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Abstract 

The greatest advances in the biomedical field would not have been possible without 

microscopy. The higher the resolution of the image obtained, the more details one can 

know about the sample. In the last few decades, microscopy have progressed from 

differentiating objects at millimetres of distance to the nanoscale. 

The latter accuracy is achieved using the contemporary super resolution microscopy, 

including Single Molecule Localization Microscopy, examples of which are the 

fluorescence microscopy techniques PALM and STORM. This kind of imaging method 

is done by stochastically activating and deactivating a set of fluorescent molecules 

distributed in a sample, taking a picture of it with a CCD camera in every switch, and 

then processing all the frames to obtain a final image. 

However, nowadays precision is of tens of nanometres, which suggests that there is still 

room for improvement. Furthermore, the state–of–the–art super resolution techniques still 

exhibit certain drawbacks such as overlapping between emitters PSFs and the difficulty 

to make molecular tracking especially due to photobleaching. 

Therefore, some techniques have recently been developed to improve super resolution 

microscopy, such as MINFLUX and DeepSTORM. MINFLUX aims to minimize the 

number of emitted photons required for the localization of molecules with the main 

objective of being able to do molecular tracking, while DeepSTORM focuses on 

eliminating the overlapping of PSFs using a Deep Learning algorithm to create a phase 

mask that generates a suitable PSF for this purpose.  

In this project both techniques are to be combined expecting to obtain highly accurate 

estimations of the emitters’ two–dimensional positions with resolutions of units of 

nanometres, while avoiding overlapping of PSFs in highly dense samples and minimizing 

the number of photons emitted per fluorophore. 
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1. Introduction 

1.1. History of microscopy  

The global pandemic caused by the COVID-19 virus has led to the need to swiftly 

investigate and learn about biological agents, once again demonstrating the importance 

of microscopy and to improve the resolution of the existent optical microscopes by 

developing new super resolution techniques.  

Indeed, if it were not for the invention and progress of microscopy, the greatest advances 

and discoveries in the medical and biological fields among others, could not have been 

possible. Anton van Leeuwenhoek from Delft, Holland, often named the father of 

microscopy, is to owe for that because he invented in the 17th century the first, small and 

simple microscope. It was made of only a single lens with a magnification of up to 270 

x, allowing him to observe, for the first time, cells and bacteria.  

But it was not until the 19th century when real technological advances emerged, specially 

thanks to the work of Joseph von Fraunhofer to correct chromatic aberrations and Carl 

Zeiss setting up his own business with the goal of creating high–quality research 

instruments.  

Thus, conventional microscopy such as wide-field transmission microscopy or others 

using compound and simple microscopes was born [1]. And when Dr. Ernest Abbe started 

to work for Zeiss, he formulated his wave theory of microscopic imaging and defined 

what is now known as Abbe’s diffraction limit. The diffraction limit originates from the 

wave nature of light [2], entailing that the numerical aperture (NA) of the objective lens 

has to be large enough to have, at the intermediate image plane, the first-order diffraction 

pattern produced by the sample at the wavelength 𝜆 of the incident illumination. Figure 

1.1. shows a schematic of that proposition.  

Hence, Ernest Abbe claimed that objects closer than a distance 

 𝑑 =
𝜆

2 𝑁𝐴 
 (1.1.) 

cannot be discerned. For the highest immersion oil NA lenses and visible light, that 

distance d is at best 200 nm [3]. 
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Figure 1.1. Scheme of a simple microscope and diffraction pattern formed in the 

intermediate image plane. Distance d indicates the diffraction–limited resolution. 
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However, super resolution methods that have been developed in recent years such as 

photoactivated localization microscopy (PALM) and stochastic optical reconstruction 

microscopy (STORM) allow nanoscale visualisation of biological agents. These two 

techniques use fluorescence localization based on the stochastic on and off switching of 

fluorescent emitters in the sample. The resolution is now limited by the localization 

precision and the density of fluorophores, not any longer by the diffraction limit [4]. 

The images taken by the aforementioned microscopy 

techniques, used to recover the position of the 

fluorescent molecules in the sample, show the 

convolution of the object (the fluorophore) and the 

point–spread function (PSF) of the optical system 

when incoherent illumination is used, i.e. the 

microscope does not transform a point in the object 

space into a point in the image plane but what you get 

is a diffraction figure which is the PSF, as in the case 

shown in Figure 1.2. The PSF describes the impulse 

response of the system to a point–like sample, 

occupying a volume in space because it has an 

extension in the transverse plane and also in the axial direction [5].[6] 

In Figure 1.1. the diffraction pattern in the intermediate image plane, also known as 

Fourier plane, would correspond to the PSF if the sample was an ideal point–like source.  

When in the object plane you have a sample formed by a set of points, in the image plane 

you will have the convolution of this object with the PSF of the system: 

 𝐼(𝑥, 𝑦) = 𝑜(𝑥, 𝑦) × ℎ(𝑥, 𝑦) + 𝑁(𝑥, 𝑦), (1.2.) 

where 𝐼(𝑥, 𝑦) represents the intensity distribution of the image, 𝑜(𝑥, 𝑦) states for the 

intensity function of the object, ℎ(𝑥, 𝑦) is the intensity function of the PSF and 𝑁(𝑥, 𝑦) 

represents the background noise of the system [7], [8]. 

Therefore, to have a good image a convenient solution is to decrease the footprint of the 

PSF by, for example, increasing the NA of the lenses and decreasing the wavelength of 

the illumination. 

1.2. Localization microscopy 

The state–of–the–art localization microscopy consists of processing a set of camera 

images (103–106 frames) of the sample while fluorophores stochastically activate and 

deactivate. Each frame shows many point–spread functions of the active emitters in the 

field of view (FOV) appearing as blurry spots that can sometimes overlap, as seen in 

Figure 1.3.  

Figure 1.2. Scheme of imaging 

with a microscope, the final image 

is the convolution of the object and 

the PSF of the system [6]. 
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For each frame, the position of the emitters can be accurately recovered by fitting a PSF 

model to the data. This results in an image of the sample in which the diffraction limit 

has been overcome [9], [10]. 

Nevertheless, if the frame consists of overlapping PSFs, recovering the position of the 

emitter from the images can be arduous, getting a high number of false position 

estimations.  

Next to the established Single Molecule Localization 

Microscopy (SMLM) methods like PALM and STORM, 

new techniques are being developed in order to increase 

the resolution or allow image a densely labelled sample in 

a short time (in 3D), such as MINFLUX [11] and 

DeepSTORM [10] which will be adopted in this project. 

MINFLUX was created with the objective to increase the 

resolution while reducing the number of required 

collected photons. In MINFLUX, the sample is 

illuminated with a donut–shaped beam in four different 

positions, three of them forming an equilateral triangle 

and the other one being the centroid of the latter. From the 

different number of photons obtained at each position, 

i.e., the different photon counts 𝑛𝑖  with 𝑖 ∈ {0, 𝐾 − 1} 

being K the number of different detections (𝐾 = 4 in this 

case), the location of the emitter is estimated using a 

maximum likelihood estimator (MLE). However, the technique has some disadvantages, 

as for a large FOV this is a very slow technique. Besides, the four positions must be 

already close to the location of the emitter (within the diffraction limit) to improve over 

standard SMLM. 

