
A multiscale method for periodic structures using domain decomposition and

ECM-hyperreduction

J.A. Hernándeza,b,∗
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Abstract

This paper presents a nonlinear multiscale approach for periodic structures in the quasi-static, small strain regime.
The approach consists in combining a domain decomposition method in which interface conditions are established through
a “fictitious” frame with reduced-order modeling (ROM). We propose to approximate interface displacements, subdomain
displacements and Lagrange Multipliers as linear combinations of reduced sets of dominant modes, and to assign to the
coefficients of such linear combinations the role of coarse-scale displacements, strains and stresses, respectively. We
discuss and propose a method based on subspace rotations that ensures that these three modal approximations lead to
stable formulations. The modes of such expansions are determined in an offline “training” stage by applying the truncated
Singular Value Decomposition (SVD) to the solutions obtained from Finite Element (FE) analyses. In contrast to other
multiscale approaches, such as FE-ROM homogenization schemes, which uses a single unit cell with periodic conditions,
here the “training” structures are formed by several unit cells. This way, we allow the SVD to extract also dominant
patterns of interaction between subdomains in terms of reactive forces and deformations. This original feature confers to
the proposed approach three unique advantages over FE-ROM homogenization schemes, namely: 1) It can deal with unit
cells of arbitrary size (no need for scale separation). 2) It can model, not only how forces are transmitted through the
structure, but also local effects. 3) It can also handle domains which are only periodic along one or two directions (beam-like
or shell structures, respectively). To deal with material nonlinearities, element-wise Gauss integration of reduced internal
forces is replaced by an algorithmically improved version of the hyperreduction scheme recently proposed by the author
elsewhere, called the Empirical Cubature Method (ECM). Furthermore, we demonstrate that the coarse-scale Degrees of
Freedom (DOFs) of a subdomain can be expressed directly in terms of the (fine-scale) stresses and strains at the ECM
integration points. This feature dispenses with the need of deploying a special algorithmic infrastructure of intertwined
local/global problems, as it occurs in FE-ROM schemes, since the unit cell can be treated as a special type of finite
element, in which the centroids of the interfaces and the ECM points play the role of nodes and Gauss points, respectively.
To illustrate all these advantages, we present 4 distinct examples: two beam-like structures of rectangular-shape and
I-shaped cross-sections, a 2D hexagonal cellular material, and a cylindrical shell made of a porous composite cell. In all
4 cases the proposed method is able to produce coarse-scale models reducing the number of DOFs and integration points
by over two orders of magnitude, with errors below 5 %. Interestingly, in the case of the beam-like structures, we show
that the method provides 2-node beam finite elements whose kinematics are identical to that predicted by “analytical”
beam theories (6 DOFs per node in the case of the rectangular beam), and totally consistent with their 3D full-order
counterparts.

Keywords: multiscale, reduced-order modeling, Singular Value Decomposition, SVD, Empirical Cubature Method,
ECM, Hyperreduction, Data Driven, Machine learning, Subspace rotation, Domain Decomposition

1. Introduction

Hierarchical multiscale approaches [28] are based on the general principle of divide-and-conquer : the domain at the
highest scale is divided into smaller subdomains; then, if possible, these subdomains are further subdivided into smaller
regions, and so on until arriving at the deepest level of the hierarchy, at which no more partitioning is possible, and
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recourse to experimentally derived relationships is to be made. However, this divide-and-conquer strategy per se does
not lead to any reduction in complexity —the total number of unknowns remains the same. The actual feature that
distinguishes a hierarchical multiscale model from a standard domain decomposition problem is the introduction of
simplifying assumptions in the equations governing the interaction between contiguous subdomains at each scale. In
structural problems, these simplifying assumptions translate into low-dimensional parametrization of the deformation
and force information transmitted between contiguous subdomains. Compatibility and equilibrium equations at the
immediate coarser scale are then formulated in terms of this reduced set of force and deformation variables.

1.1. Low-dimensional parametrization of interface forces and deformations

To illustrate this point, consider the case of first- and second-order homogenization of periodic heterogeneous materials
(see Ref. [17] for a survey on these two methods). It may be argued that first-order homogenization represents a limiting
case of two-scale method in which the subdomains (the repeating unit cells) are, loosely speaking, so small in comparison
with the characteristic length of the coarse scale that they can be regarded as infinitesimal and, therefore, be treated as
points in the classical sense of Cauchy’s continuum mechanics. This hypothesis is often referred to as scale separation. In
assuming scale separation, one accepts as axiomatic the precepts upon which Cauchy’s theory of continuum rests, namely,
that the deformation and the interface forces on the subdomains are solely characterized by the components of the strain
and stress tensors —i.e., by just 6 parameters each. In second-order homogenization theory, this scale separation condition
is relaxed, and the unit cells are considered of finite size. As a consequence, not only the stresses, but also the first moment
of the stresses, come into play in the parametrization of the interface forces. Likewise, the gradient of the strain tensor
is required in the description of boundary deformations. Classical beam theory, applied to prismatic beams of constant
cross-section, can be also viewed as a two-scale hierarchical model —the repeating unit cells in this case are “slices” of
infinitesimal width. Simplifications such as the assumption that the faces of the slices remain plane after deformation
allow one to parametrize the displacement of such faces in terms of 6 variables (three translations, and three rotations).
Likewise, interface forces become describable by just 6 variables, i.e, their resultants, (axial and shear forces) and their
moment resultants (bending and torsion).

1.2. Simplifications in local equilibrium problems: reduced-order modeling

Once the simplifying hypothesis regarding the way subdomains interact have been established, one is faced with
the problem of solving the local equilibrium problems —one for each subdomain. In these equilibrium problems, the
aforementioned deformation parameters play the role of inputs —in the form of Dirichlet boundary conditions—, while
the interface force parameters are the outputs. In turn, these equilibrium problems may be solved exactly, or one may
resort, again, to some kind of approximation. The FE-2 method [15], in first-order homogenization, is a prominent
example of the former category, since the fine-scale problem is solved with full details using the Finite Element (FE)
method. Approximate methods, on the other hand, may range from closed-form solutions, like the simplistic rule of
mixtures, to more sophisticated techniques such as the Transformation Field Analysis [10] or variants thereof [16]. A class
of approximated methods that is receiving increasing attention in recent years are those combining the FE method at the
coarse-scale and Reduced-Order Modeling (ROM) at the fine scale [22]. Because of its relevance within the present work,
we describe in the following the basic tenets of these approaches ——that we shall refer henceforth as FE-ROM methods.

Like classical model reduction methods for linear modal analysis, FE-ROM methods rely on the approximation of
the displacement field of the unit cell as a linear combination of a few characteristic modes. The distinct feature here
is that these modes are not obtained from the FE stiffness and mass matrices of the subdomain, but rather determined
from computational experiments (performed in an offline stage): FE analyses of the unit cell subjected to representative
deformation histories are conducted; and then the set of computed solutions is processed by dimensionality reduction
tools in order to identify and unveil the most statistically dominant displacement modes. Galerkin projection of the FE
equilibrium equations onto the subspace spanned by these modes leads to a reduced-order model with far fewer equations
that the original FE model. To complete the reduction process, the projection has to be accompanied by an efficient
integration rule, tailored to the physics of the problem —ROM with efficient integration rules are known as Hyperreduced-
Order Models (HROM).

1.3. Overall goal

From a broader perspective, the use of the these dimensionality reduction techniques for solving the local cell problems
may be viewed as a sort of machine learning procedure, in the sense that the simplifications in such local equilibrium
problems are not derived following the old physical-insight based recipe, but rather are automatically “learned” from the
data obtained from a set of representative computational experiments. To put it more emphatically, the central task
of modeling —which is, quoting M. Ashby [1], to “unashamedly distort the inessentials in order to capture the features
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that really matter”— is delegated in this case to computer algorithms, and therefore, it is not subject to the limitations of
human judgment.

The present work attempts to move multiscale structural analysis a step closer to this machine learning paradigm.
We propose a multiscale approach in which dimensionality reduction is used, not only for efficiently solving the local cell
problems, but also for inferring low-dimensional parameterizations for deformations and forces at the unit cell interfaces.
As we argued before, in standard multiscale models, such parameterizations are given a priori, and are predicated on
hypotheses derived from experimental observations and/or purely analytical deductions. Furthermore, these hypotheses
imply severe restrictions on the size of the unit cells, and ignore local effects caused by the application of external forces
and/or displacement constraints.

1.4. Methodology

The idea proposed here to overcome these intrinsic limitations is to address the modeling of periodic structures as a
reduced-order domain decomposition problem, the qualifier “reduced-order” meaning that interface equations (equilibrium
and compatibility) and subdomain equilibrium equations are projected onto low-dimensional subspaces —subspaces of the
FE spaces associated to the spatial discretization of the subdomains. Similarly to the above mentioned FE-ROM methods
for the unit cells problems, the basis vectors (i.e., the dominant modes) for such subspaces are extracted from FE analyses
using dimensionality reduction techniques —here we use for this purpose the ubiquitous Singular Value Decomposition,
SVD. However, as opposed to the standard FE-ROM methods, in which the “training” entails FE analyses of one single
unit cell under prescribed macro-deformations ( using periodic conditions), in the proposed approach these FE training
tests involve several subdomains, for the interest now lies in learning characteristic patterns of collective behavior, including
the way subdomains interact with each other in terms of force and displacements.

The partitioning framework adopted in the present work is the Localized Lagrange Multiplier (LLM) method, proposed
by Park et al. in Refs. [32, 33]. The reason for favoring this method over other partitioning techniques is that its three-field
formulation provides the ideal framework for our reduced-order multiscale approach. Indeed, the salient feature of the LLM
method is the use of a (fictitious) partition frame, whose displacement is assumed independent from the displacements
of the subdomains. To “glue” such partition frame to the subdomains, Lagrange multipliers are employed, resulting in a
three-field formulation (frame displacements, subdomain displacements and Lagrange multipliers). We shall approximate
these three variables by modal expansions, and the amplitudes of these expansions will become the coarse-scale variables
in our multiscale method —in particular, the amplitude of the fictitious frame displacement modes will play the role of
coarse-scale Degrees of Freedom (DOFs).

1.5. Domain of validity

The multiscale formulation presented in what follows is valid for any periodic structure working within the small,
quasi-static deformation regime. Thus, it can cope with nonlinear material behavior, but not with large rotations and/or
strains. It should be emphasized that the notion of periodicity is to be understood here in a broader sense than in classical
multiscale methods such as the FE2: we regard as periodic any structure formed by repetition of a given building block
—the unit cell— either along a straight or constant-radius line (1D periodicity, Figures 1.a to 1.d); a plane or a constant-
radius cylinder (2D periodicity, Figure 1.e); or along 3 mutually orthogonal directions (3D periodicity, Figure 1.f). In the
case of 1D periodicity, the resulting domains can be either a typical prismatic structure (Figure 1.a), an helix structure
(Figure 1.c), or, if the unit block is allowed to rotate around the directrix, twisted structures such as turbine blade or
screw-like bars ( Figures 1.b and 1.d, respectively).

1.6. Related works

The present paper can be deemed as a natural extension to general multiscale scenarios of the above mentioned FE-
HROM approaches, pioneered by the author and co-workers in Ref. [22] in the context of structural problems with small
strains and mild nonlinearities —and later refined to cover also problems with more severe nonlinearities [31, 5, 35] as
well as to other engineering applications such as magneto-mechanics [4], among others. On the other hand, the idea
of addressing the multiscale problem as a substructuring problem combined with model reduction is borrowed from the
modal synthesis technique known as the Craig-Bampton method [9]. Indeed, similarly to the Craig-Bampton method,
we do approximate the displacements of each subdomain as a linear combination of modes; however, the way the modes
are obtained (we use non-bubble SVD modes), as well as the treatment of the interface conditions, are totally different
in our approach from those in the Craig-Bampton technique. Furthermore, the Craig-Bampton method and its variants
(cf. Ref. [34]) require the explicit computation of the full-order stiffness matrices of each subdomain, a fact that restricts
its scope to linear problems. By contrast, the approach presented here is valid also when material nonlinearities are
present. This key advantage is in turn provided by the aforementioned hyperreduction, which, in the present work, is
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Figure 1: Class of periodic structures that can be analyzed with the proposed multiscale approach. (a) to (d) 1D periodicity, (e) 2D periodicity
(shell structure) (f) 3D periodicity

applied to the efficient integration of the (reduced) internal forces of each subdomain. We employ for this integration an
algorithmically improved version of the Empirical Cubature Method (ECM), put forward by the author in Ref. [21]. It
should be mentioned that hyperreduction in the context of domain decomposition problems has been already explored by
Kerfriden et al. [24]. However, Kerfriden’s work does not qualify as “multiscale” in the sense defined here, because the
interface conditions are resolved in its original, full-order format (the only variable subject to modal approximation in
Ref. [24] is the displacement of the interior DOFs).

An approach that does qualify as multiscale, in the sense defined here, and that bears some resemblance with our
proposal, is the so-called Generalized Multiscale Finite Element Method (GmsFEM), originally developed by Efendiev
and co-workers in Ref. [11]. Efendiev’s approach is a multigrid method whose major ingredients are a set of multiscale
basis functions that captures fine-scale features, and a global variational formulation that couples these multiscale basis
functions. As in our proposal, such multiscale basis functions are pre-computed in an offline stage by solving local problems
and applying dimensionality reduction over the resulting solutions. However, Ref. [11] does not use hyperreduction to
alleviate the cost of evaluating the nonlinear terms. Furthermore, the bridging between the coarse and fine scales is made
by defining standard polynomial shape functions at the coarse-scale, and then making the multiscale basis functions to
coincide with such shape functions on the boundaries of the coarse-grid blocks. This implies, thus, that in the GmsFEM,
in the context of equilibrium problems, the coarse-scale kinematics is defined a priori. This is in sharp contrast to our
approach, in which, as pointed out earlier, we explicitly refrain from making any assumption on the coarse-scale kinematics
—rather, we let the model to “learn” from the training data1 which is the appropriate kinematics for each case.

1.7. Organization of the paper

The remainder of the paper is organized as follows. Sections 2 and 3 present the employed LLM domain decomposition
framework, describing the geometric setup as well as the involved fine-scale variables. In Section 4, we explain how to obtain
the coarse-scale variables from the modal expansion of their fine-scale counterparts, whereas Section 5 is devoted to both
the variational derivation of the corresponding coarse-scale governing equations, on the one hand, and the incorporation
of the hyperreduction for the term of internal forces, on the other hand. The pseudo-code of the employed hyperreduction
method ( the Empirical Cubature Method) is provided in Appendix A. Section 6 is concerned with the solution strategy
for the resulting set of governing, upscaling and downscaling equations. We show that such equations can be cast into
a one-scale format which, remarkably, is amenable to implementation in existing finite element codes; the guidelines for
adapting the implementation to such codes are provided later on, in both Section 8 and Appendix (B). In section 7,
we describe thoroughly all the offline steps necessary for generating the training data and computing the reduced-order
operators, including also the crucial issue of how to ensure the solvability of the coarse-scale equations. Finally, Section 9
contains a numerical assessment containing 4 distinct types of structures.

Given the length of the paper, and in order not to discourage the more programming-oriented reader, we have summa-
rized all the implementation steps in Boxes 8.1 (offline stage) and 8.2 (online stage). The logic of the proposed methodology

1Incidentally, it should be noticed that the idea that the coarse-scale kinematics is not pre-defined by the user but extracted from a set of
(computational) experiments is very much aligned with the spirit of the “data-driven” paradigm recently proposed by Kirchdoerfer et Ortiz in
Ref. [25].
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can be followed without the finer details from the information in such Boxes.

2. Geometric setup

2.1. Unit cell
Let Ω ⊂ R

nsd denote the domain under study (nsd = 2, 3). As illustrated in Figure 2.a, this domain is assumed to
consist of M non-overlapping, geometrically identical subdomains Ωe (e = 1, 2 . . .M). This means that each Ωe can be
mapped onto a single reference subdomain Ω̄ —the unit cell—by means of translations and rotations. On the other hand,
the boundary of the unit cell, denoted by ∂Ω̄, is assumed to be divided as follows (see Figure 2.d):

∂Ω̄ =

Interface boundaries
︷ ︸︸ ︷

∂Ω̄1 ∪ ∂Ω̄2 · · · ∂Ω̄l ∪∂Ω̄non. (1)

Here {∂Ω̄i}li=1 denotes the interface boundaries —the boundaries that can be potentially connected to other subdomains—,
while ∂Ω̄non designates the remaining portions —that we call non-interface boundaries. The number of interface boundaries
can be either l = 2, l = 4 or l = 6 (1D, 2D o 3D periodicity, respectively). The interface boundaries are assumed to be
plane and not to intersect with each other2(∂Ω̄i ∩ ∂Ω̄j = ∅, i 6= j). Furthermore, geometrical compatibility of contiguous
subdomains (periodicity) requires that the boundary interfaces be pairwise identical, i.e.:

{∂Ω̄i}li=1 = ∂Ω̄+ ∪ ∂Ω̄−, (2)

such that for any ∂Ω̄+
i (i = 1, 2 . . . l/2), there is a ∂Ω̄−

i which can be transformed into ∂Ω̄+
i by means of a translation and

a rotation.

Coarse-scale nodes

Coarse-scale mesh

Fictitious interfaces

d)

Geometric
“coarsening”

a)

b) c)

Figure 2: a) Partition of the domain into M identical domains. b) Coarse-scale representation of the structure of Figure a. The coarse-scale
nodes are located at the centroids of the interface boundaries. c) Domain partition scheme. The connection between domains are established
through fictitious interfaces, whose displacements are assumed to be independent from those of the neighboring domains. d) Geometric definition
of the unit cell, showing the distinction between interface boundaries (∂Ω̄1 and ∂Ω̄2) and non-interface boundaries (∂Ω̄non

1 and ∂Ω̄non
2 ).

Two coordinate systems are employed to describe the displacement of each subdomain: a global, common system,
characterized by the triad of unit orthogonal vectors {ei}nsd

i=1; and a local reference system intrinsic to each subdomain
Ωe, and determined by the triad {êei }nsd

i=1 (e = 1, 2 . . .M). The vector êe
1
is chosen to be normal to the interface boundary

∂Ωe
1, and pointing toward the inside of the domain —so that the normal of boundary ∂Ωe

1 is −êe
1
, see Figure 2.a. The

coordinates of the local triad on the global reference system are stored in a rotation matrix [Q̂
e
]ij = ei

T êej . We also attach
a local coordinate system {ẽi,j}nsd

j=1 (i = 1, 2 . . . l) to each of the interface boundaries of the unit cell (see Figure 2.d). The
coordinates of this triad in the local reference system of the unit cell are stored in a rotation matrix Qi (i = 1, 2 . . . l). By
convention, we set ẽ1,j = êej (j = 1, 2 . . . nsd); thus Q1 = I, where I is the nsd × nsd identity matrix. Accordingly, in 1D

problems, Q2 will define the rotation of the interface boundary ∂Ω̄2 with respect to ∂Ω̄1, as illustrated in Figure 2.d. On
the other hand, in 2D cylindrical structures, such as the one shown previously in Figure 1.e, we shall adopt the convention
of labeling the interface boundaries such that Q1 = Q2 = Q4 and Q3 6= I (this convention will be further explained later
on, in the example of Section 9.5).

