
UNIVERSITAT POLITÈCNICA DE CATALUNYA
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Abstract

As one of the fundamental problems of robotics, the different challenges that consti-
tute navigation have been studied for decades. Robust, reliable and safe navigation
is a key factor for the enablement of higher level functionalities for robots that are
going to evolve around humans on a daily basis. Throughout the present thesis, we
tackle the problem of navigation for robotic industrial mobile-bases. We identify its
components and analyze their respective challenges in order to address them. The
research work presented here ultimately aims at improving the overall quality of the
navigation stack of a commercially available industrial mobile-base.

To introduce and survey the overall problem we first break down the navigation
framework into clearly identified smaller problems. We examine the problem of
simultaneously mapping the environment and localizing the robot in it by exploring
the state of the art. Doing so we recall and detail the mathematical grounding
of the Simultaneous Localization and Mapping (SLAM) problem. We then review
the problem of planning the trajectory of a mobile-base toward a desired goal in
the generated environment representation. Finally we investigate and clarify the
concepts and mathematical tools of the Lie theory, which we use extensively to
provide rigorous mathematical foundation to our developments, focusing on the
subset of the theory that is useful to state estimate in robotics.

As the first identified space for improvements, the problem of place recognition
for closing loops in SLAM is addressed. Loop closure concerns the ability of a
robot to recognize a previously visited location and infer geometrical information
between its current and past locations. Using only a 2D laser range finder sensor,
the task is challenging as the perception of the environment provided by the sensor
is sparse and limited. We tackle the problem using a technique borrowed from the
field of Natural Language Processing (NLP) which has been successfully applied to
image-based place recognition, namely the Bag-of-Words. We further improve the
method with two proposals inspired from NLP. Firstly the comparison of places
is strengthen by taking into account the natural relative order of features in each
individual sensor readings. Secondly, topological correspondences between places in
a corpus of visited places are established in order to promote together instances that
are ‘close’ to one another. We evaluate both our proposals separately and jointly on
several data sets, with and without noise, and show an improvement over the state
of the art.

We then tackle the problem of motion model calibration for odometry estimation.
Given a mobile-base embedding an exteroceptive sensor able to observe ego-motion,
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we propose a novel formulation for estimating the intrinsic parameters of an odome-
try motion model. Resorting to an adaptation of the pre-integration theory initially
developed for the IMU motion sensor, we employ iterative nonlinear on-manifold op-
timization to estimate the wheel radii and wheel separation. The method is further
extended to jointly estimate both the intrinsic parameters of the odometry model
together with the extrinsic parameters of the embedded sensor. The method is val-
idated in simulation and on a real robot and is shown to converge toward the true
values of the parameters. It is then shown to accommodate to variation in model
parameters quickly when the vehicle is subject to physical changes during operation.

Following the generation of a map in which the robot is localized, we address the
problem of estimating trajectories for motion planning. We devise a new method
for estimating a sequence of robot poses forming a smooth trajectory. Regardless
of the Lie group considered, the trajectory is seen as a collection of states lying
on a spline with non-vanishing n-th derivatives at every points. Formulated as a
multi-objectives nonlinear optimization problem, it allows for the addition of cost
functions such as velocity and acceleration limits, collision avoidance and more. The
proposed method is evaluated for two different motion planning tasks, the planning
of trajectories for a mobile-base evolving in the SE(2) manifold, and the planning
of the motion of a multi-link robotic arm whose end-effector evolves in the SE(3)
manifold. Furthermore, each task is evaluated in increasingly complex scenarios.
In either cases, it is shown to perform comparably or better than the state of the
art while producing more consistent results.

From our Lie theory study, we push further the idea of enablement introducing
a new, ready to use, programming library called manif. The library is open source,
publicly available and is developed following software programming good practices.
It is designed so that it is easy to integrate and manipulate, and allows for flexible
use while facilitating the possibility to extend it beyond the already implemented Lie
groups. Furthermore the library is shown to be efficient compared to other existing
solutions.

At last, we come to the conclusion of the doctoral study. We examine the research
work and draw lines for future investigations. We also take a look over the past years
and share a personal view and experience of the PhD.
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Resumen

La navegación autónoma es uno de los problemas fundamentales de la robótica, y
sus diferentes desaf́ıos se han estudiado durante décadas. El desarrollo de métodos
de navegación robusta, confiable y segura es un factor clave para la creación de
funcionalidades de nivel superior en robots diseñados para operar en entornos con
humanos. A lo largo de la presente tesis, abordamos el problema de navegación
para bases robóticas móviles industriales; identificamos los elementos de un sistema
de navegación; y analizamos y tratamos sus desaf́ıos. El trabajo de investigación
presentado aqúı tiene como último objetivo mejorar la calidad general del sistema
completo de navegación de una base móvil industrial disponible comercialmente.

Para estudiar el problema de navegación, primero lo desglosamos en problemas
menores claramente identificados. Examinamos el subproblema de mapeo del en-
torno y localización del robot simultáneamente (SLAM por sus siglas en ingles) y
estudiamos el estado del arte del mismo. Al hacerlo, recordamos y detallamos la
base matemática del problema de SLAM. Luego revisamos el subproblema de plan-
ificación de trayectorias hacia una meta deseada en la representación del entorno
generada. Además, como una herramienta para las soluciones que se presentarán
más adelante en el desarrollo de la tesis, investigamos y aclaramos el uso de teoŕıa
de Lie, centrándonos en el subconjunto de la teoŕıa que es útil para la estimación
de estados en robótica.

Como primer elemento identificado para mejoras, abordamos el problema de
reconocimiento de lugares para cerrar lazos en SLAM. El cierre de lazos se refiere a
la capacidad de un robot para reconocer una ubicación visitada previamente e inferir
información geométrica entre la ubicación actual del robot y aquellas reconocidas.
Usando solo un sensor láser 2D, la tarea es desafiante ya que la percepción del
entorno que proporciona el sensor es escasa y limitada. Abordamos el problema
utilizando ’bolsas de palabras’, una técnica prestada del campo de procesamiento del
lenguaje natural (NLP) que se ha aplicado con éxito anteriormente al reconocimiento
de lugares basado en imágenes. Nuestro método incluye dos nuevas propuestas
inspiradas también en NLP. Primero, la comparación entre lugares candidatos se
fortalece teniendo en cuenta el orden relativo natural de las caracteŕısticas en cada
lectura individuale del sensor; y segundo, se establece un corpus de lugares visitados
para promover juntos instancias que están ”cerca” la una de la otra desde un punto
de vista topológico. Evaluamos nuestras propuestas por separado y conjuntamente
en varios conjuntos de datos, con y sin ruido, demostrando mejora en la detección
de cierres de lazo para sensores láser 2D, con respecto al estado del arte.
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Luego abordamos el problema de la calibración del modelo de movimiento para
la estimación de la odometŕıa. Dado que nuestra base móvil incluye un sensor exte-
roceptivo capáz de observar el movimiento de la plataforma, proponemos una nueva
formulación que permite estimar los parámetros intŕınsecos del modelo cinemático
de la plataforma durante el cómputo de la odometŕıa del veh́ıculo. Hemos recurrido
a a una adaptación de la teoŕıa de preintegración inicialmente desarrollado para
unidades inerciales de medida, y aplicado la técnica a nuestro model cinemático.
El método nos permite, mediante optimización iterativa no lineal, la estimación
del valor del radio de las ruedas de forma independiente y de la separación entre
las mismsas. El método se amplia posteriormente par identificar de forma simul-
tanea, estos parámetros intŕınisicos junto con los parámetros extŕınsicos que ubican
el sensor láser con respecto al sistema de referencia de la base móvil. El método se
valida en simulación y en un entorno real y se muestra que converge hacia los ver-
daderos valores de los parámetros. El métod permite la adaptación de los parámetros
intŕıniscos del modelo cinemático de la plataforma derivados de cambios f́ısicos du-
rante la operación, tales como el impacto que el cambio de carga sobre la plataforma
tiene sobre el diámetro de las ruedas.

Como tercer subproblema de navegación, abordamos el reto de planificar trayec-
torias de movimiento de forma suave. Desarrollamos un método para planificar
la trayetoria como una secuencia de configuraciones sobre una spline con n-ésimas
derivadas en todos los puntos, independientemente del grupo de Lie considerado. Al
ser formulado como un problema de optimización no lineal con múltiples objetivos, es
posible agregar funciones de coste al problema de optimización que permitan añadir
ĺımites de velocidad o aceleración, evasión de colisiones, etc. El método propuesto
es evaluado en dos tareas de planificación de movimiento diferentes, la planificación
de trayectorias para una base móvil que evoluciona en la variedad SE(2), y la plan-
ificación del movimiento de un brazo robótico cuyo efector final evoluciona en la
variedad SE(3). Además, cada tarea se evalúa en escenarios con complejidad de
forma incremental, y se muestra un rendimiento comparable o mejor que el estado
de la arte mientras produce resultados más consistentes.

Desde nuestro estudio de la teoŕıa de Lie, desarrollamos una nueva biblioteca
de programación llamada manif. La biblioteca es de código abierto, está disponible
públicamente y se desarrolla siguiendo las buenas prácticas de programación de
software. Está diseñado para que sea fácil de integrar y manipular, y permite flexi-
bilidad de uso mientras se facilita la posibilidad de extenderla más allá de los grupos
de Lie inicialmente implementados. Además, la biblioteca se muestra eficiente en
comparación con otras soluciones existentes.

Por fin, llegamos a la conclusión del estudio de doctorado. Examinamos el
trabajo de investigación y trazamos ĺıneas para futuras investigaciones. También
echamos un vistazo en los últimos años y compartimos una visión personal y expe-
riencia del desarrollo de un doctorado industrial.
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Publications

The work presented along the chapters of this thesis has given rise to two jour-
nal publications, two conference publications, one technical report and one software
publication. They are listed hereafter,

J. Deray, J. Solà, and J. Andrade-Cetto, “Word ordering and document adjacency
for large loop closure detection in 2D laser maps,” IEEE Robotics and Automation
Letters, vol. 2, no. 3, pp. 1532–1539, 2017.

Abstract — We address in this paper the problem of loop closure detection for
laser-based Simultaneous Localization and Mapping (SLAM) of very large areas.
Consistent with the state of the art, the map is encoded as a graph of poses, and to
cope with very large mapping capabilities, loop closures are asserted by comparing
the features extracted from a query laser scan against a previously acquired corpus
of scan features using a Bag-of-Words (BoW) scheme. Two contributions are here
presented. First, to benefit from the graph topology, feature frequency scores in
the BoW are computed not only for each individual scan but also from neighbor-
ing scans in the SLAM graph. This has the effect of enforcing neighbor relational
information during document matching. Secondly, a weak geometric check that
takes into account feature ordering and occlusions is introduced that substantially
improves loop closure detection performance. The two contributions are evaluated
both separately and jointly on four common SLAM datasets, and are shown to im-
prove the state-of-the-art performance both in terms of precision and recall in most
of the cases. Moreover, our current implementation is designed to work at nearly
frame rate, allowing loop closure query resolution at nearly 22 Hz for the best case
scenario and 2 Hz for the worst case scenario.

J. Deray, J. Solà, and J. Andrade-Cetto, “Joint on-manifold self-calibration of odom-
etry model and sensor extrinsics using pre-integration,” European Conference on
Mobile Robots, pp. 1–6, Prague, 2019.

Abstract — This paper describes a self-calibration procedure that jointly esti-
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mates the extrinsic parameters of an exteroceptive sensor able to observe ego-motion,
and the intrinsic parameters of an odometry motion model, consisting of wheel radii
and wheel separation. We use iterative nonlinear on-manifold optimization with
a graphical representation of the state, and resort to an adaptation of the pre-
integration theory, initially developed for the IMU motion sensor, to be applied to
the differential drive motion model. For this, we describe the construction of a pre-
integrated factor for the differential drive motion model, which includes the motion
increment, its covariance, and a first-order approximation of its dependence with
the calibration parameters. As the calibration parameters change at each solver it-
eration, this allows a posteriori factor correction without the need of re-integrating
the motion data.

We validate our proposal in simulations and on a real robot and show the con-
vergence of the calibration towards the true values of the parameters. It is then
tested online in simulation and is shown to accommodate to variations in the cali-
bration parameters when the vehicle is subject to physical changes such as loading
and unloading a freight.

J. Deray, B. Magyar, J. Solà, and J. Andrade-Cetto, “Timed-elastic smooth curve
optimization for mobile-base motion planning” IEEE International Conference on
Intelligent Robots and Systems, pp. 3143–3149, Macau, 2019.

Abstract — This paper proposes the use of piece-wise Cn smooth curve for
mobile-base motion planning and control, coined Timed-Elastic Smooth Curve
(TESC) planner. Based on a Timed-Elastic Band, the problem is defined so that
the trajectory lie on a spline in SE(2) with non-vanishing n-th derivatives at every
point. Formulated as a multi-objective non-linear optimization problem, it allows
imposing soft constraints such as collision-avoidance, velocity, acceleration and jerk
limits, and more. The planning process is realtime-capable allowing the robot to
navigate in dynamic complex scenarios.
The proposed method is compared against the state-of-the-art in various scenarios.
Results show that trajectories generated by the TESC planner have smaller average
acceleration and are more efficient in terms of total curvature and pseudo-kinetic en-
ergy while being produced with more consistency than state-of-the-art planners do.

B. Magyar, N. Tsiogkas, J. Deray, S. Pfeiffer, and D. Lane, “Timed-elastic bands
for manipulation motion planning,” IEEE Robotics and Automation Letters, vol. 4,
pp. 3513–3520, 2019.

Abstract — Motion planning is one of the main problems studied in the field of
robotics. However, it is still challenging for the state-of-the-art methods to handle
multiple conditions that allow better paths to be found. For example, considering
joint limits, path smoothness and a mixture of Cartesian and joint-space constraints
at the same time, pose a significant challenge for many of them. This work proposes
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to use Timed-Elastic Bands for representing the manipulation motion planning prob-
lem, allowing to apply continuously optimized constraints to the problem during the
search for a solution. Due to the nature of our method, it is highly extensible with
new constraints or optimization objectives.

The proposed approach is compared against state-of-the-art methods in various
manipulation scenarios. Results show that it is more consistent and less variant
while performing in a comparable manner to the state-of-the-art. This behavior
allows the proposed method to set a lower bound performance guarantee for other
methods to build upon.

J. Solà, J. Deray, and D. Atchuthan, “A micro Lie theory for state estimation in
robotics,” Tech. Rep. IRI-TR-18-01, Institut de Robòtica i Informàtica Industrial,
Barcelona, 2018.

Abstract — A Lie group is an old mathematical abstract object dating back to
the XIX century, when mathematician Sophus Lie laid the foundations of the theory
of continuous transformation groups. Its influence has spread over diverse areas of
science and technology many years later. In robotics, we are recently experiencing
an important trend in its usage, at least in the fields of estimation, and particularly
in motion estimation for navigation. Yet for a vast majority of roboticians, Lie
groups are highly abstract constructions and therefore difficult to understand and
to use.

In estimation for robotics it is often not necessary to exploit the full capacity
of the theory, and therefore an effort of selection of materials is required. In this
paper, we will walk through the most basic principles of the Lie theory, with the
aim of conveying clear and useful ideas, and leave a significant corpus of the Lie
theory behind. Even with this mutilation, the material included here has proven to
be extremely useful in modern estimation algorithms for robotics, especially in the
fields of SLAM, visual odometry, and the like.

Alongside this micro Lie theory, we provide a chapter with a few application ex-
amples, and a vast reference of formulas for the major Lie groups used in robotics,
including most jacobian matrices and the way to easily manipulate them. We also
present a new C++ template-only library implementing all the functionality de-
scribed here.

J. Deray and J. Solà, “Manif: A micro Lie theory library for state estimation in
robotics applications,” The Journal of Open Source Software, vol. 5, no. 46 pp. 1371,
2020.

Abstract — manif is a micro Lie theory library targeted at state estimation in
robotics applications. Developed as a header-only library, with minimal dependency
and a requirement on C++11 only, it is easy to integrate it to existing projects.
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Notation

Throughout the thesis the following notation is used,

• Lower case regular letters denote scalars, a = 42,
or a function when accompanied by parenthesis, f(x) = x+ 1

• Lower case bold letters denote column vectors, v = [1, 2, 3]T .

• Capital bold letters denote matrices M =

[
1 0
0 1

]
.

• Identity and zero matrices are respectively denoted I and 0. Their dimension-
ality are explicited where necessary, e.g. I ∈ R3×3 and 03×3 are both 3 × 3
matrices.

• Given y = f(x) we note Jyx ,
∂y
∂x

the Jacobian matrix of y with respect to x.

At a given time t,

• xt - A state vector representing the robot position and orientation - e.g. xt =
[x, y, θ] ∈ R3. It may include extra variables such as the robot velocity.

The set XT = {x0,x1, ...,xT} is the history of robot poses for t ∈ [t0, tT ].

• ut - A control signal executed at t− 1 inducing the robot motion to xt.

The set UT = {u0,u1, ...,uT} is the history of input commands.

• ln - A state vector representing a landmark position and orientation.

The set L = {l0, l1, ..., lN} embeds all landmarks,

while Lt = {lt,0, lt,1, ..., lt,n} only includes landmarks observed at time t.

• zt,n - A measurement of landmark ln at xt.

The set ZM = {z0,0, z1,1, ..., zT,N} embeds all observations.
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Chapter 1
Introduction

Since a few years we see an acceleration in the development
and spreading of mobile robots evolving alongside humans, both
in public and private spaces. Automation has began decades
ago in industries such as the automotive industry with in-situ
robots ( e.g. robotic arms). Despite a rapid growth thanks to the
extremely structured environment of factories and warehouses,
limiting the inherent uncertainty of the world to a set of well
established rules, integration happened almost exclusively by
modifying the environment (metal cage, painted railway etc.).
Robots were strictly separated from workers in order to prevent
any dramatic accident. Today’s novelty lies in the mobility as-
pect of the robots. With the current advances in compliance,
mapping, perception, together with the interest of the public,
robots are slowly but surely getting out of their metal cage.
This evolution obviously raises many different challenges both
technical and societal. In this work we focus on one of the
fundamental problems in robotics: Navigation.
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The thesis disclosed here is framed in the Industrial PhD program managed by
the Generalitat de Catalunya. The work is developed in a collaborative framework
between a University and a company. The partners are, the Institut de Robòtica
i Informàtica Industrial, a joint University Research institute from CSIC and the
Universitat Politècnica de Catalunya (UPC), and PAL Robotics on the company
side. The goals of the research are aligned with the mid-term plans of the company.

1.1 Motivation

Figure 1.1: The REEM
robot surrounded at a fair.

Although service robots began to appear in semi-
structured spaces opened to public, such as shop-
ping malls or museums, their presence is still un-
usual. Most of the times a robot appears in pub-
lic, it is quickly surrounded by a crowd of people
being curious, leading to a partial or complete
occlusion of its sensors. In this condition the
robot is nearly blind and naive navigation meth-
ods fail to localize it. Fig. 1.1 depicts such case,
highlighting the difficulties of such situation.

Before being able to cope with the fairly un-
structured and dynamic environment that homes
are, robots are going to be massively deployed in
semi-structured spaces (hospitals, retail stores, malls, museums etc.). Even omit-
ting extreme and punctual examples such as the one depicted in Fig. 1.1, it is very
challenging for a robot to evolve in human environments. These environments were
designed for human crowds and thus do not incorporate any facilities dedicated to
helping robots. Furthermore, the authorities in charge of these places are often re-
luctant to installing any markers or other sensors, especially if they are visible. A
robotic system must therefore be self-contained. To be deployed, robots capacity to
sense and adapt to dynamic scenes, together with their reliability and robustness,
must be improved for both the people and the machine safety during long-term un-
supervised deployment. To adapt to dynamic environments, robots must be able to
recognize places and move around despite static and/or dynamic changes (change
in the furniture arrangement, people passing by, seasonal change etc.). Moreover,
since places as those aforementioned are commonly very large, robots must be able
to create, organize and update fairly large representations of the environment.

1.2 Objectives

The main objective of the thesis is to investigate novel methods to improve and
bolster the overall navigation system of industrial mobile-bases. These methods
must ensure the robustness over time of the framework as they will be implemented
on commercially available service robots which are deployed in real environments.

Whereas the research on navigation benefits from the large and ever growing va-
riety of sensors available, industrial mobile-bases more often embeds a minimal set
of well known and well proven industrial sensors. A common such set includes wheel
encoders, to compute the robot odometry, and a 2D Laser Range Finder (LRF) to
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observe the robot’s surroundings. Regular cameras are also commonly found but
usually employed for related, non-critical tasks. A consequence of the discrepancy
between researchers exploring the benefits of new sensors and the cautious conser-
vatism of industrial is that current solutions to planar LRF-based navigation do not
benefit from all of the latest advances and concepts developed.

From the aforementioned motivations, the following main objectives for the doc-
toral study were identified:

• Improve the estimated odometry and calibration of mobile bases.

• Develop a place recognition module for LRF-based navigation. Such module
should be usable for both re-localization and/or loop-closure.

• Enhance the motion planning capability of mobile-bases.

1.3 Resources

The Robot Operating System

The Robot Operating System (ROS) [1] is a software ecosystem that aims at stan-
dardizing and facilitating the development of robotics applications. ROS essentially
defines an Application Programming Interface (API) through which one may access
a robot hardware, sensors and actuators, but also various kind of higher-level in-
formation such as detected objects, integrated odometry and much more. Over the
course of the past decade, it has became the de-facto standard robotics framework,
both in research and industry. The reader may find a brief history of the project in
Appendix A.

ROS in a nutshell

Despite its name, the ROS is not an actual operating system, nor is it really a full
framework. ROS is better described as an ecosystem composed of core components
which form a middleware and a collection of higher level libraries that benefit from
the middleware. A middleware can be thought of as a low-level framework built on
top of an existing operating system. By defining an API, it organizes the commu-
nication between programs in a distributed system. The primary operating system
supported by ROS is Ubuntu1. This architecture allows one to develop a robotics
system as a collection of interconnected sub-programs, one for each sub task/func-
tionality of the system, as opposed to a monolithic block. The connections between
sub-programs are then defined and handled by the ROS middleware.