DeepSTORM is a possible solution to overlapping PSFs due to many active emitters per 

frame for 2D and specially 3D imaging [12]. It is a method of PSF engineering that learns 

via Deep Learning to generate a phase mask. This mask is introduced with a Spatial Light 

Modulator (SLM) to the imaging path [13] of the optical system and is programmed so 

that the PSF shape of the system changes with the axial position while having an as small 

as possible footprint in the image to avoid overlapping. DeepSTORM3D operates using 

a Convolutional Neural Network (CNN) for analysing the sample in regions where PSFs 

overlap. It uses an engineered PSF that is designed optimally for 3D localization over an 

axial range of 4 µm.  

When a physical–simulation layer with an adjustable phase modulation is added to the 

CNN, it is possible to learn the optimal PSF for its purpose and the associated localization 

algorithm.  

 

Figure 1.3. Simulated camera 

detection of the emission of 

active fluorophores during a 

SMLM experiment, using the 

Thunder-STORM plugin for 

ImageJ developed by Nehme, 

E. et al. [10]. 
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1.3. Statistics in localization microscopy  

In order to evaluate the precision of the proposed measurement scheme in MINFLUX, 

the Cramer–Rao Low Bound (CRB/CRLB) has to be calculated. For that, one has to 

compute the Fisher information that the photon counts 𝑛𝑖 collected in an experiment hold 

of the fluorophore’s location. The number of photon counts are the result of multiplying 

the total number of photons emitted (N) by the intensity detections 𝐼𝑖 for every exposure 

of the emitter. 

Those 𝑛𝑖  follow a Poissonian distribution with mean λi, i.e. 𝑃(𝑛𝑖) ~ Poisson(𝜆𝑖): 

 𝜆𝑖 = 𝑐𝑒𝑞𝑒𝜎𝑎𝐼𝑖(�̅�), (1.3.) 

where 𝑐𝑒  is the collection efficiency of the system, 𝑞𝑒  its quantum yield and 𝜎𝑎  the 

absorption cross–section of the emitter at the illumination’s wavelength.  

For an easier analysis, one can compute the probabilities for 𝑛𝑖 conditioned to N, yielding 

to multinomial statistics, i.e. 𝑃(�̅�|𝑁) ~ Multinomial(�̅�|𝑁) , being p̅  the parameter 

vector: 

 𝑃(�̅�|𝑁) =
𝑁!

𝑛0!…𝑛𝐾−1!
∏ 𝑝𝑖

𝑛𝑖  𝐾−1
𝑖=0 , (1.4.) 

 𝑝𝑖(�̅�) =
𝜆𝑖

∑ 𝜆𝑗
𝐾−1
𝑗=0

 𝑤𝑖𝑡ℎ 𝑖 ∈ {0, 𝐾 − 1}. (1.5.) 

In equations 1.3. and 1.5., �̅� is the position of the fluorophore.  

The Fisher matrix 𝐹�̅� has to be calculated to measure the information that the 𝑛𝑖 hold on 

the emitter position �̅�, which belongs to the d–dimensional space, �̅� = [𝑟1 …𝑟𝑑]𝑇. This 

can be done more easily if the Fisher information matrix for �̅�, 𝐹�̅�, is computed first, 

because it can be obtained more directly. Then the reparameterization: 

 𝐹�̅� = 𝒥𝑇𝐹�̅�𝒥 (1.6.) 

is used, where   

 {𝐹�̅�}
𝑖𝑗

= 𝑁 (
1

𝑝𝐾−1
+

𝛿𝑖𝑗

𝑝𝑖
)  𝑤𝑖𝑡ℎ 𝑖, 𝑗 ∈ {0, 𝐾 − 2}. (1.7.) 

𝛿𝑖𝑗  is the Kronecker delta function and 𝒥 ∈ ℝ(𝐾−1)𝕩𝑑  is the Jacobian matrix of the 

transformation from the �̅�-space to the �̅�-space where 𝑖 ∈ {0, 𝐾 − 2}, and therefore: 

 𝒥 =

[
 
 
 

𝜕𝑝0

𝜕𝑟1
⋯

𝜕𝑝0

𝜕𝑟𝑑

⋮ ⋱ ⋮
𝜕𝑝𝐾−2

𝜕𝑟1
⋯

𝜕𝑝𝐾−2

𝜕𝑟𝑑 ]
 
 
 

. (1.8.) 

Once the Fisher information matrix is obtained, a lower bound for the covariance matrix 

of the fluorophore position (𝐶𝑜𝑣𝑎𝑟(�̅�)) can be derived from the Cramer–Rao inequality: 



On the optimisation of Single Molecule Localization Microscopy using Deep Learning 

 
8 

 𝐶𝑜𝑣𝑎𝑟(�̅�) ≥ 𝐶𝑜𝑣𝑎𝑟𝐶𝑅𝐵(�̅�) = 𝐹�̅�
−1. (1.9.) 

Consequently, the mean Cramer–Rao Low Bound (CRLB) is: 

 �̃�𝐶𝑅𝐿𝐵 = √
𝑡𝑟(𝐶𝑜𝑣𝑎𝑟𝐶𝑅𝐵)

𝑑
. (1.10.) 

For the purpose of estimating the location �̂� of a fluorophore, however, in SMLM with 

MINFLUX a position estimator is needed, for example an MLE, that is defined as: 

 �̂�𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥 ℒ(�̅�|�̅�), (1.11.) 

where ℒ(�̅�|�̅�) is the likelihood function dependent on the probability distribution defined 

in equation 1.4., and to obtain the estimator one has to maximize the log–likelihood 

function. 

Thus, in order to estimate the 2D position of the emitter with the four donut–shaped beams 

already mentioned in section 1.2., one has to maximize numerically: 

 ln ℒ(�̅�|�̅�) ∝  ℓ(�̅�|�̅�) = ∑ 𝑛𝑖 ln(𝑝𝑖)
𝐾−1
𝑖=0 , (1.12.) 

where a simplified likelihood function ℓ(�̅�|�̅�) is defined using equation 1.4.  

Other estimators can be used, such as a least mean square estimator (LMSE) or a 

numerically unbiased LMSE [11]. In addition, one can also modify this methodology to 

make a 3D position estimation and recover also the axial position of the molecule. In the 

simulations carried out in this thesis, only 2D localization will be considered.  

1.4. Social context 

It is important to notice that this project has been developed under extraordinary 

circumstances. The global crisis that started in February 2020 due to the coronavirus 

(COVID-19) pandemic has affected our lives in ways we could not have imagined. A 

serve number of deaths, the anxiety and desperation of confronting the unknown, the lack 

of medical resources, the lockdowns, … are important factors to take into account in order 

to acknowledge the work behind the thesis. By cause of the lockdown policies adopted 

by the majority of worldwide governments, remote working and online classes have been 

accepted as alternatives to the previous normality. This may cause learning difficulties, 

because it makes it more difficult to contact (and stay in contact) with supervisors and 

professors, in addition to forcing us to re-educate ourselves in other ways of working and 

learning. Also, I started this project in the Netherlands, in the Technical University of 

Delft, granted with an Erasmus + apprenticeship, but due to the exceptional circumstances 

I had to go back to Barcelona and work remotely from another country with more 

restrictive policies than the country of destination, thus generating an imbalance between 

will and possibility. The objectives proposed originally with respect to the Deep Learning 

have had to be reconsidered since the difficulty of access to support has made it 

impossible to create an analytical model of the PSF. 
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1.5. Objectives 

The main objective of this thesis is to optimize the Single Molecule Localization 

Microscopy (SMLM) performance. 

 Specific objectives        sssss 

➢ To understand MINFLUX [11] and determine its efficiency. 

 

➢ To research whether or not the MINFLUX method can be improved manually by 

changing the setup established. 

 

➢ To research whether or not the MINFLUX method can be improved manually by 

changing the set parameters. 