2This prerequisite is introduced for simplicity in dealing with the underlying domain decomposition problem (it avoids special treatment
of intersection entities in 2D and 3D periodicity). In theory, this does not restrict the scope of the approach, since unit cells with continuous
interface boundaries may be considered as limiting cases.
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2.2. Fictitious interfaces and “coarse-scale mesh”

As pointed out in the introduction, the interface conditions between adjacent domains are not established directly but
through a “fictitious” partition frame [33], denoted here by {ΓI}NI=1 (global description), or by {Γ̄i}li=1 (local description).
In the undeformed configuration, the fictitious interfaces coincide with the interface boundaries of the subdomains, and
their connectivity is given by an array T ; the (e, k) entry of this array indicates the global numbering of the fictitious
interface connected to the interface boundary ∂Ωe

k. For instance, in the example given in Figure 2.c, we see that T (e, 1) = I
and T (e, 2) = J .

The description of the interconnection is completed by providing the position in the global reference system of the
centroids of each fictitious interface, denoted by {X∗

cI}NI=1. These position vectors, along with the connectivity array
T (·, ·), constitute what we call the coarse-scale description of the domain Ω. This coarse-scale description, thus, ignores
the exact geometry and composition of the subdomains, and only takes into consideration the position and geometry of the
interfaces. Symbolically, we may represent it as the union of all fictitious interfaces: Γ = ∪NI=1ΓI . Its boundary, denoted
by ∂Γ, is formed by those interfaces only connected with one subdomain, i.e., those J ∈ {1, 2 . . .N} that only appears in
one row of T . This set is denoted by b. For pre- and post-processing purposes, it proves advantageous to go further in
this geometric “coarsening” and portray the domain as a finite element mesh in which (some of) their nodes coincide with
the centroids of the interfaces —therefore ignoring as well the geometrical features of the interfaces. Accordingly, in 1D
periodicity, the resulting coarse-scale mesh would be a 1D discretization of a line or curve (see Figure 2.b), while in 2D
periodicity, the coarse-scale mesh would be a quadrilateral mesh (with the nodes located on the sides).

Lastly, a local coordinate system {ēIj}nsd

j=1 is attached to each fictitious interface ΓI (I = 1, 2 . . .N). The coordinates

of the interface triad in the global reference system are given by the columns of the matrix [Q̄I ]kj := ek
T ēIj . We shall

assume this triad is oriented as the local reference axes for the interface boundaries of the unit cell; thus, it follows that

Q̄I = Q̂
e
Qi, (3)

where I = T (e, i).

2.3. Fine-scale mesh

The unit cell Ω̄ is discretized by a finite element mesh featuring n nodes and m elements. We shall refer to this spatial
discretization as the fine-scale mesh. The DOFs of the interface boundary ∂Ω̄i are denoted by fi, and the vector formed
by stacking all these vectors in a single column matrix by f :

f =
[

fT
1

fT
2
· · · f Tl

]T
. (4)

We assume that the discretization is such that the mesh at the interface boundary ∂Ω̄+
i matches the mesh at ∂Ω̄−

i

(i = 1 . . . l/2). Furthermore, for simplicity, it is assumed that the k− th entry of f+i corresponds to the k− th entry of f−i .
The nodal coordinates of the mesh in the local reference system are denoted by {X′

i}ni=1 (X′ ∈ R
nsd), and the positions

of all the Gauss points of the mesh by {xg}
mgs

g=1 .

Likewise, the fictitious interfaces {Γ̄i}li=1 are discretized using a mesh which is conforming to the discretization of the
unit cell at the corresponding interface boundaries. The coordinates of the k−th node of the mesh of Γ̄i in the local system
attached to the interface (located at the centroid, see Figure 2.c) is denoted by Y ′

i(k). We assume again for simplicity that
the ordering of the DOFs of the domain and fictitious interfaces is direct, meaning that the positions in the undeformed
configuration of the k − th node of the fictitious interface Γ̄i and the k − th node of the domain interface ∂Ω̄i coincide.

3. Fine-scale variables

Next we describe the set of variables defined on the finite element mesh of each subdomain and each fictitious interface.
This set includes four nodal variables (domain displacements, Lagrange multipliers, interface displacements and external
forces); and two variables defined at Gauss points (stresses and strains). In our multiscale framework, these magnitudes
will play the role of fine-scale variables.
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3.1. Domain variables

3.1.1. Displacements and Lagrange multipliers

The vectors of nodal displacements and Lagrange multipliers of domain Ωe (expressed in the subdomain reference
system), are denoted by de ∈ R

ndof and λe ∈ R
ndof , respectively (ndof = n ·nsd). These vectors are partitioned as follows

de =

[
de
f

de
S

]

, where de
f =








de
f1

de
f2

...
de
fl







, λe =

[
λe
f

0

]

, where λe
f =








λe
f1

λe
f2

...
λe
fl







. (5)

Here, de
f and λe

f denote the nodal displacements and nodal Lagrange multipliers of the interface boundaries, while de
S

stands for the displacements of the remaining nodes —note that at such nodes the Lagrange multipliers are zero, i.e.
λe
S = 0.

3.1.2. Strains, stresses and internal forces

The infinitesimal strain vector at the g− th Gauss point of the mesh of domain Ωe is denoted by εe(xg) ∈ R
s (s = 4, 6

for 2D and 3D problems, respectively); the relation between this vector and the nodal displacements of the domain is
established through the expression:

εe(xg) = B(xg)d
e, (6)

where B(xg) is the strain-displacement matrix (in its global, sparse format) associated to the g− th Gauss point. On the
other hand, the stress vector at Gauss point xg is designated by σe(xg) ∈ R

s. Its relation to the strain vector and its past
history at a given instant is assumed to be given by a general constitutive relationship, symbolically represented here as

σe(xg) = H
(
εe(xg), ξ

e(xg);xg
)
, (7)

ξe(xg) being a vector of internal variables. Lastly, the vector of internal forces is computed by

F e
int =

mgs∑

g=1

BT(xg)Wgσ
e(xg), (8)

where Wg ∈ R stands for the product of the Gauss weight and the Jacobian at the Gauss point xg.

3.1.3. External forces

The vector of nodal external forces acting on subdomain Ωe is denoted by F e
ext (expressed in the domain reference

system). In the proposed partitioning framework, this vector is assumed to contain body forces, on the one hand, and, on
the other hand, surface tractions acting on the non-interface boundaries ∂Ω̄non:

F e
ext =

Body forces
︷︸︸︷

F e
b +

Tractions on ∂Ω̄non
︷︸︸︷

F e
tr . (9)

As will be explained later, forces acting on interface boundaries are regarded as applied on their associated fictitious
interfaces rather than on the subdomains themselves.

3.2. Fictitious interface variables

3.2.1. Interface displacements

In analogy to standard finite element formulations, we shall use global and local descriptions for referring to the
vector of nodal displacements for the fictitious interfaces. On the one hand, the displacements of a given interface ΓI

(I = 1, 2 . . .N) is denoted by uI —this is the global description. On the other hand, the vector of interface displacements
of a given subdomain Ωe (e = 1, 2 . . .M) is defined by

ue :=








ue
1

ue
2
...
ue
l







, (10)
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(this is the local point of view). Both global and local vectors are assumed to be expressed in the reference frame attached
to the interfaces. The connection between global and local descriptions is established via the coarse-scale connectivity
matrix, i.e.:

ue
i = uI , if I = T (e, i). (11)

The local point of view allow us to compactly write the compatibility conditions between subdomains and fictitious
interfaces. Indeed, the difference between the displacements of the interface boundaries of a given domain and the nodal
displacements of the surrounding fictitious interfaces can be expressed as de

f −Que, where

Q := diag (Q1,Q2, · · · ,Ql) (12)

and
Qj = diag (Qj ,Qj , · · · ,Qj). (13)

3.2.2. Interface external forces

The interface external forces are those traction loads applied on interface boundaries (more specifically, on interface
boundaries not connected with other subdomains). We denote by F̄J the nodal vector, expressed in the local reference
system attached to the interface, of the traction loads acting on the interface boundary associated to ΓJ (J ∈ b).

4. Low-dimensional modal approximations

4.1. Domain displacements

Now we address the low-dimensional parametrization of the fine scale variables defined in the foregoing. We begin by
the domain nodal displacements de. As is customary in partitioning problems in the small strains regime [33], the total
displacements is decomposed as the sum of rigid body and straining components (see Figure 3.a):

de =

Rigid body
︷ ︸︸ ︷

Rαe +

Straining
︷︸︸︷

Φqe . (14)

Here, R ∈ R
ndof×nrb (nrb = 3, 6 for 2D and 3D problems, respectively) and Φ ∈ R

ndof×n∗

stand for the matrices of rigid
body and straining modes, respectively. The number of straining modes, n∗, is assumed to be much smaller than the
number of DOFs of the domain (n∗ << ndof).

The matrix of rigid body modes R can be further partitioned into translational (Rt) and rotational (Rr) modes.
Taking the centroid X′

c as reference point, the expression for such matrices for a given node i reads (for 3D problems)

Rti = I, Rri = −spin(∆X′

i) = −





0 −(∆X′

i)3 (∆X′

i)2
(∆X′

i)3 0 −(∆X′

i)1
−(∆X′

i)2 (∆X′

i)1 0



 (15)

(here ∆X′

i = X′

i −X′

c). The corresponding amplitudes αe
t ∈ R

nsd and αe
r ∈ R

nrot (nrot = 1, 3 for 2D and 3D) are thus
the translation of the centroid and the (infinitesimal) rotation angles, respectively. We further postulate that the straining
modes Φ are mutually orthogonal, and, besides, M-orthogonal to the rigid body modes:

ΦTΦ = I, ΦTMR = 0, (16)

M being the (geometric3) nodal mass matrix of the unit cell Ω̄. Furthermore

4.1.1. Coarse-scale strains

Substitution of Eq.(14) into Eq.(6) yields

εe(xg) = B(xg)Rαe +B(xg)Φqe, g = 1, 2 . . .mgs. (17)

Since rigid body motions produce no strain, we have that B(xg)R = 0, and therefore

εe(xg) = B∗(xg)q
e, g = 1, 2 . . .mgs (18)

3Similar to the standard nodal mass matrix, but with density equal to one. Using the variables defined later in Appendix B, it can be
calculated as M =

∑mgs

g=1
NT(xg)WgN(xg).
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where
B∗(xg) := B(xg)Φ. (19)

Notice that equation (18) represents a low-dimensional parametrization of the fine-scale strains of the subdomain Ωe

in terms of the amplitudes of the straining modes of such a domain. For this reason, one may interpret qe as the vector of
generalized coarse-scale strains. In turn, in the light of this interpretation, Eq.(18) may be viewed as a strain downscaling
equation, for it allows us to, once qe has been calculated, recover the (fine-scale) strains at any Gauss point of the domain
Ωe.

4.2. Lagrange multipliers (reactive forces)

= =+ +

a) Nodal displacements (subdomain)

Rigid-body
displacement

Self-equilibr.
reactive
forces

Straining
displacement

Undeformed
fictitious
interface

p

b) Lagrange Multipliers (reactive forces)

= +

d) Nodal external forces (body forces  + non-interface tractions)

= +

c) Interface nodal displacements

p/2 p/2

p

p/2 p/2

Self-equilibr.
external
forces

Equivalent
interface
forces

Rigid-body
displacement

Straining
displacement

p/2 p/2

p

p/2
p/2

Figure 3: Proposed decompositions for: a) Nodal displacements de of each subdomain Ωe into rigid-body and straining parts (see Eq. 14).
The amplitude qe of the straining modes are the generalized coarse-scale strains in our multiscale framework. b) Nodal reactive forces λe into
resultant and self-equilibrating components (see Eq. 20). The amplitudes re of the self-equilibrating modes will play the role of generalized
coarse-scale stresses. c) Nodal displacements of each fictitious interface into rigid-body and straining components (see Eq. 32). The amplitude
ae
i of both rigid-body and straining modes constitute the generalized coarse-scale DOFs of our model. d) Nodal external forces into equivalent

interface and self-equilibrating components (see Eq. 28).

For the vector of nodal Lagrange multipliers of domain Ωe, we propose a decomposition analogous to Eq.(14), i.e.:

λe = R̄βe +

Self-equilibrating
︷︸︸︷

Ψre (20)

where
RTΨ = 0, and ΨTΨ = I. (21)

In Eq.(20), R̄ stands for the following matrix

R̄ =

[
R̄f

R̄S

]

=

[
MfRf

0

]

, (22)

i.e., a matrix in which the rows corresponding to the interface boundaries DOFs are equal to the rigid body modes
times the mass matrix —and zero at the remaining rows. On the other hand, Ψ ∈ R

ndof×p designates the matrix of
self-equilibrating reactive modes. Like the straining modes Φ, this matrix is determined empirically from FE, full-order
analyses via dimensionality reduction. The qualifier “self-equilibrating” refers to the fact that, according to condition
(21.a), each column of this matrix forms a system of nodal forces whose resultant and moment resultant are zero (see
Figure 3.b). This follows easily from Eq.(5) and Eq.(15); indeed, for the i− th mode we have that

RT
t Ψi =

n∑

j=1

Ψij = 0, and RT
rΨi = −

n∑

j=1

spin(∆X′

j)Ψij = −
n∑

j=1

∆X′

j ×Ψij = 0. (23)
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4.2.1. Coarse-scale stresses

In much the same way we have interpreted the amplitudes of the straining modes qe as the generalized coarse-scale
strains, we may view re as the vector of generalized coarse-scale stresses of the domain Ωe, for they represent a low-
dimensional parametrization of the reactive forces between Ωe and its neighboring subdomains. In fact, the reason for
enforcing the condition that Ψ must be a system of self-equilibrating forces is to ensure that re is, in some sense, the
work conjugate of qe. Indeed, the work done by these modes over virtual rigid body displacements is zero, and therefore

δdeT Ψre = δqeT Hre, (24)

where

H := ΦTΨ =
[
ΦT
f ΦT

S

]
[
Ψf

0

]

= ΦT
f Ψf =

l∑

i=1

ΦT
fi
Ψfi

. (25)

The matrix defined above will play a critical role in the stability and the well-posedness of the overall problem. Physically,
Hij represents the work done by the j − th self-equilibrating force mode when the interface boundary nodes moves along
the i−th straining pattern. It can be argued thus that, in order to avoid having coarse-scale stresses that do not contribute
to the coarse-scale work, the kernel of this matrix must be zero

ker(H ) = {0}. (26)

This condition implies that rank(H ) = p, which means, in turn, that

p ≤ n∗, (27)

that is, in our multiscale formulation, the number of coarse-scale stress components must be equal or less than the number
of coarse-scale strain components.

4.2.2. Equivalent and self-equilibrating forces

It proves convenient to introduce at this point a decomposition similar to that in Eq.(20) for the input vector of nodal
external forces on domain Ωe:

F e
ext =

Equiv. interf. forces
︷︸︸︷

F e
eq +

Self-equilib.
︷︸︸︷

F e
se (28)

where
F e
eq := R̄(RT R̄)−1(RTF e

ext) (29)

and
F e
se := F e

ext − F e
eq. (30)

As illustrated in Figure 3.d, the term F e
eq in Eq.(29) is a vector of nodal forces which are different from zero only at the

nodes of the interface boundaries (this follows from the definition of R̄ in Eq. 22), and whose resultant and moment
resultant are identical4 to that of F e

ext, i.e.:
RTF e

eq = RTF e
ext. (31)

For this reason, we shall refer to this variable as the vector of equivalent interface nodal forces on domain Ωe. Conversely,
F e
se will be called the vector of self-equilibrating nodal forces on domain Ωe, since its resultant and moment resultant are
zero (this is readily seen by multiplying Eq.(30) by RT ).

4.3. Fictitious interface displacements

Now we address the parametrization of the nodal displacements of the fictitious interfaces of domain Ωe (e = 1, 2 . . .M).
We postulate for ue

i (i = 1, 2 . . . l) a decomposition similar to the one used in Eq.(14) for domain displacements (see Figure
3.c):

ue
i =

Rigid body
︷ ︸︸ ︷

V̄ iā
e
i +

Straining
︷ ︸︸ ︷

V̂ iâ
e
i = Via

e
i , i = 1, 2 . . . l (32)

4Formally, F e
eq is an (oblique) projection of Fext onto the column space of R̄.
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where

Vi =
[

V̄ i V̂ i

]
, ae

i =

[
āe
i

âe
i

]

. (33)

Here V̄ iā
e
i stands for the rigid body component, whereas V̂ iâ

e
i represents the straining part. The translational V̄ ti and

rotational V̄ ri rigid body modes are calculated as in Eq.(15):

(V̄ ti)j = I, (V̄ ri)j = −spin(Y ′

ij
− Y ′

ic). (34)

The straining modes V̂ i, on the other hand, are assumed to be mutually M-orthogonal, as well as M-orthogonal to the
rigid body modes:

V̂
T

i M̄iV̂ i = I, V̂
T

i M̄iV̄ i = 0, i = 1, 2 . . . l (35)

where M̄i denotes the “geometric” mass matrix of interface Γ̄i = ∂Ω̄i. Lastly, periodicity dictates that the modes of ∂Ω̄−

be equal to the modes of ∂Ω̄+. We symbolically express this condition as

V +
i = V −

i i = 1, 2 . . . l/2. (36)

For 1D periodicity, for instance, this implies that V1 = V2, whereas for 2D periodicity, we have V1 = V3, and V2 = V4.

4.3.1. Coarse-scale DOFs

We pointed out in Section 2.2 that, in the proposed multiscale framework, the coarse-scale description only accounts
for the kinematics of the fictitious interfaces, ignoring the subdomains. Accordingly, we shall assign to the amplitudes of
the interface displacement modes the role of coarse-scale DOFs. The basic unknown of the coarse-scale problem will be
therefore the vector formed by gathering all the interface contributions in a single column matrix:

a =








a1

a2
...

aN







, (37)

where
aI = ae

i , if I = T (e, i). (38)

From definition (10), it follows that the nodal fictitious displacements associated to domain Ωe are expressible in terms of
coarse-scale DOFs as

ue = V ae, (39)

where

V := diag (V1,V2, · · · ,Vl), ae :=








ae
1

ae
2
...
ae
l







. (40)

The vector ae defined in the preceding equation is the local coarse-scale DOFs of domain Ωe. In analogy to standard
finite element formulations, we introduce a coarse-scale Boolean matrix L

e to relate this local domain vector to the global
vector defined in Eq.(37):

ae = L
ea (41)

5. Variational principle

Having defined the fine-scale and coarse-scale variables, the next step consists in determining the constitutive, compat-
ibility and equilibrium equations for the coarse-scale variables, as well as the stress upscaling equation. According to the
employed variational partitioning framework [33], these equations emerge from the stationary conditions of the following
energy functional:

Π = Πint −Πext − π. (42)

Here, Πint denotes the contribution of strain energy, Πext stands for the part due to external forces, while π is the
so-called interface or dislocation potential. Taking variations of Eq.(42), we get

δΠ = δΠint − δΠext − δπ. (43)

In the following, we elaborate on each of the three terms of the right-hand side of the preceding equation.
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5.1. Internal virtual work

The total internal virtual work in Eq.(43) is calculated by summing the contributions of all the subdomains:

δΠint =

M∑

e=1

δΠe
int (44)

In turn, the contribution of a given subdomain Ωe is given by δΠe
int = δdeT F e

int . Taking variations of Eq. (14); using
Eq.(8) and Eq.(19); and considering that rigid body motions do not produce straining, we obtain

δΠe
int = (δαeTRT + δqeTΦT )

mgs∑

g=1

BT(xg)Wgσ
e(xg)

= δqeT
mgs∑

g=1

B∗T(xg)Wgσ
e(xg).