The ROS terminology is a follows, individual programs are called nodes which
communicate with each other through,

• Topics. A publisher emits a stream of data on a topic that a subscriber(s)
can retrieve. E.g. A camera driver (publisher) emits an image stream that an
object recognition module (subscriber) will process.

• Services. A synchronous, per-request, client/server communication. E.g. The
navigation stack (client) sends a request to the mobile-base controller (server)
in order to lower the maximum speed authorized.

1https://ubuntu.com/
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• Actions. An asynchronous, per-call, client/server communication. The client
can asynchronously monitor the state of the server, or cancel the request any-
time. E.g. The grasping module (client) asks the manipulation planning
(server) to find a trajectory to safely move the arm to a desired configura-
tion.

Furthermore the ROS environment includes parameters which allows the user to
set some values which are then retrievable by the nodes. Finally, the ecosystem
comes with a load of tools, including system logging, orchestration, 3D simulation
and visualization and much more. The overall ROS middleware is programming
language agnostic, although it mainly supports C++ and Python.

Finally it is worth noting that ROS is totally Open Source and most of the core
packages are released under a BSD license. This fact is most likely another key
aspect of its wide adoption.

PAL Robotics

Founded in 2004, PAL Robotics is a worldwide leading company in biped humanoid
and service robots based in Barcelona. Aiming at enhancing people’s quality of
life, the company’s team is composed of passionate engineers that create research
platforms as well as service robots for tasks such as order fulfillment in warehouse
or inventory making.

Since 2004 and the release of the first version of the REEM-A robot, PAL
Robotics developed several robotic platforms including:

• REEM-A Officially released in 2005 it won the following year the walking
challenge of the RoboCup.

• REEM-B The strongest robot of its time since it could carry a load about
20% of its own weight.

• REEM-H1 The first wheel-based mobile humanoid robot of the company.

• REEM The second wheel-based mobile humanoid robot and one of the
current platforms.

• REEM-C A human-size biped humanoid robot.

• TIAGo-base A mobile base platform developed targeting both industry and
research needs.

• TIAGo A mobile manipulator that adapts to research needs.

• StockBot A service robot that ease inventory making.

• Talos A human-size biped humanoid robot and one of the most leading-
edge robotic platforms in the world.

The whole range of platforms is depicted on a timeline in Fig. 1.2. All of the recent
robots are a 100% ROS-based.

TIAGo

The TIAGo robot is the primary platform used throughout this thesis and is there-
fore briefly described here.

TIAGo, depicted in Fig. 1.3, is a modular mobile-manipulator developed by PAL
Robotics since 2015. Its base, branded TIAGo-base, is a complete robot by itself.
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Figure 1.2: PAL’s robot family.

Payload 100 kg

Max speed 1.5 m/s

Run time 10 h

Charging time 0− 100 4.5 h

Footprint 540 mm

Weight 40 kg

Communication WiFi, Bluetooth, I/O, CAN

Table 1.1: TIAGo-base technical specifications.

It is a two-wheel differential drive and embeds several sensors together with the
onboard computer. Sensors include sonars on the rear side and a LRF on the front.
TIAGo-base is primarily used for any kind of indoor delivery tasks. The base tech-
nical specifications are listed in Table 1.1. The TIAGo manipulator further expands
the base capacity and list of sensors. It has a pan-tilt head which host a RGB-D
camera, a laptop tray offering a wide variety of connectic, an elevating column for
torso and a 7 Degree of Freedom (DoF) arm with exchangeable end-effectors. The
robot is fully based on ROS and its simulation model is publicly available on inter-
net2.

2http://wiki.ros.org/Robots/TIAGo
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Figure 1.3: The TIAGo robot.

Institut de Robòtica i Infomàtica Industrial

IRI is a joint university research center focused on human-centered robotics re-
search. Within its mobile robotics group, effort is placed in developing a full
Simultaneous Localization and Mapping (SLAM) framework called Windowed Local-
ization Frames (WOLF). This framework helps solving various optimization prob-
lems in robotics such as SLAM, visual odometry, sensor calibration, path planning
and more. It includes a structure for having the data accessible and organized, plus
some functionality for managing this data. Some parts of this thesis are contribu-
tions to the whole WOLF architecture.
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1.4 Outline

While the reader may find an overview of the SLAM framework together with a gen-
eral state of the art in Chapter 2, it has to be noted that a literature review specific
to each contribution is presented at the beginning of each chapter. This allows for
contextualizing the contribution with its related work. Furthermore, contributions
– thus chapters – are presented in a chronological order following the course of the
doctoral study.

The present manuscript is structured as follows:

Chapter 1. Introduces the topic of the thesis, its context, motivation and ob-
jectives. Finally it details the structure of the present document.

Chapter 2. Reviews the problem of navigation for mobile-bases. It character-
izes the SLAM framework’s mathematical foundations and draws up a state of the
art overview. The chapter also offer a study of the Lie theory for state estimation
in robotics, a key tool used throughout the thesis.

Chapter 3. Details the Bag-of-Words (BoW) scheme applied to the task of
place recognition for loop closure. A visual feature comparison is conducted to ver-
ify if the most commonly encountered feature in Visual BoW is also the best choice.
In a second time, the BoW scheme is applied to the case of LRF sensors and im-
provements to the classical algorithm are proposed.

Chapter 4. Presents an algorithm for estimating the intrinsic parameters of
a mobile-base motion model. It allows for both batch and online calibration. An
extension to the algorithm is also presented so that it simultaneously estimates the
motion model intrinsic parameters and the extrinsic parameters of a sensor able to
observe ego motion.

Chapter 5. Proposes a novel algorithm for motion planning that estimates
smooth curves on Lie groups. The algorithm is first employed for the motion plan-
ning of a mobile-base, then for the motion planning of a robotic arm.

Chapter 6. Introduces the manif library, a C++ library developed during the
course of the thesis for using Lie theory in various estimation problem in robotics.

Chapter 7. Concludes the thesis by summarizing the contributions and dis-
cussing their consequences. Furthermore, the lines for future work are drawn. At
last, the closing words offer a personal view of the doctoral study.
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Chapter 2
Background

For a mobile robot, Navigation encompasses several different
problems. The robot has the be able to generate a representation
of its environment, a map, to localizes itself within it.Ultimately
it has to move within the environment avoiding collisions. Map-
ping and localization are tackled at once, by a so called SLAM
framework. Once a map is generated and the robot properly
localized, it can move autonomously by planning a trajectory
between its current pose and a targeted one. To deal with robot
states, the mathematical tools employed require the use of a
specific formalism, the Lie theory.
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Robotics navigation encompasses three main and complementary problematic:

• Mapping the problem of representing the environment as the robot
perceives it from its sensor readings.

• Localization the problem of localizing the robot within the aforementioned
representation of the environment.

• Planning the problem of finding a feasible trajectory between at least two
configurations in a map.

These complementary problems are extensively active research areas and are
fundamental in the sense that many high level tasks depend on them. How could a
robot bring us a drink, clean a room or be a guide in a museum if it does not know
its environment, what is its state in this environment or how to move in it?

Tremendous efforts and progresses characterized the past years of the research
community, especially for its branch employing cameras as the main and often unique
sensor. Nowadays, state-of-the-art algorithms are able to accurately localize a robot
online and produce a rich representation of the environment. Despite these impres-
sive results, the overall navigation framework is still very challenged by the possible
combinations of:

• Robots

– dynamics : mobile-base, biped, unmanned aerial vehicle, underwater ve-
hicle ...

– available sensors : rotary/linear encoders, RGB/D/event-cameras, sonars,
2D/3D LRF, Inertial Measurement Unit (IMU), radars ...

– resources : one/many Central Processing Unit (CPU)-cores, memory,
cloud, power, communication ...

• Environments

– indoor : warehouse, museum, hospital, house ...

– outdoor : city, countryside, forest, surface/underwater, space ...

– weather : day, night, sunny, cloudy, foggy, rainy ...

• Task-driven specifications

– precision of the localization and/or map

– size of the map

– execution/decision speed

– robustness, reliability

Furthermore, with so many high level algorithms involved, one may quickly face the
curse of parameters1.

1Analogous to the curse of dimensionality, it encompasses the problems of having highly pa-
rameterizable algorithms leading to a necessary fine tuning for a particular use-case, environment,
scenario etc..
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2.1 The navigation problem

Both problems of mapping and localization are tackled at once by a so called Simul-
taneous Localization and Mapping (SLAM) framework. SLAM is a family of algo-
rithms which knows different approaches (e.g. filtering-based, optimization-based),
which can be further broken down into specific pieces – e.g. the distinction between
localization and re-localization – and as many different sub-problems as aforemen-
tioned scenarios. The SLAM problem has known several formulations and many
algorithms were developed over the years to tackle it. References to some of these
formulations are given in this section. However, only the optimization-based for-
mulation, which has become the de-facto standard formulation, is further detailed.
The reader can find exhaustive and historical reviews in [2–6].

From an engineering point of view, they are usually presented as a composition of
two distinct parts, a front-end and a back-end. The front-end manages the sensors’
raw data and extracts, interprets and organizes information in order to build a
mathematical representation of the problem which can then be solved by the back-
end.

Before further details, a different representation that better fits the reality of the
implementation of SLAM algorithms is proposed. Indeed, the front-end is composed
of two main sub-modules which operate at different pace. The first sub-module
aims at tracking the robot current state, possibly using the concurrently built map
representation, hence must be able to operate at sensor-frame, performing short-
term data association. The second module on the other hand performs long-term
data association, trying to recognize places visited by the robot in the past history
of the environment exploration. This operation is usually time and computation
expensive, therefore must not prevent the tracking from operating at sensor(s) rate.
The module subdivision may be summarized as follows:

• Core. Builds the actual estimation problem and eventually solving it.

• Odometry. Tracks the sensor motion and selects information to be added to
the overall problem.

• Loop-closure/re-localization. Detects loop closures and re-localizes the
robot.

Most modern SLAM algorithms such as [7, 8] rely on the concurrency of these three
modules.

The problem of planning is then treated independently, usually after the map cov-
ers almost fully the environment in which the robot is meant to evolve autonomously.

2.1.1 SLAM

The SLAM problem is best formulated in terms of probabilities with Gaussian ran-
dom variables of the form,

x ∼ N (x̄,Σ) ∈ Rk , (2.1)

where x̄ ∈ Rk is the mean - also known as expectation - of the distribution and
the covariance matrix Σx is a symmetric positive definite matrix. Equivalently one
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can look at x as being composed of a noise-free mean component and a ‘small’,
zero-mean, noisy component,

x = x̄ + ε, ε ∼ N (0,Σ) , (2.2)

Gaussian random variables are given by the normal distribution which probabil-
ity density is,

p(x|x̄,Σx) =
1√

(2π)N |Σx|
exp(−1

2
(x− x̄)TΣ−1

x (x− x̄)) , (2.3)

where |Σx| is the covariance matrix determinant. The expectation reads,

x̄ = E[x] = [E[x1],E[x2], ...,E[xk]]
T (2.4a)

=

∫ ∞
−∞

x
1√

(2π)N |Σx|
exp(−1

2
(x− x̄)TΣ−1

x (x− x̄))dx , (2.4b)

and the covariance,

Σ , E[(x− x̄)(x− x̄)T ] . (2.5a)

In SLAM, such a variable might be i.e. the robot state vector, which update is
a Markov process depending only on the previous robot state and the input control
command:

P(xt|xt−1,ut)⇔ xt = f(xt−1,ut,wt), vk ∼ N (0,Σw) . (2.6)

where f(·) is usually non-linear and models the robot kinematics and wk is a per-
turbation considered Gaussian with zero-mean and covariance Σw.

The observation model describes the probability of making an observation zt
knowing the robot and landmarks poses:

P(zt|xt, L)⇔ zt = h(xt, L) + vt, wk ∼ N (0,Σv) . (2.7)

where h(·) is usually non-linear and models the geometry of the observation and vk
is an additive noise considered Gaussian with zero-mean and covariance Σv.

The complete probabilistic SLAM model, that is, at time t, the joint posterior
density of the landmarks, the robot pose given the history of input controls com-
mands and the observations is then:

P(XT , L|Zt, UT ,x0) . (2.8)

This formulation, exemplified in Fig. 2.1, is known as Full-SLAM as it estimates the
whole history of the robot poses together with the landmarks poses. The adjective
‘full’ is employed here as opposed to early solutions that only maintain few landmarks
and the current robot pose in the problem [9]. In the case one estimates only the
robot poses history by marginalizing the landmarks, such formulation is known as
Pose-SLAM [10–13].

12
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ut+1

ut+2

xt

xt+1zt,i

zt+1,j

lj

li

Figure 2.1: The SLAM structure. Hollow figures correspond to the truth whereas
filled figures correspond to the estimates.

During what [6] refers to as “the classical age”, early solution to SLAM used
filtering-based algorithms to solve the problem. Such formulation included the use
of an Extended Kalman Filter (EKF) [14–16], particle filters [17, 18] or later on the
Extended Information Filter (EIF) [10, 13].

Filtering-based SLAM

The EKF prediction of the mean state directly results from (2.6):

x̂t|t−1 = f(x̂t−1|t−1,ut,vt) . (2.9)

while the uncertainty is propagated as:

Σxx,t|t−1 ← Jf(·)
x Σxx,t−1|t−1J

f(·)
x

T
+ Jf(·)

v ΣwJf(·)
v

T
. (2.10)

where J
f(·)
x and J

f(·)
v are respectively the Jacobians of f(·) with respect to state x

and with respect to v.
The EKF update step is then:[

x̂t|t
L̂t

]
←
[

x̂t|t−1

g(x̂t−1, zt)

]
+ Kt[zt − h(x̂t|t−1, L̂t−1)] (2.11)

Σs,t|t ← Σs,t|t−1 −KtS
−1
t KT

t . (2.12)

with,

Kt = Σt|t−1J
h(·)
x

T
S−1
t (2.13)

St = Jh(·)
x Σt|t−1J

h(·)
x

T
+ Σv . (2.14)

where J
h(·)
x is the Jacobian of h(·) with respect to the state xt.
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Whereas EKF-based SLAM solutions are widely popular, a key issue of the
method is its scalability. In (2.12), St dimension grows with the number of obser-
vation variables hence its inversion becomes more costly and the multiplication has
a quadratic cost.

In order to cope with this issue, EIF methods were proposed [10, 13]. Rather
than using the covariance matrix, EIF methods use the sparsity of the covariance
inverse, namely the Information Matrix noted Λ, to design efficient algorithms.
These methods are related to the EKF methods by:

Λ = Σ−1, η = Λx̂ . (2.15)

where η is the information vector.
Despite these improvements, another type of formulation has became the de-

facto standard SLAM formulation nowadays. Relying on optimization, it is known
as Graph-based SLAM.

Graph-based SLAM

The SLAM problem may also be solved through non-linear sparse optimization. It
is usually pictured graphically; the robot poses and landmarks locations are nodes
in a graph, tied together by edges representing their relative relationships - a motion
(2.6) or an observation (2.7). Such representation is depicted in Fig. 2.3.

Factor Graph The SLAM-graph is only constituted of two types of nodes: states
connected to a small subset of other states through constraints. Such bipartite-graph
representation is called a factor graph.

Without further derivation and recalling that the noises in (2.6) and (2.7) are
Gaussian, the SLAM problem (2.8) can be written in a quadratic form,

log(P(XT , L|Zt, UT )) =
∑
t

[xt − f(xt−1,ut)]
TΩf [xt − f(xt−1,ut)]︸ ︷︷ ︸

motions

+

∑
t

[zt − h(xt, Lt)]
TΩh[zt − h(xt, Lt)]︸ ︷︷ ︸

observations

+ const .

(2.16)
From the probabilities in (2.6–2.7) the following factors Φ are derived:

Φt = P(xt|xt−1,ut) ∝ exp
(
[xt − f(xt−1,ut)]

TΩw[xt − f(xt−1,ut)]
)− 1

2 (2.17)

Φn = P(zt|xt, Lt) ∝ exp
(
[zt − h(xt, Lt)]

TΩv[zt − h(xt, Lt)]
)− 1

2 . (2.18)

where Ωw = Σ−1
w and Ωv = Σ−1

v are the information matrices of the observed data.
(2.17–2.18) lead to a unique form of the error formulation:

ek(xt−1,xt) = f(xt−1,ut)− xt (2.19)

ek(xt, ln) = h(xt, ln)− zn (2.20)

Φk = exp(eTkΩkek)
− 1

2 . (2.21)
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(a) Robot moves from x0 to x1 under the control command u1.

x0 x1 x2 l3 l5
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(b) At time t+1 the robot senses landmark l3
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z3 z5 z7

l3 l5

(c) Robot moves from x1 to x2 under the control command u2. At t+2 the robot senses
landmark l3 again and l5.

Figure 2.2: Iterative construction of a factor graph and its support sparse Hessian
matrix.
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x0 x1

u1 u2 u3

x2 x3

z1 z2 z3 z4 z5 z6 z7

l1 l2 l3 l4 l5

1 2 3

0 1 2 3

4 5 6 7 8 9 10

4 5 6 7 8

Figure 2.3: A factor graph representation of Fig. 2.1. Left : Nodes representing
known data have been replaced by factors (squares) which depends on the unknown
variables (or states) (circles). Right : The same graph. Unknown states are labeled
with a single index i ∈ [0, 7] and factors are labeled with a single index k ∈ [1, 10].

Finally, the SLAM problem is reduced to solving the equation:

x∗ = argmin
x

K∑
k=1

ek(xi,xj)
TΩkek(xi,xj) . (2.22)

where the summed terms are of the form of the Mahalanobis distance.

Solving the SLAM problem As mentioned in Section 2.1.1, the graph-SLAM
problem can be solved by means of iterative non-linear optimization. Rather than
detailing the optimization algorithms, which is beyond the scope of this thesis, here
we provide some references shall the reader require further insights. Such optimiza-
tion frameworks usually implement a Gauss-Newton or a Levenberg-Marquardt least
squares minimization, using either QR [19] or Cholesky [20, 21] decomposition of the
sparse Jacobian matrices of the problem. Important speed-ups have been obtained
with incremental operation of these algorithms, where newly acquired information
is added directly on the already-factored problem [22, 23].

2.1.2 Odometry

A key issue in robotics navigation is the ability of the robot to estimate its current
pose in an unknown environment, the so called self-localization. The odometry
module, generically expressed by (2.6), aims at providing an estimate of the robot
state at a given time with respect to the previous one. It may estimate the robot
displacement from an input control command and/or from sensors readings.

Alongside the motion integration, one can also integrate the associated uncer-
tainty. It is done by linearizing the motion model (f(·) in (2.6)) and integrating a
Gaussian estimate of the state x ∼ N (x̂,Σ) as follows:

x̂← f(x̂,u, 0) (2.23)

Σx ← Jf(·)
x ΣxJ

f(·)
x

T
+ Jf(·)

v ΣvJf(·)
v

T
. (2.24)

Where J
f(·)
x and J

f(·)
v are, respectively, the Jacobians of f(·) with respect to x and

the perturbation v. Σx is the covariance matrix associated to x.
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The main platform used during this thesis is a TIAGo robot equipped with a
differential drive base and a 2D LRF. Hence, the differential drive odometry model
is presented here, together with model agnostic means to compute odometry from
a LRF.

Differential Drive Odometry

The differential drive model for a ground robot consists of two actuated wheels on
a single axle, one on each side of its base. The robot’s frame is defined at the center
of the axle, with the X-axis looking forward, i.e., perpendicular to the wheels’ axle.
The model is parameterized by the wheels radii (rl, rr) and the wheel separation
d. To each of these values is associated a calibration parameter, c = (cl, cr, cd),
obtaining the calibrated parameters (cl rl, cr rr, cd d).

The wheels motion are measured by wheel encoders reporting noisy incremental
wheel angles u = δψ = (δψl, δψr) every time step δt.

Assuming constant wheel velocities between times tj and tk, the motion of the
vehicle can be described by a small arc of length δlk, angle δθk, and radius δlk/δθk,

δlk =
1

2
(crrrδψr,k + clrlδψl,k)

δθk =
1

cd d
(crrrδψr,k − clrlδψl,k) .

(2.25)

This arc can be expressed in the tangent or velocity space of SE(2), i.e., the Lie
algebra se(2), with

f(uk, c) = [δlk, δsk, δθk]
> ∈ se(2) , (2.26)

where δsk is a zero-mean perturbation corresponding to lateral wheel slippage. The
associated Jacobians read,

J
f(·)
δψk

=

 clrl
2

crrr
2

0 0
− clrl
cdd

crrr
cdd

 (2.27a)

Jf(·)
c =


δψl,krl

2

δψr,krr
2

0
0 0 0

− δψl,krl
cdd

δψr,krr
cdd

− δθk
cd

 . (2.27b)

The uncertainty covariance Σf used for uncertainty integration in (2.24) is ob-
tained from the uncertainty of the wheel angle measurements,

Σf = Ju
f(·)ΣψJu

f(·)
T ∈ R2×2 . (2.28)

with Σψ the wheel measurement covariance:

Qψ =

[
Σ2
ψl

+ α2 0
0 Σ2

ψr
+ α2

]
∈ R2×2 (2.29)

Σ2
ψl

= kl|δψl| Σ2
ψr

= kr|δψr| α = 1
2
(µl + µr) .

where kr and kl are wheels intrinsics parameters, α acts as an offset equal to half
the wheels encoders resolution µl and µr [24].
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LRF-based Odometry

The odometry estimation can also be addressed by tracking a sensor pose directly
from its readings. Laser-scan based odometry is the process of estimating the robot
trajectory from consecutive LRF readings. Given two consecutive readings, the
odometry algorithm is two-fold; first a data association (scan-to-scan(s), scan-to-
map) is established, then the relative transform that best aligns the associated data
is estimated. Doing so over time allows one to compute pair-wise relative transforms
which, once integrated, provide an estimate of the robot trajectory.