 

➢ To explore the possibility of performing MINFLUX with a parabolic or Gaussian 

beam shape rather than the donut. 

 

➢ To optimise the shape of the beam used in MINFLUX with a Deep Learning 

algorithm, minimizing the footprint of the PSF of the system. 

 

➢ To understand the Deep Learning code developed by Nehme, E. et al. [12] and 

adapt it to MINFLUX requirements. 

 

➢ To use the phase mask obtained with the Deep Learning code to generate a PSF 

that can be used in the MINFLUX method improving its performance. 

 

1.6. Outline 

In the second section of this thesis the research procedure will be detailed. Briefly, a 

MATLAB code has been generated to do a statistical analysis of the performance of 

different approaches to MINFLUX. Then, a code in order to compute the area of certain 

PSFs and one to obtain the CRLB from the Fisher information matrix has been 

programmed. An area–optimisation algorithm has been introduced in the Deep Learning 

code developed by Nehme, E. et al. [12]. An adaptation of all functions comprising the 

aforementioned Deep Learning algorithm has been done with the aim of introducing the 

MINFLUX methodology in it and generating a mask for the illumination in 2D instead 

of three–dimensions. The results obtained will be then discussed and conclusions will be 

extracted.  
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2. Method to improve super resolution: Evaluation 

With the aim of implementing the MINFLUX technique into the Deep Learning code 

created by Nehme, E. et al. [12], the first approach to be taken is to reproduce the method 

with a MATLAB algorithm and perform several testing in order to research the key 

parameters and the possibility of improvement of the method. Once familiarization with 

MINFLUX is gained, the Deep Learning code will be studied and adapted to obtain a 

phase mask that can modify the PSF of the system for a better performance of SMLM. 

2.1. Implementation of MINFLUX  

First of all, the theory of the MINFLUX technique has to be implemented into a 

MATLAB code, that can be found in the Annex of this thesis, in order to control the 

method.  

MINFLUX purpose is to use an illumination intensity near to zero to excite the 

fluorescent molecules, modelled as point–like emitters. However, to find their location, 

the intensity profile should not be uniform, but have a minimum. Thus, the photon counts 

obtained when illuminating an emitter will depend on the proximity of the minimum of 

the illumination intensity to the molecule, tending to zero when they correspond. 

Therefore, the key in MINFLUX is the illumination beam shape or pattern. It is proven 

[11] that a donut–shaped beam has a very good performance in this methodology. The 

CRLB is reduced compared to flat–field illumination.  

In MINFLUX, illumination is done four times, changing the beam position as in the 

vertex of an equilateral triangle and its centroid, as shown in Figure 2.1. The 

displacement of the beams (L), i.e., the diameter of the circumference that forms the 

vertices of the triangle formed by the different beam positions, is an important parameter 

to be taken into account.  

Figure 2.1. Scheme of the different beam positions in an experiment using MINFLUX. The 

location of the beams depends on the location of the target emitter, that should be comprised 

within the circumference formed by the position of the beams. 

�̅�0 

�̅�1 

�̅�2 

�̅�3 
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Reducing it diminishes the 

probability of overlapping and 

therefore exciting other molecules, 

which would make the localization 

of the emitter erratic. The scan 

region defined by parameter L must 

be smaller than the diffraction limit, 

but at the same time the 

circumference has to contain the 

molecule, which location has to be 

found or approximated before 

performing the experiment. Thus, 

one could start with a higher value 

of L and decrease it iteratively. 

A brief description of the physics 

behind localization microscopy, 

introducing the concept of PSF, can 

be found in sections 1.1. and 1.2. of 

this thesis. The illumination 

intensity will follow the donut 

profile: 

 𝐼𝑑𝑜𝑛𝑢𝑡 = 𝐴0 4𝑒 ln 2
𝑟2

𝑓𝑤ℎ𝑚2 𝑒
−4 ln 2

𝑟2

𝑓𝑤ℎ𝑚2  , (2.1.) 

where A0 is a normalization constant, fwhm is a size–related parameter for the donut and  

 𝑟 = (�̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟 − �̅�𝑏𝑒𝑎𝑚 𝑖
) (2.2.) 

for 𝑖 ∈ {0, 𝐾 − 1} with K = 4 the total number of different positions for the illumination 

beams, thus leading to the four percentages: 

 %𝑖 =
𝐼𝑑𝑜𝑛𝑢𝑡 𝑖

∑ 𝐼𝑑𝑜𝑛𝑢𝑡 𝑖
3
𝑖=0

. (2.3.) 

When the percentage is multiplied by the total number of photons (N), one gets the photon 

counts ni for the different exposures of the emitter. 

Following the steps described in section 1.3., a Maximum Likelihood Estimator is 

programmed with the aim of recovering the position of the simulated emitter. The MLE 

is computed for 1000 different Poisson noise (𝜆𝑏) additions to simulate a real experiment 

which will surely obtain a noisy measurement due to instrumental limitations. A vector 

that contains the 1000 estimated positions of the active fluorophore is therefore obtained. 

Figure 2.2. Flowchart describing the computation 

of an MLE while using the MINFLUX method. 
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Implementing this process into a MATLAB code, which Figure 2.2. describes, one can 

simulate a localization microscopy experiment using MINFLUX, the results of which can 

be seen in Figure 2.3. 

 

In Figure 2.3. it is shown a localization experiment for an emitter located at (16.7, 16.7) 

nm, (80, 10) nm and (120, 150) nm, respectively. The estimation of the position gets more 

erratic the more distance between the location of the emitter and the region within the 

circumference formed by the vertices of the equilateral triangle of beam positions, 

inducing to consider that region as of convergence. 

Turning this code into a function and performing the same analysis for the different 

emitter positions possible in a lattice 50 x 50, with axis going from -60 to 60 nm in the x 

and y directions, the matrixes of the Standard Deviation (STD) and Root Mean Square 

Error (RMSE) of this method can be calculated using the saved 1000 location estimations 

for each iteration, as follows: 

 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝐴𝐸) = |�̅�𝑀𝐿𝐸 − �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟|, (2.4.) 

 𝑅𝑀𝑆𝐸 =
√∑ 𝐴𝐸𝑡

2𝑇
𝑡=1

𝑇
, (2.5.) 

with T the total number of repetitions of the process, i.e., 2500 in the case of study. The 

STD is directly computed with a MATLAB auxiliary function std(), obtaining the 

standard deviation of the different estimated positions for each emitter possible location 

in the lattice, separating its components x and y. 

The STD and RMSE data mentioned is computed for each possible position of the emitter 

in the lattice and is then plotted, as it is shown in Figure 2.4. 

In Figure 2.4. the existence of a convergence region aforementioned in Figure 2.3. is 

shown clearer, especially in Figure 2.4.C.  

Furthermore, the CRB is determined with the following equation, derived from equation 

1.10.: 

Figure 2.3. Estimation of the position of the emitter in a SMLM simulation using an MLE as 

described in the MINFLUX technique, for three different positions of the fluorophore. It can 

be seen that the circumference formed by the vertices of the equilateral triangle constituted by 

the different beam positions surrounds the convergence region of the method. 
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 �̃�𝐶𝑅𝐵(�̅�) =
𝐿

2 √2𝑁
(1 −

𝐿2 ln(2)

𝑓𝑤ℎ𝑚2)
−1

√(1 +
1

𝑆𝐵𝑅(�̅�)
) (1 +

3

4 𝑆𝐵𝑅(�̅�)
), (2.6.) 

where SBR is the signal–to–background ratio: 

 𝑆𝐵𝑅(�̅�) =
∑ 𝜆𝑖

𝐾−1
𝑖=0

4𝜆𝑏
≈

𝑐𝑒𝑞𝑒𝜎𝑎 ∑ 𝐼𝑖(�̅�)𝐾−1
𝑖=0

4𝜆𝑏
, (2.7.) 

see equation 1.3. for the symbols. Calculating the CRB for each possible position of an 

emitter in the sample, the mean value of the CRB obtained is 1.22 nm. 