(45)

5.1.1. Empirical cubature of virtual work

Note that the evaluation of the virtual work in the preceding equation requires summing up the contribution of all
the mgs Gauss points of the underlying (fine-scale) mesh. This is because we are using the same integration rule as for
the nodal internal forces in Eq.(8), that is, element-wise Gauss quadrature. This dependence on the total number of
Gauss-points of the unit cell mesh would render the overall approach ostensibly inefficient and impractical in nonlinear
scenarios, for one would be forced to track and store the strains, the stresses and the internal variables at all the Gauss
points of each subdomain.

Fortunately, there is no need to use all such Gauss points for the integration. As shown by the author in Ref. [22] (in
the context of multiscale homogenization problems), since displacements are constrained to lie in a subspace of dimension
n∗ << ndof , then the corresponding strains and stresses are also expected to reside in subspaces of dimension O(n∗).
This implies that the virtual work per unit volume —the product of stresses and strains— is of dimensionality O(n∗2),
and therefore, O(n∗2) points5 suffice to evaluate δΠe

int in Eq.(45).
In the present work, such integration points are optimally chosen among the set of mesh Gauss points by means of

a constrained optimization procedure that guarantees the positiveness of the weights —the Empirical Cubature Method,
ECM for short, developed by the author in Ref. [21]. We present in Appendix A an algorithmically improved version
of this ECM algorithm. Let Z ⊂ {1, 2 . . .mgs} denote the set of m∗

gs indexes corresponding to the chosen points, and6

{ω(xg)}g∈Z the set of corresponding positive weights. With these two variables at hand, we can approximate the virtual
internal work in Eq.(45) by

δΠe
int = δqeT

∑

g∈Z

B∗T(xg)ω(xg)σ
e(xg). (46)

Note that this expression is formally identical to Eq.(45); the only differences are that, on the one hand, the sum is taken
over the Gauss points belonging to the set Z, and that, on the other hand, we have replaced the FE weights Wg by the
ECM weights ω(xg).

5.2. External virtual work

The external work term δΠext in Eq.(43) is composed of two contributions: work done by body forces and tractions
applied on the non-interface boundaries (described in Section 3.1.3); and work done by tractions applied on the coarse-
scale boundary (F̄J ), described in Section (3.2.2). Taking variations of Eq.(14) and Eq.(32), and multiplying by the
corresponding forces, we can express the total virtual external work as7

δΠext =
M∑

e=1

δαeT RTF e
ext +

M∑

e=1

δqeT ΦTF e
ext + δaT

∑

I∈b

L̄
T

I V
T
I F̄I (47)

where L̄I is a boolean matrix such that aI = L̄Ia.

5The number of points needed to integrate a function residing in a subspace of dimension n is of the order of O(n) points. For instance, for
a polynomial of order p (and therefore of dimensionality p + 1), the number of points is equal to (p + 1)/2 when using Gauss quadrature (the
optimal quadrature rule), and p + 1 when employing Newton-Cotes.

6 ω(xg) indicates the weight associated to the ECM point located at xg.
7With some abuse of notation, we employ the same symbol for denoting the local and global counterpart of the interface modes matrix. To

distinguish them, we use small letter indexes for local description (Vi), ,and capital letter indexes for global description (VI).
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5.3. Interface potential

The interface potential π is defined by

π =

M∑

e=1

πe =

M∑

e=1

λeT (de
f −Que), (48)

Taking variations we get

δπe = δλeT (de
f −Que) + (δdeT

f − δueT QT )λe. (49)

Next we replace the expressions for λe, de
f and ue (Eq. 20, Eq. 14 and Eq. 39, respectively), as well as their variations,

in Eq.(49); this leads, upon factoring out the variations of each variable, to

δπe = δαeT (RT
f R̄fβ

e) + δqeT
(

ΦT
f R̄fβ

e +ΦT
f Ψfr

e
)

+ δre
(

ΨT
f Φfq

e −ΨT
f QV ae

)

+ δβe
(

R̄
T

fRfα
e + R̄

T

fΦfq
e − R̄

T

fQV ae
)

− δaeT
(

V TQT R̄fβ
e + V TQTΨfr

e
)

.

(50)

For notational compactness, we define the following reduced-order matrices

H̄ := ΦT
f R̄f , G := RT

f R̄f (51)

T := ΨT
f QV =

l∑

i=1

ΨT
fi
QiVi, T̄ := R̄

T

fQV . (52)

With these matrices at hand, and using Eq.(41), Eq.(25) and Eq.(50), the variation of Eq.(48) can be finally written as

δπ =

M∑

e=1

δπe =

M∑

e=1

(

δαeT Gβe + δqeT
(
H̄βe +Hre

)
+ δre

(

HTqe − T ae
))

+
M∑

e=1

(

δβe
(

GeTαe + H̄
T
qe − T̄ ae

)

− δaT
L
eT

(

T̄
T
βe + T Tre

))

.

(53)

5.4. Stationary points of the functional

The stationary points of the proposed functional follow from equating to zero the terms multiplying δαe, δqe, δre, δa
and δβe in Eq.(44), Eq.(47) and Eq.(53).

5.4.1. Resultants of domain external forces

We begin with the variations of the amplitudes of the rigid body domain displacement δαe. Gathering the terms from
Eq.(47) and Eq.(53), we get

−RTF e
ext −Gβe = 0, e = 1, 2 . . .M. (54)

Solving the above for βe, and using Eq.(51).b, we obtain

βe = −(RT
f R̄f )

−1RTF e
ext. (55)

5.4.2. Coarse-scale equilibrium

As for the terms multiplying δa, we get from Eq.(47) and Eq.(53) that

M∑

e=1

L
eTT T re =

Equiv. interf. forces
︷ ︸︸ ︷

M∑

e=1

L
eT Fe

eq +

Boundary forces
︷ ︸︸ ︷
∑

I∈b

L̄
T

I F̄I . (56)

where
F̄I := V T

I F̄I , I ∈ b (57)
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and
Fe
eq := −T̄ T

βe = (V TQT R̄f )(R
T
f R̄f )

−1RTF e
ext = V TQTF e

eq,f , e = 1, 2 . . .M. (58)

Expression (56) constitutes the coarse-scale equilibrium equation of our multiscale problem, for it represents a balance
between coarse-scale internal forces (depending on the generalized coarse-scale stresses re, left-hand side) and coarse-scale
external forces (right-hand side). Such external forces are in turn formed by assembling the contribution of two distinct
terms, namely: (coarse-scale) boundary forces and (coarse-scale) equivalent interface forces. The latter is called this way
because, as it follows from Eq.(58), it emanates from upscaling the fine-scale vector of equivalent interface nodal forces
F e
eq (given in turn in Eq.(29)). Likewise, F̄I in Eq.(57) is called the vector of coarse-scale boundary forces because it arises

from projecting the nodal forces F̄I acting on the boundary of the coarse-scale geometry onto the span of VI .

5.4.3. Stress upscaling equation

Next we group the terms corresponding to the variations of the straining amplitudes δqe (from Eqs. 44, 46, 47 and
53). Upon some manipulation (using Eqs. 51, 54 and 30), we arrive at

Hre =
∑

g∈Z

B∗T(xg)ω(xg)σ
e(xg)−ΦTF e

se, e = 1, 2 . . .M. (59)

The above equation is our stress upscaling equation, because it relates the generalized coarse-scale stresses re (left-hand
side) to its fine-scale counterpart {σe(xg)}g∈Z (right-hand side). Notice that the external forces also appears in this
upscaling equation —through its self-equilibrating component F e

se, defined in Eq.(30), and pictorially depicted in Figure
3.d. It should be highlighted that this is a distinguishing feature of our approach, for standard multiscale theories, such
as FE beam/shell theories or first- and second-order homogenization, ignore this self-equilibrating component, and only
consider external domain forces through its equivalent interface component F e

eq in the coarse-scale equilibrium equation
—hence their inability to capture local effects8.

5.4.4. Coarse-scale strain-displacement equation

The only term multiplying the variations of the amplitudes of the self-equilibrating modes δre appears in Eq.(53);
equating this term to zero, we obtain the relationship between coarse-scale strains and displacements :

HTqe = T ae, e = 1, 2 . . .M. (60)

5.4.5. Rigid-body amplitudes

The remaining coarse-scale kinematic condition is the relationship between displacements, strains and rigid-body
motion of each subdomain. This equation can be deduced from gathering and equating to zero the terms multiplying δβe

in Eq.(53):

GTαe + H̄
T
qe − T̄ ae = 0, e = 1, 2 . . .M. (61)

Note that, since G is by construction invertible, the rigid body vector αe can be obtained a posteriori, once qe and ae

have been determined.

6. Solution strategy

Prior to launching into the specific details of the solution strategy, let us first summarize the equations and unknowns of
the multiscale problem we have described in the preceding sections. We have a total of five sets of unknowns, namely, the
coarse-scale strains, stresses and displacements (qe, re and a, respectively); and the fine-scale strains and stresses (εe(xg),
σe(xg), respectively). The total number of governing equations is five as well: 2 coarse-scale equations ( equilibrium and
the stress-displacements relationship, see Eqs. 56 and 60); 2 upscaling/downscaling equations (the stress upscaling and
strain downscaling mappings, see Eqs. 59 and 18); and one fine-scale equation (the constitutive law, see Eq. 7).

8For instance, in beam theories, if a longitudinal “slice” is subjected to a system of lateral self-equilibrating forces, then the slice is
(incorrectly) considered unstressed. By contrast, our approach can accurately deal with this type of local effects, as we shall demonstrate later
in the example of Section 9.3
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6.1. Hierarchical versus inter-scale approach

In principle, the strategy for solving this set of five matrix equations would be similar to that of other hierarchical two-
scale methods such as the FE2 or the FE-HROM. Indeed, notice that four of the involved variables (namely, qe, re,εe(xg),
σe(xg) ) are local —they are defined at subdomain level— whereas just one of them is global (the coarse-scale DOFs a).
Likewise, there are 4 local and 1 global equations. The global equation is the coarse-scale equilibrium (56), which depends
solely on the coarse-scale stresses re. Thus, the gist of the strategy would be to, given a tentative coarse-scale displacement
a, solve first the local equations in order to determine the corresponding coarse-scale stresses re (e = 1, 2 . . .M). If such
stresses are not in equilibrium with the applied external actions, then the linearized version of the equilibrium equation
would be used to determine a correction for the coarse-scale displacements —and so on until convergence.

The computer implementation of this type of hierarchical approaches is a cumbersome, laborious task —as anyone
familiar with the intricacies of the FE2 will attest. The fact that stresses and strains at the scale of interest are not
related through an empirical constitutive law compels one to deploy a special algorithmic infrastructure of intertwined
local/global problems, wherein convergence issues are difficult to spot and debug.

Fortunately, in the proposed multiscale framework, it is possible to circumvent this nested sequence of local/global,
and produce a simplified “inter-scale” formulation which, remarkably, is amenable to implementation in a standard finite
element code. The key insight for understanding how to arrive at this simplified strategy is concealed in the condition
rank(H ) = p, presented in Section 4.2.1. Physically, such a condition indicates that one may include more straining
modes than reactive modes, provided that at least p of such straining modes effectively contribute to the total coarse-scale
work. An immediate corollary is that if n∗ > p, then there is a straining subspace of dimension n∗− p whose motions are
either energetically irrelevant or redundant to the coarse-scale9. In the light of this observation, it is natural to wonder
whether there would be any algorithmic advantage in excluding these irrelevant or redundant modes from the straining
modes matrix Φ. We next demonstrate that this question has an affirmative answer.

Suppose that, given a matrix of p self-equilibrated reactive modes Ψ, we manage to determine a matrix of n∗ = p
effective straining modes Φ such that H = ΦTΨ is invertible —we shall explain later, in Section 7.3, how to ensure this
condition. In doing so, both Eq.(60) and Eq.(59) can be solved for qe and re, yielding

qe = H−TT ae, e = 1, 2 . . .M, (62)

and
re = H−1

∑

g∈Z

B∗T(xg)ω(xg)σ
e(xg)−H−1ΦTF e

se, e = 1, 2 . . .M, (63)

respectively. If we now substitute Eq.(62) into the strain downscaling expression (18), we obtain

εe(xg) = B(xg)a
e, e = 1, 2 . . .M, (64)

where
B(xg) := B∗(xg)H

−TT , g = 1, 2 . . .mgs. (65)

The above matrix will be referred to as the interscale “B” matrix at Gauss point xg, for it allows one to determine the
fine-scale strain vector in terms of the coarse-scale DOFs of the domain. On the other hand, inserting Eq.(63) into the
coarse-scale equilibrium equation (56), we arrive at

M∑

e=1

L
eTT TH−1

∑

g∈Z

B∗T(xg)ω(xg)σ
e(xg) =

M∑

e=1

L
eT T TH−1ΦTF e

se +

M∑

e=1

L
eT Fe

eq +
∑

I∈b

L̄
T

I F̄I (66)

Using Eq.(65), the preceding equation can be recast into a format reminiscent of that of typical finite element formulations:

Internal forces
︷ ︸︸ ︷

M∑

e=1

L
eTFe

int =

Body forces
︷ ︸︸ ︷

M∑

e=1

L
eT (Fe

se +Fe
eq)+

Boundary forces
︷ ︸︸ ︷
∑

I∈b

L̄
T

I F̄I (67)

9Recall that the Lagrange multipliers are only nonzero at the DOFs of interface boundaries, while the displacement domains are non-zero
at all DOFs. Accordingly, it may occur that certain strain modes only affect the interior of the domain, being its impact on interface boundary
DOFS —and therefore on the coarse-scale— negligible.
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where
Fe
int :=

∑

g∈Z

BT(xg)ω(xg)σ
e(xg) (68)

and
Fe

se := (T TH−1ΦT )F e
se (69)

(Fe
eq was defined in Eq. 58 ).

6.2. The coarse-scale finite element

Eqs. (64) and (67) are of crucial importance in the proposed method. By simply enforcing that H = ΦTΨ be
invertible, we have managed to couch the kinematics and the equilibrium of the coarse-scale problem solely in terms of
the infinitesimal strain vector εe(xg), the Cauchy stress vector σe(xg) (both at the ECM integration points, g ∈ Z) and
the vector of coarse-scale DOFs. Furthermore, both Eqs. (64) and (67) have practically the same format as those of
standard finite element formulations. Thus, for implementational purposes, it proves useful to exploit this resemblance
and conceptualize the unit cell as a special type of finite element. The main features of this coarse-scale element are
summarized below.

1. The nodes are located at the centroids of the l interface boundaries.

2. The integration points of this finite element are located at the positions computed by the Empirical Cubature Method
{xg ∈ Ω̄}g∈Z.

3. The B-matrices relating the strains at the ECM integration points to the element DOFs are given in Eq.(65). There
is one of such matrices for each coarse-scale node, that is,

B =
[
B1 B2 · · · Bl

]
, (70)

where, according to Eq.(52).a:
Bi(xg) = B∗(xg)H

−T (ΨT
fi
QiVi). (71)

4. The element internal force vector (see Eq. 68) is obtained as in a standard FE formulation, i.e., by summing the
internal forces per unit volume (BTσe) at all the integration points. In this case, however, the volumetric weights
are not the Gauss weights times the Jacobian, but the weights computed by the ECM (ω(xg), g ∈ Z). The global
internal force vector Fint is computed by standard FE assembly operations (using the coarse-scale connectivity array
T (·, ·)).

5. The element tangent stiffness matrix also exhibits the same format as that of FE formulations. Indeed, linearization
of Eq.(68) yields

D∆aeFe
int = Ke∆ae (72)

where
Ke :=

∑

g∈Z

ω(xg)B
T(xg)C

e(xg)B(xg) (73)

(here Ce(xg) stands for the algorithmic tangent modulus at integration point xg ). In linear problems, Ke does
not change and therefore, it may be directly pre-computed (without recourse to reduced-order integration) from the
fine-scale element stiffness matrix Ke by the following expression

Ke = (T TH−1ΦT )Ke(ΦH−TT ). (74)

6. The element body force vector10 Fe
b (first term of the right-hand side of Eq. 67) comprises two terms, Fe

eq , defined in
Eq. 58, and Fe

se, defined in Eq. 69. In Appendix B, we show that these body coarse-scale force admits also a format
which resembles that of external force vector in standard finite element formulations. Indeed, by assuming that the
only body force per unit volume is self-weight, and that the non-interface boundary ∂Ω̄non is subdivided into bnon
portions upon which the applied tractions are constant, it can be demonstrated that (see Eq. 143 in Appendix B)
the coarse-scale body force at Ωe becomes expressible as

Fe
b =

nmat∑

k=1

N kT

(ρkQ̂
eT

g) +

bnon∑

g=1

N̄
gT

t′
e(g)

. (75)

10We call it “body force vector” because it arises from upscaling those nodal forces not applied on the interface boundaries.
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Here, ρk denotes the density of the k-th material of the unit cell (k = 1, 2 . . . nmat), g ∈ R
nsd is the vector of

acceleration of gravity (in global coordinates) and t′
e(g)

stands for the traction vector (in local, surface coordinates)
acting on the g − th portion of ∂Ωe

non (g = 1, 2 . . . bnon). The expressions for the reduced-order matrices N k and
N̄

g
, on the other hand, are given in Eqs. (141) and (142), respectively. Such matrices depend only on the geometry

and basis modes of the unit cell, and hence they can be precomputed in the offline phase. To adapt an existing
finite element code to compute Fe

b , one would just need to replace the standard polynomial shape functions by these
matrices.

6.2.1. Dirichlet boundary conditions

In Section 4.3, we saw that each coarse-scale node possesses translational (ātI), rotational (ārI) and straining (âI)
DOFs (I ∈ b is the global index of the coarse-scale node). If there are no straining DOFs, then imposing Dirichlet
boundary conditions is as simple as specifying the prescribed rigid-body DOFs of each node —as it is done in FE beam
and shell formulations. For instance, a “fixed node” corresponds to a node in which ātI = 0 and ārI = 0, whereas a
“hinged node” is that in which ātI = 0 and ārI is unknown.

When straining DOFs come into play, things become a little bit more complicated. Such straining modes are empirically
determined and therefore have no apparent physical interpretation. The easiest route is to set them to zero (âI = 0)
when the node is fixed or with prescribed rigid-body motions, or include them in the set of unknowns when the node is
unrestricted. If the input nodal displacements, designated by ūI , are given, then one can compute the DOFs by solving
the minimization problem min

a
I

‖VIaI − ūI‖M̄
I

; this gives

aI = (V T
I M̄IVI)

−1V T
I M̄IūI . (76)

The most general case is when the boundary condition is of the general affine type AIVIaI = ūI , where AI is some matrix
with at least as many columns as rows. This formulation covers, for instance, the case of supports in which the interface
is free to move in one plane, but is restricted in the other direction. To incorporate this type of boundary conditions, we
proceed by finding a full-rank block matrix of V ∗

I = AIVI . Denoting by V ∗

Ir this block matrix, we can write the boundary
condition as

V ∗

IraIr = ūI − V ∗

ImaIm. (77)

We refer to aIr and aIm as the slave and master DOFs, respectively, of the (coarse-scale) node I. Next we express the
slave DOFs as an affine function of the master DOFs by solving the corresponding minimization problem; this yields

aIr =

v̄I
︷ ︸︸ ︷

(V ∗T
Ir M̄ IrV

∗

Ir)
−1V ∗T

Ir M̄ IrūI −
−JI

︷ ︸︸ ︷

(V ∗T
Ir M̄V ∗

Ir)
−1V ∗T

Ir M̄ IrV
∗

Im aIm. (78)

Gathering the equations for all the boundary nodes, we can express the boundary condition in a compact fashion as

ar = v̄ + Jam (79)

The unknown DOFs in the problem are therefore al = [aT
m,aT

f ]
T , af being the remaining DOFs.

