




Preamble
I have been interested in improving decision making in healthcare since I co-
founded Elenytics in 2016. Back then, we used indoor location data to improve
efficiency in hospitals. My goal in this project, is to set a general method to
improve decision making using patient data and Contextual Bandits.
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1 Introduction

Dynamic decisions under uncertainty are present across industries, from tailoring content to
customer’s preferences to analysing clinical trials on new treatments. One of the most popular
setups to approach these problems are the Bandit Algorithms. They were introduced by
Thompson (1933) and are becoming a main field of research across industries. In the bandit
framework, a decision-maker is presented with a set of options and it should choose the one
that maximizes its reward, i.e. the best available option. The decision-maker is given such
reward after every iteration, allowing a learning process that will adjust its criteria for the
next decision to take. We present two different scenarios, depending on the nature of each
iteration. In the first case, every iteration has the same environment (conditions) as the
previous one, meaning that the only information that affects the decision-makers choice is
the outcomes (rewards) of the previous choices. The most famous example of this setup
would be a user in a casino playing the different slots machines to try to learn the reward
distribution of each of them. In the second case, every iteration is associated with a unique
vector that conditions the outcome of the choice made by the decision maker. An example of
an application would be the web recommendation systems tailored to specific user preferences.
In section 1.1 we go through the main current application of such algorithms.

Mathematical formulation. In this setup, an agent has the possibility to choose between
K actions (arms), each with it’s associated d-dimensional vector of unknown parameters βi.
Each arm has an uncertain reward distribution that the agent aims to discover through the
d-dimensional unknown vector for each arm. At every round, the agent is presented with a
context Xt and chooses an action (arm) that generates a stochastic reward conditioned to the
action take but also to the feature vector in that specific context. The goal is to maximize
the cumulative rewards over T rounds.

As opposed to the traditional multi-armed bandit, where the learner has no access to arm
features, and therefore, only competes with choosing the best arm in the hindsight, contextual
bandits use each specific context action features to improve the average payoff over time.

The most studied model in this topic are linear contextual bandits, assuming that the
distribution of the reward is linear in the feature vector. One of the most common application
of this setup includes customizing web content for each user using their search history and
the success of previous trials with users that have similar preferences than the agent (Li et al.
(2010)). In this particular linear model, the agent will have K actions (arms) with uncertainty
rewards. Each arm associated with the d-dimensional vector of unknown parameters βi ∈ Rd.
At each time t, the agent will see an individual with a context vector X⊤

t ∈ Rd. After choosing
an arm i, the agent will observe a linear reward of

Yt = X⊤
t βi + ϵi,t (1.1)

with ϵi,t as an independent sub-Gaussian random variable.
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This context vector can contain different types of information depending on the application
of the algorithm. For example, in the previous setting, where the learner seeks to tailor
web content to user’s preferences, the context vector Xt would contain information on their
previous searches, clicks on the website, content preferences and any other feature specific to
the user that could help identify which is the best option to display (in our setting, which
arm to choose). Another application would be choosing the best treatment for a patient after
looking at its specific context vector containing previous pathologies, physical characteristics,
sympthoms and any other relevant information that could affect the decision on the type of
treatment.

Although the linear approach has demonstrated to be successful in multiple setups, both
in synthetic data (Auer (2002)) and real life applications (Lei et al. (2017)), it often fails in
practice due to the non-linear nature of the true reward function. A reason that motivated
the study of nonlinear or non-parametric contextual bandits:

Yt = µ(X⊤
t βi) + ϵi,t (1.2)

with µ as an inverse link function (Filippi et al. (2010), Li et al. (2017)).

In any setting, the decision-maker’s goal is to learn the arm parameters (βi) to maximize
the cumulative reward over a period of time T . There are many policies that we will introduce
later in the project that achieve to be asymptotically optimal in this kind of settings.

Most of these algorithms are based on the idea of the Upper Confidence Bound or UCB
(T. Lai & Robbins (1985), T. L. Lai (1987), Katehakis & Robbins (1995)), but there are other
lines of research using Thompson Sampling (Thompson (1933), Agrawal & Goyal (2012),
Russo & Roy (2013)) and ϵ-greedy methods (Goldenshluger & Zeevi (2013), Bastani et al.
(2019a)). The computational cost and performance of each varies depending on the nature
of the observed context, thus making them optimal only in specific settings.

The main challenge that all these algorithms face is the problem of the exploration-
exploitation trade-off. While the decision-maker would like to explore all the available options,
i.e. K possible arms, it also wants to exploit each of them to learn the reward distribution.
Finding the optimal balance to explore all the options while exploiting the ones that seem
to have a higher reward is the secret sauce that can make an algorithm outperform the rest.
Algorithms that explore too much usually have a poor performance due to not learning well
the arm parameters.

In the Ordinary Least Squares (OLS) bandit (ϵ-greedy) from Sutton & Barto (1998) the
proportion of time allocated for exploration and exploitation is fixed and defined prior to
running the experiment. In our case, we explore algorithms that, assuming randomness in the
observed context, create a natural exploration without the need to define a fixed proportion
of time for such purpose.

In this research, we focus on applying methods that are proven to work on similar settings.
From Ordinary Least Squares approximation to Machine Learning techniques, in order to
improve the efficiency of our Exploration Free Greedy Bandit algorithms. We want to define
the conditions that the observed context has to comply in order to achieve a state of the art
accuracy with our proposed algorithm. That being said, our ultimate goal is to proof it’s



1.1. Related literature 3

performance in real and meaningful datasets.

During the execution of this project the pandemic of the COVID-19 has impacted the
entire planet and forced all the data science community to work together towards solutions
that could allow world leaders and doctors to adopt better solutions on how to react to it.
One of the main problems has been the allocation of tests. The scarcity of testing devices has
been one of the main issues that governments have faced. In fact, South Korea was the only
country that managed to have an effective testing system and isolate the infected patients on
time before they were able to spread the virus. The problem of deciding weather to test or not
test a person depending on their risk factor, symptoms, travel history, physical characteristics
or any other relevant parameter would be a perfect example of a 2 arm contextual bandit
problem. It is our goal to ultimately apply the algorithm to a similar database that contains
such kind of information to see if the algorithm would have been an optimal tool to allocate
testing when the availability was limited.

1.1 Related literature
There are many articles on contextual bandits nowadays, but we would like to first refer the
reader to Lattimore & Szepesvári (2020) for a basic and general understanding on how does
the contextual bandit setup works. It also uses the same regret analysis as we do in the
project, explaining how will the success of the algorithms be measured.

The linear contextual bandit problem was first introduced by Auer (2000) using the LinRel
(Linear Associative Reinforcement Learning) algorithm, which uses single value decomposi-
tion to obtain an estimate of confidence. It was later improved by the OFUL algorithm from
Dani et al. (2008) and the LinUCB (Upper Confidence Bound) from Chu et al. (2011). There
are also some algorithms that focus on contextual bandit problems with non linear reward
functions, like the KernelUCB from Valko et al. (2013), a kernelized non-linear version of
the linear Upper Confidence Bound algorithm, or the NeuralBandit algorithm from Zhou et
al. (2019) where multiple neural networks are trained to predict the value of the rewards
after knowing the specific context. Another non-linear approach that is of our interest is the
Oracle-based Algorithm, that turns the contextual bandit problem into several supervised
learning problems (Agarwal et al. (2014)). We will be using the Oracle-based algorithm to
compare it with the performance of the one presented in this project.

The related literature for each of the main applications of such algorithms could be orga-
nized in the following groups:

1. Resource Allocation. It is probably the most promising application for bandits, choosing
where to allocate resources when they are scarce (Dagan & Crammer (2018)).It is also
the application in which we propose the use of contextual bandits in relation to COVID-
19 crisis, specifically in terms of testing allocation. We will further discuss it in 5.

2. A/B Testing and Ads Placement. This is the most widely used application for bandit
algorithms. Specially for contextual bandits, as the actions taken by the algorithm
depend on the specific user profile. It can be applied in the online service economy
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(Chu et al. (2011) and Langford & Zhang (2007)) or ads placement (Schwartz et al.
(2017)). In the previous settings, the algorithm chooses to display a certain option
to the user and gets a reward when the user clicks on it. In the contextual bandit
framework, the action of choosing the a specific Ad (arm) depends on the user profile.