The execution time of this code is of 3 hours in a computer with Intel7–6700HQ, 16 GB 

of RAM and a GPU NVIDIA GTX960M. 

 

2.2. Examining the potential of the method  

Once the main setup is established, for a better understanding of the method, to research 

if it is possible to improve its performance, and in order to define the need of changing 

the created code when the conditions differ, several tests are to be done. With different 

shapes for the illumination beam, a different setup and trying to reduce manually the area 

of the beam, to avoid overlapping. 

2.2.1. Rhombic pattern   

In [11] it has been proven that with a donut–shaped beam, illuminating four times the 

sample with beam positions forming an equilateral triangle and its centroid, has a better 

performance than only doing one measurement also with the donut–shaped beam or with 

flat–field illumination.  

To confirm this statement, one possible approach is to look at the likelihood function for 

four different situations. In each of them, a different number of illuminating beam 

Figure 2.4. (A) Standard Deviation for the x component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (B) Standard Deviation 

for the y component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟 , in nm. (C) Root Mean Squared Error for the estimation of the 

emitter’s location, in nm. Simulation done for L = 100 nm, N = 1000 and fwhm = 360 nm. It can be 

seen that, as assumed, the circumference that the vertices of the equilateral triangle corresponding to 

the different beam positions comprises the convergence region. 

(A) (B) (C) 
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positions, from one to four progressively, and with different locations, is used to activate 

the molecules in the sample, as in Figure 2.5., where the emitter is situated at (11,6) nm. 

 

It can be seen that it is not possible to determine the position of the fluorophore with just 

one illumination donut-shaped beam because the likelihood function has the same value 

for every position of the lattice, zero. Nonetheless, when the number of exposures of the 

sample is increased, it is shown that it gets increasingly more plausible to locate the 

emitter, as the region where the likelihood function has a greater value diminishes 

gradually. However, the estimation presents a high error until four beams are used.  

Despite that, there is no explicit reason to explain the decision of using the “equilateral 

triangle and centroid” pattern to illuminate the sample. Therefore, one can try another 

setup for the beam positions with the aim of improving the efficiency of the method.  

In this work, it has been followed the hypothesis that a parallelogram–based beam 

distribution in space, if the shape has good symmetry properties, would have a nice 

performance such as the equilateral triangle. As a rhombus is like mirroring the equilateral 

triangle, the distribution of the beams to try will follow that shape. The new configuration 

Figure 2.5. (A) Likelihood function for a simulation done with one beam. (B) 

Likelihood function for a simulation done with two beams. (C) Likelihood function 

for a simulation done with three beams. (D) Likelihood function for a simulation done 

with four beams, as in MINFLUX. Each experiment done for L = 100 nm, N = 1000 

and fwhm = 360 nm, for an emitter located at x = 11 nm and y = 6 nm. 

(A) (B) 

(C) (D) 
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will follow the same pattern as in section 2.1. changing the centroid position to that of 

the rhombus and positioning a fifth beam as the fourth vertex of the rhombus.  

Besides, from the known information on the likelihood function thanks to the previous 

analysis, one might expect that adding a new beam position will make the estimate better. 

A modification to the MATLAB code generated in section 2.1. has been done in order to 

simulate the situation stated in this section and conclude whether or not the new pattern 

of exposures of the sample is more efficient and gives better localization precisions. The 

new code can be found in the Annex of this thesis. 

From Figure 2.6. one can conclude that the original beam distribution showed a greater 

performance, because although the symmetries of STD and RMSE are respectively very 

similar to those in Figure 2.4., the value of the error increases, especially outside the 

convergence region.  

 

Moreover, if the emitter position coincides with some of the beam, the estimation would 

be less precise for the rhombus setup case than for the original, which shows a subtle 

decrease in error in this specific situation that can be seen in Figure 2.4.C. 

In spite of that, the fact that the alleged hypothesis in this section was false does not imply 

that there is no other setup that provides a better performance, but that it is not intuitive. 

Perhaps one could find a better beam distribution with a Deep Learning algorithm, 

although it is not one of the objectives of this thesis. 

2.2.2. Parameters study   

To determine if the MINFLUX parameters (L, N and fwhm) have a direct influence in the 

efficiency of the method and what effect changing their value has, a parameter study will 

be performed, creating a MATLAB code that can be found in the Annex. 

In order to analyse the data with objective judgement the STD of the emitter position 

estimations will be calculated for a fixed fluorophore located at (11,6) nm, under a set of 

Figure 2.6. (A) Standard Deviation for the x component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟 , in nm. (B) Standard 

Deviation for the y component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (C) Root Mean Squared Error for the estimation 

of the emitter’s location, in nm. Simulation done for L = 100 nm, N = 1000 and fwhm = 360 nm.  

(A) (B) (C) 
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different conditions. The settled values of the parameters have been chosen among others 

for convenience. 

 Fixed fwhm = 360 nm and N = 1000, and varying L: 

 

It is known in advance that reducing L below 10–20 nm is not very consistent 

since the region through which the beams are moved must contain the emitter, 

which may be of some nanometres in size. In Figure 2.7. that can be ascertained, 

because below approximately L = 10 nm, the Standard Deviation values for x and 

y start to increase. 

 

There is no reason to justify the small increase of standard deviation that can be 

seen just before L = 50 nm in the figure for the STD in the x component of 

𝑟𝑒𝑚𝑖𝑡𝑡𝑒𝑟 , other than that the standard deviation may also be affected by the 

behaviour of N or fwhm for that fixed L. Therefore, the same analysis will be done 

for L = 50 nm, to study that phenomena.  

 

In the simulations done in this project, L = 100 nm is the standard value used. The 

STD obtained with it is within the range of the acceptable and with that L fixed, 

N and fwhm also show a good STD.  

 

 Fixed L = 100 nm and fwhm = 360 nm, and varying N: 

 

In Figure 2.8. one can see the dependence of the STD on N. It is noticeable that 

by increasing the number of photons emitted one obtains a better localization.  

 

Figure 2.7. STD dependence on L, for an emitter situated at 

x = 11 nm and y = 6 nm, with N = 1000 and fwhm = 360 nm. 
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However, this result is not surprising, but one should remind that in MINFLUX 

the principal aim is to reduce the value of N. Thus, what one should try in order 

to obtain a good estimation of the emitter’s position is to have the lowest STD 

possible.  

 

 

Between 1 and 1.5 nm of STD is a range of error acceptable and which can be 

assumed to have the benefit of being in a low N–range of between 100 and 1000, 

which are the main values used in this thesis. 

 

 Fixed L = 100 nm and N = 1000, and varying fwhm: 

 

The size related parameter fwhm is limited by two things. On one hand, the 

diffraction limit is a lower bound to its value. The system that is simulated has a 

NA = 1.45 and 𝜆 = 580 𝑛𝑚, then the diffraction limit is of 200 nm. On the other 

hand, if one wants to avoid overlapping the beam cannot have a very large area.  

 

As seen in Figure 2.9., for high values of fwhm, approx. from 500 nm, the STD 

starts to increase, as expected. From the results in the plot, one can conclude that 

the perfect range of fwhm is between 200 and 400 nm for the STD in the x 

component and from 400 to 600 nm for the STD in the y component. Accordingly, 

the interval of values that will probably give the best results will be between 300 

and 500 nm. In this thesis fwhm is set to 360 nm, as it is also done for some 

simulations in [11]. 