6.3. Solvability requirements
The matrices of straining modes Φ, self-equilibrating reactive modes Ψ and interface modes V cannot be chosen

independently from each other, guided only by accuracy considerations. As in any other multifield variational problem,
such matrices have to observe certain conditions that guarantee the well-posedness of the overall problem. One of such
conditions have been already stated —the invertibility of H = ΦTΨ. The remaining conditions pose constraints in
the number and form of the interface modes V . In what follows, we list these additional conditions, along with other
well-posedness considerations. Later on, in Sections 7.3 and 7.4, we shall discuss how to guarantee that these conditions
are met when determining the basis matrices from the FE “training” data.

6.3.1. Rigid-body condition

We postulated in Eq.(32) that each fictitious interface possesses rigid-body and straining modes (Vi =
[

V̄ i V̂ i

]
).

The rigid body modes must be included because otherwise the coarse-scale model would not be able to exactly represent
rigid-body motions without straining. Thus, we can write that

nint
i ≥ nrb, i = 1, 2 . . . l (80)

where nint
i denotes the number of columns of Vi. The number of interface straining modes, denoted hereafter by n̂int

i =
nint
i − nrb, depends on the geometry of the unit cell and the “training” cases used for constructing the modes. In many

cases n̂int
i = 0 (i = 1, 2 . . . l), meaning that the only coarse-scale DOFs are the amplitude of the rigid-body modes.
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6.3.2. Interface work conditions

Suppose that we constrain the displacement of, at least, one of the fictitious interfaces of a given domain Ωe. In such
a case, the coarse-scale strain-displacement relation (62) boils down to qe = H−TTLa

e
L, where the subscript L refers to

the remaining coarse-scale DOFs. Since rigid-body motions are prevented, the domain must necessarily undergo straining
(i.e., qe 6= 0), which requires that ker(H−TTL) = {0}, and this in turn translates into

ker(TL) = {0} (81)

that is, the kernel of the block matrix TL must be zero. This condition guarantees the invertibility of the coarse-scale
stiffness matrix Ke

LL, and therefore, the solvability of the coarse-scale problem (this follows from Eq. 74).
Finally, let us examine the physical interpretation of this solvability requirement. For the sake of argument, suppose

that in this case we restrict the displacements of all interfaces but one (ae
i 6= 0), so that now the condition is ker(T i) = {0}.

By virtue of the dimension theorem11, and using the definition of T , see Eq.(52).a, it follows that

nint
i ≤ p (82)

and

rank(Ψ′T

fi
Vi) = rank(

[

Ψ′T
fi

V̄ i Ψ′T
fi

V̂ i

]

) =

nint
i

︷ ︸︸ ︷

nrb + n̂int
i (83)

where12 Ψ′

fi
:= QT

i Ψfi
. Physically, the preceding condition is telling us that both rigid-body modes V̄ i and straining

body modes V̂ i (if any) must contribute to the work done by the reactive nodal forces Ψ′

fi
. This condition, thus, provides

a useful criterion for discriminating which straining modes should be incorporated into the set of interface modes (we shall
explain this in Section 7.3). Interestingly, it also gives us hints on which type of FE “training” tests should be conducted

to construct Ψ. Indeed, for Eq.(83) to hold, it is necessary that rank(Ψ′T
fi

V̄ i) = nrb. For a 3D problem, for instance, this
means that

rank([

Axial
︷ ︸︸ ︷

Ψ′T
fi

(V̄ i)1,

Shear
︷ ︸︸ ︷

Ψ′T
fi

(V̄ i)2,Ψ
′T
fi

(V̄ i)3,

Torsion
︷ ︸︸ ︷

Ψ′T
fi

(V̄ i)4,

Bending
︷ ︸︸ ︷

Ψ′T
fi

(V̄ i)5,Ψ
′T
fi

(V̄ i)6]) = 6. (84)

The preceding expression indicates that the FE “training” tests should be designed so that, at the very least, the self-
equilibrated modes at each interface i = 1, 2 . . . l have components in tension/compression, bending, shear and torsion.
In doing so, one ensures that the coarse-scale model is able to transmit across any interface boundary the resultants and
moment resultants of the external forces . In turn, this implies that the minimum number of straining/reactive modes in
1D, 2D and 3D periodicity is p = 6, 12 and 18, respectively.

7. Offline stage

As is customary in reduced-order modeling, the solution procedure is split into two distinct steps—known as the
offline and online stages. In the offline stage, the basis matrices and reduced-order operators required for constructing
the coarse-scale equations are computed. Such computations have to be performed just once, and its outcome may be
reused in subsequent analyses. In the case at hand, the information required for constructing the coarse-scale problem
depends, on the one hand, on a set of geometric matrices, such as the matrix of rigid body modes R, and on the other
hand, on three empirical matrices, namely: the matrix of straining modes Φ, the matrix of self-equilibrated modes Ψ and
the matrix of stress modes Λ. The qualifier empirical here means that such matrices are determined from the outcome of
FE simulations (i.e., from computational experiments).

7.1. FE “training” tests

The need for such computational experiments (the FE training tests) is common to other multiscale methods such
as the FE-HROM. However, there is a notable difference between the approach followed in such methods and the one
employed here. For instance, in the FE-HROM in the small strains regime, the deformational modes are obtained by
analyzing the equilibrium of a single unit cell under appropriate periodic boundary conditions; the infinitesimal strain

11The dimension theorem states that dim ker(T i) + rank(T i) = ncol(T i), consult for instance [23]
12Ψ′

fi
is the matrix of reactive modes on interface boundary f i expressed in the reference system attached to interface. We use this variable

instead of Ψfi
to avoid the nuisance of explicitly writing the global rotation matrix Qi
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tensor (at the coarse scale) plays the role of input parameters in this equilibrium problem. In our multiscale approach,
we cannot follow this approach of training with just one unit cell simply because we do not know a priori which are
the coarse-scale strains. Of course we may contrive sophisticated simplifying assumptions and tailor consistent periodic
boundary conditions to each specific case13. However, this approach is at odds with the very spirit of the proposed
methodology, in which the simplifications leading to the coarse-scale model are presumed to be automatically discovered
by the dimensionality reduction algorithms. The most general approach is, thus, to conduct FE training analyses of
arrangements of several unit cells. This way, we allow the method to extract the most prominent patterns of collective
behavior, without assuming any kinematic simplification at the outset.

The number of unit cells of the training structures depends on the purpose and scope of the reduced-order model. The
only consideration to keep in mind is that, at the very least, the corresponding reactive modes should have component in
tension/compression, shear/bending and torsion, as deduced in Eq.(84). This suggests to perform, as a rule, at least 4
training tests (for 3D problems) for each periodicity direction (1 for axial behavior, 2 for shear/bending, and 1 for torsion).

7.1.1. Snapshot matrices

Suppose we run, following the guidelines described above, a battery of FE training tests. The information of the
displacements of each unit cell, the corresponding reaction forces between domains, and the stresses (all in domain
coordinates) is to be stored in three distinct snapshot matrices, namely, the matrix of displacements:

Ad =
[
d(µ1) d(µ2) · · · d(µP )

]
; (85)

the matrix of reactions (for only the entries f corresponding to the interface boundary nodes)

Aλ =
[
λf (µ

1) λf (µ
2) · · · λf (µ

P )
]
; (86)

and the matrix of stresses
Aσ =

[
S(µ1) S(µ2) · · · S(µP )

]
. (87)

Here µ denotes collectively the set of input parameters of the problem, which may encompass the location within the
structure, the employed boundary conditions, the pseudo-time (in nonlinear problems), and/or the variations of material
properties, among others. The total number of snapshots is denoted by P . On the other hand, S is a vector formed by
stacking the Cauchy stress vector at all Gauss points of a given domain.

Recall (see Eq.(16).b and Eq.(21).a) that we are only interested in the straining and self-equilibrated part of Ad and
Aλ, respectively; thus, we have to purge the rigid-body and resultant components, respectively, of each column of such
matrices:

Ad ← Ad −R(RTMR)−1(RTMAd) (88)

Aλ ← Aλ −Rf (R
T
fRf )

−1(RT
fA

λ). (89)

The stress snapshot matrix in Eq.(87), on the other hand, is needed for constructing the objective function of the mini-
mization problem associated to the choice of the ECM points (see Eq. 123 in Appendix A).

7.2. Self-equilibrating reactive modes
To determine Ψf from Aλ, we employ the Singular Value Decomposition (SVD). The truncated SVD of a matrix

A ∈ R
n×m is symbolically represented here as the function

[U ,S,W ] = SVD(A, ǫ), (90)

which takes the matrix A and the relative tolerance 0 ≤ ǫ ≤ 1 as arguments, and returns the matrix of left singular
vectors U ∈ R

n×r, the (diagonal) matrix of positive singular values S ∈ R
r×r and the matrix of right singular vectors

W ∈ R
m×r. These matrices meet the following relationships

A = USW T +E, ‖E‖F ≤ ǫ‖A‖F , UTU = W TW = Ir×r, S(i+1,i+1) ≥ S(i,i) > 0, (91)

where ‖E‖F denotes the Frobenius norm of the truncation error.
Applied to the matrix Aλ, using a tolerance ǫλ (typically around 10−3), the function SVD furnishes the desired matrix

of self-equilibrated modes:
[Ψf ,Σ

λ, •] = SVD(Aλ
f , ǫλ). (92)

If the matrix is divided into blocks, one can use the partitioned version of the SVD proposed by the author in Ref.
[21]. This partitioned version allows one to specify a distinct tolerance for each submatrix.

13We have explored this possibility in the case of 1D periodicity, but results are only satisfactory for certain types of geometries in the elastic
range
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Algorithm 1: Algorithm for maximizing the alignment between subspaces

1 Function C =ALIG (A,B) :
Data: A ∈ R

n×r, B ∈ R
n×p, r ≥ p

Result: C = Ah ∈ R
n×p, where h = argmin

c
‖B −Ac‖2F subject to hTh = I

2 [u, s,v] = SVD(ATB)

3 C = A(uvT )

7.3. Straining modes

Having determined Ψ ∈ R
ndof×p , the next step is to compute the corresponding matrix Φ ∈ R

ndof×p of straining
modes. The simplest route would be to apply the SVD on Ad

[Ū, •, •] = SVD(Ad, ǫd) (93)

(with a tolerance ǫd significantly smaller than ǫλ), and then make Φ = Ū(:, 1 : p), that is, take Φ as the matrix formed by
the p leading left singular vectors of Ad. However, this procedure does not guarantee one of the solvability requirements
in our approach, namely, that H = ΦT

f Ψf must be nonsingular (see Section 6.1). It becomes necessary, thus, to develop
a strategy that explicitly takes into consideration this condition.

7.3.1. Alignment of subspaces

Let us begin by assuming that the p columns of the desired basis matrix are a linear combination of the r columns (
r > p) of Ū (computed from the SVD (93)), and let us denote by c the coefficient matrix in this linear combination. The
problem can be rephrased, thus, as that of finding a matrix c ∈ R

r×p such that (Ūfc)
TΨf is non-singular. As pointed out

earlier, this matrix represents the work done by the reactive modes Ψf when the interface boundary nodes move along

the displacement patterns dictated by Ūfc. It appears reasonable, therefore, to enforce that the matrix is nonsingular
by, loosely speaking, incorporating straining modes that contribute “as much as possible” to the interface boundary work.
Intuitively, if we think of Ūfc and Ψf as vectors of displacements and forces, respectively, in a high-dimensional space,

then maximizing the work (in absolute value) is equivalent to make Ūfc “as aligned as possible” to Ψf . This intuitive
idea can be shaped into a more rigorous form by appealing to the notion of rotation of subspaces (cf. Golub et al. [19]).
In particular, the problem at hand can be posed as follows: find c ∈ R

r×p such that

min
c
‖Ψf − Ūfc‖2F (94)

subject to cT c = I. The solution of this constrained minimization problem can be readily obtained as

c = uvT (95)

where
[u, •,v] = SVD(Ū

T

f Ψf ). (96)

(When the second argument of the function SVD() is omitted, it is tacitly assumed that the tolerance is equal to the
machine epsilon). For later purposes, this operation of maximizing the alignment between two subspaces will be compactly
represented by the function ALIG(•, •), described in Algorithm 1.

According to condition 16.a, the desired basis matrix Φ is to be columnwise orthogonal; hence, a last step is required
to turn Ūc orthogonal:

[Φ, •, •] = SVD(Ūc). (97)

7.4. Interface modes

Now we come to grips with arguably the most critical and challenging part of the offline stage: the determination
of the interface modes. More specifically, since rigid body modes are to be invariably included, the task boils down to
determine the straining modes V̂ i (i = 1, 2 . . . l) of each fictitious interfaces. The conditions that these modes have to
satisfy, discussed in previous Sections, are summarized below.

1. Orthogonality conditions (see Eq. 35)

V̂
T

i M̄iV̂ i = I, V̂
T

i M̄iV̄ i = 0, i = 1, 2 . . . l (98)
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Algorithm 2: Weighted (truncated) Singular Value decomposition

1 Function [U ,S,V ] =WSVD(A,M , TOL):
Data: A ∈ R

n×m, M ∈ R
n×n (positive definite), tolerance 0 ≤ TOL ≤ 1

Result: U ∈ R
n×r, S ∈ R

r×r, V ∈ R
m×r (r ≤ min(n,m)), with UTMU = V TV = Ir×r,

S(i+1,i+1) ≥ S(i,i) > 0, such that A = USW T +E, ‖E‖M ≤ ǫ‖A‖M
2 M̄ =chol(M) // Cholesky decomposition of M

3 A← M̄A

4 [Ū ,S,V ] = SVD(A,TOL) // Thin SVD of A.

5 U = M̄
−1

Ū

2. Periodicity

V̂
+

i = V̂
−

i i = 1, 2 . . . l/2 (99)

3. Interface work conditions (Eq. 81)

ker(T L) = {0} (100)

where T = Ψ′T
f V . The subscript L refers to the set of unconstrained coarse-scale DOFs of the unit cell. Condition

Eq.(100) must hold for all L such that, at least, one of the interfaces is prevented to move (by constraining all its
nodal DOFs).

7.4.1. Candidate modes

Let us consider a given pair of periodic interfaces ∂Ω̄+
i and ∂Ω̄−

i (i = 1, 2 . . . l/2), and let us construct the matrix
containing the entries of the (domain) straining modes at the nodes of the concerned interface boundaries (in the local
reference system attached to the interfaces):

Ci = [Φ′

f
+
i

,Φ′

f
−

i

] (101)

where Φ′

fi
:= QT

i Φfi
. Next we make the above matrix M-orthogonal to the rigid body modes, as required by Eq.(35).b:

Ci ← Ci − V̄ i(V̄
T

i M̄iV̄ i)
−1V̄

T

i M̄iCi. (102)

Finally, to turn Ci columnwise M-orthogonal, as specified by Eq.(35).b, we employ the weighted SVD described in
Algorithm14 2:

[C̄i, •, •] = WSVD(Ci,M̄i, ǫc). (103)

To filter out irrelevant, noisy modes, we set ǫc ∼ 10−6. With C̄i at hand, we can state that

span(Vi) ⊆ span([V̄ i, C̄i]) (104)

that is, the column space of the desired basis matrix Vi lies on the column space of the matrix containing C̄i and the
rigid-body matrix V̄ i. We call C̄i the matrix of candidate interface modes of the i− th fictitious interface. The remainder
of this section is devoted to examine which of these candidate modes is to be incorporated to the set of interface modes.
The guiding criterion is the stability condition (100). We begin by studying the stability at the level of two interacting
interfaces; this will provide sufficient solvability conditions for 1D periodicity. Next, in Section (7.4.3), we shall address
the more general case of 2D and 3D periodicity.

7.4.2. Solvability condition for each pair of interfaces

Particularization of the solvability requirement (100) for the cases in which all interfaces are fixed except for either
∂Ω̄+

i or ∂Ω̄−

i yields the conditions

ker(Ψ′T

f
+
i

Vi) = {0}, and ker(Ψ′T

f
−

i

Vi) = {0}. (105)

14In essence, it is similar to the standard SVD, except for the fact that the underlying minimization problem is posed in terms of the norm
induced by a positive definite matrix M .
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These two conditions are formally identical to that discussed in Section 7.3, a fact that suggests that we may follow the
“subspace alignment recipe” for determining Vi. However, there are two additional difficulties now. Firstly, we do not

know yet how many interface modes (nint
i ) are to be included; and secondly, in general span(Ψ′T

f
+
i

) 6= span(Ψ′T

f
−

i

) (both

subspaces are only equal in 1D periodic problems when the training is made under strict periodicity conditions), and
therefore, if we find one Vi such that Eq.(105).a is satisfied, this does not imply that Eq.(105).b holds.

The key to resolve this double conundrum lies in the notion of intersection of subspaces. Suppose we calculate a matrix
D such that its column space is the intersection of the column spaces of Ψ′

f
+
i

and Ψ′

f
−

i

:

span(D) = span(Ψ′

f
+
i

) ∩ span(Ψ′

f
−

i

). (106)

With D at one’s disposal, conditions in 105.a and 105.b can be replaced by a single requirement:

ker(DTVi) = {0}. (107)

It follows from the preceding condition that the number of interface modes nint
i cannot be greater than the dimension

of the intersection space (number of columns of D). As a rule, we shall take nint
i = ncol(D). Appealing again to the

reasoning used in Section 7.3.1, the problem can be thus phrased as that of finding a matrix U with ncol(D) columns
such that, on the one hand, span(U) ⊆ span([V̄ i, C̄i]) and, on the other hand, span(U) is “as aligned as possible” to the
intersection subspace span(D):

U = ALIG(D, [V̄ i, C̄i]). (108)

Algorithm 3: Straining modes of interfaces ∂Ω̄+
i and ∂Ω̄−

i

1 Function [V̂ , C̄] =STRMODP(Ψ+,Ψ−,Φ+,Φ−,V̄ ,M̄ ,TOLang):

Data: Ψ+,Ψ− ∈ R
n×p (domain reaction modes at the nodes of the two periodic boundary interfaces),

Φ+,Φ− ∈ R
n×p (corresponding domain straining modes), V̄ ∈ R

n×nrb (rigid-body matrix of the
interface), M̄ ∈ R

n×n (geometric mass matrix of the interface), 0 ≤ TOL ≤ 90 (angle tolerance for the
intersection subspace, in degrees)

Result: V̂ ∈ R
n×m (0 ≤ m ≤ p− nrb): Matrix of straining interface modes. C̄ ∈ R

n×m, matrix of candidate
for straining interface modes (span(V̂ ) ⊆ span(C̄))

2 C̄ ← [Φ+,Φ−] // Matrix of candidate interface modes (initialization)

3 C̄ ← C̄ − V̄ (V̄
T
M̄ V̄ )−1V̄

T
M̄ C̄ // Make C̄ M-orthogonal to rigid-body modes

4 [C̄, •, •]← WSVD(C̄,M̄ , TOLc) // Make C̄ columnwise M-orthogonal, TOLc ∼ 10−6

5 D ←INTS (Ψ+,Ψ−, I, TOLang) // Basis matrix for span(Ψ+) ∩ span(Ψ−), see Alg. 4

6 U ← ALIG (D, [V̄ , C̄]) . // Alignment of subspaces, see Alg. 1

7 V̂ ← INTS (U , C̄,M̄ , TOLint) // Basis matrix for span(U) ∩ span(C̄), TOLint ∼ 10−3, see Alg. 4

Physically, span(U) is the subspace of span([V̄ i, C̄i]) that contributes the most to the work done by the reactive modes
whose patterns are identical in both ∂Ω̄+

i and ∂Ω̄−

i —somehow, thus, in proceeding this way, we are imposing periodicity
in terms of reactive forces. Once U is at our disposal, we have to calculate the intersection between the column space of
U and C̄i (in order to determine which is the straining component of the subspace):

span(V̂ i) = span(U) ∩ span(C̄i). (109)

It should be noted that V̂ i will be non-empty only if ncol(D) > nrb. If ncol(D) = nrb, the interfaces will have only
rigid-body DOFs. The case ncol(D) < nrb, on the other hand, evidences a deficient training set —in the sense that
condition (84) is not observed.