In the literature this problem has been addressed in many ways, such as an
adaptation of the Iterative Closest Point (ICP) algorithm [25] to the problem of
motion estimation [26]. Other methods constitute direct variations of the original
ICP formulation; [27] uses a custom metric in place of the Euclidean distance to
lessen the effect of sensor rotation compared to translation on the distance of as-
sociated readings. Other variants include Iterative Closest Line (ICL) proposed in
[28] whose error function relies on a point-to-line distance rather than point-to-point
as in the classical ICP. Other LRF-based odometry estimation algorithms include
feature-based data association [29] which extracts features from the readings. Doing
so, they discard the need for an iterative process inherent of ICP-based methods.
Rather than considering the range-readings in the Cartesian plane, [30, 31] perform
the data association in polar coordinates. A more recent work aligns consecutive
scans by means of correlation [32]. The scans are projected on 2D occupancy grids,
which are then correlated. Recently, an Optical-Flow-based formulation has been
successfully proposed for 2D scan-to-scan alignment [33], later improved by aligning
one scan to many [34].

2.1.3 Loop-closure

Loop closure detection is an essential module of any SLAM system. It is the process
of (re)identifying a place from a generated corpus of places visited in the past. Unlike
the odometry module mentioned in Section 2.1.2 which estimates short term robot
poses, the loop closure module estimates the robot pose with regards to the global
map therefore comparing the current pose against the entire history of poses.

Closing such loops reduces the uncertainty in the estimated map, accumulated
during open loop mapping. This is exemplified in Fig. 2.4. The robot trajectory
estimated (highlighted with dashes) drifts over time. When revisiting a place, the
module identifies it as being part of its corpus and estimates the relative transform
from the current pose to the identified one (the red segment in Fig. 2.4). Doing so
it creates and adds a constraint to the problem allowing to correct the accumulated
drift.

This is closely related to the place recognition problem up to the difference that
in the case of place recognition, one only seeks for a topological match hence do not
requires to compute the relative transform between the two matched places.

Loop closure detection has been tackled with geometric methods [35], correlation
methods [36], and with appearance-based methods. Appearance can be considered
either globally [37–40] or as a set of local distinctive features [12, 41, 42] possibly
extracted from different sensor modalities [43]. After the initial work of the com-
puter vision community on the use of the Bag-of-Words (BoW) method for object
recognition [44–46], the SLAM community found in BoW an efficient manner to
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Figure 2.4: Illustration of a loop closure.

query large corpus of places visited by a robot while mapping [47, 48], hence its
amenity for the solution of the loop closure problem. Recent state-of-the-art Visual-
Simultaneous Localization and Mapping (V-SLAM) algorithms have relied on BoW
for their loop closure and re-localization modules. ORB-SLAM [8] for instance uses
DBoW2 [49], whereas LSD-SLAM [7] relies on FAB-MAP [50]. It is worth noting
that after ORB-SLAM and LSD-SLAM, most modern V-SLAM algorithms rely on
the BoW scheme for their loop-closure module. The reader can find a recent and
extensive survey of visual place recognition in [51].

Bag-of-Words

In the BoW framework, the objective is to find a snapshot of a sensor readings
in a corpus of snapshots.To that end, it includes two distinct elements. First, a
vocabulary, W = {w1, ..., wk}, composed of cluster centers or words, wk, representing
the feature’s descriptor space. The vocabulary of words is built offline from a data
set unrelated to the later use by employing a hierarchical k-means [46, 52]. The
second element consists of a database composed of documents, D = {d1, ..., dN},
where each document d is the BoW associated to a sensor readings snapshot at a
known pose of the robot in the current map. That is, the set of local features in the
vocabulary detected in a given sensor readings and their local coordinates.

The database keeps a record of each word occurrence in every document by
means of two frequency scores. The Term Frequency (TF) relates to how frequent
a given word is within a document, while the Inverse Document Frequency (IDF)
refers to how frequent is a given word in the whole database. Given a word wi in
document dj, these frequencies are computed as follows:

tf ij =
nij∑
i nij

, (2.30)

idf i = log

(
|D|∑

j|nij > 0|

)
, (2.31)
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where nij is the occurrence of the word i in document j, |D| is the size of the
database and |nij > 0| evaluates to 1 if wi occurs in dj and 0 otherwise. The
weighting of every word wi in each document dj is given by its Term Frequency -
Inverse Document Frequency (TF-IDF) score,

xij = tf ij · idf i . (2.32)

A document dj is characterized by its signature, a vector containing its TF-IDF
weights, sig j = [xj1, xj2, ..., xjk]

T . The comparison of two documents dj and dk is
performed by computing the cosine similarity of their signatures:

simjk =
sigTj sigk
‖sig j‖‖sigk‖

. (2.33)

Given a new sensor reading (a query), its feature descriptors are extracted, quan-
tized into words, and its signature compared to those of every document in the
database; the N most similar documents are returned by the BoW scheme.

Finally, a geometrical consistency check is performed to assert which, if any, of
the returned documents is a good match to the query sensor reading. In the case
of visual place recognition, the consistency check can be for instance the estimation
of the Essential matrix [53], a trifocal tensor [53] or a Perspective-n-Point (PnP)
projection [54].

2.1.4 Planning

Motion planning is one of the most important and most studied aspects for any
robotic system as it enables interactions with the real world. Operating in a real
environment requires safe and efficient methods that find plans for the robot to reach
a desired configuration. While there exist many approaches solving point-to-point
type planning, often at the cost of additional requirements, they generally lack in
speed, complexity or guarantees.

Initially designed for obstacle avoidance, the method of Potential Fields (PF)
proved to be very valuable for trajectory planning [55]. Two artificial potential fields
are superimposed, one repulses the robot from obstacles while the second attracts it
toward the desired goal. While being simple and efficient, their main drawbacks are
the presence of local-minima in the field in which the robot gets stuck. The method
typically fails to find a path between close obstacles.

Rapidly-exploring Random Tree (RRT)-based methods were first presented in [56,
57]. They originally aimed at solving general nonholonomic and kinodynamic plan-
ning problems which earlier randomized approaches struggled with - e.g. Probabilistic
Road Maps (PRM) [58]. By subsequently growing a tree randomly from the ini-
tial configuration, RRT methods offer a good exploration of the search space with
relative ease. Later improvements include Rapidly-exploring Random Tree Con-
nect (RRTConnect) [57] which extends previous work by constructing trees from
both ends - initial and final configurations - until they connect to each other. While
these methods are able to generate trajectories in complex, high-dimensional spaces,
they are by nature non-guided therefore non-optimal, and have to be instrumented
to provide time guarantees. The quality of the generated trajectories is often poor
in that they are not optimal and often redundant and jerky. Tackling the non-
optimality defect of sampling-based methods, asymptotically optimal planners were
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Figure 2.5: The TEB is a sequence of robot poses forming a trajectory. Consecutive
poses are tied to one another by a time interval.

proposed in [59]. These planners, Rapidly-exploring Random Tree* (RRT*) and
Probabilistic Road Maps* (PRMS), were shown to tend to an optimal solution given
a cost metric. Further improvements of the RRT* algorithms include kinematics
consideration for simple models such as mobile-bases [60].

Timed-Elastic Band

Originated in [61], the Timed Elastic Band (TEB) is an increasingly popular method
for estimating trajectories [62, 63]. The band refers to a sequence of n+1 robot poses
xi ∈ SE(m) linking together an initial and a final configuration:

Q = {xi}i=0...n . (2.34)

With x0 fixed at the origin. Consecutive poses are tied to one another by n time
intervals δt,

∆T = {δti}i=1...n , (2.35)

with δti denoting the time interval required for the robot to move from a pose xi−1

to xi along the trajectory. The TEB is illustrated in Fig. 2.5.
Defining the pairs,

P = {(xi, δti)}i=1...n , (2.36)

the TEB is formulated as a multi-objective optimization problem:

P∗ = arg min
P

∑
k,i

wkcki(Qi,∆Ti) (2.37)

which can be solved by means of a least-squares non-linear solver. The terms wk are
weight factors used to balance the different cost contributions cki(Qi,∆Ti). These
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costs depend on Qi and ∆Ti, which are subsets of respectively Q and ∆T in the
neighborhood of δti. The cost functions are built simply with ck = e>k ek, with ek
an error measure. The index k indicates the nature of each objective error during
the interval δti.

2.2 Lie Theory

In SLAM, as for many other robotics problems, the robot state includes a rotational
part to represent the robot orientation in space. This requires particular care as all
of the mathematical tools to solve the SLAM problem rely on linear algebra (see
Section 2.1.1). But rotations are not part of a vector space while maintaining some
of its properties; the set of rotations belong to a non-commutative group. For this
reason, over the last years, the robotics community has put a great deal of effort to
formulate estimation problems properly. This is motivated by an increasing demand
for precision, consistency and stability of solutions. Indeed, a proper modeling of
the states and measurements, the functions relating them, and their uncertainties,
is crucial to achieve high quality mapping. This has led to problem formulations
involving what has been known as manifolds, which in this context are no less than
the smooth topologic surfaces of the Lie groups where the state representations
evolve.

Sophus Lie (1842-
1899) was a Nor-
wegian mathemati-
cian. He largely
created the theory
of continuous sym-
metry and applied it
to the study of geom-
etry and differential
equations.

While the Lie theory literature is well-rounded – shall
only one be cited, be it [64] –, a first introduction to it is
often tedious. Indeed the vast majority of related docu-
ments has been written by mathematicians and physicists
for audiences of the same crowd; rigorous descriptions
and demonstrations are in order, treating at large many
aspects that are not relevant at the moment for the par-
ticular tasks encountered in state estimation. However,
over the years, many attempts to ease its understand-
ing were made - as their titles sometime suggest -, Very
Basic Lie Theory [65], Basic Lie Theory [66], Naive Lie
Theory [67], Lie Groups for 2D and 3D Transformations

[68], State Estimation for Robotics [69].

Despite these efforts, some aspects may still appear somewhat confusing to the
reader of recent robotics publications as different fields employ a similar vocabulary
for different considerations.

This section does not pretend at offering yet another, better, introduction to Lie
Theory but rather to explicit the few concepts necessary throughout the remainder
of the thesis. Following the description of necessary general concepts, the details for
each of the most common group encountered in robotics are given in a ‘take-away’
form in Appendix C.

The interested reader is encouraged to read A micro Lie theory for state es-
timation in robotics [70] for a brief, clearly explained, (yet another) attempts at
introducing the Lie Theory for the roboticist.
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2.2.1 Lie groups

A Lie group G encompasses a subset of elements of an algebraic group - defined by
maps - that lie on the surface of a smooth manifold - also known as differentiable. Lie
groups thus possess properties of an algebraic group but also some from differential
geometry.

The manifold is a geometrical object, a topological smooth (hyper)-surface, with
no edges or spikes, embedded in a higher dimensional space. Its smoothness implies
the existence of a unique tangent space at each point that resembles a linear space,
allowing one to do calculus. The reader should be able to visualize the manifold
concept represented by a blue sphere in Fig. 2.6.

In a Lie group, the manifold looks the same at every point (similarly to the surface
of a sphere), and therefore all tangent spaces at any point are alike. However there
exists a special tangent space at the special element ‘Identity’, which is called the Lie
algebra of the Lie group (red plane in Fig. 2.6). Lie groups join the local properties
of smooth manifolds, allowing us to do calculus, with the global properties of groups,
enabling nonlinear composition of distant objects.

The Lie groups are defined by the following axioms,

Closure under ◦ : χ ◦ γ ∈ G (2.38)

Identity E : E ◦ χ = χ ◦ E = χ (2.39)

Inverse χ−1 : χ−1 ◦ χ = χ ◦ χ−1 = E (2.40)

Associativity : (χ ◦ γ) ◦ ζ = χ ◦ (γ ◦ ζ) , (2.41)

for χ,γ, ζ and E ∈ G. They read,

• The composition of elements of the manifold is continuous, the resulting ele-
ment remains on the manifold.

• There exists a special element ‘Identity’ so that the composition of a manifold
element with the ‘Identity’ is the object itself.

• Inversion of a manifold element is continuous, the resulting element remains
on the manifold. The composition of an element with its inverse results in the
‘Identity’.

• The order in which the composition operator is applied does not matter.

Hereafter, for simplicity and as it has been common in robotics works, Lie groups
are referred to as just ‘manifolds’, denoted M.

2.2.2 The tangent spaces and the Lie algebra

As aforementioned, the tangent space at the identity, which is noted TM(E), is called
the Lie algebra of M and is noted m,

m , TM(E) . (2.42)
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Figure 2.6: Representation of the relation between the Lie group and the Lie algebra.
The Lie algebra TM(E) (red plane) is the tangent space to the Lie group’s manifold
M (blue sphere) at the identity E . Through the exponential map, each straight
path vt through the origin on the Lie algebra produces a path exp(vt) around the
manifold which runs along the respective geodesic. Conversely, each element of the
group has an equivalent in the Lie algebra. This relation is so profound that (nearly)
all operations in the group, which is curved and nonlinear, have an exact equivalent
in the Lie algebra, which is a linear vector space. Note that the sphere in R3 is not
a Lie group, it is however a convenient figural representation that can be drawn on
paper.

It is a vector space equipped with a binary operation [·, ·] : m × m → m called the
Lie bracket, such that,

Bilinearity : [aτ + bρ,σ] = a[τ ,σ] + b[ρ,σ] (2.43a)

[σ, aτ + bρ] = a[σ, τ ] + b[σ,ρ]

Alternativity : [τ , τ ] = 0 (2.43b)

Jacobi identity : [τ , [ρ,σ]] + [σ, [τ ,ρ]] + [ρ, [σ, τ ]] = 0 (2.43c)

Anticommutativity : [τ ,ρ] = −[ρ, τ ] , (2.43d)

for a, b ∈ R and τ ,ρ,σ ∈ m.
Its structure can be found computing the derivative with respect to time of the

group axiom (2.40). Given χ(t) a point moving on Lie group’s manifold M, its
velocity χ̇ = ∂χ/∂t belongs to the space tangent to M at χ, TM(χ). Considering
(2.40) for multiplicative groups, χ(t)× χ(t)−1 = E , the time derivation reads,

χ̇(t)× χ(t)−1 + χ(t)× χ̇(t)−1 = 0 (2.44)

χ̇(t)× χ(t)−1 = −χ(t)× χ̇(t)−1 . (2.45)

While (2.45) does not provide any insights on an eventual abstract Lie group
structure, let us consider for a moment χ ∈ SO(m) the Special Orthogonal group of
dimension m (or rotation group, since for m = 2 and m = 3 elements are the usual
rotation). Then (2.45) can be further developed,

χ̇(t)χ(t)−1 = −χ(t)χ̇(t)−1 (2.46)

χ̇(t)χ(t)T = −χ(t)χ̇(t)T (2.47)

= −(χ̇(t)χ(t)T )T , (2.48)
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where R−1 = RT and (RaRb)
T = RT

b RT
a are properties of rotation matrices used

in this development. The resulting form A = −AT clearly shows that the matrix
A is skew-symmetric. Therefore, the vector space so(3) takes the shape of skew-
symmetric matrices. While this results seems a little counter-intuitive for a vector-
space, later on is demonstrated that elements of the Lie algebra can be expressed
as linear combination of some base elements.

Let us define
χ̇(t)χ(t)−1 = τ (t)↔ χ̇(t) = τ (t)χ(t) . (2.49)

Considering the identity vicinity, that is χ(t0) = E , one now has χ̇(t) = τ (t). Com-
puting the Taylor series of χ(t) for t = t0 results in the first order approximation,

χ(t0 + dt) ≈ χ(t0) + χ̇(t0)dt (2.50)

≈ E + τ (t0)dt , (2.51)

meaning that infinitesimals around the identity are, locally, only dependent on the
tangent space.

The Lie algebra is a vector space and as such its elements can be identified with
vectors in Rm whose dimension m is the number of degrees of freedom of M.

The ‘vee’ and ‘hat’ operators

From now on, elements of the algebra τ∧ ∈ m are differentiated from elements of
the real vector space τ ∈ Rm with a ‘hat’ decorator. This is to emphasize that τ
and τ∧ are the same element, expressed in two different isomorphic spaces.

As shown in (2.48), elements of the Lie algebra have non-trivial structures (see
also Table C.2), for this reason it is often preferred to express elements of m in
the isomorphic space Rm. This is done by using a linear map – or isomorphism –
commonly called ‘vee’,

τ∧ ∈ m→ τ ∈ Rm ; τ∧ → (τ∧)∨ = τ =
n∑
i=1

τiei , (2.52)

where ei are the vectors of the base of Rm.
The inverse mapping, commonly called hat, reads,

τ ∈ Rm → τ∧ ∈ m ; τ → τ∧ =
n∑
i=1

τiEi , (2.53)

where Ei are the base elements of the vector space m - also known as generators -
obtained by differentiating χ around the origin in the i -th direction. Note that
e∧i = Ei.

This linear relation comes handy as vectors in Rm are easier to manipulate,
allowing the use of the more familiar linear algebra using matrix operators. For the
tasks at hand, elements in Rm are preferred over those in m, to the point that most
of the operators and objects defined subsequently are in Rm. Thus m ∼= Rm and
τ∧ ∼= τ .

To the vector space m is associated an inner product 〈τ , τ 〉 so that,

〈τ , τ 〉 = τ T ·W · τ , (2.54)
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with W, the matrix of the inner product 〈, 〉 relative to the space basis E, defined
as,

W =


〈E1, E1〉 〈E1, E2〉 ... 〈E1, Ei〉
〈E2, E1〉 〈E2, E2〉 ... 〈E2, Ei〉
· · · · · · . . .

...
〈Ei, E1〉 〈Ei, E2〉 ... 〈Ei, Ei〉

 , (2.55)

with 〈A,B〉 := trace(ABT ).

2.2.3 The exponential map

The exponential map exp(.) allows one to exactly transfer elements of the algebra
to the group. Intuitively, the exponential map wraps the tangent element from
the tangent space onto the manifold following a geodesic (similarly to wrapping a
string around a ball). The inverse operation is the logarithm map log(.) (similarly
to unwrapping the string while holding it straight).

exp : τ∧ ∈ m → χ ∈M ; χ = exp(τ∧) (2.56)

log : χ ∈M→ τ∧ ∈ m ; τ∧ = log(χ) . (2.57)

From the above discussion one knows, χ̇(t) = τ∧χ(t) and χ(t0) = E . This is a
linear Ordinary Differential Equation (ODE) with initial state at E whose solution
is given by χ(t) = exp(τ∧t). For groups commonly encountered in robotics, closed
form of the exponential are obtained by unrolling the absolutely convergent Taylor
series,

exp(τ∧) = E + τ∧ +
1

2!
τ∧2 +

1

3!
τ∧3 + ... =

∞∑
n=0

1

n!
(τ∧)n , (2.58)

and benefiting from the algebraic properties of the powers of τ∧.

Conversely, the logarithm reads,

log(χ) =
∞∑
n=1

(−1)n−1

n
(χ− E)n . (2.59)

2.2.4 The capitalized Exponential map

The capitalized Exp and Log maps are handy shortcuts to map elements τ ∈ Rm

directly to χ ∈ M. They respectively combine the ‘hat’ together with the ‘exp’
operations and the ‘log’ together with ‘vee’,

Exp : τ ∈ Rm → χ ∈M ; χ = Exp(τ ) = exp(τ∧) (2.60)

Log : χ ∈M → τ ∈ Rm ; τ = Log(χ) = log(χ)∨ . (2.61)

Fig. 2.7 recalls how a Lie group, its Lie algebra and the real vector space are
related to each other with the maps to convert from one to another.
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Figure 2.7: Mappings between the manifoldM and the representations of its tangent
space at the origin TM(E) (Lie algebra m and Cartesian Rm). Maps hat (·)∧ and vee
(·)∨ are the linear invertible maps or isomorphisms (2.52–2.53), exp(·) and log(·)
map the Lie algebra to/from the manifold, and Exp(·) and Log(·) are shortcuts to
map directly the vector space Rm to/from M.

2.2.5 The plus and minus operators

Plus and minus operators allow us to introduce increments of Lie group’s elements
which take place in the tangent space. Denoted ⊕ and 	, they combine an Exp/Log
operation with a composition. Because of the non-commutativity of the composition,
they are defined in right- and left- version.

The right operators are,

right-⊕ : γ = χ⊕ χτ , χ ◦ Exp(χτ ) ∈M (2.62)

right-	 : χτ = γ 	 χ , Log(χ−1 ◦ γ) ∈ TM(χ) , (2.63)

where χτ belongs to the tangent space at χ. It is said to be expressed in the local
frame at χ, following the convention of frame transformation, the reference frame
is noted with a left superscript. Those operators are referred here as right-version
since χτ appears on the right hand-side of the ⊕ operator and 	 is it counterpart.

The left operators are,

left-⊕ : γ = Eτ ⊕ χ , Exp(Eτ ) ◦ χ ∈M (2.64)

left-	 : Eτ = γ 	 χ , Log(γ ◦ χ−1) ∈ TM(E) , (2.65)

where Eτ is expressed in the global frame, it now appears on the left of the ⊕
operator hence the left adjective of those operators.

Notice that while right- and left- ⊕ are distinguished by the operands order, the
notation in (2.63) and (2.65) is ambiguous. In general, in the context of SLAM, local
perturbations are considered and thus the right-version of the operators is used as
it will be the case hereafter unless otherwise stated. Similarly the frame superscript
for τ is dropped as it is assumed to be expressed in a local frame unless otherwise
specified.