 

 

 

Figure 2.8. STD dependence on N, for an emitter situated at x 

= 11 nm and y = 6 nm, with L = 100 nm and fwhm = 360 nm. 



On the optimisation of Single Molecule Localization Microscopy using Deep Learning 

 
18 

 

 Fixed L = 50 nm and fwhm = 360 nm, and varying N: 

 

Figure 2.10. shows the dependence of the STD on N for an L value of 50 nm. In 

this case, in contrast to L being set to 100 nm, the STD is slightly smaller, giving 

values below 1 nm for N = 1000, which is a good improvement. However, no 

other significant change is observed. 

 

Therefore, there is no explanation in the fwhm values for the increase of the STD 

for L near 50 nm. 

 

Figure 2.9. STD dependence on fwhm, for an emitter situated 

at x = 11 nm and y = 6 nm, with N = 1000 and L = 100 nm. 

Figure 2.10. STD dependence on N, for an emitter situated at 

x = 11 nm and y = 6 nm, with L = 50 nm and fwhm = 360 nm. 
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 Fixed L = 50 nm and N = 1000, and varying fwhm: 

 

In Figure 2.11. one can see the dependence of the STD on fwhm. In this case it is 

noticeable that the STD is lower than when L = 100 nm, for a wider range of fwhm 

values. Furthermore, it can be appreciated in the figure that the comparatively 

high STD values in the "y" component that could be observed for fwhm of about 

200 nm in the case with L = 100 nm have disappeared, decreasing to almost half. 

When L = 50 nm, consequently, it is possible to limit the fwhm to a range of 

between 200 and 400 nm, which would mean a less wide scan region in addition 

to a smaller PSF footprint. 

 

In this case, similar results to the previous analysis are obtained, in which no 

correlation can be identified to explain the rise of the STD in Ls close to 50 nm. 

Hence, further study is needed to reach a conclusion. Since all simulations will be 

made for L = 100 nm for the reasons already mentioned, this discussion will be 

postponed to be made in case there is enough time. 

 

According to these results, one could be tempted to do the simulations with a scanning 

region L = 50 nm instead of 100 nm, but this is not ideal because firstly one should 

approximate the position of the molecule, which size will be of some nanometres [14], to 

set the FOV of the SMLM experiment, and that is easier with a higher L.  

 

 

 

Figure 2.11. STD dependence on fwhm, for an emitter situated 

at x = 11 nm and y = 6 nm, with N = 1000 and L = 50 nm. 
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2.2.3. Shrinkage of the PSF area  

One of the objectives of this thesis is to reduce 

the area of the PSF of the imaging system. 

Thus, overlapping between PSFs would be 

dwindled or even eliminated, which would 

allow for a more precise localization. In this 

section, the hypothesis is that giving a lower 

value to the size–parameter fwhm of the donut–

shaped beam, e.g. 260 nm, the overlapping 

probability will decrease while maintaining or 

even improving the efficiency of the method.  

The comparison between the shape of the beam 

with the stablished fwhm and when fwhm = 260 

nm can be seen in Figure 2.12. 

To check whether the hypothesis is fulfilled or 

not, one must look at Figure 2.13. As it can be 

observed, although the convergence region that 

was obtained with the original setup and that 

can be seen in Figure 2.4. is maintained, the 

STD and RMSE values have risen, with a 

considerable increase in the situations where 

the emitter location coincides or is near the 

position of the beams. Hence, one can conclude 

that the fwhm parameter is not the only 

parameter to be adjusted to shrinkage the PSF 

area. 

 

 

Figure 2.13. (A) Standard Deviation for the x component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟 , in nm. (B) Standard 

Deviation for the y component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (C) Root Mean Squared Error for the estimation 

of the emitter’s location, in nm. Simulation done for L = 100 nm, N = 1000 and fwhm = 260 nm.  

(A) (B) (C) 

Figure 2.12. Transversal cut of the 

donut–shaped PSF intensity profile for 

L = 100 nm, N = 1000 and (A) fwhm = 

260 nm or (B) fwhm = 360 nm. 

(A) 

(B) 
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2.2.4. Illumination beam: Parabolic shape  

When the Deep Learning is performed and the learned mask generated, one will have a 

beam with another shape rather than a toroid. To know how the method will behave 

illuminating with a differently shaped beam, a parabola–shaped beam will be used to 

repeat the simulation. This shape is chosen among others because it is the best 

approximation to the donut shape although being physically impossible to realize, and 

also the direct computation of some needed formulas is described in [11]. The intensity 

of the PSF in this situation follows: 

 𝐼𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 = 𝐴0 𝑟
2, (2.8.) 

with r as stated in equation 2.2., and A0 a normalization constant. As the minimum of the 

donut resembles a parabola, similar behaviour is expected from the simulation in both 

cases.  

The MATLAB code generated in section 2.1. has been modified to simulate the situation 

stated in this section and conclude whether or not the new shape of the beam gives better 

localization precisions and a wider convergence region. This can be found in the Annex 

of this thesis. 

As one can see in Figure 2.14., using a parabola–shaped beam with the same parameters 

as in section 2.1. results in the deformation of the convergence area and the worsening in 

the location of emitter positions near or coincidental to the beam ones, although obtaining 

in general lower RMSE and STD values. 

 

Nonetheless, as the beams used are different, one reason this configuration behaves worse 

could be that some parameters have to be readjusted. Thus, the simulation will be done 

again changing the total number of photons (N) to N = 100, but maintaining L and fwhm. 

The interest of the method still lies in having the less PSF footprint possible, therefore 

Figure 2.14. (A) Standard Deviation for the x component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (B) Standard Deviation 

for the y component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (C) Root Mean Squared Error for the estimation of the 

emitter’s location, in nm. Simulation done for a parabola–shaped beam with L = 100 nm, N = 1000 

and fwhm = 360 nm.  

(A) (B) (C) 
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increasing L or fwhm would have no benefit, and those parameters have limits on how 

low they can be, as seen in previous sections. 

Using this new parameter configuration, the convergence region recovers the symmetry 

although shrinking, and the recovering of emitter positions with the MLE when the 

fluorophore is near or coincides with the position of the beam is done with a substantially 

smaller error than in the previous case, results that are shown in Figure 2.15.  

 

However, comparing the convergence region and the error with the original case showed 

in Figure 2.4. may be inaccurate as the parameters of each simulation are different. 

Therefore, the experiment done in section 2.1. will be repeated but with N = 100 to be 

able to compare both cases properly. The results of this analysis can be seen in Figure 

2.16. One may be surprised by the similarity between outcomes. 

  

The conclusions that one could draw from comparing Figure 2.15. and Figure 2.16. are 

that it seems that when a parabolic shaped beam is used, one can see a greater precision 

Figure 2.16. (A) Standard Deviation for the x component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟 , in nm. (B) Standard 

Deviation for the y component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (C) Root Mean Squared Error for the estimation 

of the emitter’s location, in nm. Simulation done for a donut–shaped beam with L = 100 nm, N = 

100 and fwhm = 360 nm.  

(A) (B) (C) 

Figure 2.15. (A) Standard Deviation for the x component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟 , in nm. (B) Standard 

Deviation for the y component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (C) Root Mean Squared Error for the estimation 

of the emitter’s location, in nm. Simulation done for a parabola–shaped beam with L = 100 nm, 

N = 100 and fwhm = 360 nm.  