The above described steps for determining the straining modes of each pair of periodic interfaces are synthesized in
function

[V̂ i, C̄i] = STRMODP(Ψ′

f
+
i

,Ψ′

f
−

i

,Φ′

f
+
i

,Φ′

f
−

i

, V̄ i,M̄i, ǫrint), (110)

outlined in Algorithm 3. Line 5 in this Algorithm corresponds to the computation of the intersection subspace of Eq.(106),
which is in turn carried out following the steps summarized in Algorithm 4. Such computations are based on the concept
of principal angles between two subspaces (cf. Ref. [19]). Strictly speaking, the dimension of the intersection is equal to
the number of principal angles (calculated in line 8 of Algorithm 4) equal to zero. However, we relax this condition and
define the intersection in a weaker sense, by selecting those principal vectors whose associated angles are below a specified
tolerance ǫrint ( the last input argument of function STRMODP()). In the examples shown later we have set ǫrint = 1 degree.
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Algorithm 4: Intersection of subspaces

1 Function U =INTS(A,B,M , θtol):
Data: Matrices A ∈ R

n×m, B ∈ R
n×p, M ∈ R

n×n (positive definite). Maximum angle (degr.) 0 ≤ θtol ≤ 90
Result: U ∈ R

n×r, r ≤ min(m, p), with UTMU = I and span(U) = span(A) ∩ span(B)
2 if M 6= I then M ←chol(M) // Cholesky decomposition of M

34 A←MA; B ←MB

5 [Y A, ·, ·]← SVD(A) // Thin SVD of A. Y A is the matrix of left singular vectors

6 [Y B, ·, ·]← SVD(B)

7 [Z,S, ·]← SVD(Y T
AY B) // S is a vector containing the singular values.

8 θi ← acosd(Si) (i = 1, 2 . . . length (S)) // Principal angles, in degrees

9 Find s such that θs > θtol. Set r ← s− 1

10 U ←M−1Y AZ(:, 1 : r) // Z(:, 1 : r) is the block matrix of Z formed by columns 1, 2 . . . r

7.4.3. General solvability conditions for 2D and 3D periodicity

The procedure described in the foregoing (summarized in Algorithm 3) provides a set of straining modes that meet the
necessary conditions stated in Eq.(105), in which all the interfaces of the unit cell but one are assumed to be fixed. For
the case of 1D periodicity, these conditions are sufficient to ensure the solvability of the problem. However, for 2D and
3D periodicity, there is no guarantee that these straining modes furnish a stable solution. The reason is that these modes
have been obtained without accounting for possible interrelations between the motion of contiguous interface boundaries,
as demanded by condition (100). The criterion for checking whether such interrelations exist reads

l∑

i=1

(nrb + n̂int
i ) ≤ nrb + p. (111)

If this condition is not satisfied, that is, if the total number of modes of the fictitious interfaces (left-hand side) exceeds
the total number of modes of the unit cell (right-hand side), it means that there are straining modes that are interrelated
and, thus, the problem may become ill-posed. In what follows, we propose a method for dealing with such situations.

The method is based on a reformulation of the stability condition (100). Now, rather than prescribing all the nodal
displacements of one of the interfaces, we set to zero the amplitudes of its rigid body modes, allowing the interface to
freely strain. To put it alternatively, the subscript L in (100) (reprinted below)

ker(Ψ′T
f VL) = {0}, (112)

refers now to the indexes of all the coarse-scale DOFs except for the nrb rigid body DOFs of any of the fictitious interfaces.
The resulting condition is more stringent (it is sufficient, but not necessary for solvability purposes), but facilitates the
determination of the interface straining modes. Indeed, this expression bears a close resemblance to the condition observed
by the straining modes of the domain (see Eq. 26). For convenience, we reprint this equation below:

ker(ΨT
f Φf ) = ker(Ψ′T

f Φ′

f ) = {0}. (113)

This resemblance suggests that, since the domain straining modes Φ′

f already fulfills the preceding domain stability
condition, all we have to do is to determine V such that V L can reproduce as close as possible any straining displacement
of the interface boundaries (any linear combination of Φ′

f ). In doing so, the interface condition (112) will be automatically
observed. We describe in what follows a heuristic procedure for achieving such a goal.

Let us begin by considering the matrix
S =

[
R′

f Φ′

f

]
(114)

where R′

fi
:= QT

i Rfi
, i = 1, 2 . . . l. The column space of this matrix represents the set of all possible displacements of

the interface boundaries of the unit cell (expressed in the local reference system of each interface). On the other hand,
the column space of the matrix

U = diag ([V̄ 1, C̄1], [V̄2, C̄2], · · · , [V̄ l, C̄l]) (115)

represents the set of all possible configurations of the fictitious interfaces —as a function of the candidate straining modes
C̄i, computed by means of function STRMODP() in (110). On average, each fictitious interface has p candidate straining
modes, so the total number of independent configurations is ncol(U) ∼ l(nrb+p), a figure that largely exceeds the number
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of possible configurations of the interface boundaries of the unit cell (ncol(S) = nrb + p). The idea put forward above is
that, in order to guarantee the solvability of the problem, the interface basis matrix V can only include those columns of
U that are, in the sense defined in what follows, kinematically compatible with the modes of the unit cell (the columns of
S). These kinematically compatible modes (a total of nrb + p) may be selected from the columns of U by minimizing the
gap between the fictitious interfaces and the interface boundaries of the unit cell for any displacement of the latter. The
underlying minimization problem is as follows: find a ∈ R

nrb+p and I ⊆ {1, 2 . . .ncol(U )} such that

{a, I} = arg min
Ī ,ā∈R

nrb+p
‖Sq̄ −U Ī ā‖2M (116)

for all q̄ ∈ R
nrb+p (here U Ī = U(:, Ī ), that is, it is the block of U formed by the columns corresponding to indexes Ī ).

This (discrete) minimization problem is subjected to two constraints. Firstly, I must include the indexes of the rigid-body
modes (as stated in Section 6.3.1); and, secondly, I must observe the periodicity conditions, in the sense that there should
be a disjoint partition I = I+ ∪ I− such that the modes of 15 U(:, I+) are identical to that of U(:, I−).

Algorithm 5: Selection of kinematically compatible interface modes

1 Function I =KINEMDOF(D, Irb, I+, I−):
Data: Unconstrained minimization matrix D ∈ R

2m×2p (see Eq. 117), where m > p, and rank(D) = 2p.
Rigid-body indexes Irb ⊂ {1, 2 . . .2m}, length(Irb) ≤ 2p. Periodic indexes I+, I−, where
I+ ∪ I− = {1, 2 . . .2m} ( I+(k) is the periodic counterpart of I−(k), for k = 1, 2 . . .m).

Result: I ⊂ {1, 2 . . .2m}: set of 2p linearly independent rows of D such that Irb ⊆ I and I = I+ ∪ I−
2 J ← DEIM(D(Irb, :)T ) // Apply DEIM (see Alg.(6)) to select J so that D(Irb, J) is invertible

3 L← {1, 2 . . .2p} \ J ; A←D(:, J); I ← Irb; I+ ← I ∩ I+; I− ← I ∩ I− // Initializations

4 for j = 1 to length(L)/2 do
// Approximate the next two columns of D(:, L) as an oblique projection onto D(:, J)

5 r ← 0 // Initialization residual

6 C+ ← I+ \ I+; C− ← I− \ I− // Candidate indexes

7 for i = 1 to 2 do

8 k ← 2(j − 1) + i
9 s←D(:, L(k))−AA(I , :)−1D(I , L(k)) // Residual (oblique projection)

10 r ← r + s ◦ s // s ◦ s is the Hadamard (element wise ) product

11 end

12 r ← √r
13 a←

√

r(C+) ◦ r(C+) + r(C−) ◦ r(C−) // Residual associated to each pair of faces

14 d← argmax
e

a(e) // Candidate index at which the residual is maximum

15 I+ ← I+ ∪ C+(d); I− ← I− ∪ C−(d); I ← I+ ∪ I−;
16 end

Problem (116) may be expressed in a different format, with a single unknown, by using the solution of the unconstrained
minimization problem. Assuming one takes all the columns of U , this solution reads a = Dq̄ , where

D =
[

DT
1 DT

2 · · · DT
l

]T
, Di = (UT

i M̄ iU i)
−1UT

i M̄ i[R
′

fi
,Φ′

fi
]. (117)

By construction, span(S) ⊆ span(U). Therefore, we can write S = UD, and cast Eq.(116) as

I = arg min
Ī∈N

nrb+p
‖U(D − PT

Ī
PĪD)‖M (118)

where PĪ denotes the boolean “selection” operator associated to the entries Ī . Owing to both its discrete nature and the
presence of the periodicity constraints, problem (118) is a NP-hard optimization problem, and recourse to sub-optimal
solutions is to be made. Here we propose a “greedy” method that operates on the matrix D defined in (117). The format
of the objective function in problem (118) suggests that I may be selected so that, loosely speaking, the resulting block
matrix D(I , :) represents as much as possible the information contained in the original matrix. In this light, the problem

15To fulfill this condition, the truncation of reactions modes in the SVD (92) is to be made such that p + nrb is even.

24



Algorithm 6: Discrete Empirical Interpolation Method

1 Function J =DEIM(A):
Data: A ∈ R

m×n, m ≥ n, rank(A) = n.
Result: J ⊂ {1, 2 . . .m}: subset of n maximally independent rows of A, such that A(J, :) is invertible.

2 U ← A(:, 1); J ← argmax
e
|U(e)| // Initializations

3 for k = 2 to n do

4 r ← A(:, k)−UU(J, :)−1A(J, k) // Residual (oblique projection)

5 i← argmax
e
|r(e)| // New index

6 J ← J ∪ i

7 end

translates into that of selecting the set of maximally independent rows of D. This problem is analogous to that addressed
by discrete interpolation methods, the only difference being the existence of the rigid-body and periodicity constraints.
Accordingly, we have adapted one of such methods —more specifically, the (Discrete) Empirical Interpolation Method
[2, 7], reproduced for convenience in Algorithm (6)— to account for the above mentioned constraints. The resulting scheme
is shown in Algorithm (5). Once the set of indexes I have been computed using this algorithm, the desired interface basis
matrix is obtained by simply setting V = U(:, I ).

7.5. Summary of offline operations

For the reader’s convenience, we have summarized the set of operations to be carried out in the offline stage in Box
8.1.

8. Online stage: the coarse-scale problem

1. Geometric information of the unit cell. Compute and store in memory all the FE variables that solely depend on
the geometry of the unit cell (and on its FE discretization). This includes, among others, the rigid body modes
of the domain ( R, see Eq. 15), the strain-displacement matrix at each Gauss point (B(xg), see Eq. 6), the FE
integration weights Wg (Eq. 8), the geometric mass matrix M (Eq. 16), the set of boundary DOFs f (Eq. 4) and
R̄f = MfRf (Eq. 22).

2. Geometric information of the boundary interfaces. Compute the geometric mass matrices M̄i (Eq. 35), relative
rotation matrices Qi (see Section 2.1) and rigid body modes V̄ i (Eq. 34) (i = 1, 2 . . . l).

3. Training stage. Run pertinent FE analyses following the guidelines given in Section (7.1). Store solutions in matrices
Ad, Aλ and Aσ (see Eqs. 85, 86 and 87). Determine the straining and self-equilibrating components of Ad and Aλ

using Eqs. (88) and (89).

4. Unit cell modes. Determine the basis matrix for self-equilibrating reactions Ψ using the truncated SVD on Aλ (see
Expr. 92). Using Ψ and Ad, compute the matrix of straining modes Φ following the “alignment” recipe described
in Section 7.3.

5. Reduced set of integration points. Using as inputs the reduced B-matrices {B∗(xg)}mgs

g=1 (see Eq. 19), the FE volu-

metric weights {Wg)}mgs

g=1 and the snapshot matrix of stresses Aσ, apply the Empirical Cubature Method, explained
in Appendix A, to determine the subset of ECM integration points Z ⊂ {1, 2 . . .mgs}, as well as their associated
volumetric weights {ω(xg)}g∈Z.

6. Straining interface modes. Use function STRMODP() in Expr. (110) to determine the (tentative) straining modes
matrices V̂ i for the fictitious interfaces (i = 1, 2 . . . l). For 2D and 3D periodicity, check whether inequality (111)
holds. If not, compute matrix D in Eq.(117) and invoke function KINEMDOF() (described in Algorithm 5) to re-
compute the basis matrices for the interfaces.

7. Reduced-order matrices. For each ECM integration point, compute the interscale B-matrices defined in Eq. 65:
{B(xg)}g∈Z. Likewise, for each distinct material, and for each non-interface boundary, determine {N k}nmat

k=1 (Eq.

141) and {N̄ g}bnon

g=1 (Eq. 142), respectively.

Box 8.1: Offline operations
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Once the reduced-order matrices outlined in Box 8.1 have been computed, the solution of the non-linear coarse-
scale problem (the online stage) may be addressed like any standard nonlinear finite element problem. Consider a time

discretization of the interval of interest [t0, tf ] =
⋃Nstp

n=1 [tn, tn+1]. The initial data at a given time step t = tn includes the
coarse-scale DOFs vector an and the fine-scale stresses, strains and internal variables at the ECM integration points of
each coarse-scale element: {σe

n(xg), ε
e
n(xg), ξ

e
n(xg)}g∈Z (e = 1, 2 . . .M). On the other hand, the external inputs at t = tn+1

comprise the prescribed displacements v̄n+1 (c.f Eq. 79), the tractions applied on non-interface boundaries {t′e(k)n+1}
bnon

k=1

(e = 1, 2 . . .M), and the vector of coarse-scale boundary forces F̄
n+1

I (I = 1, 2 . . .N). The iterative procedure to update

the solution is sketched in Box 8.2. In step 8, K
(k)
ll

and R̄
(k)
l

refer to the block matrices of the tangent stiffness matrix
and residual, respectively, associated to the unknown DOFs l. If the boundary conditions are affine, that is, if J 6= 0 in
Eq. (79), the expression for these matrices have to be modified as follows

K
ll
=

[
Kmm Kmf

Kfm Kff

]

; Kmm ← Kmm + (JTK
rm +Kmr

J) + JTK
rr
J

Kmf ← Kmf + JTKrf ; Kfm ← Kfm +KfrJ ; R̄l ←
[
R̄m + JT R̄

r

R̄f

] (119)

Given an, v̄n+1, {σe
n, ε

e
n, ξ

e
n}(xg)g∈Z, {t′e(k)n+1}

bnon

k=1 (e = 1, 2 . . .M), F̄
n+1

I (I = 1, 2 . . .N) .

1. Initialization. k = 0, a
(k)
m = an

m, a
(k)
f = an

f . Set a
(k)
l

= [a
(k)T

m ,a
(k)T

f ]T .

2. Slave DOFs: a
(k)
r = v̄n+1 + Ja

(k)
m (cf. Eq. 79). Set a(k) = [a

(k)T

r ,a
(k)T

l
]T

3. For each coarse-scale element e = 1, 2 . . .M , compute

(a) Strains: εe(k)(xg) = B(xg)a
e(k), g ∈ Z, where ae(k) = L

ea(k).

(b) Stresses, algorithmic tangent moduli and internal variables (via constitutive Eq. 7):

{σe
(k),C

e
(k), ξ

e
(k)}(xg)g∈Z = H

(

{εe(k),σe
n, ξ

e
n}(xg)g∈Z

)

.(c) Internal forces (Eq. 68): F
e(k)

int
:=

∑

g∈Z
BT(xg)ω(xg)σ

e
(k)(xg)

(d) Body forces (if k = 0, Eq. 75): Fe
b =

∑nmat

i=1 N iT (ρiQ̂
eT

g) +
∑bnon

g=1 N̄
gT

t′
e(g)
n+1 .

(e) Residual forces: Re(k) = F
e(k)

int −Fe
b

(f) Tangent stiffness matrix (Eq. 73): Ke(k) =
∑

g∈Z
ω(xg)B

T(xg)C
e
(k)(xg)B(xg)

4. Assemble the vector of element residual forces: R(k) =
∑M

e=1 L
eT Re(k).

5. Assemble the vector of boundary forces: F̄ =
∑N

I=1 L̄
T

I F̄
n+1

I

6. Compute the global residual R̄
(k)

= R(k) − F̄ . If ‖R̄(k)
l ‖ ≤ TOL, go to step 9.

7. Assemble the global tangent stiffness matrix: K(k) =
∑M

e=1 L
eT Ke(k)

L
e.

8. Update coarse-scale displacements: a
(k+1)
l

= a
(k)
l
−K

(k)−1

ll
R̄

(k)
l

. Set k ← k + 1, and go to step 2.

9. Converged step. Set an+1 = a(k) and {σe
n+1, ε

e
n+1, ξ

e
n+1}(xg)g∈Z = {σe

(k), ε
e
(k), ξ

e
(k)}(xg)g∈Z. Determine qe and αe

from Eq.(62) and Eq.(61), respectively (e = 1, 2 . . .M).

Box 8.2: Coarse-scale, nonlinear problem

It should be remarked that all the involved operations, as well as the input and output variables, are of reduced size
(independent of the size of the FE discretization of the unit cell). Nevertheless, for post-processing purposes, one can
reconstruct the fine-scale displacement and stresses at any time step of the analysis. Displacements can be recovered using
Eq. 14. Recovery of stresses, on the other hand, can be carried out by a least-square fitting (see e.g., [21]):

σe(xg) = R(xg)S
e
Z
, g = 1, 2 . . .mgs, (120)

where Se
Z

= [σeT (xZ1
),σeT (xZ2

) . . .σeT (xZm∗

gs

)]T ; and R(xg) = Λxg
(ΛT

Z
Λ

Z
)−1ΛT

Z
(stress reconstruction operator at

Gauss point xg). Needless to say, one need not perform the reconstruction for all domains. Rather, stresses and/or strains
at the ECM integration points may be employed to discriminate which are the “critical” domains and apply to such
domains the corresponding downscaling equations.
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Sampled slices

(torsion)

Fixed end
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displacements

0.01 m
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Figure 4: Rectangular cross-section beam problem. a) FE discretization of the unit cell. Definition of interface (∂Ω̄
1
and ∂Ω̄

2
) and non-interface

(∂Ω̄i
non, i = 1, 2, 3, 4) boundaries . b) Structure and boundary conditions using for “training”. The unit cells whose displacement, reactions

and stress solutions are included in the snapshot matrices are highlighted in red. c) Deformed shapes of the four tests used for training.