2.2.6 Derivatives on Lie groups

Inspired by the standard derivation (see Appendix B.1), one can now use the ⊕
and 	 operators to define Jacobians of functions f(/cdot) : M → N acting on
manifolds.
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Right Jacobians on Lie groups

Using the right-operators ⊕ and 	, the derivative reads,

∂f(χ)

∂χ
, lim
τ→0

f(χ⊕ τ )	 f(χ)

τ
∈ Rn×m , (2.66a)

which is equivalent to

= lim
τ→0

Log(f(χ)−1 ◦ f(χ ◦ Exp(τ )))

τ
∈ Rn×m (2.66b)

and

= lim
τ→0

log(f(χ)−1 ◦ f(χ ◦ exp(τ∧)))∨

τ
∈ Rn×m . (2.66c)

This Jacobian is called the right Jacobian of f(/cdot) – notice that the perturbation
τ lie on the right side of the ⊕ operator. When comparing the notations of (2.66a)
and (2.66c), one easily see the benefit of the succinct form that offer the ⊕ and 	
operators. Not only is the notation in (2.66a) more compact than in (2.66c), but
most importantly it looks more familiar and intuitive; it is the derivative of f(χ)
with respect to χ whose infinitesimals are expressed in the tangent space. Variations
in χ and f(χ) are expressed as vectors in the local tangent spaces, i.e. tangent
respectively at χ and f(χ). This derivative is then a proper Jacobian matrix Rn×m

mapping the local tangent spaces TM(χ)→ TN (f(χ)).
For small values of τ , the following approximation holds,

f(χ⊕ τ )→ f(χ)⊕ ∂f(χ)

∂χ
τ ∈ N . (2.67)

Left Jacobians on Lie groups

Similarly to Section 2.2.6, derivatives can also be defined from the left -operators
leading to,

∂f(χ)

∂χ
, lim
τ→0

f(τ ⊕ χ)	 f(χ)

τ
∈ Rn×m , (2.68a)

which is equivalent to

= lim
τ→0

Log(f(Exp(τ ) ◦ χ) ◦ f(χ)−1)

τ
∈ Rn×m , (2.68b)

or fully developed,

= lim
τ→0

log(f(exp(τ∧) ◦ χ) ◦ f(χ)−1)∨

τ
∈ Rn×m . (2.68c)

It is called the left Jacobian of f(·) – notice that the perturbation τ lie on the left
side of the ⊕ operator. The perturbation here lies in the global frame, thus the left
Jacobian is a n×m matrix mapping the global tangents spaces.

For small values of τ , the following approximation holds,

f(τ ⊕ χ)→ ∂f(χ)

∂χ
τ ⊕ f(χ) ∈ N . (2.69)
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The Adjoint

A relation between local and the global tangent elements can be identified from
(2.62) and (2.64),

Eτ ⊕ χ = χ⊕ χτ , (2.70a)

which develops to,

Exp(Eτ )χ = χExp(χτ ) (2.70b)

exp(Eτ∧) = χ exp(χτ∧)χ−1 (2.70c)

= exp(χ χτ∧χ−1) (2.70d)
Eτ∧ = χ χτ∧χ−1 , (2.70e)

where

χ exp(χτ∧)χ−1 = exp(χ χτ∧χ−1) , (2.71)

is a property of the exponential map. This leads to defining the adjoint matrix

Adχτ = (χ
χ
τ∧χ−1)∨ , (2.72)

that linearly maps the tangent vectors Eτ and χτ , allowing for a seamless transfor-
mation from a global to a local frame,

Eτ = Adχ
χτ . (2.73)

The adjoint is effectively the Jacobian of the transformation of tangent vectors
through Lie group’s elements.

One can therefore show that the left and right Jacobians are related by the
adjoint of M and N ,

E ∂f(χ)

∂χ
Adχ = Adf(χ)

χ∂f(χ)

∂χ
. (2.74)

Additional properties of the adjoint matrix are,

χ⊕ τ = (Adχτ )⊕ χ (2.75)

Adχ−1 = Ad−1
χ (2.76)

Adχγ = AdχAdγ . (2.77)

Elementary Jacobians

For all typical manifolds M used in robotics, one can determine the closed form
for the Jacobians of inversion, composition, exponentiation and action. Once these
derivative ‘blocks’ are found, all other Jacobians can be inferred from them following
the chain rule.

All Jacobians developed here are right-Jacobians, i.e., defined by (2.66a).
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Inverse The Jacobian of the inverse reads,

Jχ
−1

χ ,
∂χ−1

∂χ
∈ Rm×m . (2.78)

It can be determined from the adjoint using (2.71) and (2.72),

Jχ
−1

χ = lim
τ→0

Log((χ−1)−1(χExp(τ ))−1)

τ
(2.79a)

= lim
τ→0

Log(χExp(−τ )χ−1)

τ
(2.79b)

= lim
τ→0

(χ(−τ )∧χ−1)∨

τ
(2.79c)

= −Adχ . (2.79d)

Composition The Jacobians of the composition function read,

Jχ◦γχ ,
∂χ ◦ γ
∂χ

∈ Rm×m (2.80)

Jχ◦γγ ,
∂χ ◦ γ
∂γ

∈ Rm×m , (2.81)

and are determined using (2.72) and (2.76),

Jχ◦γχ = Adγ−1 (2.82)

Jχ◦γγ = I . (2.83)

Exponentiation The Jacobian of the ‘Exp’ function is defined as the right Jaco-
bian of M,

Jr(τ ) ,
τ∂ Exp(τ )

∂τ
∈ Rm×m . (2.84)

The right Jacobian maps variations of τ into variations in the local tangent space
at Exp(τ ). For small δτ , the following approximations hold,

Exp(τ + δτ ) = Exp(τ ) Exp(Jr(τ )δτ ) (2.85)

Exp(τ ) Exp(δτ ) = Exp(τ + J−1
r (τ )δτ ) (2.86)

Log(Exp(τ ) Exp(δτ )) = τ + J−1
r (τ )δτ . (2.87)

Complementarily, the left Jacobian Jl maps variations of τ into variations in the
global tangent space,

Jl(τ ) ,
E∂ Exp(τ )

∂τ
∈ Rm×m , (2.88)

leading to the following approximations,

Exp(τ + δτ ) = Exp(Jl(τ )δτ ) Exp(τ ) (2.89)

Exp(δτ ) Exp(τ ) = Exp(τ + J−1
l (τ )δτ ) (2.90)

Log(Exp(δτ ) Exp(τ )) = τ + J−1
l (τ )δτ . (2.91)
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From (2.85) and (2.89), one can relate the left- and right- Jacobians with the Adjoint,

AdExp(τ ) = Jl(τ )J−1
r (τ ) . (2.92)

Also, the chain rule allows us to develop

Jr(−τ ) , J
Exp(−τ )
−τ = JExp(−τ )

τ Jτ−τ (2.93a)

= JExp(τ )−1

τ (−I) (2.93b)

= −J
Exp(τ )−1

Exp(τ ) JExp(τ )
τ (2.93c)

= AdExp(τ )Jr(τ ) (2.93d)

= Jl(τ ) . (2.93e)

Closed forms of Jr, J−1
r , Jl and J−1

l exist for the typical manifolds used in robotics
(see e.g. Table C.4).

Action Given χ ∈M and v ∈ V , the Jacobians read,

Jχ·vχ ,
χ∂χ · v
∂χ

(2.94)

Jχ·vv ,
v∂χ · v
∂v

. (2.95)

Action is thus the effect of transforming an object v by means of a manifold element
χ. For instance, rotating a vector v ∈ R2 with an element χ ∈ SO(2). Since
the group actions depend on the set V , the Jacobian expressions above cannot be
generalized.

Inferred Jacobians

Log map For τ = Log(χ),

JLog(χ)
χ = J−1

r (τ ) . (2.96)

Plus and minus The Jacobians read,

Jχ⊕τχ = Jχ◦Exp(τ )
χ = (AdExp(τ ))

−1 (2.97)

Jχ⊕ττ = J
χ◦Exp(τ )
Exp(τ ) JExp(τ )

τ = Jr(τ ) , (2.98)

and given ζ = χ−1 ◦ γ and τ = γ 	 χ = Log(ζ),

Jγ	χχ = J
Log(ζ)
ζ Jζχ−1J

χ−1

χ = −J−1
l (τ ) (2.99)

Jγ	χτ = J
Log(ζ)
ζ Jζγ = J−1

r (τ ) . (2.100)

2.2.7 Uncertainty on Lie groups

As seen in Section 2.1 the SLAM problem is best formulated in terms of probabilities.
Especially, the robot state χ ∈M takes the form of a Gaussian random variable for
which (2.2) no longer holds for Lie groups that are not closed under the + operation.

31



CHAPTER 2. BACKGROUND Chapter 2

One therefore defines local perturbations τ in the tangent vector space at χ̄ such
that,

χ = χ̄⊕ τ , τ = χ	 χ̄ ∈ TM(χ̄) . (2.101)

From there, because the perturbation τ ∈ TM lies in a vector space, one can leverage
all the usual tools from probabilities.

Covariance matrices can be properly defined on the tangent space at χ̄ through
the standard expectation operator E[·] (2.5a),

Σχ , E[ττ T ] = E[(χ	 χ̄)(χ	 χ̄)] ∈ Rn×n , (2.102)

allowing the definition of Gaussian random variables on manifolds, χ ∼ N (χ̄,Σχ).
Notice that although we write Σχ, the covariance is rather that of the tangent
perturbation τ .

Perturbations can also be expressed in the global reference frame using the left-
operators (2.64) and (2.65) yielding global covariance specification. Similarly to the
tangent vectors in (2.73), covariances can be transformed from a local to a global
reference frame according to,

EΣχ = Adχ
χΣχAdTχ . (2.103)

Covariance propagation through a function f(·) : M → N ; χ → γ = f(χ)
only requires the linearization (2.67) with the Jacobian matrix (2.66a) to yield the
familiar formula,

Σγ ≈ JγχΣχJγχ
T ∈ Rm×m . (2.104)
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Chapter 3
Loop-Closure

The loop closure module is probably the strictest module in
terms of correctness in a SLAM framework. Erroneous loop-
closure may have a catastrophic effect on the problem estima-
tion and are possibly difficult to identify and filter-out. The loop
closure detection must then be strengthen targeting 99+% accu-
racy while maintaining a satisfactory recall so that the system
retains the ability to close as many loops as possible.
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3.1 Related work

Unlike appearance-based place recognition using vision, there is little published work
using solely 2D LRF. It is possibly due to the fact that reliable features for 2D laser
scans were developed later than their image-based counterparts.

Similarly to images, scans may be described globally by global descriptors. The
Geometrical Landmark Relations (GLARE) [71] encodes the geometrical relations
of FLIRT corners in a histogram of relative distance over relative orientation. Ex-
tending GLARE, the Geometrical Surface Relations [72] descriptor considers every
reading of the 2D laser scan rather than extracted corners. The Geometric Relation
Distribution (GRD) feature [73] encodes geometric pairwise relations between land-
mark points into a continuous probability density function that serves as a signature
to compared scans.

There also exists local features for 2D scans which allow for the use of the BoW
scheme (see Section 2.1.3) for place the problem of place recognition. The local
feature Fast Laser Interest Point Transform (FLIRT) [74] is robust to scale and
orientation changes and as been employed to tackle the problem of place recognition
[75]. More recently Kallasi et al. proposed the FALKO binary feature [76] designed
to be efficient to compute and manipulate.

3.2 Feature comparison for BoW-based visual

place recognition

While most modern V-SLAM algorithms rely on the BoW scheme for their loop-
closure module, many of them use the recent ORB-based BoW implementation of
[8] as an off-the-shelf component. This is great from a software re-usability point of
view; however one may question the particular choice of the ORB features for this
task, especially if the SLAM front-end does not use this particular feature.

Following the work of [49] this section presents an extended comparison of visual
local features for the task of BoW-based place recognition. The comparison helps to
better understand how the choice of a given feature type influences the recognition
performance, together with the execution time.

3.2.1 Experiments

The experiments are conducted on the KITTI data set [77] using 15 meaningful com-
binations of the point-based local feature algorithms available in the OpenCV library
[78]. The combinations of detector/descriptor evaluated are listed in Table 3.1. For
each combination the experiment is as follows,

• The BoW vocabulary is trained for the descriptor type on a large data set of
random images extracted from internet.

• The KITTI sequences are pre-processed in order to select a subset of images
that are going to compose the BoW databases. Images are selected so that from
two consecutive images the Essential matrix can be estimated in a Random
Sample Consensus (RANSAC) scheme with at least N inlier features.
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Detectors ORB SIFT SURF KAZE AKAZE
Descriptors ORB SIFT SURF KAZE AKAZE

Detectors BRISK MSER FAST AGAST AGAST
Descriptors BRISK SIFT DAISY BRIEF DAISY

Detectors MSER FAST AGAST FAST AGAST
Descriptors SURF LATCH BRISK BRISK LATCH

Table 3.1: Selected combination of detectors and descriptors from OpenCV used in
the experiments.

• Each sequence is then processed by the BoW framework. The geometrical
check is perform by estimating the Essential matrix in a RANSAC scheme
again.

The vehicle poses ground-truth corresponding to the images are provided by the
data set. The BoW recognition is considered a true positive if the recognized image
position is within a 12 meters radius and 30 degree rotation from the query image
position. Otherwise, it is considered a false positive. The performance is evaluated in
terms of ‘precision’ and ‘recall’, two metrics used in the fields of pattern recognition
and classification which capture an understanding of relevance. Precision – also
known as positive predictive value – is the fraction of relevant instances among all
retrieved instances, while recall – also known as sensitivity – is the fraction of the
total amount of relevant instances that were actually retrieved. Precision and recall
are computed respectively as,

precision =
true positive

true positive + false positive
(3.1)

recall =
true positive

true positive + false negative
. (3.2)

All user-defined parameters of the RANSAC scheme were set so that the precision
scores are above 99% as one would want in a SLAM loop-closure context.

Results

Results are presented in Fig. 3.1. They show that despite its common usage, the
ORB feature may not the best suited for this task. Indeed 9 other combinations
exhibit a higher recall than ORB at 99+% precision. However most of them are
also much slower than ORB to compute, by an order of magnitude, and thus are
not suitable for the task. However, the combination of the AGAST detector and
the BRIEF descriptor increases the recall by ∼ 10% at 99+% precision compared
to ORB for a very similar cost in terms of execution time.

3.2.2 Conclusion

The results tend to suggest that despite its popularity, the ORB feature is not the
best suited feature for the task of place recognition. With very little change one
may gain ∼ 10% of recall for the same execution time.
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Figure 3.1: Comparison of OpenCV features for BoW-based place recognition -
recall at 99+% precision.

3.3 BoW-based loop-closure for 2D laser scans

In contrast to other sensing modalities, 2D LRF data has a natural (counter-) clock-
wise ordering of its readings which can be easily exploited to reinforce the compu-
tation of scan similarity. Some empirical observations concerning the local features
ordering are drawn, and used in an algorithm that computes the best feature corre-
spondence assignment between two scans.

The observations are the following; given local features extracted from a 2D
scan (quantized into words) they are ordered clock-wise in a sequence. The ordering
remains the same for a given scene observed from slightly different viewpoints. As
the change in viewpoint increases, features shift their location in the sequence or
possibly reorder, they may disappear and new features may appear.

3.3.1 Feature sequence encoding as a Hidden Markov Model

The data association between two scans is done directly on words after quantization
of the features. Therefore, a given descriptor quantized into a particular word w,
can only match features also quantized as w and in no case could match another
word in the vocabulary. This is exemplified in Fig. 3.2 (top). The problem of scan
alignment is then analogous to finding the path that maximizes the sequence of
feature matches in a Hidden Markov Model (HMM). Consider the query laser scan
li and its extracted words w1i, . . . , wNi as the set of states SN in the model. Consider
also the candidate scan match lj with its words w1j, . . . , wMj as a set of observations
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Figure 3.2: Top: Clockwise ordered words of two scans and their matches. Mid-
dle: The resulting hidden Markov model. Each cell represents the product
φsn−x|sn · θsn|om e.g cells Y-A & A-A. Green squared cells represent the best path
across the complete model. Bottom: The final sequence of states given the observa-
tions On
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OM . One can define a HMM such that:

• There are equal initial probabilities δsn = 1
N

.

• The transition from one state to another solely goes forward with respect to
the clockwise ordering of the states. Self transitions have a lower probability

to enforce the importance of alignments φsn|sn = 0.5
F

, φsn|sn+x =
1+ 0.5

F−1

F
, and

φsn|sn−x = 0, where F is the number of states following the currently evaluated
state in the ordered sequence.

• The output probability is defined such that a word mismatch has null proba-
bility whereas a word match has equal probability. Hence the emission proba-
bilities are θsn|om = 1

C
for a match, and θsn|om = 0 for a mismatch, where C is

the number of matches of the currently evaluated word.

Fig. 3.2 (middle) gives an unnormalized representation of the HMM produced
by the matching of words in scans li and lj. Black downward pointing arrows
indicate feasible transitions, and red upward pointing arrows indicate non-feasible
transitions. Each cell is then filled by the product φsn−x|sn · θsn|om , where sn is the
currently evaluated state, sn−x is the previous most likely state and θsn|om the output
probability. Columns are filled recursively based on the previous iteration.

Unlike [79], the HMM is built based on the inner ordering of two independent
sets of features extracted from raw sensor readings, whereas [79] builds a HMM
based on the inner ordering of two independent sequences of key-frames, hence not
impacting the frame-to-frame similarity measure. Once the HMM is built, the goal
is then to find a sequence of states that maximizes the probability of a path across
it.

The Viterbi algorithm

In order to find the most probable path at a reasonable cost in terms of computa-
tion, one can use of the Viterbi algorithm [80]. This dynamic programming algo-
rithm searches recursively for the most likely sequence of states given a sequence
of events, by computing for each observation the partial probability with respect to
the previous state that optimally induced the current state. Such sequence is called
the Viterbi path. It is commonly used in Natural Language Processing (NLP) and
decoding [81, 82].

Crossing edges as shown in Fig. 3.2 (top) highlight multi-matches. These might
occur either because different features are quantized to the same word (e.g. words C
and F ), or because the feature belongs to a moving object. The work in [75] does not
discard such mismatches while constructing the offset histogram, and thus they can
not be taken into account to compute a consistent relative transform. Thanks to the
constraint of forward state transition, the Viterbi algorithm naturally discards such
crossing edges. Note that in Fig. 3.2 (top), crossing edges for the sequence C-D-E
can be resolved in at least two different ways, either by removing the match C and
keeping D and E, or removing the latter keeping only C. The Viterbi algorithm
maximizes the sequence of states in the Viterbi path hence would likely favor, in
this case, keeping matches D and E and discarding C.
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Scoring

Once the Viterbi path is obtained, the candidate is scored based on three criteria:

• The number of correct matches that have not been discarded by the Viterbi
algorithm.

• The number of sequences of consecutive words that have a correct match.

• The distribution of matches in the laser scans. The wider the better.

The second point is similar to the concept of phrases in [75], where a phrase
represents a sequence of consecutive words, analogous to a n-grams model.

Considering such sequences and weighting them according to their length, one
can add an extra layer of constraints to the geometric check. These criteria evaluate
respectively to: scorejk = |M |

|C| , where |M | is the number of correct matches and |C|
the number of features in the candidate scan; weight jk = |CM |

|C| , where |CM | is the
number of sequences of consecutive correct matches, e.g., sequences A-B & D-E
in Fig. 3.2 (top); and ratiojk = Idr−Id l

|C| , where Id r and Id l are the indices of the
rightmost- and leftmost- correct matches in the Viterbi path, respectively. These
three criteria are aggregated into a final geometric score,

gjk =
scorejk + weight jk

2
· ratiojk . (3.3)

While querying the BoW database, both the TF-based similarity and the geometric
score in (3.3) are computed for each document in the database. They are aggregated
into a single similarity term,

sgjk = simjk · gjk . (3.4)

This aggregated similarity term is then used to rank BoW candidates instead of the
TF-IDF-based similarity.

3.3.2 Pose-graph database augmentation

In this section is proposed a topological augmentation of the BoW database. By
database augmentation one refers to the fact of benefiting from common features
in adjacent poses (documents) in the pose-graph of the map for the computation
of the TF-IDF weights. Since the pose-graph is computed by a graph-based SLAM
front end, finding adjacencies in the database involves no computation overhead.

Database augmentation taking the form of a similarity graph has been proposed
in [83] and [84] for the task of image recognition. Graph edges are created by match-
ing image features and asserting an affine transform between images. Direct edges
represent document adjacencies; documents connected to an adjacent document then
represents 2-adjacencies, and so on. The set Ej of adjacencies of document dj is
used to emphasize the TF weight of the document,

mij = nij +
∑
k∈Ej

nik (3.5)

atf ij =
mij∑
imij

. (3.6)
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Dataset # Scans Length (m) In/Out
FR-079 1464 390.8 Indoor
FR-CLINIC 6917 1437.6 Outdoor
INTEL-LAB 2672 360.7 Indoor
MIT-CSAIL-3rd-FLOOR 1051 382.9 Indoor

Table 3.2: Public data setsused for the experiments [85].

Alias BoW “weak” check adjacent TF
tfidf x - -
tfidfgraph x - x
viterbi x x -
vitgraph x x x

Table 3.3: Aliases for the different methods compared.

This new score is coined Adjacency-TF (ATF). Adjacency-TF can be used as a
direct drop-off replacement for (2.30) in (2.32), so that the TF-IDF weight becomes

xij = atf ij · idf ij . (3.7)

In the case of object recognition, the database augmentation is based on object
appearance similarity. However in the case of place recognition within a SLAM
framework the topological distribution of the places matters more. Since an edge in
a pose-graph SLAM is computed from sensor readings and represents a spatial con-
straint, it embeds both the appearance-based similarity required by the BoW scheme
(consecutive nodes share some common features) and the topological information
that is emphasized by the database augmentation.

Whereas objects recognition usually considers a pre-trained database for which
an offline database augmentation can be computed [83, 84], in the case of place
recognition within a SLAM framework the database together with its augmentation
are constructed online. Using the SLAM pose-graph built online by the framework
allows for a database augmentation at no extra cost.

Turcot et al. [84] identify useful features (features belonging to a transformation
inlier set) from the document adjacencies and discards the others in order to decrease
the database size together with its noise. Since the database here is built online, all
features are kept as they can become useful later on during mapping.