3. Dynamic Pricing. In this case we have the situation where a company wants to au-
tomatically optimize pricing to match each users valuation. At every iteration of the
bandit algorithm a new user comes, the decision-maker decides which price to show and
then observes if the user buys or not. What makes this setup complicated and inter-
esting at the same time is that the decision-maker only observes if the price offered is
less than the valuation of the user, instead of the actual valuation of the user. That is,
if there is a product bought for 100 EUR by the user, we only know that his valuation
was higher than 100 EUR, but we will never know if the user would have bought the
product anyways at a 150 EUR or 200 EUR price (Cohen et al. (2016), Qiang & Bayati
(2016), Ban & Keskin (2017), Bastani et al. (2019b)).

4. Clinical Trials. Although we are not aware that there has been any implementation
to date in which the bandit algorithms have actually been used in clinical trials, it is
the option that is gaining more popularity among the regulatory administrations to
accelerate the launch of new drugs to the market (Villar et al. (2015)).

Greedy Algorithms. One of the most studied algorithms in this field is the Epsilon Greedy
(ϵ-greedy). In this case, after an initial period of exploration, the algorithm exploits the
best option for a fixed percentage of trials (1-ϵ) and dedicates the rest of the time to ex-
ploitation. This setup is explained in Goldenshluger & Zeevi (2013). What motivated our
study is the poor performance of this setup due to the fixed assignment of exploitation and
exploration proportion. Specially in contextual bandits, it doesn’t make sense to fix the ex-
ploration parameter because each context (iteration) is different. For that reason, we focus
on exploration-free greedy bandit algorithms, in which the exploration becomes natural in-
stead of fixed. The main article that explores this specific kind of algorithms was published
by Bastani et al. (2017). It focuses on the Exploration Free Greedy Algorithms and com-
pares the algorithm with the ones previously mentioned. In fact, one of our goals will be to
demonstrate that our proposed algorithm can beat the Greedy First algorithm proposed in
the paper.

Random Features Another line of work that we want to refer to the reader is about the
double descent curve phenomena in Machine Learning setups. Specifically the work by Mei &
Montanari (2019) where they describe the method we have used to generate random features
and improve the performance of the algorithm in the over-parameterized regime. The paper
itself is extremely dense in the theory behind the phenomena, trying to give an explanation
to the fact that adding random features (pure noise) to a multiple regression can actually
improve its performance.
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1.2 Main contributions and organization of this project
In this project we begin by introducing the bandit framework, starting with the basic stochas-
tic bandits and it’s main algorithms. We will then introduce the contextual bandit framework,
from which we will derive our proposed algorithm. We will focus on the Greedy Bandit pro-
posed by Bastani et al. (2017) as the base from which we can build on.

We will also introduce the Machine Learning techniques from which we have derived the
modifications of our algorithm, focusing on the effects of Random Features presented by Mei
& Montanari (2019). Then we will present the final version of the algorithm and theoretically
evaluate the advantages brought by each modification. Finally, we will evaluate the results
in both synthetic and real data, specially comparing in the same framework presented in
Bastani et al. (2017).

From the later results we will see that our algorithm provides an outstanding improvement
of accuracy in setups where the number of iterations is much larger than the number of
features with a 2-armed framework. The random features transformation seems to provide
more room for improvement when the other algorithms achieve a steady cumulative regret
bound. We also discover that sequentially adding random features can improve the behavior
of the algorithm when the number of features is large.

We also find an improvement of performance in the over-parameterized regime, where the
number of features of each arm is larget than the number of iterations (observations). This is
provided by the random features of the modified context and represents the main innovation
of this project in the contextual bandit framework.

We also realize that the value of λ when applying ridge regression to approximate our
weights β̃i,t is specific to each context Xt in every iteration. Ideally, our algorithm would
have to find the optimal λ value through Cross Validation at each time t. However, we find
it computationally impossible when as the number of iterations grows.

In summary, we present a Bandit algorithm that achieves a state of the art accuracy in
setups with a strongly non-linear true reward function. It’s main contribution relies on the
use of random features to increase the accuracy with high-dimensional feature vectors and a
limited number of instances.





2 Fundamentals of Bandit Algorithms

Although the first application for Bandits was supposed to be in clinical trials (Thompson
(1933)), the name “bandit” comes from the experiment ran by Bush & Mosteller (1953) in
which humans were presented with a “two-armed bandit machine” and they had to choose
either to pull the right arm or the left one. Each of the machines was offering a random
pay-off from a distribution that was completely unknown for the human. From that lever-
operated slot machine is where the name “bandit” comes from. Generalizing that specific
case, we can state that Bandit Algorithms offer a simple model to face Decision-making under
uncertainty. In the following chapters we will explore the fundamentals of two large groups
of Bandit Algorithms:

• Stochastic Bandits. Where the decision and output of each iteration only depends
on the distribution pay-offs of each option.

– Contextual Bandits. Where each decision and output depends on the profile of the
user.

• Adversarial Bandits. In this case the decision-maker does not make any probabilis-
tic assumptions regarding the distribution of the reward. Instead, those rewards are
generated by an adversary, from which we can’t make almost any assumption on the
rewards distribution.

• Markovian Bandits. In this case the reward distribution of the arm is sampled from
a Markov Chain1 from some underlying state space. The process to analyse these kind
of MAB are quite different from the tools used in Stochastic and Adversarial MABs.
Significant work on this direction includes Burnetas & Katehakis (1997) and Ortner
(2010).

2.1 The stochastic bandit framework
A Bandit Problem consists on a sequential game between the decision-maker and a certain
environment. At every time t ∈ [T ], with T being the total number of rounds, the decision-
maker chooses an action it ∈ K with K as the total number of options that the decision-maker
has. After choosing, the environment shows the reward Yt and makes a guess on the mean
reward µ̃i of such arm. As previously stated, the different set of actions it is usually referred
to as Arms. Then a ”K-armed Bandit” would be a Bandit Problem with K different actions.
As we previously stated, the bandit problem is a sequential game, that means, the decision

1A Markov Chain is a sequence of random elements with the property that given the last element of the
series, the history is completely irrelevant to predict the next element.

7
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maker can only make the decision taking into account the history Ht−1 = (i1,Y1, ..., it−1,Yt−1)
since the reward from the action it will only appear after such action has been taken. Hence,
what we need is a way to turn that history into an action to take, that is done by what we
call the policy πt. Our main goal is to maximize the cumulative reward over all rounds, thus
maximizing

∑n
t=1 Yt. The main challenge in Bandit Algorithm is that the environment, and

therefore the rewards distribution, is completely unknown for the decision-maker. However,
it must have some idea of the class ϵ of such environment, as the design of the policies π will
be determined by such class.

2.1.1 The Regret

We now need to establish a method to evaluate the performance of the user at each time
t ≤ n. The convention is to evaluate the cumulative regret over each round.

Definition 2.1. The regret of the decision-maker relative to a certain policy πt over t ≤ n

rounds is defined as the difference between the total expected reward using policy πt and the

expected reward received by the decision-maker.

We usually calculate the regret relative to a set of policies π, which is the maximum regret
relative to any policy πt ∈ π in the set. In other words, we measure the performance of the
decision-maker relative to the optimal policy. Let’s consider a stochastic bandit υ = (Pi : i ∈
K) from Lattimore & Szepesvári (2020) and define the regret of a Policy πt as

rn(πt, υ) = nµ∗(υ)−E[
n∑

t=1

Yt]

= nµ∗(υ)−E[µ̃]

= E
[ n∑
t=1

△i

] (2.1)

The second term of the equation is the expected reward for the decision-maker, the first term
is the maximum expected reward using any policy πt with µ∗(υ) defined as

µ∗(υ) = maxi∈K

∫ inf

− inf
ydPi(y) (2.2)

and △i = µ∗ − µi as the gap between the suboptimal reward and the optimal one.

From this expression we can understand one of the most important concepts in the study
of Bandits, the growth rate of the regret over n. The goal is for the decision maker to achieve
a sub-linear regret. Using the Bachmann-Landau notation we have that, given any set of
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functions f, g : N→ [0, inf), we define

f(n) = O(g(n))↔ lim sup
n→∞

f(n)

g(n)
<∞ (2.3)

This notation will allow us to define how regrets scale over n, as rn = O(
√
n) or rn =

O(log(n)) for example. Such growth will depend on the conditions of our environment,
allowing us to define the Regret Upper and Lower bound for each of our algorithms, that is,
the two limits on the performance of each algorithm.