9. Numerical assessment

9.1. Rectangular cross-section beam

We begin the numerical assessment by deriving a coarse-scale model for the linear elastic behavior of a 3D prismatic
structure made up by repeating, along the x-axis, the rectangular slice shown in Figure 4.a (1D periodicity). The transverse
dimensions are hy = 0.1 m and hz = 0.06 m, while the thickness is w = hy/10 = 0.01 m. The material is isotropic, with
Young’s Modulus E = 70000 MPa, and Poisson’s ration ν = 0.3. The unit cell is discretized using a structured mesh of
m = 4×20×10 = 800 eight-nodes hexahedral elements, resulting in n = 1155 “fine-scale” nodes, and mgs = 800 ·8 = 6400
Gauss points. The non-interface boundaries ∂Ω̄non, on the other hand, are divided into the 4 portions shown in Figure
4.a.

9.1.1. Offline stage

As pointed out in Section 7.1, the number of unit cells and the boundary conditions for “training” the reduced-order
model depends on the scope of the analysis. In this case, we are interested only in how loads are transmitted along the
span of the structure (we shall deal with local effects later). Therefore, by virtue of Saint Venant’s principle, the prismatic
structure needs to be sufficiently large so as to ignore local effects due to the application of boundary conditions on its
ends. We have taken a span of L = 5hy = 0.5 m ( thus, the structure has L/w = 50 slices). Four distinct 3D FE analyses
have been carried out (to meet the requirement stated in Eq. 84). In each of them, the nodal displacements of one the
ends of the prismatic structure are set to zero, while the other end is subjected to a rotation around the axis (to capture
torsion behavior), a displacement along the x-axis (to capture axial behavior) and transversal displacements in the y and
z directions (to capture bending behavior in both axes). These loading conditions are depicted in Figure 4.b, and the
corresponding FE deformed shapes in Figure 4.c. The solution in displacements, reactive forces between domains and
stresses of the slices of the central portion of the structure, highlighted in red in Figure 4.b, are stored in the corresponding
snapshot matrices (step 3 in Box 8.1). Next the SVD is applied on the reactive and displacement matrices (step 4 in Box
8.1). We use for this the partitioned SVD proposed by the author in Ref. [21], using a relative tolerance of ǫλ = 10−3

for the four block matrices; this yields a total of p = 6 self-equilibrating interface force modes. These modes are shown
in Figure 5 (top). Next we apply the SVD to the straining displacement matrix, with a tolerance ǫd = 10−4, obtaining
8 modes. Following the “alignment” method explained in Section 7.3.1, we determine from the space spanned by these
8 modes the subspace energetically associated with the p = 6 reactive modes Ψ. In Figure 5 (bottom) we display the
deformed shapes of the obtained p = 6 straining modes. It is worth noting that, albeit both the SVD and the alignment
algorithm are purely “data-driven” procedures, the outcome modes do have a distinct physical interpretation: Φ

1
is clearly

the axial mode (pure dilatational behavior due to Poisson’s effect); Φ
2
displays the typical out-of-plane warping caused

by torsion; Φ3 and Φ4 may be identified as pure bending modes ( the cross-section remains approximately plane); while Φ5
and Φ

6
exhibit the characteristic cubic warping of shear deformation produced by simple bending.

Having determined Ψ and Φ, we can move to the next offline step of Box 8.1: the determination of the reduced set of
integration points (step 5). The SVD of the stress snapshot matrix (Expr. 123), with tolerance ǫσ = ǫλ = 10−3 gives, as
expected, r = 6 stress modes. With these modes, and the reduced B-matrices B∗ at the mgs = 6400 Gauss points of the
mesh, we build the internal forces matrix Af of Eq. (124). This matrix has p · r = 36 columns, out of which only q = 21
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Figure 5: Modes obtained from the training shown in Fig. 4.b. Left: Self-equilibrating reactive modes (Ψ
1
,Ψ

2
. . .Ψ

6
). Right: Straining modes

(Φ
1
,Φ

2
. . .Φ

6
).

a) b) c)

Figure 6: Determination, via the Empirical Cubature Method (see Appendix A), of the reduced set of integration weights and their associated
volumetric weights. a) Integration error (%) versus number of selected points. b) Location of the finite elements containing the m∗

gs = 15
points used for integration (1 point per element). c) Volumetric weights, in % of the total volume of the unit cell.

are linearly independent16 ( this follows from applying the SVD, see Expr. 123, with tolerance ǫf = 10−6).
Then we employ the Empirical Cubature Method (ECM), presented in Appendix A, to select, among the mgs = 6400

Gauss points of the FE mesh, a set of m∗
gs points such that the integration error is below a certain tolerance (in this

case we have set ǫecm = 10−3). Figure 6.a contains the graph of relative integration error versus number of points. Zero
integration error is achieved when the number of points coincides with the number of internal force modes q = 21; on
the other hand, for rendering the error below the prescribed tolerance, m∗

gs = 15 points are required. The location of the
finite elements containing these m∗

gs = 15 points are shown in Figure 6.b, and the associated volumetric weights (in % of
the total volume) in Figure 6.c.

The next offline operation (step 6 in Box 8.1) is the determination of how many and which (if any) straining modes
V̂1 = V̂2 for the fictitious interfaces are to be incorporated in the formulation. However, since the number of reaction
modes is p = 6, there can be no straining interface modes (this follows from Eq. 107 ). Thus, the fictitious interfaces
will only experience rigid-body motions, or, in other words, our coarse-scale element only possesses 6 DOFs per node (3
translations and 3 rotations) —just like a standard Timoshenko’s beam element.

9.1.2. Online analyses

We now focus on examining the predictive capabilities of the above derived coarse-scale model. We begin by conducting
the coarse-scale counterparts of the the FE analyses used to “train” the model. The 1D coarse-scale mesh is formed in
this case by M = 50 two-node elements (and thus N = 51 nodes). The Dirichlet boundary conditions are introduced
by prescribing the 6 DOFs of the two end nodes: a1 = 0 (fixed end at x = xmin); and aN (i) = γ for the other end at
x = xmax, with aN(j) = 0 for j 6= i (i = 1 and γ = 0.01 m for the axial tests; i = 2, 3 and γ = 0.01 m for the y-bending and
z-bending tests, respectively; lastly, i = 4 and γ = 0.01 rad for the torsion tests). Figure 7 shows, for these training tests,
the deformed shapes computed by the standard FE (top) and coarse-scale (bottom) models. For comparison purposes,

16 Interestingly, this figure coincides with the number of independent entries of the p×p reduced stiffness matrix Φ
TKΦ, which is symmetric

and therefore: q = (p + 1)p/2 = 7 · 6/2 = 21.
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Figure 7: Top: Deformed shapes corresponding to the four FE training tests (140 · 103 DOFs). The portion displayed with stress values (σx,
τxy , τxz and equivalent Von Mises, in MPa) is the one from which the training snapshots are extracted. Bottom: Deformed coarse-scale mesh
(51 · 6 = 306 DOFs), along with the reconstructed stress distributions (in MPa).
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Figure 8: a) Prismatic structure (150 slices) and applied loads employed to test the coarse-scale model. b) Deformed shape (×200) and Von
Mises stress computed by the standard FE (fine-scale solution, ≈ 420 · 103 DOFs). c) Deformed shape of the coarse-scale mesh (6 · 151 = 906
DOFs). d) Deformed shape and Von Mises equivalent stress computed by reconstruction of the coarse-scale solution.

the stress distributions (σx, τxy, τxz and Von Mises equivalent stress, respectively) corresponding to the slices used for
training are displayed in both cases (in the coarse-scale model, these distributions are obtained by the “reconstruction”
procedure explained in Section 8). Visually, there are no discernible differences between the two contour plots in any
of the four tests. A more quantitative assessment is carried out in Table 1, wherein we compare the non-zero entries of
the coarse-scale reactive forces at the ends of the beam with the resultant and moment resultant of the fine-scale nodal
reactive forces. In all the four cases, discrepancies are below 3%.

Fx (test a) Fy (test b) Mz (test b) Fz (test c) My (test c) Mx (test d)
Fine-scale model 8.48 0.305 7.62 ·10−2 0.119 2.98 ·10−2 2.51·10−3

Coarse-scale model 8.40 0.298 7.47·10−2 0.116 2.90·10−2 2.44·10−3

Error (%) 0.94 2.29 1.97 2.52 2.68 1.24

Table 1: Rectangular cross-section cell. Comparative study of the reactive forces (MN) and moments (MN ·m) at the ends of the beam for
the training tests, computed by the standard FE (fine-scale) model, and the “trained” coarse-scale model.

The previous analyses demonstrate that the reduced-order model is consistent with its full-order counterpart, in the
sense that, at least, it can reproduce the results employed in the training process. But the actual usefulness of a reduced-
order model is to be examined in scenarios in which the geometry and the loading conditions are notably different from
that used in the training stage. To explore the capabilities of our coarse-scale model in this regard, we have devised the
test sketched in Figure 8.a. The prismatic beam is 3 times longer that the one used for training, and it is subjected
to lateral loads in the y and z direction (recall that the training tests have no external forces), as well as to a rotation
around the x-axis on the surface at x = 1.5 m, while the other end, at x = 0, remains fixed. Figures 8.b and 8.d display
the deformed shape and the contour plot of Von Mises stress computed by the standard FE method and the coarse-scale
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Figure 9: I-shaped cross-section beam. a) FE discretization of the unit cell ( 437 × 3 = 1311 hexahedral elements and 2292 nodes. ). b)
Deformed shapes of the four tests used for training. c) SVD error (%) versus number of Lagrange multipliers modes.

model, respectively. The coarse-scale mesh (Figure 8.c) is formed in this case by M = 150 two-node elements. The
qualitatively resemblance between the deformed shapes and stress values predicted by the FE model and the coarse-scale
model (by reconstruction) is huge —despite the fact that the number of DOFs has been reduced by a factor over 500. The
only perceptible differences in stresses are detected at the ends, and this is because the reduced-order model has not been
trained for capturing the local effects due to Dirichlet boundary conditions (the reduced-order model fails to capture the
stress concentrations at the corners). In more quantitative terms, the maximum displacements (euclidean norm) predicted
by the standard FE is dmax = 1.46 mm, while the coarse-scale model yields dmax = 1.47 mm, just 0.68 % above.

9.2. I-shaped cross-section beam

The procedure explained in the foregoing for the slice of rectangular cross-section can be applied to any unit cell,
regardless of its geometrical complexity. To illustrate this statement, we address in what follows the case of a straight
beam with the I-shaped cross-section (IPN-100 profile, with hy = 0.1 m and hz = 0.05 m ) shown in Figure 9. The
thickness is w = hy/10 = 0.01 m, and the material is isotropic, with Young’s Modulus E = 70000 MPa, and Poisson’s
ration ν = 0.3. The training parameters (sampled slices, tolerances for the SVD and ECM, and so forth) are exactly the
same as the ones employed for the rectangular cross-section beam of Section 9.1. The deformed shapes corresponding to
the four training tests are displayed in Figure 9.b. On the other hand, Figure 9.c represents the SVD truncation error17

for the reactive forces versus the number of modes. According to this graph, the number of modes needed to achieve
the required accuracy (ǫλ = 10−3) is p = 8, that is, two more modes than in the case of the rectangular cross-section.
These p = 8 self-equilibrating reactive modes, together with the deformed shapes of its work-conjugate straining modes
are shown in Figure 10.a. Using the same procedure explained for the rectangular cross-section slice, we determine the
reduced set of integration points. In this case m∗

gs = 32 ECM points are required, out of a total of mgs = 1311 · 8 = 10488
Gauss points; the location of these ECM points are shown in Figure 10.b.

As for the interface straining modes (step 6 of Box 8.1), application of Algorithm 3 to the p = 8 straining and reactive
modes of Figure 10.a indicates that, in this case, and as opposed to the rectangular cross-section beam, the fictitious
interface does possess one straining mode18. The deformed shape of such an interface straining mode, displayed in Figure
10.c, has the characteristic signature of a torsion, out-of-plane warping deformation —the flanges rotate around the web
axis in opposite directions. The coarse-scale element in the case at hand, thus, possesses 7 DOFs per node, namely, the
amplitudes of the nrb = 6 rigid-body modes, plus the amplitude of this additional straining mode. It is instructive to note
that this result concurs with the predictions of advanced beam theories (cf. Ref. [8] or [30]), according to which standard
6 DOFs-per-node finite beam elements must be supplemented by a “warping” degree-of-freedom in order to accurately
capture torsion of thin-walled open sections.

The accuracy of this 7-DOFs, 2-node element is evaluated following the procedure employed for the rectangular cross-
section. Qualitative consistency with the FE training tests in terms of stress distribution can be appreciated in Figure 11.
Likewise, we can see in Table 2 that the discrepancies between the non-zero entries of the coarse-scale reactive forces at
the ends of the beam and the resultant and moment resultant of the fine-scale nodal reactive forces are all below 1.2 %.

17This SVD truncation error is defined in Eq. 91.
18Indeed, the intersection of the subspaces of reactive modes of both interface boundaries turns out to be of dimension 7, which implies,

according to Eq.(107), that n̂int = 7− nrb = 1.
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gs = 32 ECM integration points (out of a total of mgs = 1311 · 8 = 10488 Gauss points). c)

Interface straining mode (V̂1 = V7) computed by the method described in Algorithm 3.
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Figure 11: I-shaped cross-section cell. Top: Deformed shapes corresponding to the four FE training tests (∼ 261 · 103 DOFs). The portion
displayed with stress values (Von Mises, τxy , τxz and Von Mises, in MPa) is the one from which the training snapshots are extracted. Bottom:
Deformed coarse-scale mesh (51 · 7 = 357 DOFs), along with the reconstructed stress distributions.
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Figure 12: a) Prismatic structure (100 slices) and applied loads employed to test the coarse-scale model for the I-shaped unit cell. b) Evolution
of the twist angle and the amplitude of the straining mode (multiplied by a factor 104) along the length of the beam. c) Deformed shape (×50)
and tangential stress (MPa) computed by the standard FE d) Deformed shape and (reconstructed) tangential stress (MPa) computed by the
the coarse-scale model.
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Fx (test a) Fy (test b) Mz (test b) Fz (test c) My (test c) Mx (test d)
Fine-scale model 4.49 0.233 5.85 ·10−2 2.41 ·10−2 6.02 ·10−2 7.77·10−5

Coarse-scale model 4.46 0.231 5.78·10−2 2.39 ·10−2 5.98·10−2 7.68·10−5

Error (%) 0.67 0.86 1.20 0.83 0.66 1.15

Table 2: I-shaped cross-section cell. Comparative study of the reactive forces (MN) and moments (MN ·m) at the ends of the beam for the
training tests, computed by the standard FE (fine-scale) model, and the “trained” coarse-scale model.
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Figure 13: a) Geometry and boundary conditions of the training test devised to “teach” the coarse-scale model how to behave under crushing
loads in the y-direction. b) Deformed shaped (× 50) and contour plot of Von Mises stress computed by the standard FE method. c) to h)
Deformed shapes (×50) and (reconstructed) contour plots of Von Mises stress computed by the coarse-scale model for 6 distinct SVD tolerances.
In each case, we provide the number of coarse-scale DOFs per node nint as well as the error with respect to the FE solution in capturing the
maximum displacement (in %).

We complete the accuracy assessment by carrying out a comparative analysis with boundary conditions and geometry
different from those employed in training. Such conditions are depicted in Figure 12.a. The prismatic beam is 1 m longer
(twice the length of the training structure), it is fixed on one end, with the other end completely unconstrained19, and it
is subjected to tangential tractions and normal tractions along its length. The deformed shaped (amplified by a factor
f = 50) and the stress τxz (in MPa) computed by the standard FE method (∼ 520 · 103 DOFs) is shown in Figure
12.c. Its coarse-scale counterpart (7 · 101 = 707 DOFs), on the other hand, is displayed in Figure 12.d. Notably, the
coarse-scale model is able to capture the stress concentration occurring at the intersection between the top flange and the
web —in the portion of beam subjected to the torsion caused by the tangential tractions. In terms of displacements, the
coarse-scale model overpredicts the maximum displacement (which takes at the top-left corner of the free end) by a factor
of (2.85 − 2.64)/2.64 · 100 ≈ 8%, an error which is notably higher than in the rectangular cross-section case, but which
is still within acceptable accuracy margins. Lastly, we plot in Figure 12.b the evolution along the length of the beam of
the amplitude of both this mode (V7 = V̂1) and the rigid-body mode V4. Observe that both curves exhibit a markedly
nonlinear behavior, a fact that is in accordance with the analytical predictions of advanced torsion theories —according
to these theories, the evolution of the twist angle is ruled by hyperbolic functions, see e.g. Ref. [37], pag. 436.

9.3. Local effects

The two examples discussed in the foregoing were intended to illustrate the ability of the proposed approach in
automatically generating 2-node finite elements consistent, in the Saint Venant sense (i.e. ignoring local effects20), with
the underlying 3D elasticity theory. In what follows, we describe how the methodology can be easily adapted to cope also
with cases in which local effects become relevant and, thus, are to be incorporated.

19Note that the training structure is fixed on both ends
20The Saint Venant problem (see e.g. Refs. [26, 36]) consists in finding the stress and displacement field that appear in transmitting loads

along prismatic beams of constant cross-section under the hypothesis that the local effects caused by such loads are negligible.
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Figure 14: Left: p = 13 domain straining modes corresponding to the coarse-scale model of Figure 13.f. Right: For this coarse-scale mode,
longitudinal evolution of the amplitude of the n̂int = nint − nrb = 6 interface straining modes (V7, V8, ... V12) .

To this end, let us return to the rectangular cross-section slice of Section 9.1. Suppose we wish to devise a coarse-scale
element able to capture, aside from torsion, axial and bending behaviors, the deformations and stresses caused by crushing
loads in the y-direction21. To “teach” the coarse-scale model how to behave under such loads, we simply enrich the training
database used in the example of Section 9.1 with the FE test shown in Figure 13.a, in which a crushing pressure of 1000
MPa is applied to the central slice. Following the offline protocol of Box 8.1, the solution of displacement, reactive forces
and stresses of the 20 slices of the central portion of the structure (see Figure 13.b) are stored in pertinent block matrices,
that are added to the corresponding 4 block matrices obtained from the basic training of Figure 4.c. Then we apply the
already mentioned blockwise SVD to the resulting five block matrices. To gain insight on how the increase of interface
straining modes contributes to the accuracy of the coarse-scale predictions, we launch 6 distinct coarse-scale analyses with
varying values of the SVD tolerance for the block matrix corresponding to the reactive forces in this crushing test (from
ǫcrushλ = 1 to ǫcrushλ = 10−4 ); all the other parameters remain fixed and equal to the values used in Section 9.1.

Figures 13.c to 13.h show the resulting deformed shapes (×50) and the (reconstructed) contour plots of Von Mises
stress in the central portion of the beam. Figure 13.c corresponds to the limiting case in which the crushing tests is ignored,
and therefore nint = 6. Observe that the loaded slice is squeezed under the applied loads, yet the resulting deformation
is not transmitted to the adjacent slices, which remain unaltered—this is because this 6 DOFs-per-node element is able
to transmit only the resultant and moment resultant of the applied loads, which in this case are zero. As the SVD
tolerance decreases, the number of interface modes nint increases, and, as a consequence, the displacement and stresses
discontinuities between slices become less pronounced. For TOL = 10−4 (Figure 13.h), the jumps in displacements are
imperceptible, and the resulting stress distribution is practically identical to the “exact” FE distribution shown in Figure
13.b. The local character of the straining DOFs can be appreciated in Figure 14 (right), where we plot the amplitude
along the beam of the n̂int = 12 − nrb = 6 interface straining modes of the coarse-scale model of Figure 13.f —observe
that the amplitudes decay in an exponential fashion as we move away from the loaded slice. For completeness, in Figure
14 (left) we also plot for this case the deformed shapes of the p = 13 (cell) straining modes.