3.3.3 Experiments

Experiments were carried out over four standard 2D laser data sets (three indoors
and one outdoor). Table 3.2 lists the data sets together with their details. First,
the contributions are evaluated both separately and jointly against our own imple-
mentation of the classical TF-IDF-based BoW and against the publicly available
Geometrical FLIRT Phrase algorithm (Gflip) [75] using the experiment proposed by
[75]. Second, the robustness of the method with respect to changes in the environ-
ment is evaluated using synthetic data. Hereafter the aliases given in Table 3.3 are
used for simplicity.

Each data set is pre-processed by a SLAM algorithm [86] in order to provide a
baseline pose estimation against which to assess if a detected loop-closure is correct
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Figure 3.3: FLIRT features (violet spheres) extracted from a scan (blue dots and
segments) superimposed on a map.

or not. Algorithms performance are compared with the following procedure for each
data set used.

First, the data set is used to train the BoW database. For every scan, its FLIRT
[74] features are extracted (see Fig. 3.3), then quantized to obtain their associated
BoW and signature. During query, a scan used to query the database is first removed
from it in order to avoid the obvious one-to-one matching. A consistency check is
performed on the top N candidates returned by the query process. The candidate
whose inlier set has the the smallest residual error, given that it meets an inliers
threshold, is considered a loop closure.

To appraise the correctness of a recognition, the estimated rigid transform is
compared to that of the aforementioned baseline algorithm from the pre-processed
data set. It is considered correct if the difference between the estimated pose and
that of the baseline lies within 0.5 m and 10 degrees.

The vocabulary is trained from 20.000 scans randomly sampled from a randomly
selected subset of data sets among the vast database of the company PAL Robotics.
These data sets were recorded in the form of Rosbags at different time and places,
the great majority being recorded in indoor real case scenario. The training data
sets are thus different than those used for evaluation. On average, 17.5 features are
extracted per scan.

The hierarchical K-means tree architecture is chosen empirically using the afore-
mentioned experiment. A total of 49 different trees are trained, varying the branch-
ing factor from 2 to 7 and the depth factor from 2 to 7 as well. Evaluating the F1
score (3.8) averaged over all experiments lead to the selection of the average optimal
architecture of k = 4 and d = 6 (Fig. 3.4). As the number of tree leaves is rather
small, they are parsed linearly, unlike [46], in order to reduce the quantization error.

F1 = 2 · 1
1

precision
+ 1

recall

= 2 · precision · recall

precision + recall
. (3.8)
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Figure 3.4: Variation of the average F1 score with respect to branching factor and
tree level.

Concerning the BoW database augmentation, only direct document adjacen-
cies are considered as documents with 2-adjacencies do not show any improve-
ments whereas 3-adjacencies decreased the quality of results. This is expected as
3-adjacencies end up linking observation in the map which seldom share common
features.

Implementation Details

The two proposals and gflip are implemented in C++. All experiments are con-
ducted on a system having an Intel i7-870, 2.93 GHz CPU, 8 GiB of RAM and
running on Ubuntu 16.04.

Recognition performance

Precision over recall performance results are shown in Fig. 3.5 for each algorithm.
The top candidate threshold is set as N = 20 while the inlier threshold is varied.
As can be seen in plots Fig. 3.5 (a-c), accounting for the indoor data sets, both
the viterbi and vitgraph versions of the proposed method outperform tfidf and gflip
both in terms of recall and precision. While tfidfgraph only slightly surpasses the
performance of tfidf in two data sets, it outperforms gflip for the MIT-CSAIL-3rd-
FLOOR data set.
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(a) FR079 (b) INTEL

(c) MIT-CSAIL-3rd-FLOOR (d) FR-CLINIC

Figure 3.5: Recall versus precision for 20 candidates varying the inliers threshold.

(a) FR079 (b) INTEL

(c) MIT-CSAIL-3rd-FLOOR (d) FR-CLINIC

Figure 3.6: Recall versus number of candidates at 99% precision.
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Table 3.4 reports statistics for each algorithm at different TopN values. Each row
shows the top performance of the algorithm in terms of its F1 score for a fixed Top
N while varying the inlier threshold. The best F1 score of each row is highlighted
in boldface. The results show that the proposed Viterbi-based assertion allows for a
drastic improvement of the recall and precision over the classical BoW’s performance
and outperforms gflip for the three indoor data sets. We attribute this to the
fact that the top N returned by the BoW query incorporate “weak” geometrical
constraints that are fully leveraged within the purely geometrical consistency check.
Adding the BoW database augmentation further improves these results, especially
when the number of query candidates is small (lowest values of Top N). However
its effect is mitigated when used alone as it decreases the retrieval performance
compared to tfidf for the lower Top N values while increasing it for the higher
Top N values. Finally, Table 3.4 shows that gflip requires a higher number of
inlier threshold (Inl) to reach its optimal performance, by a number of 2 in average
compared to tfidf. The proposed algorithm reaches its optimal performance for the
same Inl value as tfidf or less.

Fig. 3.6 shows the recall over Top N for each algorithm with precision over 99%.
Fig. 3.6 (a-c) show that both viterbi and vitgraph outperform tfidf and gflip recall
for the indoor data sets. Moreover, tfidfgraph also clearly outperforms gflip for the
higher Top N cases.

Synthetic obstacles experiment setup

The second experiment aims at evaluating the robustness of the proposed vitgraph
to substantial changes in the environment using synthetic data. For each of the
three indoor datasets, an occupancy grid of 0.05 m resolution is generated (see
e.g. Fig. 3.7(a)). First, a set of synthetic scans is generated by the mean of ray-
tracing using the occupancy grid. The set is used to train the BoW databases. Then,
virtual obstacles are added (painted) to the occupancy-grid at random position (but
on the robot trajectory) (Fig. 3.7(b)). Obstacles are of three different shapes - cir-
cles, rectangles and legs (two small circles side-by-side) and different size, from 0.05
to 1 m for the first two shapes. Then, again, a new set of scans is generated from
the new occupancy grid and used for querying the BoW database.

Results Table 3.5 reports statistics for both gflip and vitgraph for a selected subset
of Top N . The results show an expected decrease of the recognition performance
compared to the previous experiment, but remain strong enough to perform loop
closures. The magnitude of the performance decrease is similar for both vitgraph
and gflip. Since the proposed algorithm performs better than [75] in the previous
experiment, it still does in this second experiment. The results show that vitgraph
is robust to changes in the environment.

Execution performance

Table 3.6 shows the average execution time per query for both gflip and vitgraph at
99% precision varying Top N considering both the smallest and the largest data sets.
It also reports the average query time of our tfidf implementation as a comparison
point for the overhead induced by the weak geometrical check. Both Fig. 3.8 and
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GFLIP VITGRAPH
Dataset Top-N Inl TP FP F1 Inl TP FP F1
FR079 20 9 716 412 570 7 861 369 659

50 9 893 466 651 7 906 412 670
INTEL 20 5 1700 482 702 3 2022 503 780

50 5 1935 562 750 3 2062 510 788
MIT-CSAIL- 20 5 505 308 555 5 579 166 662
3rd-FLOOR 50 5 615 338 628 5 640 168 690

Table 3.5: Second experiment : Algorithms statistics for each indoor dataset at max
F1 score. Top-N : Number of candidates - Inl : Inliers threshold - TP : True Positive
- FP : False Positive - F1 : F1 score (per mille o/oo)

(a) Intel-lab occupancy grid (b) Intel-lab occupancy grid with painted ob-
stacles

Figure 3.7: Occupancy grid generated from the Intel-lab data set before and after
the addition of virtual obstacles.

the accompanying video1 show results of the application of the method during the
mapping of a large mall floor.

These results highlight that the computation overhead of the Viterbi path is
linear in the number of scans. The complexity of the Viterbi algorithm is about
O(Q · C2) where Q is the number of features of the query scan and C the number
of features of the candidate scan. Hence for every query the total computation
overhead is O(D ·Q · C2) with D the number of documents in the database. In our
experiments, vitgraph runs at nearly 2 Hz for the largest data set and up to 22 Hz
for the smallest one. This suggests that a carefully designed implementation could
run at frame rate, around 10 Hz, as commonly encountered with LRF. However,
in practice the target rate should rather be that of the solver (one should allow
the solver to finish before issuing a new loop closure event) – around 1 Hz. In such
context, the overall impact of improving the precision/recall performance overcomes
the penalty in execution time when compared to [75].

1http://goo.gl/DcCj8q
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Figure 3.8: Occupancy grid of a large mall floor (approx. 2900m2). Red dots
represent robot key frames and green edges loop-closures. During mapping, 415
loop closures were detected of which only 2 were false positives, easily eliminated
using distance constraints.

3.3.4 Conclusion

In this section were presented two contributions to the BoW-based place recognition
using 2D LRF only. First, a ‘weak’ geometrical check that emphasizes BoW can-
didates which share a reliable static sequence of features with a given query scan.
Sequences are detected and matched through the use of the Viterbi algorithm, bring-
ing further together place recognition and natural language processing.

The second contribution is a topological augmentation of the BoW database
which permits topological neighbors to empower each other in the BoW candidates
ranking list. By using the graph provided by the SLAM algorithm such augmenta-
tion comes at no extra computation cost.

The addition of both contributions to the classical TF-IDF scheme outperforms

Dataset # Candidates GFLIP TF-IDF VITGRAPH
5 0.0038 0.0188 0.0276

MIT-CSAIL-3rd-FLOOR 50 0.0125 0.0264 0.0367
100 0.0233 0.0347 0.0453
5 0.0337 0.1220 0.3369

FR-CLINIC 50 0.0571 0.1323 0.3545
100 0.0848 0.1548 0.3686

Table 3.6: Average query time (seconds).
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the state of the art loop closure detection methods both in terms of recall and
precision for three indoor data sets, while drastically improving the classical TF-IDF
results for all data sets.

Interestingly, both viterbi and gflip seem to reach a plateau for the FR079 and
INTEL data sets for the higher Top N cases. However, vitgraph’s recall keeps
increasing. This unveils the limitation of geometrical properties such as the one
inferred in [75] or in this work and suggests that a closer attention to word-to-
word matching should be considered. It also highlights the capability of neighbor
documents to empower each other in the candidate ranking list of the BoW scheme,
and thus supports the idea of using a topological augmentation of the BoW database
as proposed here.

Despite the improvement in recognition of the proposed method over tfidf, gflip
appears to perform better for the outdoor data set FRCLINIC. We conjecture this as
being due to the fact that the vocabulary tree used is trained from scans captured
in indoor environments in the vast majority. Effectively biasing its performance
towards features encountered indoor.
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Chapter 4
Odometry Calibration

For mobile robots, odometry is a key element in the computa-
tion of localization estimates. By integrating and composing the
wheels displacements measured during a time step to a known
pose at the previous step, one can have a rough estimate of the
robot trajectory. As odometry algorithms solely integrate and
compose small displacements, they have the main drawback of
accumulating error unboundedly. Moreover, the integration re-
quires the a-priori knowledge of robot’s specific kinematic model
parameters. Such parameters are estimated from often tedious
and complex calibration procedures performed by experts. A
small error in calibration will lead to a large inaccuracy in the
pose estimation over time, preventing other tasks to be per-
formed successfully ( e.g. localization, mapping).
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4.1 Related work

Most popular odometry calibration procedures rely on the execution by the mobile
base of a predetermined trajectory, taking measures of the pose error along the
path either manually or with an external sensor. Borenstein and Feng [87] proposed
the so called UMBmark test, a calibration procedure requiring the robot to drive
along a square path both clockwise and counter-clockwise. Ideally, by the end of the
procedure the robot has come back to its initial pose. Measuring and minimizing
the pose error between the initial and final pose allows to calibrate the kinematic
parameters. Kelly [88] generalized this procedure by replacing the squared shape
trajectory by a list of repeatedly visited way-points along a trajectory of any shape.

Martinelli et al. [89] proposed to augment the state of a Kalman Filter used for
localization with the kinematic parameters. It however requires an a-priori known
map. Later, the use of an EKF allowed Martinelli et al. [90] to simultaneously
estimate the systematic and non systematic odometry errors of a mobile robot.

Censi et al. [91] proposed the simultaneous calibration of the differential drive
kinematics together with the relative 2D pose of a sensor that estimates the robot
ego-motion. They formulate the calibration problem in terms of a maximum like-
lihood and solve it in closed form. Their method does not require any predefined
path nor an external sensor but is suited only for parameters that do not vary over
time.

In a graph-based SLAM context, Kümmerle et al. [92] append the unknown pa-
rameters to key-frames states. Doing so allows to consider the kinematic parameters
as varying in time (dynamic) if, e.g., the robot is loaded with a cargo heavy enough
to alter the previous estimate.

Recently, Cicco et al. [93] proposed an unsupervised calibration procedure. By
exploring and recording the effects of elementary motions on the uncertainty of the
parameters estimate, their method chooses autonomously at every time the best
next motion for the robot to perform to further reduce the uncertainty.

The calibration presented here can be seen as a middle ground between those
of Censi et al. [91] and Kümmerle et al. [92], in that it allows for the calibration
of dynamic kinematic parameters and static sensor extrinsics without a complete
SLAM framework around it. The proposed method does not require a predefined
trajectory, an a-prioriknown map, nor any external sensor/landmarks to perform
the calibration.

To approach the calibration of the motion model, we get inspired by the IMU pre-
integration theory initiated by [94], later improved in [95], then [96]. We apply it to
differential drive motion estimation, and use the mechanisms initially conceived for
IMU bias estimation to achieve the self-calibration of the motion model parameters.
In this regard, we improve over the formulation in [95] in the sense that we provide
recursive integration formulae, and an integration pipeline divided in small steps.
This results in equivalent but simpler formulae, especially for the Jacobians through
the use of the chain rule. We make systematic use of Lie theory as exposed in
Section 2.2, making this work a true on-manifold estimation approach.
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4.2 Abstraction on Lie groups of the pre-

integration theory

In a typical mobile robot, motion measurements are acquired at high rate, typically
at 100− 1000 Hz. A measurement uk corresponding to a single time increment δt at
time tk produces a local state increment δk ∈M, named the ‘current delta’ through
a kinematic motion model characterized by a set of parameters c,

δk = δ(uk, c) ∈M . (4.1)

By now, let M be an abstract manifold where the robot state evolves. In fact,
measurements typically come in the form of velocities or local increments and can be
easily expressed as vectors bk in the Lie algebra ofM, so that δk = Exp(bk(uk, c)).
Between two distant time instants ti and tk, several δ can be integrated into a single
‘delta’ or increment ∆ik ∈ M expressing the robot state at time tk relative to the
robot state at time ti (Fig. 4.1). This integral can be computed recursively through
∆ik = ∆ij ⊕ δk, where ⊕ indicates the composition law of the Lie groupM and ∆ii

is its identity.

ti tj tk

�ij �k

t

xj xkxi

Figure 4.1: The pre-integrated delta ∆ij ∈ M contains all motion increments from
time i up to time j, so that xj = xi ◦∆ij. The current delta δk ∈ M contains the
motion from time j to k, computed from the last motion measurement at time k.
We have that ∆ik = ∆ij ⊕ δk.

The pre-integration theory developed for the IMU sensor [94, 95] deals with
the problem of producing motion factors for a factor graph from the aggregation
of hundreds of motion measurements. At the time of evaluating the residuals of
such factors, one realizes that the integrated IMU delta ∆ik has two undesired
dependencies with the state [94]. On one side, it depends on the initial state xi; on
the other side, it depends on the sensor biases c. This can be visualized as

∆ik(Uik,xi, c) = ∆ij(Uij,xi, c)⊕ δk(uk, c) , (4.2)

where Uik = {ui, · · · ,uk} is the set of all measurements in the interval. Since
the estimates of xi and c change during the optimization, ∆ik would need to be re-
integrated at each solver iteration for the residual to be evaluated. This is addressed
in two ways. First, a change of reference frame [96] allows us to write a delta that is
independent of the initial states. Second, the effect of the change in the calibration
c is linearized around a value c so that the pre-integrated delta can be corrected
a-posteriori. The result is a pre-integrated delta that only depends on the measured
data and c,

∆ik(Uik, c) = ∆ij(Uij, c)⊕ δk(uk, c) , (4.3)
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together with an expression for linearly correcting it when the estimations of bias c
deviate from the values c used during pre-integration,

∆ik(Uik, c) ≈ ∆ik(Uik, c)⊕ J∆ik
c · (c− c) , (4.4)

This pre-integration avoids the need of re-integrating all motion data at each iter-
ation of the optimizer, as can be seen in the expression of the factor’s expectation
error,

e = (∆ik(Uik)⊕ J∆ik
c (c− c))	 (x−1

i ◦ xj) , (4.5)

which clearly separates the states {xi,xj, c} from the measurements Uik. The Jaco-
bian matrix J∆ik

c required for this update is pre-integrated alongside ∆ik during the
motion phase. The same is true for the covariance matrix Q∆ik

required to compute

the residual r = Q
−>/2
∆ik

e.
In the following the measurements Uij and uk are dropped from the notation for

simplicity.

4.3 Pre-integration for the differential drive mo-

tion model

Hereafter, the motion model considered is the the differential drive depicted in Sec-
tion 2.1.2.

4.3.1 Delta pre-integration

Contrary to the IMU case, the ‘deltas’ of pose in SE(n) are naturally independent of
the initial pose xi. Thus we only need to address the dependency with the calibration
parameters c, which is done by setting bk = bk(uk, c).

The ‘current delta’ δk = (δxk, δyk, δθk) , (δpk, δθk) ∈ SE(2) is computed from
the arc (2.26) using the exponential map δk = Exp(bk) (2.60) with δsk = 0,

δpk =

[
δlk
δθk

sin(δθk)
δlk
δθk

(1− cos(δθk))

]
≈
[
δlk cos(1

2
δθk)

δlk sin(1
2
δθk)

]
(4.6)

δθk = δθk ,

where the right-hand side expressions account for suitable approximations when
δθk → 0. The Jacobian of the current delta δk is computed from the Jacobian of
Exp(b), which for b = (u, v, θ)> ∈ se(2) is given in Appendix C.

The pre-integrated delta ∆ij = (∆pij,∆θij) ∈ SE(2) is the discrete integration
of several current deltas δk. The operator ⊕ in (4.3) is given by the composition law
of SE(2),

∆pik = ∆pij + ∆Rij δpk

∆θik = ∆θij + δθk ,
(4.7)

where ∆Rij = R(∆θij) ,

[
cos ∆θij − sin ∆θij
sin ∆θij cos ∆θij

]
. Integrated angles are systemati-

cally brought back to (−π, π].
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4.3.2 Delta Jacobian pre-integration

All Jacobian and covariance blocks hereafter are computed in the Lie-theoretic form
(2.66a) They are of dimension 3× 3 unless otherwise stated.

The Jacobian J∆ik
c in (4.4) is computed recursively starting at J∆ii

c = 0 and using
the chain rule,

J∆ik
c = J∆ik

∆ij
J∆ij
c + J∆ik

δk
Jδkbk

Jbk
c , (4.8)

where J∆ik
∆ij

, J∆ik
δk

, Jδkbk
and Jbk

c are respectively the Jacobian blocks of (4.7), (4.6) and

(2.25–2.26). The Jacobians J∆ik
∆ij
,J∆ik

δk
of (4.7) are given by those of the composition

law of SE(2) in Table C.4.

4.3.3 Delta covariance pre-integration

Let Qψ, Qδ and Q∆ be the covariances of respectively the measurement noise given
in (2.29), the current delta and the pre-integrated delta. The covariance of the
current delta δk reads,

Qδ = Jδkbk
(Jbk

δψQψ Jbk
δψ

>
+ Jb

s σ
2
sJ

b
s

>
)Jδkbk

>
, (4.9)

with Jbk
δψ, and Jb

s = [0, 1, 0]> ∈ R3, the Jacobians of (2.26), and σ2
s the perturbation

variance of the wheel slippage δsk. The motion covariance starts at Q∆ii
= 0 and

is also pre-integrated recursively,

Q∆ik
= J∆ik

∆ij
Q∆ij

J∆ik
∆ij

>
+ J∆ik

δk
Qδ J∆ik

δk

>
. (4.10)

4.3.4 Residual

The residual of the differential drive factors reads,

r(c) = Ω>/2(∆(c)− ∆̂) ∈ R3 , (4.11)

where Ω = Q−1
∆ is the information matrix of the pre-integrated motion, ∆(c) comes

from (4.4); and ∆̂ = xk 	 xi is an independent estimate of the platform motion
typically obtained from another embedded sensor (laser scan registration e.g. [33],
visual odometry, etc.) an external sensor (Vicon [97], etc.), or from a graph with
nodes xi,xk.

4.4 Joint calibration of differential drive intrinsic

and sensor extrinsic parameters

We assumed in Section 4.3 that both ∆̂ and ∆ are expressed in the differential drive’s
reference frame. From now on, we consider ∆̂S to be expressed in another sensor’s
reference frame, S, relative to the robot frame by the extrinsics T , (x, y, θ) ∈
SE(2).

The aim is now to calibrate jointly the differential drive model c together with
the sensor extrinsics T. From Fig. 4.2 we clearly see that T ◦∆S = ∆ ◦ T, so the
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∆ij

∆S
ij

T

xi

xj
T

Figure 4.2: A differential drive robot moves from pose xi to xj. It mounts an
exteroceptive sensor at pose T (red) with respect to the robot base (blue). It holds
that ∆ij ◦T = T ◦∆S

ij.

error of each individual motion delta following this closed kinematic chain can be
defined as,

e(c,T) = (T ◦ ∆̂S)− (∆(c) ◦T) . (4.12)

4.4.1 Jacobians and covariance propagation

The Jacobians of each error ek with respect to the unknown c and T can be computed
by steps, using the Jacobian blocks in Appendix C and the chain rule. Define with
Fig. 4.2,

e = U− L , U , T ◦ ∆̂S , L , ∆ ◦T . (4.13)

where Jacobians JU
T ,J

U
∆̂S
,JL

∆,J
L
T are given by those of the composition law of SE(2)

in Table C.4 and Je
U = I , Je

L = −I .

