small fraction of decisions (around 15%
in this case) can have a significant impact on the degree of
fairness in energy consumption.

VI. CONCLUSION

This paper addresses the performance aspects of an increas-
ingly used solution in the field of Wireless Sensor Networks
(WSNs), namely, the learning automata. Even though many re-
cent proposals leverage on the well-known strengths of learn-
ing automata, in this work we question somehow the effec-
tiveness and performance obtained with them in the context of
WSN routing. We have shown that the designer of an automa-
ton faces multiple decisions and complex challenges, which
can have a profound impact on the performance ultimately ob-
tained with the automaton. In this scenario, we have described
a very simple yet effective solution that can work in combina-
tion with the automata, and shown that our combined routing
technique can significantly improve the performance achieved
with them. Our analysis suggests that the decision on how to
compute the probability set in the automata is far from trivial,
especially, when the problem addressed has a multi-objective
nature. We have also found that setting the policy for updating
the probability set is really challenging, since minor tweak-
ing might derive in over-penalizing of over-rewarding some
neighbors. Moreover, we found that even when the amount of
decisions made with our complementary module is small, this
might have a significant impact on the degree of fairness in
the energy consumed by the sensors.

Overall, irrespective of the particularities of the learning
automata used, this paper shows that a significant part of the
complexity and tweaking involved during the design phase of
the automata can be relaxed by simply using a straightforward
and well-known technique in networking, such as a routing se-
lector based on a compound metric, which can work in concert
with the automata in a synergetic way.

REFERENCES

[1] P. Nicopolitidis, G. I. Papadimitriou, A. S. Pomportsis, P. Sarigiannidis,
and M. S. Obaidat, “Adaptive Wireless Networks using Learning Au-
tomata,” IEEE Wireless Communications, Vol. 18, issue 2, pp. 75–81,
April 2011.

[2] S. Misra, V. Tiwari, and M. Obaidat, “LACAS: Learning Automata-
based Congestion Avoidance Scheme for Healthcare Wireless Sensor
Networks,” IEEE Journal of Selected Areas in Communications, Vol.
27, no. 4, pp. 466–479, May 2009.

[3] S. Misra, P. Venkata Krishna, and K. I. Abraham, “A simple learning
automata-based solution for intrusion detection in wireless sensor net-
works,” Wirel. Commun. Mob. Comput., Vol. 11, issue 3, John Wiley
and Sons, March 2011.

[4] M. Esnaashari, and M. R. Meybodi, “A learning automata based
scheduling solution to the dynamic point coverage problem in wire-
less sensor networks,” Computer Networks, Elsevier, Vol. 54, no. 14,
pp. 2410–2438, October 2010.

[5] S. Misra and P. D. Thomasinous “A simple, least-time, and energy-
efficient routing protocol with one-level data aggregation for wireless
sensor networks,” Journal of Systems and Software, Elsevier, Vol. 83,
no. 5, pp. 852–860, May 2010.

[6] M. M. A. Azim, “MAP: A Balanced Energy Consumption Routing
Protocol for Wireless Sensor Networks,” Journal of Information Pro-
cessing Systems, Volume. 6, no. 3, 2010.

[7] S. S. Chiang, C. H. Huang, and K. C. Chang, “A Minimum Hop Rout-
ing Protocol for Home Security Systems Using Wireless Sensor Net-
works,” IEEE Transactions on Consumer Electronics, Vol. 53, no. 4,
pp. 1483–1489, 2007.

[8] X. Zeng, R. Bagrodia, and M. Gerla “Glomosim: A Library for Parallel
Simulation of Large Scale Wireless Networks,” in Proc. of the 12th
Workshop on Parallel and Distributed Simulations, 1998.

194

Rectangle