(A) (B) (C) 
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in the location of emitters that are outside the convergence region, while in the case of 

the donut–shaped beam a better performance within this region and when the position of 

the active molecules coincides with those of the beam is obtained. 

In MINFLUX, the interest lies in having an emitter as close to the illumination beam’s 

position as possible, such that the photon budget is the lowest. For that reason, the donut–

shaped beam would still be the best choice for the method even if the quadratic beam was 

possible to generate. Besides, it is interesting to compare the STD and RMSE matrixes 

obtained for each different shaped beam with themselves for a different N.  

The difference for the case of the donut-shaped beam is not substantial, it is observed that 

for N = 100 the area of convergence is reduced while the error increases with respect to 

the same procedure for N = 1000. In contrast, with regard to the parabolic beam, a much 

more significant discrepancy can be observed, with a very considerable decrease in the 

error for N = 100 in the emitter positions coinciding with those of the beam, and a greater 

uniformity in the area of convergence but with more error than for N = 1000.  

2.2.5. Illumination beam: Gaussian shape  

Another shape of the beam that one could try for this experiment is the Gaussian beam, 

because if the MINFLUX technique could be done with it, a more basic and simpler setup 

could be used for a SMLM experiment, e.g. a Confocal Microscope. Notwithstanding 

this, one could expect this simulation to fail in performing the method properly, as the 

Gaussian beam has no minima but a maximum, as it can be seen when plotting the 

intensity profile for the PSF of a Gaussian beam: 

 𝐼𝐺𝑎𝑢𝑠𝑠 = 𝐴0 𝑒
−4 ln 2

𝑟2

𝑓𝑤ℎ𝑚2, (2.9.) 

with r as stated in equation 2.2., and A0 a normalisation constant.  

The MATLAB code generated in section 2.1. has been modified to simulate the situation 

stated in this section and conclude whether or not the new shape of the beam gives better 

localization precisions and a wider convergence region. This can be found in the Annex 

of this thesis.  

In Figure 2.17. and Figure 2.18. one can see that the results agree with the prediction, 

and that changing the value of the parameter N makes no difference in convergence in 

this case.  

However, it could be possible to perform the method only using the slope of the Gaussian 

beam, and therefore having a suitable option for MINFLUX because there would be no 

maxima, a suitable minimum and the expected gradient of illumination intensity.  
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This will be implemented such that the intensity profile of the PSF for this situation, 

which is shown in Figure 2.19., follows:  

 𝐼𝐺𝑠𝑙𝑜𝑝𝑒 = 𝐴0 ℎ(𝑟 − 100) 𝑒
−4 ln 2

𝑟2

𝑓𝑤ℎ𝑚2  ℎ(510 − 𝑟), (2.10.) 

with r as stated in equation 2.2., h the Heaviside function and A0 a normalisation constant. 

The MATLAB code is now modified to simulate this situation and determine whether or 

not the slope of the Gaussian beam is a good alternative in MINFLUX, giving better 

localization precisions and a wider convergence region while allowing the use of a 

Confocal Microscope. This new code can be found in the Annex of this thesis. 

Figure 2.17. (A) Standard Deviation for the x component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (B) Standard Deviation 

for the y component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (C) Root Mean Squared Error for the estimation of the emitter’s 

location, in nm. Simulation done for a Gaussian beam with L = 100 nm, N = 1000 and fwhm = 360 nm.  

(A) (B) (C) 

Figure 2.18. (A) Standard Deviation for the x component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟 , in nm. (B) Standard 

Deviation for the y component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (C) Root Mean Squared Error for the estimation 

of the emitter’s location, in nm. Simulation done for a Gaussian beam with L = 100 nm, N = 100 

and fwhm = 360 nm.  

(A) (B) (C) 
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Then, after some days of execution the results 

that can be seen in Figure 2.20. are obtained. 

Lower values of STD and RMSE are achieved, 

but higher than those from previous analysis. 

Furthermore, it is difficult to determine if the 

STD and RMSE matrices that are depicted in 

Figure 2.20. are correct, since the resulting 

images look like the PSF of the system, which is 

unusual, and an aberrant result may have been 

obtained. However, this distribution of error 

would also imply that the slope is not a good 

alternative to the Gaussian beam, because it is 

still not possible to accurately localize and 

emitter. Hence, it has been impossible to 

properly apply the MINFLUX method with a Gaussian beam.  

 

2.3. Deep Learning – Functions for MINFLUX 

With the purpose of analysing if the PSF shape obtained after completing the Deep 

Learning has a better performance than the donut–shaped, a MATLAB code that can be 

found in the Annex of this thesis is created to compute the CRLB from the Fisher 

Information Matrix of the model, as seen in section 1.3.  Notice that this implies that once 

one has the results of the Deep Learning algorithm, it would be necessary to describe an 

analytical model for the PSF to be able to evaluate its efficiency in MINFLUX. The 

CRLB is calculated for a specific position of an emitter and a range of total number of 

photons, as a result of the conclusions of previous simulations. If used with the already 

introduced MINFLUX method, one obtains the results depicted in Figure 2.21.  

Figure 2.19. Transversal cut of the 

slope of the Gaussian–shaped PSF 

intensity profile for L = 100 nm, N = 

1000 and fwhm = 360 nm. 

Figure 2.20. (A) Standard Deviation for the x component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟 , in nm. (B) Standard 

Deviation for the y component of �̅�𝑒𝑚𝑖𝑡𝑡𝑒𝑟, in nm. (C) Root Mean Squared Error for the estimation 

of the emitter’s location, in nm. Simulation done for L = 100 nm, N = 100 and fwhm = 360 nm.  

(A) (B) (C) 
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This code could also be modified into a 

function to obtain the CRLB for every 

possible position of the fluorophore in the 

lattice simulated in the original experiment, 

as done to compute the STD and RMSE of the 

method. 

On the other hand, in the loss function of the 

Deep Learning code, another variable that is 

interesting to introduce is the Area of the 

PSF, which would be ideal to reduce as much 

as possible without compromising resolution. 

Thus, a code computing the length in x and y 

of the footprint of the PSF is generated, and 

can also be found in the Annex. It has been 

programmed in MATLAB but to be adapted 

to the Deep Learning code, it will be rewritten in Python and inserted as required. 

2.4. Deep Learning – Learned Mask  

When imaging a cell or an organism with a microscope, usually flat illumination is used. 

Nevertheless, it could be interesting to change the pattern of the incident light, as in the 

case explored in this project. This can be done introducing a Spatial Light Modulator 

(SLM) to the imaging path of the microscope, in the back focal plane or pupil plane, as 

shown in the schematic presented in Figure 2.22. 

 

The SLM can be used to modulate the phase of the beam, i.e. it introduces a phase mask 

that changes the PSF of the system. It can be placed either in the illumination path to 

adjust its shape or in the imaging path as in Figure 2.22. to improve the final resolution. 

Phase masks are optical elements that generate interferences within the beam’s light in 

order to enhance contrast or improve image resolution. These masks modify what is called 

the Pupil function, that describes how a light wave is affected upon transmission through 

an optical imaging system, i.e. indicates the change in amplitude and phase of the wave. 

Dichroic 
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Figure 2.22. Scheme of a fluorescence microscope for SMLM with 

a Spatial Light Modulator as in DeepSTORM. 

4f system 

Figure 2.21. CRLB in the x and y 

direction for an emitter located at 

(50,50) nm with L = 100 nm, fwhm = 

360 nm and varying N from 100 to 1000 

photons. 
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A phase mask is usually produced with the combination of one or more Zernike 

Polynomials to parametrise the phase, and is commonly used to correct or create 

aberrations. In Table 2.1. there is a brief description of how this works for the most 

frequent ones [7], [8], [15]–[17]. [18][19]  

. 