Then apply the chain rule to find all the Jacobians of e,

Je
∆ = Je

LJL
∆ = −JL

∆ (4.14a)

Je
∆̂S = Je

UJU
∆̂S = JU

∆̂S (4.14b)

Je
T = Je

LJL
T + Je

UJU
T = JU

T − JL
T (4.14c)

Je
c = Je

LJL
∆J∆

c = −JL
∆J∆

c . (4.14d)

Then propagate both Q∆̂S and Q∆ to the space of e,

Qe = Je
∆̂SQ∆̂SJe

∆̂S

> + Je
∆Q∆Je

∆
> (4.15)

4.4.2 Residual

The residual is similar to (4.11) with Ω = Q−1
e ,

r = Ω>/2 e ∈ R3 (4.16a)

Jr
c = Ω>/2 Je

c , Jr
T = Ω>/2 Je

T . (4.16b)
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c

T

r1 rk

r0

Figure 4.3: Factor graph for the estimation problem. Two state blocks c and T
are linked by a number of factors, each computing a residual of the type rk =
Ω
>/2
k (∆k(c) ◦ T − T ◦ ∆S

k ) (see Fig. 4.2). An absolute factor (grey) of the type

r0 = Ω
>/2
0 (c− c0) keeps c close to its nominal values c0.

4.5 Calibration

4.5.1 Batch calibration process

The calibration problem can be modeled as a simple factor graph composed of only
two nodes (Fig. 4.3), one holding the differential drive kinematic parameters c,
the second holding the sensor extrinsic parameters T. The nodes are constrained
one another by K factors, each containing the pre-integration of a (large) number
of motion measurements, whose residuals are evaluated with (4.16a). Additionally,
the c node is constrained by an absolute factor attracting the calibration parameters
towards their nominal values c0,

r0(c) = Ω
>/2
0 (c− c0) (4.17)

where Ω0 = diag(σ−2
l , σ−2

r , σ−2
d ) is chosen sufficiently small not to constrain the

optimizer from reaching an adequate solution. In our experiments we chose σl =
σr = σd = 0.01.

Collecting all factors, the estimation problem can be written as,

[c∗,T∗] = arg min
c,T

K∑
k=0

rk(c,T)>rk(c,T) . (4.18)

A simple solution can be implemented via Gauss-Newton optimization, by iterating
until convergence,

Jk = [Jrk
c Jrk

T ], b =
∑
k

J>k rk, H =
∑
k

J>k Jk (4.19)

∆x = −H+b (4.20)

x← x + ∆x (4.21)

where x = (c,T), and H+ is the pseudo-inverse of H.

4.5.2 Online calibration process

Online incremental self-calibration can be easily achieved by repetitively solving
the problem as new factors are incorporated. In order to speed-up operation, the
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Input: c0, T0, {Ψk}, {∆S
k}

c = c0, T = T0

while new sensor reading {∆S
k ,Q

S
k} do

c = c
Pre-integrate diff. drive motion
{∆,Q,J∆

c }k = integrate(c,Ψk) (2.25–4.10)
Pack all info for factor k
{∆,Q,J∆

c , c,∆
S,QS}k → Φk

x = (c,T)
while not end condition do

b = 0,H = 0
for i ∈ W do

Unpack info for factor i
{∆,Q,J∆

c , c,∆
S,QS} ← Φi

∆(c) = correct(∆,J∆
c , c, c) (4.4)

{r,Jr
c,J

r
T}i = ri(∆(c),Q,T,∆S,QS)

b← b + J>i ri, H← H + J>i Ji (4.19)
end
Update x← x−H+b (4.20–4.21)
(c,T)← x

end

end
Output: c,T

Algorithm 1: Incremental joint self-calibration

solver is set to escape after a small number of iterations. As factors get old, they
gradually accumulate more optimization iterations. Very old factors are removed
from the graph, thus creating a fixed window W of factors being evaluated. The
overall algorithm is depicted in Alg. 1.

One key advantage of the incremental, windowed algorithm is that it allows to
deal with dynamic variations of the estimated parameters. Indeed, in case of changes
in the parameters to estimate, the different factors cannot reach a good consensus
on the states, and the overall cost increases,

F (t) =
∑
i∈W (t)

r>i ri . (4.22)

By monitoring this cost, we are able to detect these changes, and act on the length
of the window W appropriately. A trivial strategy is to reset the window after
a significant cost increase. Favored strategies simply reduce the window length
dynamically. Reducing W has a double effect: on one hand, the factors related to
the old values are rapidly removed from the problem, thus canceling their adverse
effect; on the other hand, shorter windows allow for faster convergence, at the cost of
reduced accuracy. Increasing the window length gradually after observing a recovery
in the cost allows to dynamically control the trade-off between convergence speed
and accuracy.
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4.6 Experiments

The batch calibration method is evaluated both on simulated and real data. For
the simulation experiment, the ROS simulator Gazebo is used with the publicly
available simulation of the TIAGo robot. The robot is equipped with a differentially
driven base equipped with a SICK LMS561 LRF sensor and encoders on each wheel.
The real experiment is also conducted on a TIAGo-base robot. Finally, the online
calibration proposal is evaluated in simulation.

Batch calibration experiment For this experiment, the simulated robot is man-
ually driven along a non-specific path, sufficiently diverse in motions to cover its
kinematic space. The motion ∆̂S is tracked using a LRF by means of a laser scan
matcher algorithm [33]. The precise kinematic parameters are known beforehand,
thus the calibration is initialized far from the nominal values to test the viability of
the method. From the robot description, the parameters are,

rl = rr = 0.0985m, d = 0.4044m

Tx = 0.202m, Ty = 0m, Tθ = 0 rad .

They are thus initialized to nominal values c = [0.1, 0.1, 0.4] and T = [0.22, 0.1,−0.1].
The results are shown in Fig. 4.4 where the plots show the time evolution of

the calibrated parameters. The method is capable of very accurately recovering the
vehicle kinematic parameters

r∗l = 0.0985m, r∗r = 0.0986m, d∗ = 0.4064m ,

as well as the LRF extrinsics, which converge to

T ∗x = 0.2005m, T ∗y = 0.0019m, T ∗θ = 0 rad .

A similar setup is used to calibrate the real robot. The nominal values are
initialized accordingly to the robot description to [0.0985m, 0.0985m, 0.4044m] for
the differential drive model and [0.202m, 0m, 0 rad] for the LRF extrinsic. The
robot is manually driven along a path that covers its kinematic space. The motion
∆̂S is again tracked using [33].

The results of the calibration are,

r∗l = 0.0986m, r∗r = 0.0978m, d∗ = 0.4084m ,

T ∗x = 0.1975m, T ∗y = 0.0024m, T ∗θ = −0.0108 rad .

Fig. 4.5 shows the integrated odometry of the robot along a trajectory in an office-
like environment before and after calibration. The true initial and final pose of the
robot are set to be nearly the same (see Fig. 4.5 middle-top). While the trajectory
integrated before calibration clearly drifts, with sections of it going through walls
and obstacles and its final pose far from the initial one; the trajectory integrated
after calibration is much better, with a final pose very close to the initial one. Note
how the improvements of the kinematic parameters provides a much better estimate.
The results shown are entirely relying on odometry integration and does not include
any loop closure to impose the final pose.
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Figure 4.4: Evolution and effects of the batch calibration.

Online calibration experiment For this experiment, the simulated robot moves
along a trajectory. During its course, the wheel radii slightly decrease to simulate the
effect of loading and unloading a freight heavy enough to squeeze the rubber tires.
Moreover, the freight is not perfectly centered on the robot, leading to an asymmet-
rical change of the wheel radii. This change in the differential drive model compels
the online adaptation of the calibration parameters c for the reported odometry to
remain correct. The simulation runs over 500 time steps; the freight loading and
unloading takes place at iterations 200 and 300, respectively. During this interval,
the left and right wheel radii are decreased by 1% and 0.6%, respectively, so that

rl = 0.0975m, rr = 0.0979m, d = 0.4044m .

The results are reported in Fig. 4.6 and show an adaptation of the calibration as
the freight is loaded and unloaded. The online calibration scheme described in
Section 4.5.2 is applied both with a fixed size window of 50 factors (Fig. 4.6(a)) and
a dynamically sized window (Fig. 4.6(b)) triggered by an increase in the cost (4.22).
Apart from highlighting the benefit of a quicker transition of the dynamically sized
window method, this comparison allows to better visualize the evolution of c and
how it effectively changes toward the true value as older factors escape the window.

4.7 Conclusion

This chapter detailed a method to jointly self-calibrate the extrinsic parameters of
an exteroceptive sensor able to observe ego-motion, and the intrinsic parameters
of a differential drive kinematic motion model. An incremental online variant of
the method allows to self-calibrate the motion model while it is subject to physical
change. The method benefit from a proposed abstraction of the IMU pre-integration
theory allows for the application of pre-integration to a simpler case, 2D odometry,
obtaining easily self-calibration. The proposal is evaluated in simulation and shown
that it converges toward the true values of the parameters. It is then demonstrated
to greatly improves the estimated odometry on a real robot. Moreover the online
variant is shown to able to quickly estimate changes of the motion model parameters.
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Figure 4.5: Integrated odometry of the real robot before and after calibration -
respectively red and blue.
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Figure 4.6: Comparison of the evolution of vehicle kinematic parameters and the
aggregated cost factor F for a fixed window size and a dynamic one.
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Chapter 5
Motion Planning

The capacity of planning a safe trajectory is of fundamental
importance for autonomous robots as it enables high-level appli-
cations in service robotics or autonomous transportation. Not
only should a robot be able to move toward a desired configura-
tion, but it shall do it optimally, and most importantly safely.
Such planning must happen online in order to react to the dy-
namic aspects of the environment.
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5.1 Related work

Differential geometry on manifolds for trajectory optimization has often been used in
robotics, especially on Lie groups, with e.g. a smooth rigid-body motion on SE(3) [98]
presented as early as twenty years ago. Most methods rely on estimating piecewise-
smooth curves, based on piecewise polynomial functions [99–101] B-splines [102,
103], or Non-Uniform Rational B-Splines (NURBS) [104, 105]. Other methods
model the trajectory using Bezier curves geometrically constructed on manifolds
[106]. More recently, Popiel and Noakes [107] presented an extension of the method
to construct splines. For either of the later two works, the derivatives do not exhibit
the same properties as the Euclidean case such as continuous smoothness at the
splines knots.

Splines, specifically with non-vanishing n-th derivatives are of primary interest as
a trajectory backbone as they allow to define constraints such as velocity, accelera-
tion but also jerk limits, which is desirable e.g. for autonomous people transportation
vehicles in order to improve comfort and prevent motion sickness [108].

The Timed Elastic Band (TEB) planner [62, 63] rapidly became one of the most
popular local planners for mobile-bases in the ROS community. Based on a TEB
formulation (see Section 2.1.4), the TEB-planner allows to efficiently and rapidly
estimate a discretized trajectory in the plan. It incorporates constraints such as
trajectory feasibility from a robot’s kinematics point of view, together with obstacle
avoidance.

5.2 Problem formulation

A sparse trajectory planning scheme whose discretization lies on piece-wise Cn curve
on a Lie manifold is presented. The trajectory is considered as a sequence of points
lying on a spline on a Lie manifold and exhibit the property of ensuring non-vanishing
n-th derivatives at any point.

Coined Timed-Elastic Smooth Curve (TESC), the proposed method builds upon
the TEB formulation and differs from the traditional polynomial or spline-based
trajectory estimation in that it does not aim at estimating coefficients [102] nor
control points which encompass and define the curve [106, 107] but rather a discrete
collection of points which themselves lie on the piece-wise curve on a manifold and
that forms the trajectory. TESC allows for a seamless calculus of a pose at any time
along the TEB.

Formulated as a multi-objective nonlinear optimization problem, the core of
the proposed method allows imposing soft constraints such as velocity, acceleration
and jerk limits, and more. Additional constraints may easily be added to the core
problem, such as obstacle avoidance in a 2D grid for a mobile-base defined in SE(2).

5.2.1 Timed-Elastic Smooth Curve

Cn smooth curve

Considering the TEB as a collection of discrete points, one aims at enforcing con-
secutive points to lie on a smooth curve in any Lie group, and the different pieces
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Figure 5.1: Decomposition of TIAGo’s motion traversing through a scene with ob-
stacles marked by dark regions on the floor

to form a continuous smooth spline. Jakubiak et al. [109] propose a geometric two-
step algorithm to generate smooth splines on Riemannian manifolds, in particular
Lie groups. Given two configurations xi and xi+1, the algorithm allows for inter-
polating a configuration xt so that it lies on a smooth curve connecting xi and
xi+1.

The smoothness constraint proposed here results from a revisited formulation of
the interpolation algorithm of [109]. Given three consecutive poses xi−1, xi and xi+1,
and their associated time intervals δti and δti+1, the constraint is as follows. First
compute the tangent vectors τi−1 and τi+1, which are approximated with backward
differences, and the interpolation factor s,

τi = xi 	 xi−1 (5.1)

s = δti/(δti + δti+1) ∈ [0, 1] . (5.2)

Then compute the interpolated point x̂i that belong to the smooth curve with

l(s) = xi−1 ⊕ (s · τi−1) (5.3)

r(s) = xi+1 ⊕ ((s− 1) · τi+1) (5.4)

β(s) = r(s)	 l(s) (5.5)

x̂i = l(s)⊕ (φ(s) · β(s)) . (5.6)

The resulting error is then:
es = x̂i 	 xi , (5.7)

where ⊕ and 	 operators are given in Section 2.2.5. While the definition of the real
valued smoothing function φ(t) in (5.6) is given hereafter, the reader can refer to
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Figure 5.2: The pose xi is constrained towards the smooth curve defined by
xi−1,xi+1, τi−1, τi+1 and s (tangents are illustrated by the arrows).

[109] for more details of its critical guarantees:

φ(s) = γ
m∑
j=0

am+1+j

m+ 1 + j
sm+1+j , (5.8)

with

am+1+j =(−1)j
(
m

j

)
sm+j (5.9)

γ−1 =
m∑
j=0

am+1+j

m+ 1 + j
, (5.10)

where m is the smoothness degree (Cm).
Fig. 5.2 illustrates (5.3–5.7) for the case of a mobile-base and how the in-

termediate (middle) pose xi is attracted towards the smooth curve defined by
xi−1,xi+1, τi−1, τi+1 and s.

The trajectory smoothness at segments junctions (knots) is implicitly ensured by
design as the final tangent of the i -th segment is to be equal to the initial tangent of
the i+1 -th (consecutive) segment. Therefore, TESC does not require to explicitly
impose equality constraints on knots, unlike other spline-based frameworks such as
[110].

Curve’s derivatives boundaries constraints

The formulation described in Section 5.2.1 ensures non-vanishing n-th derivatives
at every point, allowing to enforce upper and lower boundaries (i.e. inequality con-
straints) on the curve’s derivatives. The derivatives subject to inequality constraints
are:

• vk the average velocity over a δt

• ak the average acceleration over a δt
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• jk the average jerk over a δt .

They are approximated using backward finite differencing through a sliding window
over the TEB of respectively, the past two, three and four states,

vi =
xi 	 xi−1

δti
(5.11)

ai = 2· vi − vi−1

δti + δti−1

(5.12)

ji = 6· ai − ai−1

δti + δti−1 + δti−2

. (5.13)

Similarly to [63], the TESC problem is optimized here using a non-linear least-
squares solver. Inequality constraints are therefore approximated by two-sided
quadratic penalties so that the error functions of an inequality constraint are,

eν =


−ν + νL, if ν < νL

+ν − νU , if ν > νU

0, otherwise ,

(5.14)

with ν a constrained value, νL and νU respectively ν’s lower and upper bounds, and
<, > are element-wise comparisons. From (5.11–5.14) results the following error
functions:

ev subject to vL < vi < vU (5.15)

ea subject to aL < ai < aU (5.16)

ej subject to jL < ji < jU . (5.17)

Minimizing time and trajectory length

Not only shall a trajectory be feasible but also should it be as short as possible,
both in terms of execution time and traveled distance. While a double objective
of distance and time, i.e., c = wl 〈τ , τ 〉 + wt δt

2 seems natural, experiments shown
that having them enforce each other gives better results in terms of smoothness
and stability of the solutions in the optimization framework used here. The joint
length-time error is defined as,

el = 〈τiδt, τiδt〉 = 〈τi, τi〉δt2 , (5.18)

where 〈τi, τi〉 is the arc-length of the i -th segment squared. While this cost function
has no particular physical meaning, it is preferable for a numerical optimization
process. Having two different cost functions for time and length, each having their
own weight, leads to optimizing 2(n − 1) unique cost functions, each one having a
fairly large residual with respect to the other cost functions. This is so since, e.g.,
time will not reduce as much as the distance to the final target. Instead, by merging
those two cost function into (5.18), there are only n − 1 unique cost functions to
minimize, a single weight to tune and a residual of a similar order as the others.
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Distance to the target configuration

While the previous cost functions constrain the overall shape of the trajectory, this
cost function pulls the TEB’s tip, xn, toward the desired configuration – or goal –,
xg. It is defined as follows:

eg = xg 	 xn . (5.19)

5.3 TESC for mobile-base motion planning

Building upon the work of Rösmann et al. [62, 63] the TESC formulation is extended
to the case of mobile-base motion planning. The Lie group abstraction is thus
dissipated here by considering χ ∈ SE(2). All of the cost functions defined in
Section 5.2 remains valid while new ones, specific to the task at hand, are added.

5.3.1 Mobile-base specific constraints

Non-holonomic constraints

Since the trajectory optimized is that of a mobile-base, one has to take the kinematic
constraint into account so that the trajectory is physically feasible. In the case of
an omnidirectional base (e.g. using mecanum wheels), no further constraints are
required. Considering a differential or bicycle-like base, the first of such kinematic
constraints aims at enforcing non-holonomy since such base cannot move sideways.
It is imposed as,

eh subject to vyi = 0 , (5.20)

with vyi the y-component of the velocity vector computed from (5.11). Given the
optimization framework employed, equality constraints are obtained by setting both
the lower and the upper bounds to the same value.

Minimum turning radius constraints

If the mobile-base considered is a bicycle-like model (e.g. car-like), one has to ensure
a minimum turning radius. The equivalent condition is implemented on the inverse
radius, since unlike R, 1/R crosses zero continuously as the robot transitions from
a left turn to a right turn,

1/R = vωi/vxi (5.21)

er subject to − 1/Rmin < 1/R < 1/Rmin , (5.22)

with vxi and vωi respectively the x- and the angular-components of the velocity
vector (5.11). For vxi → 0, vωi is constrained to zero in a way akin to (5.20) to
avoid turning in place.

Obstacle avoidance

When dealing with mobile-base navigation, the robot’s surrounding environment
is often represented by a 2D Occupancy Grid (OG) (Fig. 5.3(a)). In its simplest
ternary form, the OG has three distinct values denoting whether a cell is free (no
obstacle), occupied (obstacle) or unknown. In order to avoid obstacles, the TESC
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(a) Occupancy grid. (b) Euclidean distance grid.

Figure 5.3: Ternary occupancy grid and Euclidean distance grid of a mapped office.
Obstacles are shown in black on both figures.

planner represents the environment by means of an Euclidean Distance Grid (EDG)
(Fig. 5.3(b)) which stores in each cell the distance to the closest obstacle in the
grid. Cells representing an obstacle have a zero value. Such representation allows
to efficiently evaluate whether a configuration is in collision with an obstacle or
not. Given a 2D-OG, an EDG is computed using the distance transform algorithm
described in [111]. This algorithm is of first choice as it is fast, efficient and computes
an exact Euclidean distance. Given a distance grid and two consecutive poses xi
and xj along the TEB, the obstacle avoidance constraint is computed as follows.
First, k poses are interpolated between xi and xi+1 as per [109], with k chosen in
adequacy with the grid resolution. Then the EDG cells’ distance corresponding to
each of the k + 2 poses are evaluated. The resulting error functions is

eo =

{
r − d, if d ≤ r

0, otherwise ,
(5.23)

with d the smallest distance evaluated over the k + 2 poses and r the radius of the
circle encompassing the robot footprint. Notice that complex footprint shapes can
be considered and is left here to further work. Evaluating intermediate interpolated
configurations allows to assert that a segment as a whole is obstacle free avoiding the
common problem in discrete trajectory planning of having consecutive poses lying
on each side of an obstacle.

5.3.2 Experiments

This section describes the experimental setup along with results from simulations in
three different scenarios using the TIAGo simulation. The proposed TESC approach
is compared against the state-of-the-art TEB planner [63].

Specifically, each planner is queried a 1000 times for each scenario and results
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(a) Obstacle-free scenario, collage of four dif-
ferent goals.

(b) Four obstacles scenario, collage of three
different goals.

Figure 5.4: Experiment setups. TEB-planner is depicted with violet arrow while
TESC is with red arrows. The initial pose at the center of the grid is depicted with
a larger black arrow.

were compiled from these trials. To achieve a fair comparison TESC and TEB-
planner are initialized with the same velocity and acceleration limits.

The evaluation covers eight metrics. First is the success rate, which indicates
whether the planner has found a collision-free trajectory or not. The optimization
time measures how much time the planner took to find a trajectory. As the robot
operates in the real environment it is important to be able to find plans in a timely
manner, especially for reactive control applications. The trajectory arc-length and
the trajectory time show how much the robot has to move to reach the goal and
the time it takes to do so. The average velocity and acceleration metrics encompass
both their linear and angular components. Finally the energy is an approximation
of the kinetic-energy, while the trajectory curvature highlights the smoothness of
the trajectory’s curve. Smoother trajectories require less acceleration/deceleration,
therefore putting less stress on the mechanical parts of the robot. Moreover they
allow people to feel safer in the robot’s vicinity as it exhibit a more predictable
behavior. The aforementioned height metrics are detailed in Table 5.1. Note that
the curvature metric is approximated as the sum of acceleration’s norm in the global
reference frame.