2.1.2 Stochastic Bandit Algorithms

As previously stated, in the stochastic bandit setting the decision taken by the agent and the
following reward observed only depends on the distribution pay-off of each of the arms.

Figure 2.1: Example of normal reward distributions for a 3-armed bandit problem.

Figure 2.1 shows an example of the types of reward distributions our arms may have,
generated from various Gaussians in this case. In the following sections we will introduce a
few algorithms that try to learn those arm distributions to efficiently choose the best one to
exploit without leaving any potential sub-optimal choice unexplored.

2.1.2.1 ϵ-greedy Algorithm

We will start by introducing the epsilon-greedy algorithm, or so called ϵ-greedy. It is the
evolution of the so called Explore First algorithm, where the exploration phase happens uni-
formly at the first iterations of the algorithm, making the regret in such phase extremely high.
The ϵ-greedy is the simplest case in which the exploration phase is not uniform, instead, we
define what portion of the iterations we would like to explore using the parameter ϵ. The
pseudo-code for the ϵ-greedy is found in Algorithm 1.
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The regret bounds highly depend on the chosen value of ϵ. The best performance is found
when the value of epsilon decreases exponentially for each iteration. That phenomenon is
explained by the fact that exploring is more and more inaccurate as the arms have already
played enough to have a close to correct mean reward for each.

Algorithm 1 ϵ-greedy Algorithm
Inputs: ϵ parameter. Time horizon T .

1: for t=1,...,T do
2: Toss a coin with probability ϵt.
3: if success then
4: Explore. (Play an arm randomly)
5: else
6: Exploit. (Play the arm with the highest mean reward so far)
7: end if
8: µ̃i,t ← µ̃i,t−1+yt

Nit
(Update the selected arm estimate mean.

9: end for

2.1.2.2 UCB Algorithm

In this case our goal is to estimate the mean reward of each arm using the estimates obtained
from the observed rewards in previous iterations. The idea behind the Upper Confidence
Bound is to define those estimates using confidence bounds for each arm that get updated
every iteration where the arm is played. We will take a classical version of the UCB Algorithm
introduced by Auer (2002). On any given iteration t, the algorithm chooses the action with
the highest current upper confidence bound for the mean reward. This confidence bound is
defined by a certain confidence parameter δt. As the arm is played more and more times, the
confidence interval tightens around the expected mean for the arm. This gives us two scenar-
ios in which an arm k will be played: (1) The estimate reward for such arm is the highest. (2)
The arm has not been played enough times to reduce the Upper Confidence Bound. Taking
into account these two cases, one should select a suitable parameter δt that diminishes the
confidence interval fast enough to choose the optimal arm with high probability at a certain
time t.

Taking all these considerations into account let’s now derive the Upper Confidence Bound
Algorithm. We first need to estimate the upper bound Ũi,t for each arm such that

µi ≤ µ̃it,t + Ũit,t (2.4)

with high probability. The width of the confidence interval depends on how many times that
specific arm i has been played. Therefore, the decision maker selects the arm with the highest
upper bound at each iteration as follows

it = arg max
it∈K

{
µ̃it,t + Ũit,t

}
(2.5)
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Afterwards we need to define a variable that contains the number if times an arm i has
been played at each time t.

Nit =

t∑
j=1

1(ij = i) (2.6)

Subsequently we can use Hoeffding’s Inequality (Bentkus (2004)) to deduce the confidence
Bound. The expression of the inequality applied to the bandit problem is the following

P[µi > µ̃it,t + Ũit,t] ≤ exp(−2NitU
2
it,t) = p (2.7)

We choose a probability p that exceeds the upper confidence bound to then be able to define
such bound in terms of Nit,t and the chosen probability p. In particular we will choose p = t−4

which ensures asymptotically optimal arm selection (Auer (2002)).

Uit,t =

√
− log p
2Nit

=

√
2 log t
Nit

(2.8)

This gives us the following Upper Confidence Bound Algorithm.

Algorithm 2 Upper Confidence Bound
Inputs: p set to t−4

1: for t=1,...,T do
2: it ← arg max

it∈K

{
µ̃it,t−1 +

√
2 log t
Nit

}
3: Observe reward xit,t
4: end for

The regret analysis for the UCB Algorithm was extensively developed by Auer (2002). Let
yti ∈ [0, 1]∀i, t, and let α > 2. Then the bound for the pseudo regret of the UCB algorithm is

RT [UCB(α)] ≤
∑

i:△i>0

(2α lnT

△2
i

+
α

α− 2

)
△i

=
( ∑

i:△i>0

2α

△i

)
lnT +

α

α− 2

∑
i:△i>0

△i

(2.9)

Note that the bound depends on the reward distribution Qi via △i. For distribution free
bounds, one can show that the regret of the α-UCB is always smaller than

√
αnK lnn (Up

to a numerical constant). The lower bound matches the pseudo-regret of any algorithm in
the stochastic MAB setting introduced by T. Lai & Robbins (1985).
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2.1.2.3 Other Algorithms for Stochastic Bandit Problems

Bayesian UCB. Until this point we haven’t made assumptions on the reward distribution
other than it being bounded. The Bayesian algorithms exploit prior knowledge of the rewards
to then compute a probability distribution of the rewards in the next time step. That is, we
try to predict the arm rewards by matching the ones we already have to a known distribution
(Gaussian, Uniform...).
MOSS. This is a version of the UCB algorithm introduced by Audibert & Bubeck (2009)
that stands for Minimax Optimal Strategy in the Stochastic case. It’s main contribution
is that it eliminates the term

√
lnT from the upper regret bound of the α-UCB algorithm

through modifying the confidence level for the Upper Bound. The main drawbacks are its
instability and its arbitrarily bad performance in some regimes compared to the standard
UCB algorithm.

2.2 Contextual Bandits

We consider a K-armed Contextual Bandit problem, that is, a situation where the decision
maker is presented with a certain context at time t and has to choose which action to take
to maximize the cumulative reward. As we are considering a contextual bandit, each arm i
is associated with an unknown parameter β̃i ∈ R which has a dimension proportional to the
Context size. That is, each component of the vector β̃i is associated with a component of the
context vector Xt ∈ Rd for arm i. We observe a different vector Xt when a new individual
comes at each time t. As previously stated, we assume that {Xt}t≥0 is a sequence of i.i.d
samples from an unknown distribution. When pulling arm i ∈ [K], we observe a stochastic
linear reward

Yi,t = X⊤
t βi + ϵi,t. (2.10)

The noise ϵi,t is an independent σ-subgaussian random variable, that is, for all τ > 0 we have
E[eτϵi,t ] ≤ eτ

2σ2/2.

As previously stated in the stochastic bandit algorithms, we will be testing the performance
of our decision policy π using the cumulative expected regret, as it has been used in Bastani et
al. (2017). We will compare our policy with a policy π∗ that knows the true arm parameters
{βi}Ki=1 ∈ R in advance. We call this policy as the oracle’s policy, referring to an external
agent that has full information about the arm parameters prior to the experiment. Then, at
any time T, the expected cumulative regret becomes

Rt =
T∑
t=1

EX∼pX

[
max
j∈[k]

(X⊤
t βj)−X⊤

t βi
]

=
T∑
t=1

EX∼pX

[
π∗
t − πt].

(2.11)

One can see that the above expression is simply a summation over the difference between the
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reward of the decision maker and the optimal reward at each time t.

To be able to compare our results in the same environment as in Bastani et al. (2017), we
need to make three assumptions on the nature of our context vector Xt.

Assumption 1 (Parameter Set). There is a positive constant Xmax and also a constant bmax

such that

∀t ∈ [T ] : xmax||Xt||2 and ∀i ∈ [K] : bmax||βi||2.

That is, the probability density px should not be defined outside the sphere of radius xmax.

The first condition basically ensures that the parameters βi and the context vectors Xt are
bounded. It is standard among any bandit previous work, Abbasi-Yadkori et al. (2011) for
example.

Assumption 2 (Margin Condition). For α = 1 There exists a constant C > 0 such that for

each k > 0.

∀i ̸= j : PX

[
0 < |X⊤(βi − βj)| ≤ k

]
≤ Ckα = Ck

This second assumption sets margin condition on the observed context Xt. We’ve set α = 1
for simplicity, but any value α ≥ 0 can be also studied. As proved in Goldenshluger & Zeevi
(2013), the value of α is critical to define the conversion rate on bandit algorithms, more
specifically, when α = 1 they prove that it matches bounds of O(logT ) regret.