To evaluate the performance of the coarse-scale model in a case distinct from the training problems, we employ the
structure (150 slices) and combined loads shown in Figure 15.a. Notice that now the crushing loads are not applied on
a single slice, but varies along the the central portion of the beam in a piece-wise constant fashion. Figures 15.b, 15.c
and 15 display the solutions corresponding to the standard FE, and the coarse-scale model with nint = 12 and nint = 19
DOFs per (coarse-scale) node, respectively. It can be seen that the stress distributions computed by both coarse-scale
models bear a close resemblance to its full-order counterpart. In the case of nint = 19 DOFs (Figure 15.d), they are
practically indistinguishable, while in the nint = 12 DOFs (Figure 15.c) mild discontinuities are observed in the part
in which the crushing loads are applied (this can be also appreciated in terms of displacements in the enlarged view of
15.d). Nevertheless, it should be highlighted that the maximum displacement predicted by the 12 DOFs-per-node model
is identical to that of the 19 DOFs-per-node model, a fact that shows that, remarkably, the reduced-order solution can
tolerate a certain degree of discontinuities at the fine-scale without affecting the overall quality of coarse-scale solutions.

21Uniform tractions of equal value and opposite sign normal to the top and bottom boundary surfaces of the beam (the non-interface
boundaries ∂Ω̄1

non and ∂Ω̄2
non).
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Figure 15: a) Prismatic structure (150 slices) and applied loads employed to test the coarse-scale model for the local effects case. b) Deformed
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Figure 16: a) FE discretization of the hexagonal cell. b) 5-by-5 cell structure used for “training” (in the linear range). The unit cells whose
displacement, reactions and stress solutions are included in the snapshot matrices are the cells enclosed by the dashed line. c) Boundary
conditions and FE deformed shapes corresponding to the four training tests.

9.4. Cellular solid (2D)

9.4.1. Linear regime

We next address the derivation of a coarse-scale model for the linear elastic behavior —inelastic behavior will be
treated in the next Section— of 2D hexagonal structures (plane strain), made up by tiled copies of the regular hexagonal
cell of Figure 16.a. The material is isotropic, with Young’s Modulus E = 70000 MPa, and Poisson’s ratio ν = 0.3. The
unit cell is discretized using m = 2622 four-node quadrilateral elements (with 4 Gauss points per element), resulting in
n = 3314 nodes. To train the coarse-scale model, we use the 5-by-5 cells22 structure shown in Figure 16.b. Likewise,
to satisfy the requirement embodied in Eq.(84), we carry out the four FE tests depicted in Figure 16 —2 tests for each
periodicity direction. We then apply the partitioned SVD on the self-equilibrating snapshots obtained from these FE
analyses (using a tolerance ǫλ = 10−4 for each of the 4 block matrices). This leads to p = 15 modes. We show in Figure
17.a the corresponding work-conjugate straining patterns (computed by the alignment method of Section 7.3.1). As for
the ECM integration points (step 5 of Box 8.1), we employ the following tolerances for stresses, internal forces and error
integration: ǫσ = ǫf = 10−4 and ǫecm = 10−3, respectively. This results in r = 15 stress modes, q = 64 internal force

22The first question that arises when dealing with the training process is how many unit cells should be employed to construct the training
domain. To answer this question, we carried out analyses with structures of increasing number of domains (from 3-by-3 to 10-by-10 cells),
including in the snapshot matrices only the interior cells. The conclusion was that the computed modes are the same for domains of size equal
or larger than 5-by-5.
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Figure 18: Linear elastic regime. a) Resulting 4-node coarse-scale finite element for the hexagonal unit cell (18 DOFs and 60 integration points).
b) and c) Deformed shape (x150) and contour plot of the norm of displacements (in m) corresponding to the stretching training test (in the
x-direction). b) is the solution computed by the standard FE, while c) is the solution computed using the 5-by-5 coarse-scale finite element
mesh (along with the “reconstructed” fine-scale deformed mesh ).

modes, and m∗
gs = 60 ECM points (out of a total of mgs = 4 · 2622 = 10488 Gauss points). The location and associated

volumetric weights of these m∗
gs = 60 ECM points are displayed in the bar graph of Figure 17.b. Observe that the four

points with highest weights account for more than 50 % of the total volume23.
Regarding the straining modes for each pair of fictitious interfaces (step 6 in Box 8.1), application of Algorithm 3 yields

n̂int
1 = n̂int

3 = 6 and n̂int
2 = n̂int

4 = 0, a number of modes that violates the stability condition (111), and consequently,
recourse to the (more conservative) procedure outlined in Algorithm 5 is to be made. This, in turn, furnishes no straining
modes for the top and bottom interfaces, and, for the other two interfaces, the three straining modes (cubic, parabolic
and extensional ) shown in Figure 17.c. The resulting coarse-scale finite element is pictorially represented in Figure 18.a.
It is conceptualized as a quadrilateral element with four midside nodes (the centroids of the interface boundaries). The
number of DOFs at nodes 1 and 3 are 6 (2 translations, 1 rotation, and the 3 straining modes described above), whereas
nodes 2 and 4 only possess the 3 rigid-body DOFs. On the other hand, the integration points (for internal forces) are the
m∗

gs = 60 points computed by the ECM (see Figure 17.b).
Having defined this (admittedly unorthodox) finite element, a typical coarse-scale analysis would proceed as any

23 This uneven distribution of weights (also observed in Figure 5.c) is due to the “greedy” character of the employed selection algorithm (the
ECM, explained in Appendix A )
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to b), but computed by the coarse-scale model (351 18-DOFs quadrilateral elements). The enlarged view shows both the deformed coarse-scale
and fine-scale meshes. d) (Coarse-scale) contour plot of maximum Von Mises stress (MPa), together with the fine-scale solution corresponding
to the most critical coarse-scale element (enlarged view).

standard FE analysis. The only consideration to bear in mind is that the domain must be meshed with quadratic
quadrilateral elements of the same height and width as the unit cell, solely keeping in the connectivity matrix the midside
nodes—corner nodes are only used for post-processing purposes. We show in Figures 18.b and 18.c the fine-scale (FE)
and coarse-scale solutions of the stretching test (first test in Figure 17.c). To facilitate the interpretation of results, the
coarse-scale displacements are portrayed as if the structure were continuous —this is done by extrapolating the values of
the midside nodes to the corner nodes. For comparison purposes, we also show the fine-scale, deformed mesh recovered
from the coarse-scale solution. Visually, there are no discernible differences between this deformed mesh and the exact one
computed by the FE method. In term of forces, the accuracy is equally notable: the resultant of forces in the x-direction
predicted by the FE is F fe

x = 3.0398 N, while the coarse-scale model gives F rom
x = 3.0396 N (an error of just 0.006 %

). The level of accuracy in the other 3 tests is less astonishing, yet equally satisfactory from a practical point of view:
the shear test (y direction) requires F fe

y = 0.5307 and F rom
y = 0.5309 N (error 0.03 %); the stretching test (y direction

) F fe
y = 0.777 and F rom

y = 0.768 N (error 1.22 %); and the shear test (x direction) F fe
x = 0.0994 and F rom

x = 0.0981 N
(error 1.30 %).

To complete the assessment, we carry out the analysis of the L-shaped geometry of Figure 19.a under the indicated
prescribed displacements. The deformed shapes and the displacement norm computed by the standard FE method and
the coarse-scale model are displayed in Figures 19.b and 19.c. The former requires around 1 million standard 8-DOFs
quadrilateral elements, while the latter contains only 351 quadrilateral elements of the type defined in the foregoing
(18-DOFs per element). Despite this startling reduction in the number of elements, the deformed boundaries of both
geometries are practically identical. The same degree of accuracy is observed in the critical corner region, displayed in
magnified form for both cases, as well as in terms of resultant forces, summarized in Table 3.

Fine-scale (FE) model Coarse-scale model Error Homogenization (FE2) Error

Fx(N) 15.12 15.14 0.13 % 18.41 21.76 %

Fy (N) 11.96 11.99 0.25 % 14.36 16.1 %

Table 3: Resultant of horizontal and vertical forces in the L-shaped test of Figure 19.a. Values computed by the standard FE model (1 million
8-DOFs quadrilateral elements), the coarse-scale model (351 18-DOFs quadrilateral element, see Figure 18.a); and the first-order homogenization
model (351 8-DOFs quadrilateral elements, using the homogenized elasticity matrix of Eq.(121) ).

We also provide in this table the resultant forces computed by using the standard first-order homogenization (the FE2
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reaction forces in the nonlinear training test computed by the standard FE method and the elastic and inelastic coarse-scale elements (m∗

gs = 60
and 107 ECM points per element, respectively). c) and d) Enlarged view showing the contour plots of Von Mises stresses (in MPa)

method); the homogenized elasticity matrix24 for this hexagonal unit cell is given by (in MPa)

Chomog =







984.69 977.02 588.51 0.054
977.02 984.63 588.5 0.052
588.51 588.5 3809.4 0.032
0.054 0.052 0.032 3.81







(121)

We see that first-order homogenization grossly overpredicts both horizontal and vertical forces (22.76 % and 16.1 % of
error); by contrast, our multiscale approach furnishes a remarkable accurate prediction (error below 0.25 % for both
forces). These results emphasize one of the major advantages of the proposed multiscale method: its ability of providing
accurate results in scenarios in which the hypothesis of scale separation clearly does not hold.

Lastly, Figure 19.d exemplifies how the proposed approach allows one to easily perform a multiscale stress analysis.
Firstly, at the coarse scale, one can identify the critical regions by plotting the maximum Von Mises stress at each element
(maximum among the m∗

gs = 60 ECM integration points). Then, by simple matrix multiplications (see Eq. 120), one can
reconstruct the stresses at all the Gauss points of the underlying unit cell mesh (the fine-scale), and from this information,
spot the areas with highest stresses (this is shown in the enlarged view of Figure 19.d).

9.4.2. Nonlinear regime

We carry out next a coarse-scale analyses in the nonlinear regime, by assuming that the material of the hexagonal
cells obeys a rate-independent Von Mises elastoplastic model, endowed with a linear, isotropic hardening law (yield stress
σy = 60 MPa, and hardening modulus H = 700 MPa). Our interest lies in detecting the onset of formation of plastic hinges
(as described in Ref. [18]) at the intersection between the walls of the cell. To this end, we carry out the test depicted
in Figure 20.b, in which the same 5-by-5 domain employed in the linear tests is stretched 1.1 mm in the y-direction. The
constitutive differential equations are integrated in time (with nsteps = 40 time steps) using the classical, fully implicit
backward-Euler scheme [38].

To derive a coarse-scale element that accounts for the nonlinear effects occurring in this test, we proceed as in Example
9.3, that is, by simply enriching the training data base with the solutions (a total of 9 · 40 = 360 snapshots) coming from
this nonlinear problem. We then apply the operations specified in steps 4, 5 and 6 of the offline procedure of Box 8.1, using
ǫλ = ǫσ = 10−3 as truncation tolerances for the additional matrices, while keeping the remaining parameters to the values
used in the elastic case. This gives p = 17, r = 27, m∗

gs = 107 and 7-3-7-3 coarse-scale DOFs. It is interesting to note
that, in passing from the linear to the nonlinear regime, the kinematics of the coarse-scale element barely changes (there
is only two additional DOFs), whereas the number of integration points computed by the ECM practically doubles (from
60 to 107). As can be seen in Figure 20.a, such points are mainly concentrated at the intersection between the walls of
the cell, which is precisely where plastic yielding takes place (see Figure 20.c). To assess the effect of the number of ECM

24 The homogenized elasticity matrix has been calculated following the standard procedure of running 3 FE simulations of a single unit cell
under periodic boundary conditions (the 3rd row of the matrix corresponds to the stresses in the z-direction).
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Figure 21: a) Geometry and boundary conditions employed for assessing the coarse-scale model in the elastoplastic regime. b) Resultants of
vertical and horizontal forces versus time computed by the standard FE method and the coarse-scale model.

points in the accuracy of the predictions, we plot in Figure 20.b the graphs of the reaction force versus time computed by
the FE model and the linear and nonlinear coarse-scale models (m∗

gs = 60 and m∗
gs = 107, respectively). Observe that the

graph of the coarse-scale model with m∗
gs = 107 ECM points is practically identical to the full-order graph, the maximum

discrepancy at the end being only 0.4 %. By contrast, the graph of the coarse-scale model with m∗
gs = 60 does capture

the linear branch, but clearly fails to detect the onset of plastic yielding.
As customary, the evaluation of the predictive capabilities of this coarse-scale element is completed by examining

a problem whose geometry and boundary conditions are markedly distinct to that used in training. We use for this
purpose the L-shaped geometry described earlier (see Figure 19.a) under the cycle of horizontal and vertical prescribed
displacement depicted in Figure 21.a (discretized in 300 time steps). The resultants of the vertical and horizontal reaction
forces versus time computed by the standard FE method and the ROM are shown in Figure 21.b. We can see that the
ROM is indeed able to accurately reproduce the whole loading/unloading cycle for both vertical and horizontal forces, with
a maximum deviation at the peak forces of 1.3 %, a fact that demonstrates the applicability of the model to accurately
predict the response for scenarios different from the training cases. As for the issue of computational efficiency, the FE
simulation (around 1 million standard quadrilateral elements) took around 5 hours in an in-house, vectorized MATLAB
code operating in a linux platform25, while the reduced-order model (357 coarse-scale elements) required about 2 minutes
for the same number of steps —the speedup26 factor is, thus, around 300.

9.5. Composite shell

We conclude the assessment of the proposed methodology by deriving a coarse-scale model for the linear elastic behavior
of a cylindrical shell, made up by tiling copies of the porous, composite cell of Figure 22.a. The cell is formed by two
materials, one with Young’s Modulus Em = 70000 MPa and Poisson’s ratio νm = 0.3 (the matrix); and the other one with
Ei = 3Em and νi = νm (the four cylindrical inclusions). The thickness is t = 0.24 mm, and the radius of the midplane
r = 42.452 mm. Likewise, the rotation of the interface boundary ∂Ω̄3 with respect to ∂Ω̄1 is given by the matrix

Q3 =





cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ



 (122)

where, as indicated in Figure 22.a, θ = 2π/80 —thus, 80 unit cells are necessary to complete a revolution around the
y-axis. The 3D geometry is discretized using m = 4 · 1431 = 5724 (8-node) hexahedral elements, resulting in n = 7680
nodes27.

25Intel(R) Core(TM) i7, with 8 processors at 2.80GHz
26This speedup factor is calculated without taking into account the offline cost of running the FE training analyses and constructing the

bases, since such computations have to be performed just once. In the case at hand, the FE training process required around 3 minutes (220
seconds for the FE training tests, and 50 seconds for constructing the bases and determining the ECM points).

27A word concerning the meshing procedure is in order here. To ensure conformity between meshes of opposite boundary interfaces (∂Ω̄1

with ∂Ω̄3, and ∂Ω̄2 with ∂Ω̄4), the discretization was done in an “unbent” configuration, with ∂Ω̄3 parallel to the z-y plane; then, by applying
a linearly varying rotation around the y-axis, the cell was transformed into the curved geometry shown in Figure 22.a.
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To train the coarse-scale model, we use the 5-by-5 cells structure and the boundary conditions depicted in Figure
22.b. For each of the two periodicity directions, the nodal displacements of one of the interface boundaries are set to
zero, while the opposite surface is subjected to prescribed displacements (0.1 mm) in 3 mutually orthogonal directions
(tests T1,T2,T3,T5,T6,T7), and torsional rotations (0.1 rad, tests T4 and T8). The solution in displacements, reactive
forces between domains and stresses of the 3-by-3 inner cells —enclosed by the dashed line in Figure 22.b—- are stored
in the corresponding snapshot matrices28. We then follow the offline procedure of Box 8.1, using truncation tolerances
ǫλ = ǫσ = ǫecm = 10−3 and ǫf = 10−4. This gives p = 22 straining and reactive modes (four of such modes are shown
in Figures 23.a and 23.b), 7 interface modes for each interface, and m∗

gs = 179 ECM points. The resulting coarse-scale
element, displayed in Figure 23.c, consists, thus, in a cylindrical shell quadrilateral featuring 4 midside nodes with 7
DOFs each (3 translations, 3 rotations and 1 straining DOF), and 179 ECM integration points. The reduction, with
respect to the original 3D mesh, in number of DOFs and integration points is therefore equal to 3 · 7680/28 ≈ 823 and
8 · 5724/179 ≈ 256, respectively. Yet, the coarse-scale model still manages to reproduce the training test with acceptable
degree of accuracy: in terms of resultant reaction forces, the error ranges from 0.10 % in test T6 to 3.28 % in test T2.
The level of approximation can be better appreciated in Figure 24, where we display the deformed shape and Von Mises
distribution of test T1, along with its coarse-scale counterparts (Figure 24.b is the deformed coarse-scale mesh, of 5-by-5
quadrilaterals, together with the cloud of ECM points used for integration, and Figure 24.c is the reconstructed fine-scale
solution).

As usual, we next evaluate the predictive capabilities of the coarse-model in scenarios in which the input parameters
are markedly different from the input parameters used in the training process. Two examples will be employed for this.
The first one is depicted in Figure 25.a. It consists of a domain of 15 cells in both the axial and circumferential direction,
clamped at the four edges, and subjected to a uniform pressure of 0.1 MPa, distributed over an area spanning 5-by-5
cells. Figure 25.b shows the deformed shape and contour plot of displacements computed by the FE method (featuring
1.3 million elements and 5.1 million DOFs). Figures 25.b, 25.c and 25.d, on the other hand, display the displacement field
predicted by the coarse-scale model (225 elements of the type defined in Figure 23.c, and 3360 DOFs); Figure 25.b is the
continuous 2D representation, while Figures 25.c and 25.d contain the reconstructed 3D field. The qualitative resemblance
of the FE and ROM 3D fields (Figures 25.a and Figures 25.c) is notorious, the only subtle difference being that the area
with highest displacements appears to be more dispersed in the FE case. In terms of maximum displacement, the FE
yields 0.142 mm, while the ROM predicts 0.145 mm (only 2.1 % above). These small deviations are largely compensated
by the enormous savings in computational time afforded by the coarse-model: assembling and solving the coarse-scale

28In this case, since the structure is curved, such quantities have to be rotated back to the local reference system of the unit cells
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Figure 24: Training test T1. a) Deformed shape (×10) and Von Mises stress contour plot computed by the FE. b) 5-by-5 quadrilateral,
coarse-scale deformed mesh (×10), along with the ECM integration points (m∗

gs = 179 for each coarse-scale element) . c) Deformed mesh and
contour plot of the reconstructed Von Mises stresses (from the information of the ECM points).

equations take less than 1 second in the employed computer; by contrast, the FE requires more than 20 minutes to do the
same operations —hence the speedup factor in this case is above 1200.

The second —and last— example used to test the performance of the shell coarse-scale element of Figure 23.c is
described in Figure 26. The structure is a holed cylinder tube comprising 128 cells in the axial direction —and 80 in the
circumferential direction. The hole is located midway between the ends of the cylinder, and it is made by removing a patch
of 5-by-6 cells, as indicated in Figure 26.a. The cylinder is fixed at one end, and it is stretched by displacing a distance
0.1 mm the other end in the axial direction. The goal is to study the stress concentration caused by the presence of the
hole. As done previously in the cellular solid problem (see Section 9.4.1), this stress analysis is conducted in a multiscale
fashion. Firstly, we solve the system of coarse-scale equations and construct a 2D coarse-scale representation of the Von
Mises equivalent stress (by plotting, for each element, the maximum Von Mises stress among the m∗

gs = 179 ECM points).
The resulting contour plot is shown in Figure 26.b. The peak value is located, as one may expect, at one of the corners of
the hole. Then, we reconstruct the 3D Von Mises stress field by the post-processing procedure of Section 8. This is done
in Figure 26.c, where we show the 2D deformed geometry together with the reconstructed contour plot corresponding to
the 500 cells with highest values in the plot of Figure 26.b. A closer inspection of the enlarged view of Figure 26.d allows
us to finally reveal the actual fine-scale mechanism producing the peak stress observed at the coarse-scale —it is caused
by stress concentration at the pore located at the corner.