The weight factors wk for the TESC planner are empirically determined so that
the costs wkcki(Qi,∆Ti) are all of the same order of magnitude. Similarly to the
observations made in [63], experiments showed that the weights associated to both
the kinematics (Section 5.3.1) and the goal (Section 5.2.1) must be an order of
magnitude higher than other weights. The weight factors used for the TEB-planner
are those presented as optimal in the original paper.

Implementation Details

The TESC planner is implemented in C++ using the least-squares solver Ceres [112]
as it is flexible and offers automatic-differentiation. It also relies on the manif library
Chapter 6, a Lie-theory library for state-estimation. All the scenarios are simulated
using ROS and TESC has been integrated within the ROS navigation stack so that
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Table 5.1: Metrics used in the experiments evaluation.

Metric Description

Success rate in % 100 · success
success+failure

Planning time in s —
Trajectory arc length

∑ ||xi 	 xi−1||
Trajectory time (s)

∑
δti

Average velocity mean(||vi||)
Average acceleration mean(||ai||)
Energy

∑ || log(x−1
i ·xi−1)||

2·δt2i

Trajectory curvature
∑ ||2 · log(x−1

i ·xi−1)−log(x−1
i−1·xi−2)

δti+δti−1+δti−2
||

its outputs are directly applicable to real robots using ros control [113]. The
source code of the planner is publicly available 1.

All experiments are conducted on a system having an Intel i7-4702HQ, 2.2 GHz
CPU, 8 GiB of RAM and running on Ubuntu 16.04.

Obstacle-free Environment

In the first scenario, the robot is located at the center of an 8 × 8 m grid with no
obstacles and has to plan a trajectory toward a randomly generated pose. It is
illustrated in Fig. 5.4(a) for four different goals. Statistics of the several metrics
were summarized in Fig. 5.6, columns associated with this experiment are marked
with the OF suffix. As Figs. 5.6(a)–5.6(b) show, the optimization time of both
planners in this environment is well within realtime-capable requirements. Both
planners performed very similar trajectory arc length, with a short advantage for
TESC (Fig. 5.6(c)). Trajectory time as shown in Fig. 5.6(d) are also very similar.
For the average velocity metric shown in Fig. 5.6(e), TESC has slightly higher values
than TEB-planner but has much lower acceleration average (Fig. 5.6(f)). Finally,
TESC outperforms TEB-planner for both the total energy cost and the trajectory
curvature shown respectively in Fig. 5.6(g) and Fig. 5.6(h). These first results
highlight that the smooth properties of the TESC approach improve the quality of
the generated trajectories.

Synthetic Obstacles Environment

The second environment is a 8 × 8 m grid with four circular obstacles surrounding
the robot. Goals are randomly generated and their feasibility is verified. Fig. 5.4(b)
depicts this scenario for three different runs. Statistics of the several metrics were
summarized in Fig. 5.6, columns associated with this experiment are marked with
O suffix.

With the increase in challenge, the difficulty is reflected by both a decrease of
success rates, as well as an increase of execution time. As Fig. 5.6(a) depicts, TEB-
planner and TESC only succeed planning in 83% and 61% of the time respectively.
TESC optimization time increases largely while TEB-planner’s remains fairly stable

1https://github.com/artivis/tesc_planner
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as visible in Fig. 5.6(b). Both planners perform in a similar manner in terms of
trajectory time. Observations for the trajectory arc-length and time are similar
to those in Section 5.3.2. With a lower average velocity (Fig. 5.6(e)) and a much
smaller acceleration (Fig. 5.6(f)) TESC produces trajectories not only smoother but
less prone to cause motion sickness and wear out vehicle hardware while consuming
less energy (Fig. 5.6(g)). Note how even the deviation depicted in both Figs. 5.6(g)–
5.6(h) is much smaller for TESC than TEB-planner, signifying consistent better
results.

Office Environment

The third experiment considers a more realistic scenario relying on the OG generated
from a simulated small office. The environment is of size 10, 2×14, 85 m, constituted
of two distinct rooms connected by an open door, both filled with furniture such as
shelves and tables. Once again goals are generated randomly while their feasibility is
verified. Statistics are presented in Fig. 5.6, columns associated with this experiment
are marked with SO suffix.

Unlike previous experiments, the success rate of both planners is much closer
to one another with 77% and 71% respectively for TEB-planner and TESC. How-
ever the optimization time of TESC slightly increases again while TEB-planner’s
remains fairly stable. Trajectory length and time for both planners show the same
trend as for previous experiments. In the same manner TESC shows once again a
smaller average velocity (Fig. 5.6(e)) and a much smaller acceleration (Fig. 5.6(f))
than TEB-planner, but also smaller and more consistent energy (Fig. 5.6(g)) and
curvature (Fig. 5.6(h)).

5.3.3 Conclusion

This Section presented a novel formulation, Timed-Elastic Smooth Curve (TESC),
for Cn smooth trajectory optimization. The generated trajectory’s curve has non-
vanishing n-th derivatives, allowing to constrain velocity, acceleration, jerk, etc,
with ease. Moreover, the continuity of the curve at its knots is ensured by design,
which relieves from the addition of extra cost functions to do so. While relying
on a discrete set of points, its formulation allows for interpolating points that do
belong to the trajectory curve. This property allows e.g. to ensure that the whole
trajectory is collision-free. The proposed TESC is benchmarked in a series of mobile
base motion planning scenarios and is shown to prevails or matches the performance
of the TEB-planner in most presented metrics. TESC has also proven to be more
consistent in the quality of the generated trajectories.

However challenging, these experimental scenarios put both planners to the test.
TESC could not uniformly prevail in all metrics, likely due to the environment repre-
sentation in use. The Euclidean Distance Grid (EDG) discretization and unsigned-
ness are both leading to discrete and possibly non-existing gradients, thus to opti-
mization issues.

Experiments have shown that TESC is planning trajectories that are smoother
and more energy-efficient than TEB-planner. TESC’s trajectories are of the same
length but with a smaller average velocity and acceleration at the cost of increasing
the optimization time.
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(a) Side view.

(b) Top view.

Figure 5.5: Decomposition of maneuvers.
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Figure 5.6: Experiment results of both planners in each of the three scenarios.
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5.4 TESC for manipulation motion planning

Following the simpler case of a 2D mobile-base motion planning in Section 5.3, this
section highlights the versatility of the concepts supporting the TESC planner and
describes its extension to the case of motion planning for a robotic arm, thus in
SE(3). The task of motion planning for manipulation is more challenging in that
the kinematics involved are more complex. Rather than controlling two wheels, the
planner has to handle the many joints of an arm forming a kinematic chain. The
extension of the TESC planner described hereafter is coined Timed Elastic Bands
for Manipulation Motion Planning (TEB2MP).

5.4.1 Related work

Even though sampling-based methods are able to find (near-)optimal paths (see
Section 2.1.4), the solutions of such method can potentially violate constraints im-
posed by the robot hardware. Indeed, the solution may require motions that are
not doable from a kinematics point of view. Recent extension to RRT* includes
kinematics considerations for simple models such as a mobile-base [60]. However, to
the best of the author knowledge, no sampling-method is able to handle the compli-
cated kinematics chains of a robotic arm. In order to incorporate such constraint,
one has to rely on optimization techniques.

A prominent line of work for this type of motion planners is Covariant Hamil-
tonian Optimization for Motion Planning (CHOMP) [114] and its variants [115,
116]. These methods optimize the cost function using covariant gradient descent.
Later introduced, Stochastic Optimization for Motion Planning (STOMP) [117] per-
forms optimization on non-differentiable constraints by drawing samples stochasti-
cally from a set of noisy trajectories. The main limitations of these methods is that
they can potentially be very computationally expensive as they require a finely dis-
cretised trajectory to check if it is collision free. They may also fail to converge on
even moderately difficult problems. Finally, the performance of STOMP is heavily
dependent on the tuning of parameters used for noise generation for a given prob-
lem. The parameters fine tuning producing good results on a problem will, most of
the time, performs badly on a different problem.

To avoid the potential computational complexity of CHOMP and STOMP the
Trajectory Optimization for Motion Planning (TrajOpt) method was introduced in
[118]. It formulates the optimization problem as a Sequential Quadratic Program-
ming (SQP) problem with continuous-time collision checking. The reduced compu-
tational cost arise from exploiting the sparsity of the problem, where the trajectory
considered is a coarse discretization of the actual continuous trajectory. In addition,
the SQP formulation allows for imposing hard constraints such that the produced
plan is guaranteed to respect them. TrajOpt was also proven versatile in a series of
different tasks presented in [119].

The work of [120] proposes a joint-space trajectory representation using Repro-
ducing Kernel Hilbert Spaces. Using such representations is strongly motivated as
it turns the reasoning about smoothness, described by acceleration, jerk, snap, etc.,
trivial. However, similarly to STOMP, the large number of parameters and the
strong dependence of the generated results to their fine tuning make this solution
very difficult to apply across different problems or even to replicate the results from
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[120]. Nevertheless the method is shown to perform better than CHOMP.

More recently, [121] introduced a method for motion planning using Gaussian
Process (GP). The trajectory is represented as a continuous valued function that
maps time to robot states and its optimization is performed using probabilistic
inference. A GP is used to provide a prior function that encourages smoothness while
a likelihood function encourages collision free trajectories. The posterior distribution
of the GP prior together with the likelihood function are used to calculate the
Maximum a Posteriori (MAP) estimate of the trajectory. Coined Gaussian Process
Motion Planner 2 (GPMP2) the method provides comparable success rates with
the state-of-the-art while requiring much less computational efforts. It however
has several limitations. Joint limits are not explicitly taken into account as they
are only clamped to their maximum values in the optimization initialization. An
estimated trajectory may therefore violates the kinematics constraints. Similarly
the trajectory smoothness is only encouraged using a prior having no acceleration.
Finally, GPMP2 does not minimize the trajectory length in either Euclidean or joint
space so that any trajectory, may it be very convoluted, can be a solution.

5.4.2 A different take on Timed-Elastic Band

Unlike the TEB framework described in Section 2.1.4, the states of the TEB em-
ployed here do not lie on a manifold but are rather represented in the joint-space.
A joint-space trajectory is defined as,

Q = {φi}i=1...n , (5.24)

where φ is a full joint state of the kinematic chain,

φ = {ϑj}j=1...J . (5.25)

Each of its entries ϑ represents the state of an individual joint. Depending on the
type of joint, a field of φ corresponds to either,

• an angle (in radians) for revolute joints

• a distance (in meters) for linear joints

In this work, only these two simple joint types are considered.

The mapping from joint-space to Cartesian space is achieved by means of Forward
Kinematics (FK) for any joint. The inverse mapping is called Inverse Kinematics
(IK). FK and IK problems are beyond the scope of this thesis and are not further
detailed. They are considered tools to map back and forth and are extensively
used here – e.g. FK mapping is applied prior to the computation of any constraint
described in Section 5.2.1. As an example, the distance to target configuration cost
function (5.19) would look like,

eg = FK(φg)	 FK(φn) . (5.26)

This allows the arm motion planning pipeline to operate with constraints defined
in either of two complimentary spaces, the task-space and the joint-space.
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5.4.3 Arm specific constraints

Joint-space limits

Similarly to Section 5.2.1, boundaries are imposed upon the velocity and accel-
eration of each joint in the joint-space. Furthermore, limits are also imposed on
their position to reflect the real limit of the hardware, e.g. minimum and maximum
translation of a linear joint.

The joint position limits are inspired by [122](83). It is adjusted so that the
error cost is ∈ [0, 1] where 0 denotes that the joint is within the limits and 1 when
outside,

el,j =

0, ϑj ∈ [ϑLj , ϑ
U
j ]

exp(
(ϑj−ϑLj )∗(ϑUj −ϑj)

(ϑUj −ϑLj )2
) otherwise ,

(5.27)

where ϑLj and ϑUj are respectively the lower and upper joint limits of ϑj.

Velocity and acceleration constraints are similar to those of Section 5.2.1,

φ̇i =
θi − θi−1

δti
(5.28)

φ̈i = 2· φ̇i − φ̇i−1

δti + δti−1

. (5.29)

Using (5.14), their respective errors are then,

eφ̇ subject to φ̇L < φ̇i < φ̇
U (5.30)

eφ̈ subject to φ̈L < φ̈i < φ̈
U . (5.31)

Collision avoidance

For a robotic arm, the collision avoidance not only must prevent collisions with
the environment but also with its own body, also known as self-collisions. Fur-
thermore, whereas collisions were only checked for a 2D space in Section 5.3.1, the
space considered here is now 3D, increasing both the complexity and most impor-
tantly the computational effort. To mitigate this effort, the robot is modeled by
an Axis-Aligned Bounding Box (AABB) representation allowing to efficiently detect
collisions using the Flexible Collision Library [123]. This method efficiently
approximates complex shapes using bounding box segments in otherwise expensive
computation.

The resulting error function is,

eo = V (φ) +

{
0, Γ(φ) < dL

−Γ(φ) + dL otherwise ,
(5.32)

where V (φ) is the overlapping volume of the robot at state φ, Γ(φ) is the distance
to the closest collision point for all joints ϑj ∈ φ and dL is the minimum distance to
keep from obstacles.
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Table 5.2: Metrics used in the experiments evaluation.

Metric Description

Planning time in s τ
Success rate in % sr
Smoothness in rad/s2 φ̈

Distance from joint limits

n∑
i=1

m∑
j=1

ϑi,j−ϑmin
i,j

ϑmax
i,j
−ϑmin

i,j

n·m

5.4.4 Experiments

Experiments were conducted in simulation using the TIAGo mobile manipulator
robot in three different scenarios. For each scenario, the TEB2MP planner is com-
pared against state-of-the-art planners, STOMP, TrajOpt and RRTConnect which
serves as a baseline for sampling-based methods.

Given the probabilistic nature of some planners, multiple trials are performed
for each scenario. Specifically, each planner is executed a 100 times for each scenario
and statistical results were compiled.

STOMP, TrajOpt and TEB2MP planners are each initialized by linearly interpo-
lating intermediate joint states between the initial and final configuration. TEB2MP
is also evaluated with a cubic polynomial interpolation initialization in order to high-
light the effect of different initialization on the proposed method.

Additionally, the trajectory size of the planners STOMP, TrajOpt and TEB2MP
are set to be equal to 20 for fair comparison.

The evaluation covers four metrics. First is the success rate, which indicates
whether the planner has found a collision-free trajectory or not. Second, the opti-
mization time, measures how much time the planner took to find a trajectory. The
third metric is the smoothness of the generated trajectory in rad/s2. Smoother
trajectories require less acceleration or deceleration, therefore putting less stress on
the mechanical parts of the robot. It must be noted that for the smoothness metric,
the lower the score the better. Finally, the fourth metric is the distance from the
joint limits for each joint. Being further away from the joint limits is beneficial as
plans that are close to the joint limits may be harder to execute due to hardware
lock-in or precision errors. In addition, operating close to the joint limits may have
a negative effect in the manipulability [122] and the ability to find new plans. The
aforementioned four metrics are detailed in Table 5.2.

Implementation details

The TEB2MP planner has been implemented in C++ using G2o [124] for solving
the nonlinear least-square problem and the manif library Chapter 6 for the Lie
theory aspect. Experiments are carried in simulation using ROS and the MoveIt!

framework [125]. The output of each planner can be used to control directly the real
robot using ros control [113]. All experiments are conducted on a system having
an Intel i7-4710MQ, 2.5 GHz CPU, 8 GiB of RAM and running on Ubuntu 16.04.
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Figure 5.7: Experiment metrics for the evaluation of TEB2MP in the empty envi-
ronment.

Obstacle-free environment

For the first scenario, the robot is placed in an empty environment (e.g. no obsta-
cles) where it has to move its end-effector from a predetermined initial pose to a
predetermined final one. This setting is essentially the same as Fig. 5.9(a) without
the green box.

Statistical results of the several metrics for the various tested planners are sum-
marized in Fig. 5.7. One can see from Fig. 5.7(a) that each planner succeeds to find
a trajectory each and every time, an expected results as the environment is empty
and the goal feasible. However their respective execution time to do so varies largely
(Fig. 5.7(b)). RRTConnect is by far faster than all the other planners. On average
STOMP and TEB2MP are 6 times slower. TrajOpt is by far the slower planner, be-
ing in average 2.5 times slower than TEB2MP. For the smoothness metric, TrajOpt
outperforms every other planners. STOMP and TEB2MP perform equally good
and better than RRTConnect. At last, STOMP performs best on the joint distance
metric, followed by the two versions of TEB2MP. TrajOpt ranks fourth, just behind
cubic TEB2MP, and RRTConnect performs the worst of all.
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Figure 5.8: Experiment metrics for the evaluation of TEB2MP in the box environ-
ment.

Box environment

The box scenario is similar to the empty one (Section 5.4.4) in that the robot has to
move its end-effector from a predetermined initial pose to a desired final one. The
main difference is that an obstacle, a large box, is placed along the trajectory. The
setting is pictured in Fig. 5.9(a).

Statistical results for this experiment are summarized in Fig. 5.8. Repeating
previous success, RRTConnect performs fastest but also best with 90% of success
rate. TEB2MP arrives second with close to 80% of success, followed by STOMP
with approximately 45% and far last is TrajOpt which laboriously passes the 10%
bar. In terms of execution speed, STOMP is slightly faster than TEB2MP but
the variance of this result is fairly large whereas TEB2MP performs much more
consistently. TrajOpt ranks last with almost 10 seconds of planning time, while all
other planners are sub-second in average. On the other hand, TrajOpt performs best
on the smoothness metric, while STOMP and TEB2MP performs similarly well and
RRTConnect performs worst with a fairly large variance. Finally, STOMP achieves
the best results in the joint limit distance metric, closely followed by TEB2MP but
- again - with more consistency. TrajOpt and RRTConnect come lasts with similar
results in average.
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Desk environment

The desk scenario places the robot in an industrial-like setting. Facing a work
station, the robot has to move its end-effector from the top of a shelf to a storage on
the other side of the desk. Depicted in Fig. 5.9(b), the scenario was first introduced
in [121]. Its use here allows for a comparison discussion with the method presented
in [121].

Statistical results for this experiment are summarized in Fig. 5.9. RRTConnect
successfully generated trajectories for all runs, achieving 100% success rate while
TrajOpt performed remarkably well. TEB2MP and STOMP following closely be-
hind. Similarly to the previous experiments, RRTConnect is the fastest method
closely followed by STOMP and TEB2MP while TrajOpt lies far behind. TrajOpt
performs best on the smoothness criterion, followed by STOMP and TEB2MP.
However STOMP exhibits a very large variance on the quality of the results while
TEB2MP is much more consistent. Similarly to the previous experiment, it is
RRTConnect which comes last for this metric. Finally, in this scenario all plan-
ners exhibited a fairly good, similar performance on joint limit distance. A possible
explanation to this is that a more complex environment naturally constraints the
manipulator’s feasible range of motion, resulting in larger distances from limits. It is
worth noting that TEB2MP consistently provided a good performance throughout
this experiment as well.

Since the environment used in this experiment was first presented by Dong et
al. in [121] which experiments were conducted using the PR2 robot, a robot fairly
similar to the TIAGo robot, a comparison with GPMP2 can be attempted. In the
same environment, with the PR2 robot, GPMP2 is reported with an average plan-
ning time of 20ms. A caveat of these experiments is that the reported planning time
did not include the time to compute GPMP2’s Signed Distance Field (SDF). For
a fair comparison, the pre-processing step was measured and added to the initially
reported values, so that a GPMP2 plan takes approximately 800ms. That is in the
same computational complexity range as TEB2MP. In terms of planning success
rate, [121] reported a single number whereas two different scenes were used; there-
fore, a direct comparison cannot be made. Nevertheless, even in the case of GPMP2
having a consistently higher success rate, the optimization process does not consider
the smoothness of the trajectory or distance from joint limits.

5.4.5 Conclusion

We presented an extension to the TESC planner addressing the problem of manipu-
lation motion planning. Coined Timed-Elastic Band for Manipulation Motion Plan-
ning (TEB2MP) planner, it allows for defining cost function both in the Cartesian
and joint spaces. The proposed approach is compared against state-of-the-art meth-
ods in three different scenarios of increasing difficulty. The results show that in the
worst case it performs comparably with the state-of-the-art while providing more
consistence performances.
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(a) Box scenario: Starting from the right hand
side of the box, the robot has to reach the goal
on the left side of the box.

(b) Industrial manufacturing scenario: Start-
ing from the top right shelf, the robot has to
reach the goal on the left of the bench.
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Figure 5.9: Experiment metrics for the evaluation of TEB2MP in the industrial
environment.
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Chapter 6
The manif library

manif is a Lie theory library targeted at state estimation in
robotics applications. Developed as a header-only library, with
minimal dependency and a requirement on C++11 only, it is
easy to integrate it to existing projects.
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The manif library [126] is a C++ library that naturally results from the study
conducted in Section 2.2, intreching the Lie theory in computer code. The library is
distributed under a permissive open-source MIT license and is publicly available1.

6.1 Related work

With Lie theory becoming increasingly popular in robotics, it is not surprising to
find many implementations in different programming languages. Most of the large
Nonlinear Programming (NlP) framework that serves as a backbone to SLAM al-
gorithms implementation offers a subset of the Lie theory relevant to SLAM and
robotics in general. One may cite Ceres [112], GTSAM [127] or G2o [124] as examples.
However, these implementations are deeply intertwined with the rest of the library
making it very tedious to isolate only the Lie theory-related part with the intent to
use it in another project. Similarly, some robotics projects may also provide their
their own implementation such as mrpt [128] or kindr [129]. While we will focus
especially on C++ libraries as it is most often the chosen language for computation-
ally intense work, one may however cite a few other projects and libraries available
in diverse programming languages:

• manopt [130], a Matlab toolbox for optimization on manifolds.

• MTKM [131], a Matlab toolbox for manifold-based graph optimization for multi-
sensor calibration and SLAM.

• SymPy [132] which offers a Python module for Lie Algebra symbolic computa-
tions.

• Pymanopt [133], a feature-rich Python toolbox for optimization on manifolds
using Automatic Differentiation (AD).