All the assumptions made until this point are shared among most of the bandit literature.
The third assumption however, introduces a condition that guarantees that there is a diverse
enough set of possible contexts under which each arm may be chosen, no matter the estimates
of the arms in the previous a previous time t.

Assumption 3 (Covariate Diversity). There exists a minimum eigenvalue λ0 of EX [XX⊤

I{X⊤u ≥ 0}] for each vector u ∈ Rd.

The later assumption holds for any distribution with probability density pX bounded below
a non-zero constant in an open set situated around the origin. Some examples of distribution
include Uniform Distributions and truncated multivariate Gaussian distributions. A more
detailed view of the later condition and the examples of distribution satisfying all three
assumptions can be found in Bastani et al. (2017).

2.2.1 Greedy Bandit
Specific notation. Our context vectors Xt are indexed together as rows of the context
matrix X ∈ Rn×d and similarly, for i ∈ [K] we define Yi as the vector containing the out-
comes XT

t βi + ϵi,t. As we can only approximate the constants βi through least squares only
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when arm i is played, we need to define a subspace containing only the entries of the context
vector, outcome and idiosyncratic shock of the instances where arm i has been played. Let
Si,t = {j|πj = i} ∩ [t] be the set of times where arm i is played. Therefore, when we refer
to X(Si,t) we refer to the matrix containing the vectors Xt of the instances where arm i was
played until that point.

In order to test the accuracy of the algorithm we will compare the reward of our set of
policies πt with an oracle’s choice π∗ that will always choose the best expected arm through
π∗
t = maxj∈[K](X⊤

t βj). We can then define the instantaneous expected regret as

rt ≡ EX∝pX [max
j∈[K]

(X⊤
t βj)−X⊤

t βi]. (2.12)

We seek to minimize the cumulative regret defined as RT =
∑T

t=1 rt.

2.2.1.1 Algorithm

When a new user with context vector Xt comes, we use the current estimates for all arms to
decide which one to play, i. e., choose which policy to take through πt = argmaxi∈[K]XT

t β̃(Si,t−1).
After playing arm πt, a reward Yπt,t = XT

t βπt+ϵπt,t is observed and the current arm estimated
are updated through

β̃(Sπt,t)←
[
X(Sπt,t)

⊤X(Sπt,t)
]−1

X(Sπt,t)
⊤Y(Sπt,t) (2.13)

It is important to note that we do not update the arm πt estimates if X(Sπt,t)
⊤X(Sπt,t) is

not invertible.

Algorithm 3 Greedy Bandit with original features
Inputs: Context vector Xt for all t ∈ [T ], output vector Y ∈ Rd×1 and finally initialize
β̃(Si,0) = 0 ∈ Rd for all i ∈ [K].
Output: β̃(Si,T ) = 0 ∈ R for all i ∈ [K].

1: for t ∈ [T ] do
2: Check Xt∝ pX
3: πt ← arg max X⊤

i β̃(Si,t−1) (break ties randomly)
4: Sπt,t ← Sπt,t−1∪{t} (Include Xt to the subspace X(Sπt,t))
5: Use arm πt and get Yπt,t = X⊤

i β̃πt + ϵπt,t

6: if X(Sπt,t)
⊤X(Sπt,t) is invertible then

7: Update β̃(Sπt,t) by:
8: β̃(Sπt,t)←

[
X(Sπt,t)

⊤X(Sπt,t)
]−1

X(Sπt,t)
⊤Y(Sπt,t)

9: end if
10: end for
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2.2.1.2 Regret Analysis

The regret analysis for the Greedy Bandit was extensively developed by Bastani et al. (2017).
In the case of k=2 and d=3 they prove a regret bound of

RT (π) ≤
128C0Cx4maxσ

2d(log d)3/2

λ2
0

logT + C
(128C0x

4
maxσ

2d(log d)3/2

λ2
0

+
160bmaxx3maxd

λ0
+ 2xmaxbmax

)
≤ CGB logT = O(logT ),

(2.14)
where the constant C0 is defined in Assumption 2 and

C =
(1
3
+

7

2
(log d)−0.5 +

38

3
(log d)−1 +

67

4
(log d)1.5

)
∈ (1/3, 52). (2.15)

The upper bound scales as O(d3(log d)3/2 logT ) in the context dimension d for the 2-armed
setup. In the case of the lower bound, we use the findings from Goldenshluger & Zeevi (2013)
where they establish a bound of O(logT ) for any two-armed contextual bandit.

The procedure to derive the regret bounds requires a deep statistical analysis of the context
and the steps taken by the algorithm at every iteration. The theoretical demonstrations are
out of the scope of the project.

2.2.2 Other contextual bandit algorithms (GLM-UCB and OLS)
We present the main algorithms to which the Greedy Bandit, and therefore, our modified
version, can be compared to.

Generalized Linear Model Upper Confidence Bound (GLM-UCB). This algo-
rithm is presented by Filippi et al. (2010) and it’s inspired on the Upper Confidence Bound
from Auer (2002). The main goal of comparing the Greedy Bandit with this algorithm is to see
the performance with GLM rewards. Bastani et al. (2017) specifically compares the perfor-
mance of both Algorithms with Logistic rewards, i.e. Yi,t with probability 1/[1+exp(−XT

t βi)]
and 0 otherwise.
The Greedy Bandit clearly outperforms the GLM-UCB algorithm in settings with both 3 and
10 features. The results can be found in Bastani et al. (2017) and allow us to state that our
algorithm performs better than the GLM-UCB in the previously mentioned setup.

OLS Algorithm. The OLS Bandit algorithm was introduced by Goldenshluger & Zeevi
(2013) and generalized by Bastani et al. (2019b). They present an algorithm that builds
on the LASSO Estimator, converting initial high dimensional feature vectors into a reduced
version with only the ones that determine the final reward. It achieves a slightly better upper
bound of O(d2(log d)3/2 logT ) (Note from section 2.2.1.2 that only by a factor of d).
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3.1 Ridge regression
When our context matrix is high-dimensional, the features tend to be highly collinear. The
fact that two or more features are highly linearly related causes the subspace of the covariates
to not be full rank, or close to. In that situation, when our covariates matrix is rank deficient,
it is almost impossible to separate the specific contribution of each feature.

Recovering our OLS formula to approximate the β parameter we have

β̃ = (X⊤X)
−1X⊤Y. (3.1)

The strong multicollinearity we just mentioned causes (X⊤X) to be singular. In contrast,
the only case in which we can define the β parameter is when (X⊤X) exists. The solution
proposed by Hoerl & Kennard (1970) to fix the “almost” singularity of (X⊤X) is to add an
additional term λIp×p with λ ∈ [0,∞). The λ parameter is used to regulate the optimal
contribution of the new term, the so called ridge penalty. Taking all of this into account we
can now define the ridge regression estimator:

β̃ = (X⊤X + λIp×p)
−1X⊤Y (3.2)

for λ ∈ [0,∞). If the value of λ is strictly positive then the estimator is well defined in all
cases. It is also important to point out that each choice of λ leads to a different estimate
of Y. The set of estimators for a λ range is called the solution path of the ridge regression
estimator.

3.1.1 The importance of the Lambda choice
In practice, the optimal value of the λ parameter is not given, and our goal is to find such
value as accurately as possible with the least computational complexity.

In figure 3.2 we plot the test error over a range of λ values for a regression over a set of ran-
domly generated i.i.d. data. It can be seen that the error diverges as the value of λ approaches
0, i.e. the Ridgeless limit. Then the error is kept constant for a range of small values of λ
until a point where it starts decreasing. We then find a global minimum for a certain value
of λ before the impact of the ridge penalty deliberately increases the test error again. That
minimum indicates the optimal value of λ for which our regression model will best fit the data.
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Figure 3.1: Ridge Regression over a randomly generated matrix of covariates X from a normal
distribution N(0, 1) and Y = βX + ϵ with ϵ as a gaussian noise with σ = 10. The figure
contains the test error obtained for a range of values for the λ parameter.

There are many methods that approach the problem of finding the optimal λ for practical
applications. Some of the proposed methods include cross-validation from Allen (1974), L-
curve method from Hansen (2001), restricted maximum likelihood from Bartlett (1937) and
others. We will focus on the cross-validation method, which is probably the most widely used
nowadays.