 

Zernike 

Coefficient 
Zernike Polynomial 

Name 

(Aberration to 

correct) 

Image of the 

phase mask 

Image of the 

aberration 

Z4 √3(2𝜌2 − 1) Defocus 

 
 

Z5 √6𝜌2sin (2𝜃) 
Astigmatism 

45º (oblique) 

 
 

Z6 √6𝜌2cos (2𝜃) 
Astigmatism 0º 

(vertical) 

 
 

Z7 √8(3𝜌3 − 2𝜌) sin (𝜃) Vertical coma 

 
 

Z8 √8(3𝜌3 − 2𝜌) cos (𝜃) 
Horizontal 

coma 

 
 

Z9 √8𝜌3sin (3𝜃) 
Field curvature 

30º 

 
 

Z10 √8𝜌3cos (3𝜃) 
Field curvature 

0º 

 
 

Table 2.1. Most common Zernike coefficients and polynomials, and the aberrations that they 

can correct or produce. Images obtained from [18], [19]. 
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In DeepSTORM3D [12] the mask is used to modify the PSF in the imaging path to avoid 

overlapping of PSFs in the image of the sample. This phase mask is generated using a 

Deep Learning algorithm, which trains a Convolutional Neural Network (CNN) that 

allows the learning of a mask optimised for 3D localization of emitters.  

A CNN is an algorithm of Deep Learning that is used to analyse and classify images, 

differentiating the components of the picture. To do the latter, some parameters or 

characteristics of the image are assigned as weights, that are to be learned in order to be 

optimised. In this case, the parameters describing the phase mask are an example of 

weights. The typical input image to a CNN is read as a 3D matrix, a box containing the 

dimensions of height and width in pixels of the picture but also three layers, known as 

channels, corresponding to the digital colours RGB (Red–Blue–Green) encoding. 

Notwithstanding that, the input image can also be in a grey chromatic scale.  

A CNN learns from an image carrying out the convolution operation applying filters, also 

known as Kernels. The network can be programmed with more than one Convolutional 

Layer, adding layers according to the specificness of details that need to be detected from 

the image. The CNN has the role to reduce the images into an easier–to–process form, 

without losing features that are crucial to obtain a good prediction [20]–[22]. 

The CNN of the original code used in this thesis has ten Convolutional Layers. The whole 

algorithm is programmed using Pytorch, a Python tool for Deep Learning, and it can be 

found in [23]. The main code is demo4.py and, to work, it needs some functions that are 

also defined in the GitHub folder, like parameter_setting_demo4.py, helper_utils.py, 

loss_utils.py, cnn_utils.py, physics_utils.py, data_utils.py, vis_utils.py, 

GenerateTrainingExamples.py and PSF_learning.py. The running time of the whole 

experiment is of 63 hours in a server with 80 cores, a CPU 2x Intel Gold 6148, 384 GB 

of memory and a GPU 4x Tesla P100. 

The code generates its own training images that are also used for learning, and trains the 

network to be able to precisely localize molecules in an image taken in a SMLM 

experiment with a CCD camera, obtaining at the same time a learned phase mask that is 

used to generate a PSF which is supposed to avoid overlapping between emitters’ PSFs 

in 3D. A flowchart describing its operation mode can be seen in Figure 2.23. 

In this project, the aforementioned algorithm will be changed as explained in the 

following subsections in order to obtain a phase mask optimised for 2D localization using 

the MINFLUX conditions. The aim of this procedure is to have a PSF that presents a 

minimum to reduce the photon budget, the footprint of which is as small as possible and 

which shape is adapted to avoid overlapping between emitters’ PSFs. The phase mask 

designed should be placed in the illumination path of the microscope to change its PSF, 

instead of in the imaging path as in DeepSTORM3D. 

All corrections done to the code can be found in the Annex of this thesis. However, in the 

following subsections the most relevant ones are to be explained. 
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2.4.1. Changes in parameter_setting_demo4.py  

It is necessary to change the phase mask and image space dimensions for simulation 

parameters in order to agree with our number of dimensions. The z–range and 

discretization in the axial direction have to be removed. The number of particles’ range 

will also be modified, fixing a total of 5 fluorophores per sample, to reduce the execution 

time of the code and to ease it.  

Figure 2.23. Flowchart describing the code [23] to 

localize emitters in a sample and learn a phase mask 

that changes the shape of the 3D PSF of the system 

to avoid overlapping. 
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A special section to set the parameters that are needed for MINFLUX is to be introduced, 

defining the Poisson noise (𝜆𝑏) of the measurement, 𝑐𝑒 , 𝑞𝑒 , 𝜎𝑎 , the diameter of the 

circumference formed by the beam positions (L) and the size parameter fwhm. 

2.4.2. Changes in data_utils.py  

The grid positions of the emitters in the sample have to be adapted to the new two–

dimensional space. Moreover, the function to generate a Boolean grid from the positions 

of the fluorescent molecules can be removed, as images will no longer be used when the 

adaptation to MINFLUX is done. 

In this code a uniform distribution for the total number of photons (N) is applied, meaning 

that each emitter is assigned a value between 1000 and 6000 of total photons emitted. 

2.4.3. Changes in physics_utils.py  

To be able to locate the fluorophores two–dimensionally instead of in 3D, the axial 

dimension will be removed from all subfunctions and parameters.  

Furthermore, the computation of the number of photon counts ( 𝑛𝑖 ) per molecule 

stipulated in MINFLUX has to be introduced in a new Physical Layer. For every emitter, 

with its own total number of photons determined in data_utils.py, one should have four 

photon counts corresponding to the different intensities detected when measuring with 

the four different beam’s positions. Thus, it is also necessary to introduce the calculus of 

those intensities. 

In this code, there is a function that calculates the phases in the Fourier space for the given 

emitter positions. This is necessary to obtain the phase mask. Changing the three–

dimensionality in this algorithm will imply a learned mask that produces a two–

dimensional PSF.  

If one were to place the SLM in the imaging path as in DeepSTORM, the image that 

would correspond to every switch would have to be simulated, obtaining the PSF of the 

system for every exposure of the sample and summing them to have the intensity function 

of the imaging path, the convolution of which with the phases in the Fourier space for the 

given emitter positions would lead to the final image of the sample. 

This was the procedure taken initially but after reviewing all the changes it was seen that 

a whole new environment should be introduced to situate the SLM in the illumination 

path, as MINFLUX would require, instead. 

2.4.4. Changes in loss_utils.py  

The loss function has a key role in a Deep Learning algorithm because it is determinant 

to define whether it is working properly or not, i.e. a progressive decrease of the loss will 

mean a gradual achievement of the objectives of the network. In the situation described 

in this project, the less the loss, the more accurate the localization of the emitters. 
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The loss function of DeepSTORM3D uses a Kernel Density Estimation (KDE), with a 

Gaussian–shaped Kernel, to determine how far off the estimate is, in a certain iteration, 

of the target. 

The KDE is similar to a histogram, having the same operating principle. However, the 

data in a KDE overlaps continuously. Depending on the final function or shape obtained, 

the algorithm determines the loss of the measure, i.e. the difference between the target 

and the estimation [24], [25]. 

In this function, the adaptation shows a simpler structure than the original. Only to apply 

a linear regression via a Mean Square Error (MSE) loss function is needed to determine 

the accuracy of the estimations, and that can be done with the Python function MSEloss(). 