To rigorously complete the assessment, it would be necessary to compare these results with a direct simulation using
the standard FE —as it has been done with the rest of the problems discussed in previous sections. Unfortunately,
in this case, the sheer number of elements of the resulting FE mesh29 (more than 58.5 million ) makes this assessment
prohibitively costly using the employed computer and FE software (which, recall, is an in-house Matlab code). By contrast,
the coarse-scale simulation takes less than 5 seconds in the same computer, a fact that emphasizes the tremendous gains
in performance afforded by the proposed multiscale scheme. Concerning the accuracy issue, a glance at both Figures 26.c
and 26.d indicate that both the reconstructed displacements and stress fields are fairly continuous; this can be taken as

29There are M = 128 · 80− 6 · 5 = 10212 cells, and m = 5724 hexahedral elements per cell.
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Figure 25: a) 15-by-15 cell domain and boundary conditions used to test the coarse-scale element defined in Figure 25.c. b) Deformed shape
(×40) and contour plot of displacements (euclidean norm) computed by the standard FE ( 1.3 million elements and 5.1 million DOFs). c) Idem
to b), but computed with the coarse-scale model (15 × 15 =225 elements and 3360 DOFs). d) and e) Reconstructed fine-scale displacement
solution

an evidence that the results may be trusted, because, as we saw in dealing with the local effects problem of Figure 13.c),
inaccuracies of the coarse-scale model typically manifest themselves in ostensible jumps in the reconstructed fine-scale
fields .

10. Concluding remarks

At the heart of this work lies the conviction that any simplified structural model can be automatically derived from
a more complex one by combining domain decomposition and dimensionality reduction. This conviction is grounded in
an inescapable truth: dimensionality reduction algorithms are far better than humans in uncovering dominant patterns
from data, and therefore, they can be harnessed to identify, from solutions generated with the complex model, the
force/deformation low-dimensional parameterizations that characterize simplified structural models. The task of the
modeler in this new paradigm is, thus, limited to that of judiciously designing the computational tests from which the
“training” data are obtained.

We have chosen as vehicle for exposing this idea the two-scale modeling of periodic structures with unit cells possessing
disjoint interface boundaries —and operating in the quasi-static, small deformations regime. Nevertheless, the employed
ROM partitioning framework is rather general, and extensions to continuous interface boundaries, as well as geometrically
distinct subdomains, should be feasible with minor modifications. To consider continuous interface boundaries, it would
be necessary to include constraint equations accounting for the intersection entities, which in the proposed framework
would translate into simply adding vertex nodes to the coarse-scale elements ( we saw in the examples of Figure 18 and
Figure 23 that, in 2D periodicity, the coarse-scale elements are quadrilateral with solely midside nodes). Departures from
the periodicity condition, on the other hand, would require a redefinition of the training procedure ( specific training
tests should be devised for each family of geometrically related subdomains), and a revision of Algorithms 3 and 5 for
extracting the interface modes from the domain displacement modes. The remaining elements of the approach would
remain unchanged.

Extensions to dynamic and/or large deformation regimes, on the other hand, will offer varying degrees of difficulty
depending on the situation. The adaption to scenarios with small strains but large rotations of the subdomain (for beam-
and shell-like structures) should not pose significant conceptual challenges —albeit it will surely prove algorithmically
intricate. The training process would be the same as in the small deformation regime, and one would have just to replace
the additive decomposition with infinitesimal rotations of Eq.(14) by Eq.(32) by their finite rotation counterparts, as it
is done in co-rotational finite element approaches (cf. Ref. [14]). Moderate strains and incorporation of inertial effects
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gs = 179 ECM points of each coarse-scale element. c) and
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should not entail unsurmountable difficulties either—in fact, the employed partitioning framework was originally devised
for dynamic problems [33]. By contrast, severe obstacles might be encountered when moving to cases in which the unit
cells undergo relatively large deformations (especially if there is buckling), since in such cases the premise that the straining
part of the domain displacements admits a low-dimensional linear expansion ceases to hold. Such a roadblock may be
partially overcome by replacing the linear approximations by nonlinear mappings, which may be determined in turn by
some type of manifold learning algorithm, as done, for instance, in Ref. [29] for one-scale dynamic problems.

Of paramount importance for the consistency of the overall approach has been to adopt a partitioning framework
equipped with fictitious interfaces, and to assign the role of coarse-scale DOFs to the amplitude of the modes of such
interfaces. Furthermore, this choice has enabled us to establish a direct link with existing finite element beam theories.
Indeed, we have seen in the rectangular beam example of Section 9.1 that our method leads to a 2-node element with 6
DOFs, as in a standard Timoshenko’s element. The difference is that, in our approach, it is the fictitious interfaces that
remain plane, not the faces of the slices, which are free to warp due to torsion and shear. This is why our 2-node beam
element is totally consistent with the underlying 3D theory —as opposed to Timoshenko’s or other analytical theories.
Besides, the proposed methodology is able to automatically detect from the provided data when it is necessary to enrich
the kinematics with more DOFs. This has been fittingly illustrated by the I-shaped cross-section beam problem, in
which Algorithm 3 has “discovered” the fact that the kinematics of thin-walled open cross-section cannot be accurately
represented with just translation and rotations, but require an additional warping DOF (see Figure 10). Another pivotal
ingredient of the proposed approach has been the hyperreduction of the internal forces of the subdomains via the Empirical
Cubature Method. In this regard, we have observed in the hexagonal cell example of Section of 9.3 that the number of
ECM points increases considerably when passing from the linear to the nonlinear regime, even if the kinematics remains
practically the same. Therefore, it would be worthy to explore whether it is possible to further improve the ECM so that
it returns less integration points for the same accuracy level. In principle, there is room for improvement, because the
ECM, as well are other similar algorithms either based on nonnegative least-squares (such as the method advocated by
Farhat et co-workers [12]), or on linear programming (such as the Empirical Quadrature Method of Patera et co-workers
[39]), are not optimal, for they do not exploit the topology of the function they intend to integrate.
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A. Empirical Cubature Method

A key offline step (see Box 8.1, item 5) is the selection among the Gauss points of the unit cell mesh of a reduced
set of points able to accurately integrate ( when equipped with especially tailored weights) the internal virtual work,
see Eq. (46). Here this task is carried out using an algorithmically improved version —in a sense that will be defined
later— of the Empirical Cubature Method (ECM), proposed by the author in Ref. [21]. As explained therein, the ECM
operates on a snapshot matrix Af that depends on the value of the integrand at all the mgs Gauss points and for all the

P configurations . In this case, the integrand is the reduced internal work per unit volume B∗T (xg)σ(xg,µ). Since in the

small strain regime B∗T (xg) ∈ R
p×s does not depend on the input parameters µ, rather than storing the internal forces

at all Gauss points and for all configurations (which requires a matrix of size mgs×P ·p), it proves more efficient to solely
store the stress solutions in a snapshot matrix Aσ ∈ R

smgs×P (see Eq. 87 ). Then, by applying the truncated SVD (with
a tolerance ǫσ ∼ ǫλ ), one can obtain a basis matrix for the stresses:

[Λ, •, •] = SVD(Aσ, ǫσ), (123)

where Λ ∈ R
s·mgs×r, r being the number of stress modes (which should be of the same order as the number of straining

and self-equilibrating modes p). Having the stress basis matrix at one’s disposal, the desired matrix of internal forces is
determined as

Af :=
[
F1

1 · · · Fp
1 F1

2 · · · Fp
2 · · · F1

2 · · · Fp
r

]

mgs×p·r
(124)

where the expression for FI
j ∈ R

mgs reads

FI
j :=








√
W1B

∗T
I (x1)Λ(b1, j)√

W2B
∗T
I (x2)Λ(b2, j)

...
√
Wmgs

B∗T
I (xmgs

)Λ(bmgs
, j)








(125)

(here bg = {s (g− 1)+1, s (g− 1)+2 . . . s g} ). Next we apply again the truncated SVD on Af to eliminate redundancies
and achieve an orthogonal basis matrix for the internal forces

[Υ , •, •] = SVD(Af , ǫf ). (126)

Having at hand matrix Υ ∈ R
mgs×q , the error incurred in evaluating the internal forces for any training configuration

using the subset of integration points with indexes Z ⊂ {1, 2 . . .M}) and associated positive weights α ∈ R
+m∗

gs is given
by30

e(α,Z) = ‖Υ T
√
W − Υ T (:,Z)α‖. (127)

Given a tolerance 0 ≤ ǫecm ≤ 1, we seek the smallest set of points Z and associated positive weights α such that

‖G
√
W −G(:,Z)α‖ ≤ ǫecm‖G

√
W ‖ (128)

where G = Υ T ( G
√
W and G(:,Z)α represent the vectors of exact and approximate integrals, respectively). To solve

this minimization problem, we use the function:

[Z,ω] = ECM(G,W , ǫecm) (129)

described in Algorithm 7. As pointed out previously, this (greedy) method is an algorithmically improved version of the
one put forward by the author in Ref [21]. The improvement goes as follows: at each iteration, the algorithm has to cope
with a least-squares problem to obtain the corresponding weights: α = (ATA)−1ATb, where A = [G(:, z),G(:, i)] is the
matrix of coefficients formed by incorporating the incoming column G(:, i). In principle, this takes O(qm2) floating-points

30If
√
W

T
Υ = 0, the problem becomes ill-posed (it admits the trivial solution α = 0). To eliminate the issue, it suffices to expand Υ as

Υ ← [Υ ,
√
W ] (consult Ref. [21] for further details).
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Algorithm 7: Empirical Cubature Method (enhanced version of the algorithm in Ref. [21])

1 Function [z,ω ] =ECM(G,W ,TOL)

Data: G ∈ R
p×M , where GGT = I; W ∈ R

M , Wi > 0; tolerance 0 ≤ TOL ≤ 1
Result: z ⊂ {1, 2 . . .M}, ω > 0 ∈ R

m, such that ‖G(:, z)α‖ ≤ TOL‖G
√
W ‖, where ωi =

√

W (zi)αi

2 z ← ∅; y ← {1, 2 . . .M}; b← G
√
W ; r ← b; α← ∅; H ← ∅ // Initializations

3 y ← y \h, where h = [h1, h2...] such that ‖G(:, hi)‖ ≤ ǫ // Remove points whose associated values in G are lower

than a given tolerance (ǫ ∼ 10−6)

4 while ‖r‖/‖b‖ > TOL AND length(z)< p AND length (y)> 0 do

5 i = argmax
i∈y

gT
yr, where gj = G(:, j)/‖G(:, j)‖ // Select the column most ‘‘positively’’ parallel to the

residual r

6 if z = ∅ then
7 H ← (G(:, i)TG(:, i))−1 // Inverse Hermittian matrix (first iteration)

8 α←HG(:, i)Tb // Weights computed through least-squares

9 else

10 [α,H] ← LSTONER(α,H,G(:, z),G(:, i), b) // Least-squares via one-rank update, see Algorithm 8.

11 end

12 z ← z ∪ i ; y ← y \ i; // Move index i from y to z

13 n← Indexes such that αn < 0 // Identify negative weights

14 if n 6= ∅ then
15 y ← y ∪ z(n); z ← z \ z(n) ; // Remove indexes negative weights

16 H ← UPHERM(H,n) // Update inverse Hermitian Matrix (via recursive, one-rank operations, see Algorithm

9 )

17 α = HG(:, z)T b // Recalculate weights

18 end

19 r ← b−G(., z)α // Update the residual

20 end

21 ωg ← αg

√
W (zg), g = 1, 2 . . . length(z)

Algorithm 8: Least-squares via one-rank update

1 Function [αnew,Hnew] =LSTONER(α,H,A,a, b)

Data: A ∈ R
p×m, a ∈ R

p, H = (ATA)−1, b ∈ R
p, α = HATb,

Result: Hnew = (BTB)−1 and αnew = HnewB
Tb, where B =

[
A a

]
, via one-rank update.

2 c = ATa; d = Hc; s = ‖a‖2 − cTd

3 Hnew =

[
H + 1

s
ddT − 1

s
d

− 1
s
dT 1

s

]

4 r = b−Aα; v = (aT r)/s

5 αnew =

[
α− vd

v

]

operations (FLOPs), which implies that, at each iteration, the cost increases by a factor O(m2). This constitutes a serious
bottleneck for high q, especially when m approaches q (the exact solution, for ǫecm ≈ 0, is achieved for m = q, that is,
when A becomes square). To amend this, we have modified the original algorithm in Ref. [21]. Now the the least-squares
problem is solved using function LSTONER, described in Alg. 8. This function performs a rank-one update of (ATA)−1

using the formula31 for the inverse of a symmetric 2-by-2 block matrix (cf. Refs. [3, 20]), which requires only O(qm)
FLOPs. The same strategy is used for updating the inverse of the Hermitian matrix upon removal of the columns with

31Alternatively, when the least-squares problem is solved using the QR decomposition, one can update the QR decomposition of the coefficient
matrix. This is the procedure followed by Lawson and Hanson in their pioneering Nonnegative Least-Squares (NNLS) algorithm [27]. In this
respect, Chapman et al. [6] has recently proposed a parallel updatable QR factorizer, which has been used in the context of the energy-conserving
sampling and weighting (ECSW) procedure [12, 13].
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Algorithm 9: Update of the inverse of an Hermitian matrix when several columns are removed

1 Function [Hnew] =UPHERM(H,n)

Data: H ∈ R
m×m, where H is of the form H = (ATA)−1, A ∈ R

p×m; n ⊂ {1, 2 . . .m}
Result: Hnew = (BTB)−1, where B = A(:, c), c = {1, 2 . . .m} \n

2 n← sort(n) // Sort the indexes in ascending order

3 Hnew ←H

4 for i = 1 to length(n) do

5 j = n(i)− i+ 1
6 Hnew ← UPHERMone(Hnew,j) // Hermitian matrix inverse when 1 column is removed (Alg. 10)

7 end

Algorithm 10: Update of the inverse of an Hermitian matrix when one column is removed

1 Function [Cnew] =UPHERMone(C, j) // From https://emtiyaz.github.io/Writings/OneColInv.pdf

Data: C ∈ R
m×m, where C is of the form C = (ATA)−1, A ∈ R

p×m; j ∈ {1, 2 . . .m}
Result: Cnew = (BTB)−1, where B = A(:, c), c = {1, 2 . . .m} \ j

2 D ← C; r ← {1, 2 . . .m− 1}
3 if j < m then

4 a← {1, 2 . . . j − 1}; b← {j + 1 . . .m}
5 D ←

[
C(:,a) C(:, b) C(:, j)

]
; D ←

[
D(a, :) D(b, :) D(j, :)

]

6 end

7 Cnew = D(r, r)− D(r,m)D(m, r)

D(m,m)

associated negative weights, see line 16 of Algorithm 7.

B. Coarse-scale body forces

The goal of this Section is to show how the expression for the coarse-scale body forces Fe
b :

Fe
b = Fe

se +Fe
eq (130)

(see Eq. 67) can be cast in a reduced-order format, without the need of having at one’s disposal the exact nodal expression
for the FE nodal external forces F e

ext.

B.1. Body forces

The vector of FE nodal body forces may be expressed as

F e
b =

mgs∑

g=1

NT(xg)Wgb
e(xg), (131)

where N(xg) is the shape function (in its global, sparse format) associated to the Gauss point located at xg and be(xg)
the corresponding body force per unit volume. If self-weight (gravity) is the only body force, then we may write Eq.(131)
as

F e
b =

nmat∑

k=1

Jk
b ρ

kQ̂
eT

g, (132)

where

Jk
b :=

mgs(k)∑

g=1

NT(xg(k))Wg(k). (133)

Here nmat is the number of distinct materials, ρk designates the density of the k− th material and g ∈ R
nsd is the vector

of acceleration of gravity (in global coordinates).
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B.2. Non-interface traction forces

As for non-interface tractions, suppose that the non-interface boundary ∂Ω̄non is subdivided into bnon portions. In
such a case, the expression for the FE nodal contribution can be written as

F e
tr =

bnon∑

k=1

m̄gs(k)∑

g=1

N̄
T
(x̄g(k))W̄ (x̄g(k))t

e(x̄g(k)), (134)

where N̄
T
(x̄

g(k)) stands for the matrix of boundary shape functions at the (boundary) integration point x̄
g(k), W̄ (x̄

g(k))

is the corresponding volumetric weight and te(x̄
g(k)) ∈ R

nsd the traction vector in the domain reference axes. In the case

of curved boundaries, the traction vector is often provided in the coordinate axes intrinsic to the surface: te(x̄
g(k)) =

Q′(x̄g(k))t
′e(x̄g(k)) (here Q′(x̄g(k)) is the local rotation matrix at the boundary integration point x̄g(k)), and Eq.(134)

becomes expressible as

F e
tr =

bnon∑

k=1

Jk
trt

′e(k). (135)

where

Jk
tr :=

m̄gs(k)∑

g=1

N̄
T
(x̄g(k))W̄ (x̄g(k))Q

′(x̄g(k)) (136)

In writing Eq.(135) we have assumed, without loss of generality, that the traction vector t′
e(k)

is uniform over the non-
interface boundary ∂Ω̄k

non.

B.3. Final expressions

Next we determine the self-equilibrating and resultant components of each of the nsd columns of Jk
b and J

g
tr:

Jk
b = Jk

b,se + Jk
b,eq (137)

J
g
tr = J

g
tr,se + J

g
tr,eq (138)

where, according to Eq.(29):

Jk
b,eq = R̄(RT R̄)−1(RTJk

b), Jk
b,se = Jk

b − Jk
b,eq (139)

J
g
tr,eq = R̄(RT R̄)−1(RTJ

g
tr), J

g
tr,se = J

g
tr − J

g
tr,eq (140)

Using Eq.(58) and Eq.(69) we can readily compute the coarse-scale counterparts of Jk
b and J

g
tr, denoted by N Tk

and

N̄
T g

, respectively, by:

N kT

= V TQT (Pf J
k
b,eq) + (T TH−1ΦT )Jk

b,se, k = 1, 2 . . . nmat (141)

N̄
gT

= V TQT (Pf J
k
tr,eq) + (T TH−1ΦT )Jk

tr,se, g = 1, 2 . . . bnon (142)

With N k and N̄
g
at hand, the expression for the coarse-scale body forces can be finally expressed as

Fe
b =

nmat∑

k=1

N kT

(ρkQ̂
eT

g) +

bnon∑

g=1

N̄
gT

t′
e(g)

. (143)

According to the preceding equation, to compute the vector of coarse-scale body forces Fe
b of each subdomain Ωe, one

only has to specify the density ρk of the distinct materials forming the unit cell ( k = 1, 2 . . . ne
mat); the orientation of

the subdomain (through the rotation matrix Q̂
e ∈ R

nsd×nsd); and the traction vectors t′
e(k) ∈ R

nsd acting on each of the
bnon non-interface boundaries of the unit cell. The reduced-order matrices N k and N̄

g
depend only on the geometry and

basis modes of the unit cell, and hence they can be precomputed in the offline phase.
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