3.1.2 Cross Validation

When looking at all the methods used to evaluate the prediction error, cross-validation may
be the most commonly used in machine learning procedures. The goal is to sequentially train
and test the model with different partitions of the dataset, then averaging the results and
getting an unbiased final result.

Given a training data (Xi,Yi), i ∈ N ≤ n, and an estimator β̃(λ) that depends on the
value of λ. We discretize the chosen range of λs for which we want to run the test. In our
case we have used a logarithmic range in order to cover various orders of magnitude. Then
the algorithm divides the training set in k equal subsets (5 in our case). The goal is to use
each of those subsets as the test set once we’ve trained our model with the other four sets.
In algorithm 4, one can see the process to conduct a k-fold cross-validation procedure using
ridge regression as the estimator and the prediction error ∥X̃va(Sπt,t,j)β̃(Sπt,t,j) −Yva∥2 as
the performance measure.
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Algorithm 4 Cross-validation Strategy
1: for λ ∈ L do
2: for j = 1 : k do
3: Split X(Sπt,t) in subgroups X(Sπt,t,j) for all j ∈ [K]
4: Xtr(Sπt,t,j)← X(Sπt,t) \X(Sπt,t,j)
5: Xva(Sπt,t,j)← X(Sπt,t,j)

6: β̃(Sπt,t,j)←
[
Xtr(Sπt,t,j)

⊤Xtr(Sπt,t,j) + λI
]−1

Xtr(Sπt,t,j)
⊤Ytr(Sπt,t,j)

7: Test the obtained β̃(Sπt,t,j) in the validation set Xva(Sπt,t,j) and obtain the error
γj,k by
γj,k ← ∥Xva(Sπt,t,j)β̃(Sπt,t,j)−Yva∥2

8: end for
9: end for

10: λt ← Minimum MSE in γj,k for all λ ∈ [K]

Although cross-validation ensures that the analysis does not depend on the order of the
observations, in cases like ours, where we need to predict a suitable lambda choice in every
iteration, the process can easily become computationally non feasible after a certain number
of iterations. The computational cost also depends on the sampling accuracy for our lambdas,
as the algorithm has to conduct ridge regression for each of the singular values within the
chosen range.

3.2 Extended Random Features
In classical statistics, it is often recommended not to use models that have too many features
for a limited amount of observation in order to not “overfit” and therefore have a large
testing error. The classical behavior when the number of features starts increasing keeping
the number of observations fixed follows the classical U-shape:

• Decreasing Test Error
As there are more and more instances that allow the model to reduce the bias as the
information available to predict the parameters increases.

• (Local) Minimum of the Test Error
The model achieves a local minimum where the number of features is optimal.

• Increasing Test Error
The error starts peaking around the interpolation point due to the overfitting.

• Interpolation Thereshold
When the training error vanishes the test error has a peak that needs to be regularized
by the Lambda Value in Ridge Regression for numerical stability.

However, as we add more features, the error starts decreasing again, achieving the global
minimum in the overparameterized regime. This characteristic is common in Deep Learn-
ing methods, where the neural networks often contain way more parameters than training



20 Relevant Machine learning techniques

samples, and they still can interpolate the observed labels, even if those are created by pure
noise. This phenomenon is not only present in neural networks, it has been demonstrated to
appear even in linear regression, as shown in figure 3.2.

Figure 3.2: Ridge Regression over X ∈ Rd′ obtained by adding random features to the original
context X ∈ Rd with ReLU as the activation function (ReLU(x) = max(0, X̃). The
figure contains the plot for various values of λ that modify the stability of the system
around the point where n ≡ d.

In our case, we want to mimic the setup in Mei & Montanari (2019) to understand the way
Random Features can be generated and what specific characteristics make the phenomenon
of the double descent curve appear. As clearly shown in figure 3.2 the behavior of the curve
highly depends on the value of λ to control the peak around the interpolation threshold.

For our analysis we’ve considered the problem of learning an unknown function when given
with i.i.d. samples (Yi,Xi) ∈ R × Rd for all i ≤ n. We generated the covariates Xi from a
d-dimensional sphere of radius 1.

Xi∼i.i.d. = Unif(Sd−1(1)) (3.3)

Then the response is generated by

Yi = fd(Xi) + ϵi (3.4)
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where the noise ϵi ∼ i.i.d. and generated independently of Xi, satisfying that Eϵ(ϵ1) = 0 and
Eϵ(ϵ1

2) = τ .

We apply our extended random features transformation to our context X containing our
entries Xi ∈ Rd. The transforming function will change the dimension of the new context
and coefficients to Rd′ with d′ being the new number of features. Therefore we have

FRF (Ω) =

{
f(Xt; β̃,Ω) ≡

T∑
i=1

β̃iσ⟨Xt, ωi⟩ : β̃i ∈ R ∀i ∈ [T ]

}
(3.5)

where σ : R → R is the sigmoid activation function σ = 1
1−eX and the weights ωi are i.i.d.

random vectors in Rp×1 generated from the distribution N(0, Ip×p′). Then we learn the
coefficients performing Ridge Regression

β̃(λ) = arg min

 1

n

n∑
j=1

(Yj −
T∑
i=1

β̃iσ⟨Xt, ωi⟩)2 +Nλ∥β̃i∥
2

2

 . (3.6)

3.2.1 Activation function (σ)

Activation functions are a critical component of deep learning, as they affect the output,
accuracy and computational cost of the model. They also are critical in determining the
convergence speed or even the network’s ability to converge in the first place.

In summary, activation functions decide weather a neuron should be activated or not and
bring non-linearity to the neural network, otherwise it would essentially be a liner regression
model.

In our case, we want to bring this non-linearity to our contextual bandit approach and
see if we can obtain some of the properties that the neural networks offer. We analyze the
following activation functions:

1. ReLU. The Rectified Linear Unit (ReLU) is a non-linear activation function that has
gained popularity because it does not activate all neurons at the same time. It only
gives a linear transformation if the output is larger than 0, otherwise the neuron is not
activated at all. The expression is the following:

Relu(x) = max(0, x) (3.7)

This is the selected activation function to generate random features for linear regres-
sion in Mei & Montanari (2019), however, in our case it has shown to have a poor
performance in comparison to other functions.

2. Sigmoid. It is also one of the most widely used non-linear activation functions. Its
expression is the following:

sigmoid(x) =
1

1 + e−x
(3.8)
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As it can be easily appreciated in equation 3.8, it normalizes values from 0 to 1. It is
also important to note that if the input values are higher than 1, it will group them
very closely with each other. That is why in our case, we have to make sure that the
Xi components to which we apply the activation function are somehow normalized or
rescaled around the origin.

Depending on the nature of the covariates Xi it can be more optimal to use one or the
other. For example, in the setup shown in figure 3.2, ReLU worked better than Sigmoid to
show the double descent curve effect. However, as we will see in the experimental evaluation,
our Extended Features Greedy Bandit Algorithm performs better with the Sigmoid activation
function in most of the real datasets.
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4.1 General overview of the modifications to the Greedy Bandit

As previously stated, our main objective is to apply the modifications found in the random
features model from deep learning methods and the advantages of ridge penalty to make
the greedy bandit approach more accurate. We’ve tested multiple setups, but always as a
combination of the following key features:

• Ridge Regression

– Fixed Lambda
In this case we use a value of λ ∼ 10−9 with the sole purpose of getting numerical
stability in the interpolation threshold.

– Dynamic Lambda choice through Cross Validation
In this case we choose a certain value of lambda for every incoming context vector
Xt, therefore finding the optimal value for each iteration. However, the main
counterpart is that the process increases its computational complexity at every
run, making it unfeasible in most studied models.

• Extended Random Features
We apply the transformations of the context vectors using the activation function to
bring the results obtained in section 3.2 to our contextual bandit setup. We use two
different methods:

– Fixed number of Random Features
We define the number of extended features beforehand and we keep it fixed for all
t ∈ n.

– Dynamically Adding Random Features
We sequentially add more features as the number of iterations grow. That allows
us to achieve a better accuracy when the number of iterations is low.

We will analyse each of the modifications individually at first, but our ultimate goal is to
end-up using an efficient combination. We will see that the efficient combination is not valid
for all environments, there are certain characteristics from the context vectors that determine
the impact of such modifications. Our goal is to define the conditions for each modification
to be applied.