The loss condition related to the area has been determined to be unnecessary. 

2.4.5. Changes in cnn_utils.py  

The Convolutional Neural Network has a certain number of output channels depending 

on the dimensions of the system. Hence, the Convolutional Layer that finally generates 

the output has to be changed to agree to the new size of the system. Accordingly, layer 

10 in the code would have to be reshaped in order to output a single channel [26]. This is 

consistent with the approach taken in first instance, since it was decided to work with 

images as in DeepSTORM3D. 

However, when discussing the code with its creator Elias Nehme, it was observed that it 

was simpler and a better adaptation of MINFLUX to avoid using images for the learning, 

i.e. work without convolutions, and instead create a network of linear layers such that 

with the input of the real emitter positions and photon counts it outputs the fluorophores’ 

location estimates. 
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3. Further discussion 

Many more tests have been carried out than those included in this report (different 

patterns, methods and their implementations, etc.), but only the most relevant results have 

been presented, with which it has been seen that the efficiency of the MINFLUX method 

is very sensitive to the parameters’ values and the shape of the beam.  

For instance, increasing the simulated number of photons emitted from 100 to 1000 

implies an improvement of the CRLB of approximately 14 nm, meaning that localization 

microscopy can achieve error margins of only from 2 to 4 nm, resolving images at a 

nanometric scale. Moreover, decreasing L iteratively one could achieve even better 

resolution. However, this result also implies that, although MINFLUX tries to avoid 

photobleaching reducing the photon budget, in order to accurately locate the fluorophores 

in the sample one cannot simply try to drastically decrease the number of emitted photons. 

On the other hand, the maximum displacement of the beams’ parameter (L), that 

represents the FOV within which a certain emitter is being exposed, has shown to have 

certain limitations, as discussed in section 2.2.2. Decreasing the value of L, it is possible 

to reduce the Standard Deviation of the estimation, but the error starts to increase when it 

is under 50 nm unaccountably. Besides, neither reducing nor increasing the value of L 

sharply has a positive impact in the accuracy of localization, because not only it has to be 

taken into account that the emitter has a certain size and it has to be contained in the area 

that comprise the different positions of the beam, i.e. the scanning region, but also that 

firstly one does not know the exact position of the emitter but has to approximate it to set 

the right FOV, which is easier to do correctly with a large scanning region. On the other 

hand, if this region is very large, there is a greater chance of sampling more than one 

emitter at a time which would result in overlapping and thus in a higher error.  

When it comes to the size parameter of the donut, fwhm, it has been seen that the range 

in which its value can vary is very narrow, since above 400–500 nm one finds a relatively 

high STD. It has been noticed that it is a relevant parameter in terms of reducing the area 

of the PSF, although not by itself. Nonetheless, determining the set of parameters that 

allow to obtain a better localization while reducing the PSF’s footprint is impossible to 

be done manually. 

Another result to discuss is that, as seen, there is no possible way to optimise the shape 

of the beam or the distribution and number of its different positions manually. One can 

guess that there will be some other option that has not been consider and enables a more 

accurate localization microscopy, but to determine which one among all the possible 

choices is rather impossible.  

Consequently, one may think that using Artificial Intelligence (AI) is the best (and only) 

way to reach the desired objective. That is why the results obtained applying the Deep 

Learning algorithm are highly relevant. 
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The DeepSTORM3D code has been changed and adapted to MINFLUX requirements as 

described, but changing the arrangement of the elements of the microscope and thus 

placing the phase mask in the path of illumination takes time that has not finally been 

had, since not only does a new system have to be described and the entire code adapted 

to it, but also enough information has to be learned to know how to apply these settings.  

Furthermore, it would have been impossible to finally generate the learned phase mask 

and PSF and to analyse the results obtained, because of time constraints. The code has a 

very high execution time and, besides, the unavoidable step of creating an analytical 

model to determine the efficiency of the learned PSF in MINFLUX would require of 

several help and days. 
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4. Conclusions and perspectives 

From the study performed, one can conclude that it is possible to optimise the nowadays 

methods of Single Molecule Localization Microscopy, and that Artificial Intelligence has 

a key role in it. 

Regular SMLMs reaches around 20 nm of resolution [27]. With MINFLUX, this comes 

to a few nm while using only low photon counts, which makes it a more useful tool than 

the traditional methods specially to track molecules.  

An analysis of the MINFLUX method has been performed such that one can conclude 

that it is itself an improvement of SMLM because grants having a better resolution than 

regular PALM or STORM, while it is possible to further develop the method but only 

with an AI algorithm, because its complexity and number of free parameters leave no 

other alternative. 

A Deep Learning algorithm developed by Nehme, E. et al. [12] comprising 10 different 

codes with a total of approx. 2200 lines of code has been studied and understood. Despite 

the difficulty of working with an external code, not programmed by oneself, it has been 

possible to adapt most of it adequately to the required method. With more time, there is a 

chance that very important results would have been obtained, expecting, for the learned 

PSF, a CRLB in MINFLUX below the original one, which already implies very good 

precisions, and dismissing the problem of overlapping PSFs, hence obtaining a new super 

resolution technique.  

Initially, it would seem that there would be time to carry out the whole project approach. 

However, during its implementation and partly affected by the consequences of the 

COVID-19, it has been seen that the study and evaluation of MINFLUX took more time 

than the expected and, on the other hand, that adapting the DeepSTORM3D code was 

more difficult than what it was thought and that it required more time than the estimated 

since it needs a lot of learning effort. Even so, six out of seven specific objectives of this 

thesis have been successfully met. Although it has not been possible to obtain the learned 

PSF and an analytic model that allows the computation of the CRLB for MINFLUX with 

it, the resolution is expected to be of some nanometres below of that of the original 

method, which would mean that real nanometre resolution would be achieved. However, 

unfortunately, this is still to be proven. 

Some improvements that can be done to this research could be to work with MINFLUX 

3D [28]. This way, there would be no need to reduce the dimensions in the Deep Learning 

code of DeepSTORM3D. Moreover, MINFLUX could be represented in images to fit an 

algorithm like the latter, the CNN could be used and one would be able to accurately 

resolve images three–dimensionally. 

On the other hand, a different Deep Learning algorithm could be developed which might 

imply a better performance of the AI and would also represent a deeper integration of 
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MINFLUX in the code, which would certainly grant that the learned phase mask produces 

a PSF with a minimum of intensity and that other conditions needed for the right 

functioning of the technique are fulfilled. Even Machine Learning could be used instead 

of Deep Learning. 

The loss condition for the area could be introduced to see if it betters the resulting 

accuracy, and for the same purpose one could implement in the DeepSTORM3D 

algorithm to start the learning from an already specified mask representing a vortex, the 

one used in MINFLUX, so that the initial illumination is already configurated as donut–

shaped.  

Other possible improvements of the method described could be to introduce in the Deep 

Learning a certain condition to optimise the distribution of the beam positions to expose 

the sample, or to generate a MATLAB or Python code that directly computes the CRB 

when using a certain PSF in MINFLUX only with the 2D or 3D image of that PSF. That 

way, there would be no need to find an analytical description for it, which would speed 

up and facilitate the method. 

All in all, it has been proven that there is still a long way to go in the field of microscopy, 

and it is likely that methods that are now understood to be super resolution will become 

obsolete in the future due to the integration of new techniques such as those studied in 

this project. This would not only be a breakthrough in photonics but would also lead to 

great discoveries in the field of medicine. 
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Annex 

All codes can be found in the following link: https://github.com/AidaPM/BEP-project.git 

 

https://github.com/AidaPM/BEP-project.git