23
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4.2 Greedy Bandit with Ridge Regression

As we have previously seen, Ridge Regression solves the problems that least squares have
when multicollinearity appears, smoothing the values of the variances proportionally to the
value of Lambda. In our Greedy Bandit modification we will add ridge penalty to the way
we update the value of β̃ giving

β̃(Sπt,t)←
[
X̃(Sπt,t)

⊤X̃(Sπt,t) + λtI
]−1

X̃(Sπt,t)
⊤Y(Sπt,t) (4.1)

When testing Algorithm 5 in real datasets we realize that the main contribution of having
ridge penalty without dynamically finding the optimal lambda for each iteration lies on
ensuring numerical stability among any given context, avoiding the inaccurate rise of the
covariates around the interpolation threshold.

Algorithm 5 Greedy Bandit with Ridge Penalty
Inputs: Context vector Xt for all t ∈ [T ], λ value for ridge regression and, finally, β̃(Si,0) =
0 ∈ R for all i ∈ [K], Xt.
Output:β̃(Si,T ) = 0 ∈ R for all i ∈ [K].

1: for t ∈ [T ] do
2: Check Xt∝ pX
3: πt ← arg max X⊤

i β̃(Si,t−1) (break ties randomly)
4: Sπt,t ← Sπt,t−1∪{t} (include Xt to the subspace X(Sπt,t))
5: Use arm πt and get Yπt,t = X⊤

i β̃πt + ϵπt,t

6: if X(Sπt,t)
⊤X(Sπt,t) is invertible then

7: Update β̃(Sπt,t) by:
8: β̃(Sπt,t)←

[
X(Sπt,t)

⊤X(Sπt,t) + λI
]−1

X(Sπt,t)
⊤Y(Sπt,t)

9: end if
10: end for

The performance of the algorithm is similar to the one seen with the Greedy Bandit algo-
rithm. Having a lower regret bound that scales as O(logT ) as presented by Goldenshluger &
Zeevi (2013). Defining the Upper Bound would be substantially more complex and require a
thorough study out of the scope of this project.

Being able to start approximating the βi weights from the beginning, without worrying if
X(Sπt,t)

⊤X(Sπt,t) is invertible, allows us to have a substancially more accurate bandit for a
low number of iterations in the high-dimensional features case. In chapter 5 we proof such
behavior in synthetic and real datasets.
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4.2.1 Greedy Bandit with Ridge Regression and dynamic λ choice through
cross-validation

It is important to note that in order to select the optimal lambda in each iteration, we have
to evaluate the specific context vector of such iteration to decide which lambda value to use.
Moreover, when working with real datasets, one has to ensure that the previously observed
context vectors are independent and not biased. To do so, we’ve used cross-validation in
every iteration to choose the optimal lambda from a previously defined range.

The pseudo-code for the cross-validation procedure can be found in Algorithm 4. We
basically use ordinary least squares for each value in the lambda range to identify where
does the global minimum for test error reside. Cross-validation allows us to vary the training
and test sample at every iteration multiple times, which ensures the randomness in the
observations.

It is important to note that even though this would be the ideal procedure for all our cal-
culations involving Ridge Regression, it can represent an extremely expensive computational
cost if the range of λ values L is too large. In fact, in our case we have that the computational
complexity is increased by a factor of 5× l with l as the dimension of the λ range L.

4.3 Extended Features Greedy Bandit

The Random Features modification of the Greedy Bandit algorithm is the main contribution
of the project, as it is a setup that, to our knowledge, has not been proposed yet. It considers
a context vector Xt in R1×p, where T is the number of iterations and p the number of features
or dimensions, and a set of generated random weights ω ∼ N (0, Ip×p′) where p′ is the number
of random features that we expect our new context vector X̃t to have.

In our case we’ve mostly used the sigmoid activation function σ. The pseudo-code for the
Extended Random Features transformation can be found in Algorithm 6.

Algorithm 6 Random Features Generation
Inputs: Context vector Xt for all t ∈ [T ]. Dimension of the new context vector d′ (Equiva-
lent to the number of random features)
Output: Modified context vector with extended random features X̃t for all t ∈
[T ].

1: ω ∼ N (0, Ip×p′)
2: for t ∈ [T ] do
3: Check Xt∝ pX
4: X̃t ← σ(Xtω)

With σ : R→ R as the Sigmoid Activation Function σ(Xt) =
1

1+eXt

Note that Xt ∈ R1×d and X̃t ∈ R1×d′

5: end for

It is also important to note that the absolute value of the features is rescaled between 0
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and 1 in order to make sure that, during the transformation of the context vector, the output
is not homogenized to 1 or -1.

4.4 Expected Improvements and final version of the Algorithm

All the modifications brings a different set of advantages that should be analyzed separately.
Each of the advantages described below are proved in chapter 5, both for synthetic and real
datasets.

Ridge Regression. Adding ridge penalty to our arms parameter estimation method
has a huge impact on the datasets with high collinearity between its covariates. As previ-
ously stated, the Greedy Bandit can only choose arms randomly before it gets at least p
observations for each of the arms. Ridge regression allows us to start approximating the
arm parameters from the beginning, as the covariance explosion found in the interpolation
threshold is smoothed by the value of λ.
Note that in the Contextual Bandit setting the algorithm gets to the interpolation threshold
every time the number of observations n in which the arm i has been played is equal to the
number of features p of the context vector Xt. That is, when Sπt,t becomes a p × p matrix.
That means that we have an unstable point for each of our arms.

Extended Random Features. There are two main contributions of such transformation:

• Overparameterized Regime. (Low number of iterations and large number of features)
This is probably the most surprising finding, an increase in accuracy when the number
of features is way larger than the number of observations, even if those features are
randomly generated from pure noise. The theoretical breakdown of such phenomenon
has been developed by Mei & Montanari (2019).

• Non-linear True Reward Functions. (Low number of features and large number of
iterations)
In this case we are looking at the opposite situation, exploring how can our method
improve the accuracy of the classifier when the Greedy Bandit has found the best
linear approximation. What we found is that the more random features we add, the
better can the algorithm fit the true reward function from the context vectors Xt. This
phenomenon is due to the Non-linear nature of the original context and also the fact
that we allow the linear model to detect and fit key features that were hidden in the
original context vector.

Finally, we present the pseudo-code for our Random Features Model for Contextual Multi-
armed Bandits with Non-linear Reward Function in Algorithm 7, containing all the above
presented modifications to the original Greedy Bandit.
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Algorithm 7 Greedy Bandit with Ridge Penalty and Random Features
Inputs: Context vector Xt for all t ∈ [T ], vector of possible λ values L for ridge regression
and β̃(Si,0) = 0 ∈ R for all i ∈ [K].
Output: Trained β̃(Si,T ) ∈ R for all i ∈ [K], Yt as the vector of outputs for regret analy-
sis.

1: ω ∼ N (0, Ip×p′)
2: Initialize β̃(Si,0) = 0 ∈ Rp′

3: for t ∈ [T ] do
4: Check Xt∝ pX
5: X̃t ← σ(Xtω)

With σ : R→ R as the Sigmoid Activation Function σ(X) = 1
1+eXt

Please note that Xt ∈ R1×d and ~Xt ∈ R1×d′

6: πt ← arg max X̃⊤
i β̃(Si,t−1) (break ties randomly)

7: Sπt,t ← Sπt,t−1∪{t} (Include X̃t to the subspace X̃(Sπt,t))
8: Yπt,t ← X̃⊤

i β̃πt + ϵπt,t (Play arm πt and get Yπt,t)
9: for λ ∈ L do

10: for j = 1 : k do
11: Split X̃(Sπt,t) in subgroups X̃(Sπt,t,j) for all j ∈ [K]
12: X̃tr(Sπt,t,j)← X̃(Sπt,t) \ X̃(Sπt,t,j)
13: X̃va(Sπt,t,j)← X̃(Sπt,t,j)

14: β̃(Sπt,t,j)←
[
X̃tr(Sπt,t,j)

⊤X̃tr(Sπt,t,j) + λI
]−1

X̃tr(Sπt,t,j)
⊤Ytr(Sπt,t,j)

15: Test the obtained β̃(Sπt,t,j) in the validation set X̃va(Sπt,t,j) and obtain the error
γj,k by
γj,k ← ∥X̃va(Sπt,t,j)β̃(Sπt,t,j)−Yva∥2

16: end for
17: end for
18: λt ← Minimum MSE in γj,k for all λ ∈ [K]
19: Update β̃(Sπt,t) by:
20: β̃(Sπt,t)←

[
X̃(Sπt,t)

⊤X̃(Sπt,t) + λtI
]−1

X̃(Sπt,t)
⊤Y(Sπt,t)

21: end for

Tunning parameters. The only parameter to decide is the number of random features
to add (p′). For high values of p′ we should expect a lower regret in the initial iterations, due
to the double-descent phenomena in the overparameterized regime. However, after a certain
iterations the algorithm will also get to the interpolation threshold for the new number of
features, losing accuracy and becoming less accurate than the Greedy Bandit. Ultimately, if
the number of features were to be the same as in the Greedy Bandit, for a very high number
of iterations the algorithm would find the optimal linear approximation and stop increasing
the accuracy. In such settings, we should add a high number of random features, as we have
empirically proven that it allows the algorithm to keep improving its approximations when
the Greedy Bandit has already found its limit.





5 Results and simulations
In this chapter we will be testing the presented algorithms in Synthetic and Real Datasets.

5.1 Synthetic Data
We will compare the performance of the Greedy Bandit proposed in Bastani et al. (2017)
under the same conditions. Our approach allows us to directly compare the performance
of our modified algorithm with the other algorithms tested in their paper. Such algorithms
include the OLS Bandit by Goldenshluger & Zeevi (2013), which builds on ϵ-greedy methods,
OFUL by Abbasi-Yadkori et al. (2011), which builds on the UCB method and finally, the
Prior-free and Prior-dependent TS which builds on Thompson Sampling methods.

Data Generation. We need to sample our context vectors and our true arm parameters.
In our case, we don’t have to give any input information about the prior to our algorithm.

• Context vectors. We are sampling the context vectors from a truncated Gaussian
distribution as

Xt = 0.5×N (0d, Id)

in order to keep the linf norm bounded to being at most 1.

• We sample the arm parameters {βi} independently using a mixture of Gaussians as
follows

{βi} =

{
0.5×N (1d, Id), with p = 0.5

0.5×N (−1d, Id), with p = 0.5

• Finally, we set the noise variance to σ2 = 0.25.

Results. In figure 5.1a and 5.1b we used the above setup with 1000 and 2000 time-steps
respectively. The main difference in the setups is the number of features that our context
has. In figure 5.1a we are looking at a context vector with 50 features (d=50) and only 1000
time steps. The results are plotted with a 95% confidence interval after 1000 independent
iterations. It is interesting to first analyze the shape of the greedy bandit curve, which starts
with a slightly better accuracy but then experiences a considerable loss of accuracy around
100 iterations. That can be explained by the fact that a k-armed bandit with 50 features
would get to the overparameterization regime when each of the arms has been played 50 times.

We now analyse the extended features curves. It is straight forward to see that all of them
have the same accuracy for the first 100 iterations, slightly worse than the Greedy Bandit one.
If we now look at the case where p′ = 100, we see that the loss of accuracy happens around
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(a) Large number of features (p=50) (b) Small number of features (p=3)

Figure 5.1: Expected cumulative regret for our Extended Random Features Greedy Bandit with
Ridge Regression algorithm using synthetic data for a 2-armed bandit. The plot has
been averaged over 1000 runs showing a 95% confidence interval.

the expected point, which corresponds to the overparameterization state for each of the 2
arms. We can also see that the more we increase the extended features, the more delayed
is that loss of accuracy, achieving a better accuracy for most of the experiment’s iterations,
proving the success of our approach. In summary, what we can observe from figure 5.1a is
that in cases where we have large number of features and limited samples, one can achieve
a higher accuracy using the extended features transformation than simply using the Greedy
Bandit Algorithm.

In Figure 5.1b we used again a 2-armed bandit but with an original context vector that
only contains 3 features. Looking at the Greedy Bandit curve, one can see that it’s accuracy
is way superior than the rest of the curves with the extended features model. In fact, in a
very few number of iterations the algorithm already converges to the true arm parameters.
The main reason for the extended features algorithm not behaving better than the Greedy
Bandit is the fact that such a low number of features does not affect the curve to experiment
the overparametrization covariance explosion that results in a loss of accuracy.

In Figure 5.2 we take the same values of n, p, and p′ as in Figure 5.2a a and b, but in this
case we are looking at a 3-armed bandit. We can easily see that in this 3-armed context the
accuracy of all the algorithms is considerably reduced, specially with the Extended Features
models. This phenomenon is due to the fact that we are conducting natural exploration with
our Algorithms, meaning that in a setup where the number of arms is large, the algorithm
may leave some arms unexploited after a certain number of iterations. We further discuss
these phenomenon in 5.5b, a case where we have a 3-armed Bandit from a real healthcare
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(a) Large number of features (p=50) (b) Small number of features (p=3)

Figure 5.2: Expected cumulative regret for our Extended Random Features Greedy Bandit with
Ridge Regression algorithm using synthetic data for a 3-armed bandit. The plot has
been averaged over 1000 runs showing a 95% confidence interval.

dataset. For further comparison with the previously mentioned algorithms we refer to Bastani
et al. (2017), but in all the cases where the assumptions we’ve previously made on the context
hold, the Greedy Bandit is the one that performs best.

5.2 Testing on Real Datasets
In this section we are testing the impact of the proposed algorithms in real datasets. As
previously mentioned, our goal is to prove how the Extended Random Features with Ridge
Regression version of the Greedy algorithm can outperform the basic version.
Before starting, we would like to mention that Bietti et al. (2018) has performed an extensive
testing over more than 500 datasets in OpenML and has already shown that in more than
400 settings the Greedy algorithm outperforms the rest. That being said, we have selected 6
of those Datasets to perform a deeper analysis with our algorithm.
Five out of the six Datasets are related to Healthcare, as it has become the main purpose of
the project since the COVID-19 spread around the world. The other Dataset has been chosen
due to its high number of instances (88.000) and relatively low number of features (6). The
6 datasets are the following:

• Breast Cancer Wisconsin (Diagnostic) Dataset.
n = 569, p = 31, K = 2
The features from each entry are computed from an image of a fine needle aspirate
of breast mass. The transformation of the images into a set of meaningful numerical

http://www.openml.org
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
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features was conducted using Multisurface Method-Tree (MSM-T).

• Run or Walk Dataset
n = 88588, p = 6, K = 2
This is the largest dataset used in this project, and it is used to detect if the user is
walking or running. The data comes from the accelerometer and gyroscopic sensors in
an Iphone 5.

The following Datasets where used in Bastani et al. (2017) and will help us compare our
results with the Greedy First Algorithm.

• EEG Eye State Dataset
n = 14980, p = 14, K = 2
All the data comes from one single EEG test during 117 seconds. Such test records the
brain’s spontaneous electrical activity over a period of time. In this case, the purpose
of such test was to detect if the eyes were open (state 1) or closed (state 2).

• Eye Movements
n = 10936, p=22, K = 3
In this Dataset, the decision-maker aims to classify the action of the user in three
categories depending on their Eyes Movements. Thus, becoming a contextual bandit
problem with 3 arms instead of 2 as in the previous Datasets.

• Cardiotocography
n = 2126, p = 35, K = 3
Processed fetal Cardiotocograms with the respective diagnostic features. We classify it
in three cathegories depending on the fetal state (N, S, P).

• Warfarin Dosage
n = 5528, p = 93, K = 3
Warfarin is one of the most commonly used blood anticoagulant in the world. The
problem with it is that the proper dose for each patient varies a lot. Its importance also
comes from the fact that a wrong dosage can have fatal consequences for the patient.

Before testing our Bandit Algorithms on the transformed set of data, we ran a test to see if
the non-linear transformation brought by our sigmoid activation function had better results
in simple Ridge Regression. The steps are the following:

• Randomize the rows of our context matrix X in order to have i.i.d. entries.

• Split the data to get a training set and a validation one.

• Perform Ridge Regression to approximate the weights βi over a range of λs.

• Plot the squared norm of the test error for each value of Lambda

• Repeat the process with the Extended Features version of the context vector.

https://www.kaggle.com/vmalyi/run-or-walk
https://www.openml.org/d/1471
https://www.openml.org/d/1044
https://www.openml.org/d/1466
https://www.openml.org/d/1466
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(a) Breast Cancer Wisconsin (b) Run or Walk (c) EEG Eye State

(d) Eye Movements (e) Cardiotocography (f) Warfarin Dosage

Figure 5.3: Test Error after performing Ridge Regression over a logarithmic range of λ Values.

The results are plotted in figure 5.3 for all the 6 Datasets studied in this project. The
goal is to see that the global minimum for the test error is found in the Extended Features
Regime. That would indicate us that the data is better fit after being transformed by the
sigmoid activation function combined with the random weights w ∈ Rd′ .

We can see that for most of them that is the case, specially for figure 5.3b, 5.3d and 5.3e.
This means that we can better fit the data with linear regression using the randomly trans-
formed context vector than the original one. After carrying the test, we move onto applying
the actual bandit algorithms to the datasets.

Setup. The problem becomes a classification task according to a set of features. That
means, the program will classify the input context at each time t according to the current
estimates for the arm parameters and will receive a binary feedback after executing the action.
The reward will be 1 if the chosen class is the correct one, and 0 otherwise. Please note that
as we are working with a real dataset, we will be evaluating regret rather than Bayes Regret.
Due to the fact that the true arm parameters are given by real data and not simulated from
prior distributions.

In figure 5.4 we mimic the setup by Bastani et al. (2017), showing the four Healthcare
datasets mentioned above. In the results presented by Bastani et al. (2017), one can see a
comparison with the OFUL, prior-dependent TS, prior-free TS, OLS Bandit and an Oracle’s
policy that knows the arm parameters in advance, which sets the limit on how good a linear
model can perform.

One can see a clear advantage of the Extended features version over the Greedy Bandit one
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(a) EEG Eye State (b) Eye Movements

(c) Cardiotocography (d) Warfarin Dosage

Figure 5.4: Graphic representation of the cumulative regret achieved by the presented algorithms
for the four selected healthcare datasets.

on the EEG Dataset (Figure 5.4a). It’s due to the fact that the linear approximation from
the Greedy Bandit can only reach the 36% average regret, because of the non-linear nature
of the covariates. In fact, the Oracle’s policy regret matches the one for the Greedy Bandit.
In figure 5.4b we can see that although the accuracy in the first 4000 iterations is worse in
the extended features version, the decreasing slope is stronger than in the Greedy Bandit,
making the extended features version the most accurate one after 6000 iterations. In this
case both algorithms are still far from the optimal arms true parameters, which according
to the oracle’s choice, would set the accuracy to 49% with the linear approximation. Figure
5.4c shows a remarkable improvement with respect to the Greedy Bandit, mostly because the
substitution of OLS with Ridge Regression. In the case of the greedy bandit there are some
instances in which the matrix becomes singular and therefore not invertible. That causes the
difference of accuracy in this case. Finally, in figure 5.4d, we can see that for the Warfarin
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Dataset the Greedy Bandit outperforms the Extended features model for most of the itera-
tions. This case is quite special due to the little number of instances in which a certain arm
is played, we take a further look into it in figure 5.5.

(a) Warfarin Dosage for 1000 instances (b) Histogram of arm usage

Figure 5.5: Further study of the Warfarin Dosage dataset. Figure 5.5a shows the performance of the
first iterations of both algorithms. Figure 5.5b shows an histogram of the usage of each
arm over time t.

The main goal of our study is to proof a better performance in a situation where we have
a lot of features and a limited amount of iterations. We’ve seen in Figure 5.4a, 5.4b and 5.4c
that the extended features model outperforms the Greedy Bandit after many iterations, due
to the better fit brought by the non-linear transformation applied to the context. However, in
Figure 5.4d, we have a case in which apparently, the Extended Features model does not bring
any improvement to the Greedy Bandit, as the cumulative regret after 5000 iterations keeps
getting worse as we add more features. The key performance of our model in this specific case
is found during the first 400 iterations, where the Extended Features Model has way more
features than instances in which the arms have been updated. Figure 5.5a shows a zoomed
view of the mentioned results, proving that for a limited number of iterations and a relatively
high number of original features, the best performance is achieved in the overparameterized
regime brought by the Extended Features model.

It is also important to analyze why even the Greedy Bandit does not achieve a good
accuracy in cases like the Warfarin dataset (Figure 5.4d). In most cases, the problem lies in
the fact that one or more arms end up being unused due to the limited amount of instances
in which they have to be used. Therefore, even when it would be optimal to play that arm,
the algorithm does not choose it. That phenomenon can be seen in figure 5.5b, where the
high dosage patients stop being identified after a certain number of iterations.

Finally, we will analyze the results for the remaining datasets, one with a low number of in-
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(a) Breast Cancer Diagnosis (b) Run or Walk dataset

Figure 5.6: Graphic representation of the cumulative regret achieved by the presented algorithms.

stances but high number of features (Breast Cancer Diagnosis) and another with an extremely
large number of instances and only 6 features (Run or Walk Dataset). These Datasets were
chosen because they clearly show the two main contribution of our algorithm, the advantages
of overparameterization in figure 5.6a and the advantages of a nonlinear parameterization in
figure 5.6b.

In figure 5.6a one can see that the more features we add, the more we displace the curve of
over-fitting the arms, increasing the accuracy for low iterations. This can be used as a proof of
the accuracy of the method when giving diagnosis on patients according to their sympthoms.
And more importantly, it represents an improvement in the previous work when the number
of patients is limited.

On the other hand, Figure 5.6b shows the results when the Algorithms are applied to a
series of Iphone sensors feedback (6 in total) to determine if a person is running or walking.
We can see that in this case, the more random features we add, the better is the cumulative
accuracy. It proves that in such applications, a non linear transformation of the context
vector can allow a better fit using linear methods afterwards.



6 Conclusions and discussion
In this work, we have explored the Greedy Bandit setting, which is proved to be the most
desirable option in settings where exploration is expensive (clinical trials) and also is proven
to be the most accurate in the contextual bandit setting, as shown by Bietti et al. (2018) in
multiple real datasets. We also chose the Greedy Bandit because it does not have a parameter
to be tuned, and therefore, can adapt to all sort of context.

We have focused on exploring what machine learning techniques could bring better per-
formance to the greedy bandit in the situations where it has the least accuracy. The first
improvement comes with the addition of ridge penalty to the OLS method to approximate
the value of β. That allows us to use Greedy from the start instead of choosing the first
set of arms uniformly. Moreover, adding the random features to each of our context vectors
xt allows us to take advantage of the Double Descent Curve phenomenon usually present
in Deep Learning processes. In summary, ridge regression and the random features model
has allowed us to radically improve accuracy, both in synthetic and real datasets, for highly
dimensional covariates and a relatively low number of instances.

Another notable improvement brought by the Extended Random Features model can be
seen when the Greedy Bandit achieves the best linear approximation possible. When adding
more features, even though they are generated from pure noise, the algorithm is capable of
interpolating more hidden features than with the original context. That phenomenon causes
an increase of accuracy directly dependent on the number of random features generated.
We’ve proven such effect for 2-armed and 3-armed context with a relatively low number of
features and a high number of iterations.

All the assumptions have been tested under the same conditions as in Bastani et al. (2017)
and in multiple different datasets to proof its adaptability to any set of contexts. The fact
that we have shared those conditions allows the reader to compare our algorithm with the
ones proposed in their paper. We’ve seen that our proposed method can at least achieve
the Greedy Bandit accuracy, making it superior to the standard Bandit Algorithms (UCB,
ϵ-greedy, Thompson Sampling...) in all the observed results.

The obtained results present a worth exploring setup for situations in which the available
information is limited and we have a lot of variables to take into account. The recent COVID-
19 crisis could have been one of the cases in which the proposed algorithm could have made
a difference when deciding how to allocate testing at the beginning of the pandemic. The
problem formulation would turn testing or not into the 2 arms to be pulled with a binary
reward only received when the choice is the correct one. That situation would have involved
a high-dimensional features vector, containing all the characteristics and symptoms of the
patients, and would have a limited number of observations, due to the scarcity of the tests
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during the first weeks of the pandemic. The only modification needed to the actual algorithm
would be a dynamically restrain on how many times the “testing arm” could be pulled, as
the number of tests would be limited.

The next steps for this project would be to develop a method to evaluate each specific set
of context and be able to determine if they would benefit from the non-linear transformation.
In our case, we’ve checked the non linearity of the context vector by running Ridge Regression
for both algorithms over a λ range, but this could only be done because we had all the data
in advance.

The conducted study opens the door to a deeper theoretical exploration focused on defin-
ing what set of conditions must the environment have and what are the expected theoretical
regret bounds. It has brought new techniques to approach non-linear true reward functions
with simple transformations that can have an impact on a wide set of applications.
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