• censilib [134] a stand-alone Python library handling various differentiable
manifolds.

There exists a few standalone C++ libraries offering the subset of Lie theory
relevant to robotics which are overviewed hereafter.

The MTK library [135] is a framework for on-manifold operations. Besides the
traditional groups, it allows for the composition of arbitrary compound manifolds.
First introduced in [136], which present the theory of on-manifold optimization,
the library also provides an implementation of a Sparse Least Squares on Manifold
(SLoM) algorithm. The library does no provide analytical Jacobians but instead
rely on numerical AD.

Ethan Eade’s liegroups library [137] - which we will to refer as eadelib to
avoid ambiguity - similarly to manif, results from a research and clarification work
[68]. Written in C++, it does not offer the full set of on-manifold operations nor
does it provide any Jacobians.

The Sophus [138] library is a C++11 implementation of Lie groups based on
Eigen3. It allows for most common on-manifold operations but only offers analytical

1https://github.com/artivis/manif
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Table 6.1: Lie theory C++ libraries comparison. ‘Any Scalar’ indicates a header-
only library and the symbol ‘*’ means partial.

Library
Manifold

operations
Manifold
base class

Jacobians Any scalar Maps
C++11

and higher

Eigen X X X
MTK X X

eadelib * X X
Sophus X * X X X

wave geometry X X X X
manif X X X X X X

Jacobian matrices for some of them. Moreover, the Jacobian matrices are expressed
with respect to the representation vector that underlies the implementation.

The wave geometry [139, 140] library implements manifolds geometry with fast
AD and coordinate frame semantics checking. Based on Eigen3 and Boost [141], it
requires a C++17-compatible compiler. As of the time of writing, wave geometry

only implements the groups SO(3) and SE(3).

6.2 Design

The manif library is a Lie theory library targeted at state estimation in robotics ap-
plications. The library is designed with ease of integration and use as a primary
concern. This reflects in the following features,

• A single external dependency on Eigen3 [142].

• Header-only, no library object to link to.

• Templated underlying scalar type so that one can use its own.

• C++11, since not everyone gets to enjoy the latest C++ features, especially
in industry.

The manif library has been developed to make easily accessible the most com-
mon operations on Lie groups in state estimation. The library is mathematically
grounded in [70] whose formalism (see Section 2.2) molds the library API.

Following high software development standards, manif is thoroughly tested and
supports several platforms and compilers: gcc and clang on Linux and OS X as well
as mscv on Windows.

manif differs from all libraries mentioned in Section 6.1 in that all its classes
inherit from a common templated base class which enforces a common minimal
API. It also differs from each library in ways that are summarized in Table 6.1.

Implementation

The manif library design is similar to that of Eigen3, in the sense that all classes de-
fined have in common that they inherit from either of two templated base classes us-
ing static polymorphism through the Curiously Recurring Template Pattern (CRTP)
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template <typename Derived>

struct CRTPBase

{

// Declare the common API

void interface() {

derived().implementation(); }

// Return a reference to the derived object

Derived& derived() {

return *static_cast<Derived*>(this); }

};

class Derived : public CRTPBase<Derived>

{

// Define the function body

void implementation() {

std::cout << "Hello world."; }

};

Listing 6.1: CRTP example.

scheme [143](Section 16.3). This allows for the possibility to write generic code
without paying the price of pointer indirection as they are resolved at compile-time.
Thanks to this static polymorphism, the library remains open to extensions to Lie
groups beyond the currently implemented SO(2), SE(2), SO(3) and SE(3). The very
same scheme is also used to implement their related tangent objects. An example
of such CRTP class is given in Listing 6.1.

In manif, the inheritance hierarchy is threefold. First, two CRTP base classes,
‘LieGroupBase’ for Lie groups and ‘TangentBase’ for their related tangent objects.
Both declare the API common to their respective sub-classes while also defining
default implementation for some of the functions that can be constructed from
chaining basic operations. These base classes do not have any members (they do not
own any memory blocks) but instead operate on members owned by their derived
classes.

Second, for each derived group and tangent, there exists an intermediate base
class which inherits from ‘LieGroupBase’ and ‘TangentBase’ respectively. These
intermediate classes define all group’s function together with some extra functions
which are specific to a given group. Similarly to the CRTP base classes, these
intermediate classes do not have any member.

Finally the third and last layer is the object which most users are expected to
manipulate.

The inheritance scheme of manif is shown in pseudo-code in Appendix D.1 for
the case of SE(2).

Integration to other projects

manif is a header-only library and as such is very easily integrated to other projects.
Given a project managed with a ‘CMakeLists.txt‘ file, it only takes 4 lines to start

84



Chapter 6 CHAPTER 6. THE MANIF LIBRARY

project(foo)

# Find the Eigen library as manif depends on it

find_package(Eigen3 REQUIRED)

target_include_directories(${PROJECT_NAME}

SYSTEM PUBLIC ${EIGEN3_INCLUDE_DIRS})

# Find the manif library

find_package(manif REQUIRED)

add_executable(${PROJECT_NAME} src/foo.cpp)

# Add manif include directories to the target

target_include_directories(${PROJECT_NAME}

SYSTEM PUBLIC ${manif_INCLUDE_DIRS})

Listing 6.2: Integrating manif to a project.

template <typename Derived>

void print(const LieGroupBase<Derived>& g)

{

std::cout << "Group degrees of freedom : "

<< g::DoF

<< "\n"

<< "Underlying representation vector size : "

<< g::RepSize

<< "\n"

<< "Current values : " << g << "\n";

}

Listing 6.3: A generic ‘print‘ function

using the library as shown in Listing 6.2.

Writing generic code

Beside the embodiment of the mathematics from Section 2.2 in computer code, one
of the key features of manif is the possibility to write group-abstract generic code.
This is possible thanks to the CRTP inheritance scheme described in Section 6.2.

Such generic function may be purely functional, e.g. allowing to introspect some
properties of an abstract group object as shown in Listing 6.3. It also allows to write
group abstract wrappers to interface with other libraries as shown in Appendix D.3.
But more interestingly it also allows to define some helper functions to do computa-
tions on group abstract objects. An example is shown in Listing 6.4 that implements
the following equation,

n = ‖χ	 γ‖2 (6.1)

A larger and more interesting example of writing group-abstract code is given in
Appendix D.2.
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template <typename DerivedA, typename DerivedB>

void ominusSquaredNorm(const LieGroupBase<DerivedA>& rhs,

const LieGroupBase<DerivedB>& lhs)

{

return (rhs-lhs).coeffs().squaredNorm();

}

Listing 6.4: A generic multi-template function

class QuadraticCostFunction

: public ceres::SizedCostFunction<1, 1>

{

public:

virtual bool Evaluate(double const* const* parameters,

double* residuals,

double** jacobians) const {

const double x = parameters[0][0];

residuals[0] = 10 - x;

// Compute the Jacobian if asked for.

if (jacobians != NULL && jacobians[0] != NULL) {

jacobians[0][0] = -1;

}

return true;

}

};

Listing 6.5: Ceres ‘CostFunction‘

On the use with Ceres

The Ceres library is very popular in SLAM research for its relative ease of use, and
for offering AD. However, using Ceres for on-manifold optimization requires some
special care.

For a given error function f(·), one is interested in linearizing it,

f(χ⊕ τ ) = e + Je
ττ . (6.2)

While the manif library computes Jacobians as per (2.66a), many non-linear solvers
expect them to be expressed as per (B.3), that is with respect to the underlying
representation vector of the group element (e.g. with respect to the quaternion
parameters vector for SO(3)). Ceres is one of them.

In the Ceres framework, the computation of Je
τ is decoupled in two folds as

explained hereafter. The following terminology should sound familiar to Ceres users.
On one side, a ‘CostFunction’2 is a class representing and implementing an error

function as detailed in Listing 6.5. It produces the Jacobian

Je
χ⊕τ . (6.3)

2http://ceres-solver.org/nnls_modeling.html#costfunction
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Eigen::Quaterniond state;

ceres::Problem::Options problem_options;

ceres::Problem problem(problem_options);

// Add the state to Ceres problem

problem->AddParameterBlock(state.data(), 4);

// Associate a LocalParameterization to the state vector

problem_->SetParameterization(

state.data(),

new EigenQuaternionParameterization()

);

Listing 6.6: Ceres ‘EigenQuaternionParameterization‘

On the other side, to retrieve the Jacobian Je
τ , one must associate a ‘LocalParam-

eterization’3 to a state object as shown in Listing 6.6. The ‘LocalParameterization‘
class (and derived) performs the state update step of the optimization – χ ⊕ τ .
While the function operates for any χ and τ , its Jacobian is always evaluated for
τ = 0, thus actually providing the Jacobian

Jχ⊕ττ =
∂χ⊕ τ
∂τ

= lim
τ→0

χ⊕ τ − χ
τ

. (6.4)

Once both the ‘CostFunction‘ and ‘LocalParameterization‘’s Jacobians are eval-
uated, Ceres internally computes (6.2) from the chain rule (see Section 2.2.6),

Je
τ = Je

χ⊕τJ
χ⊕τ
τ . (6.5)

The intermediate Jacobians (6.3–6.4) that Ceres requires are not provided by manif

as it would compute directly the final Jacobian (6.2).
However, one still wants to use manif in a Ceres-based project. For this rea-

son, manif is compliant with Ceres AD scheme and the ‘ceres::Jet’4 type. The
AD scheme will take care to compute (6.3–6.4) and the composition (6.5) is per-
formed automatically afterward. An example of writing an on-manifold problem
with Ceres using manif is shown in Appendix D.3.

6.3 Evaluation

The computation performance of the manif library is evaluated on the benchmark
proposed in [139]. The benchmark is initially designed to compare automatic dif-
ferentiation libraries efficiency for any expression. While the manif library does not
provide such feature, one can argue that it does provide semi-automatic differenti-
ation since it implements the Jacobians for each operation of a complex expression
which may then be composed following the chain rule. Computing the Jacobians of
a complex expression then relates more to bookkeeping than partial-derivatives.

3http://ceres-solver.org/nnls_modeling.html#localparameterization
4http://ceres-solver.org/automatic_derivatives.html#dual-numbers-jets
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(a) Full view. (b) Zoom in over the fastest methods.

Figure 6.1: Comparison of the time required to evaluate the value and Jacobians of
(6.6) for N ∈ [1, 10].

Experiments are conducted on a system having an Intel i7-8850H, 2.6 GHz CPU,
16 GiB of RAM and running Ubuntu 18.04.

Rotation chain

The rotation chain test transforms a vector v1 ∈ R3 by a chain of rotation χ ∈ SO(3)
of increasing length N ,

v2 =

(
N∏
i=1

χi

)
v1 , (6.6)

so that for N = 3,
v2 = χ1χ2χ3v1 . (6.7)

The transformed vector value is evaluated together with the N + 1 Jacobians.
The results are given in Fig. 6.1. Fig. 6.1(a) shows that manif outperforms Ceres,

GTSAM and wave geometry-dynamic for any length of the rotations chain. However,
a closer look (Fig. 6.1(b)) shows that it is slightly slower than wave geometry while
both are very close to the performance of a hand-written Jacobian computation.

Pre-integrated IMU factor

The pre-integrated IMU factor test represents a scenario closer to a real use-case.
The factor error cost is a simplified version of the one presented in [95](45).

Let χij ∈ SO(3) be a pre-integrated measurement of rotation between times i
and j. Are associated to i and j the estimated orientation χi and χi in SO(3).
Let τ be an unknown small change of the IMU bias. The error of the updated
pre-integrated factor reads,

eij = (χij ⊕ τ )	 χ−1
i χj , (6.8)

for which each of the four Jacobians are evaluated. Table 6.2 reports the aver-
age computation time of the factor for both the wave geometry and the manif li-
braries. The results show that while both libraries performs really well, with exe-
cution times close to this of a hand-written Jacobian computation, manif performs
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Algorithm hand-coded
wave geometry

manif
forward typed forward reverse

mean (µs) 229.058 531.052 471.596 271.962 367.879
std (µs) 5.273 17.539 9.150 9.150 9.870

Table 6.2: Time to evaluate the value and Jacobians of (6.8).

better than wave geometry in its ‘forward’ and ‘typed-forward’ versions. However,
wave geometry ‘reverse’ version performs better than manif.

6.4 Conclusion

We presented a new C++11 library called manif. It implements the Lie theory for
use in state estimation in roboticapplications. The library is simple to integrate and
use in larger projects. The general concepts supporting its design are overviewed
and further detailed in Appendix D.

manif execution performance are evaluated and compared against similar li-
braries. The results show that it is comparable to the state of the art while offering
a more complete API and more Lie groups to be used.
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Chapter 7
Conclusion

In closing, the work presented throughout the thesis is recalled
and the main contributions are summarized. The lines for fu-
ture research study are drawn.
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This thesis investigated the problem of robust navigation for industrial service
robots. Besides being an active field that receives an increasing interest, the research
topic is motivated by the need of the company PAL Robotics to see their robots
evolve more robustly in real dynamic environments. We therefore considered indus-
trial mobile-bases as the main research platform. Such robot embeds a somewhat
minimal set of sensors to reliably perceive the robot ego-motion and its surrounding.
That is, wheel encoders and a LRF. We addressed the problem of navigation by
breaking it down to smaller sub-problems. We identified some of these sub-problems
as points of improvements and detailed them. We then proposed methods that ad-
dress each problem, detailed them at length and showed their benefits, effectively
improving the navigation system.

Although we could not cover the entirety of the wide navigation field, our work
did cover some of the key issues and resulted in substantial improvements over the
state of the art.

7.1 Summary of contributions

The main contributions of this thesis address three problems of navigation,

• Loop-closure – In Chapter 3 we presented two contributions to BoW-based
place recognition for loop closure using only 2D LRF (Section 3.3). The first
contribution aims at benefiting from the natural relative ordering of features
extracted from sensor readings. Pushing further the parallel of the BoW princi-
ples with NLP, we propose using the Viterbi algorithm and a weighting scheme
to favor longer sequences of consecutive words when comparing two laser scans.
Our second contribution is a database augmentation (Section 3.3.2) that em-
powers topological neighbors so that places that are ‘close’ to each other and
share common features are better ranked in the BoW query phase. Our pro-
posals substantially enhance the performances of the classical BoW method
and performs better than the state of the art while being also more robust to
changes in the environment.

• Odometry calibration – In Chapter 4 we proposed a method able to cali-
brate the odometry model of a mobile-base together with the extrinsic param-
eters of a sensor that observes ego-motion. The estimation can be performed
online in order to compensate for the variations of the model due to physical
change as they appear. The proposed method relies on an abstraction of the
IMU pre-integration theory allowing it to be applied to any sensor.

• Motion planning – In Chapter 5 we detailed the Timed-Elastic Smooth Curve
formulation for motion planning which generates smoothsplines on Lie groups.
The genericity of the proposed method was demonstrated by employing it in
two different planning tasks; motion planning for a mobile-base and motion
planning for a multi-link robotic arm. Our proposal was shown to perform
favorably against the state of the art for both applications while offering more
consistent results.

Furthermore, we contributed in Chapter 6 a C++ programming library for us-
ing Lie theory in state estimation for robotic applications. At the time of writing,
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the library has over 200 ‘stars’ on its Github repository1 and receives external con-
tributions demonstrating an interest of the community for this type of grounded
mathematical software tools.

7.2 Future work

We highlight in this section possible lines of future research that follows the afore-
mentioned contributions.

Loop closure

The central idea behind the use of the Viterbi algorithm (Section 3.3.1) – empha-
sizing candidates by asserting co-occurrent sequences of ordered words – is very
generic and could be applied – in a different modality – to other sensors. Features
also exhibit a relative 2D ordering in the image plane or in 3D in point-cloud. The
main challenge however is that the increase of dimension (a 2D LRF reading is 1D)
also increases the complexity of characterizing and matching such ordering. Our
second contribution, the database augmentation, can however be calqued without
modification to any sensor modality as it takes fully place in the BoW database
independently of the sensor in use.

Future work would be to investigate the use of soft clustering for feature quan-
tization. Unlike the K-Means algorithm, soft clustering methods allow for assigning
several labels to a single instance. The probability of belonging to a given cluster
center can be directly injected in the output probability of the HMM. Doing so we
expect to see the quantization error further reduced. Moreover, the reliability of
word matches can be weighted by inferring a score from word labeling probabilities.
For instance, two features, labeled C−D−E for one and E−F −G for the second,
could be matched together.

Odometry calibration

Future work would naturally aim at applying the pre-integration abstraction to dif-
ferent motion models and other self-calibration problems, including in 3D. Further-
more, the pre-integration scheme could be integrated in a larger SLAM framework.

Motion planning

An improvement that could be brought to the mobile-base planner is to use Signed
Euclidean Distance Grid (S-EDG) to represent the robot environment. Unlike the
EDG used in this work, a S-EDG also encodes the distance to the closest unoccupied
cell so that cells corresponding to obstacles are filled with negative values rather than
zeros. This difference allows for computing a discrete gradient throughout the grid
which would repulse the robot out of a collision state during the optimization process
and greatly improve over the current solution.

In a similar manner, the arm planner could benefit from improving the envi-
ronment representation. Its performance in highly cluttered environments could

1https://github.com/artivis/manif

93

https://github.com/artivis/manif


CHAPTER 7. CONCLUSION Chapter 7

be improved by dynamically increasing the resolution of the planner around often
colliding points or using locally updated collision environments.

A wider perspective for future research would be to merge together the two
applications presented. By doing so, one would seek at fully benefiting from a mobile
manipulator robot such as TIAGo. Integrating the mobile-base planning together
with the arm planning, the robot could anticipate motions much like humans do,
e.g. the robot could raise its arm toward an object while still being moving toward
the table on which the object sits.

Generally, the TESC formulation would benefit from using an optimization ini-
tialization point that is closer to the solution. To do so, rather than initializing
at identity or rely on interpolation, one could start the optimization process from
the trajectory provided by a sampling-based algorithm such as an Rapidly-exploring
Random Tree (RRT)-based algorithm.

A second point for improvement is the use of a SQP solver as proposed in the re-
cent work of [144]. The first benefit of using such solver is that constraints (e.g. min/-
max limits on velocity/acceleration etc.) would not be approximated anymore, thus,
the optimization result can be certified before its execution on the robot. Another
side benefit is that the TESC formulation would be closer to this of a pure Model
Predictive Control (MPC) method.

Finally, since TESC already has a notion of time in the planning procedure,
one could extend the planner capabilities taking into account dynamic information,
e.g. moving obstacles. This way a fully dynamic environment can be supported.

The manif library

Envisioning further developments for the library is fairly straightforward. First by
extending the available Lie groups implemented, with a couple examples coming to
mind,

• The trivial Rn group, which is already under development at the time of writ-
ing.

• The Sim(2) and Sim(3) groups which are 2D and 3D similarity transforms,
respectively. The latter is especially interesting for Vision-based works as it
embeds the rotation and translation in 3D but also scaling, one of the variables
in multi-view geometry.

Long-term development includes creating composite manifolds (see [70] Section
IV.) from any number of Lie groups already implemented. As of the time of writing,
the Jacobians matrices implemented in manif are right Jacobians (see Section 2.2.6).
While it also provides means to transform a right Jacobian into its left counter-part,
we envision the possibility for the user to easily choose which one (right- or left-
Jacobian) to compute and retrieve.

7.3 Closing words

To write the period that concludes a work of several years is not an easy task.
It forces me into a retrospection, reevaluate again the studies I conducted, the
contributions I made, the decisions I took.
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It is the occasion for me to revisit memories, dive into these constitutive moments
of a PhD student life. The frustration facing the embodiment of an idea simply not
working. The increasing sleep deprivation as a deadline comes closer. The anxiety
upon reception of a mail containing a decision concerning a submission. The proud
when such decision is positive. The incredible trips around the world. And repeat
the cycle. There is something of a rite of passage to it.

I should recall here that the PhD took place as a collaboration between a uni-
versity and a company. It allowed me to have a view of both sides and experience
both ways of working. I must recall that the entirety of the doctoral study took
place in Barcelona, Catalonia, Spain. This is important for I have a really hard time
picturing better place where to do it again if I had to. Such a lovely city.

Despite the doctorate being a collaboration, I did spent most of my time at the
company office; PAL Robotics. A place crowded with robots, small ones, big ones,
on wheels, on legs, sleeping or roaming around. A truly amazing place for whoever
likes robots. When I was not doing plain research there, I was essentially learning
software development.

I can’t really say if I would recommend anyone to go down the path of an
industrial PhD. I cannot compare it to a regular one but I have the feeling that it
does multiply the amount of work. The research targets and those of a company
does not always align well. It might have been better, in my case, to delay the
beginning of the PhD by a couple years. But all in all, pursuing the doctoral study
has been a formidable experience, both on a personal and professional level.

To conclude, really, not only did I learn a lot over the past years, I also found
my path. At least for while. To put it simply: I want to do software for robots. But
this is no place to poetize, get too sentimental. Or pay me a beer first.
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Appendix A
A brief history of ROS

ROS started in 2006 as an academic project at Standford University led by Keenan
Wyrobek and Eric Berger. At that time ROS was yet another iteration of the most
common problem in robotics at that time, almost each laboratory was implementing
its own software infrastructure handling the low-level communication and orchestra-
tion between the many software bricks inside a given robot. This work duplication
would sometimes happen within the same laboratory! Too much time spent on the
low-level framework, too little on actual higher-level robotics programs. Originally
called the ’Standford Personal Robotics Program’, the framework aimed at handling
all the low-level communication in a flexible and modular fashion together with some
tools allowing one to rapidly build complex intelligent robotics programs on top of
it. Ironically, the project born as an attempt to break the circle of re-inventing
the wheel in robotics by doing so (Fig. A.1). Indeed several other frameworks were
launched or already existed at that time, Player/Stage [145], URBI [146], Open-R1,
MRPT [128] or YARP [147] to name a few.

In 2008 Keenan and Eric met Scott Hassan, an investor and founder of Willow
Garage, the startup incubator that would host the development of ROS for the
following 6 years2. During that time ROS development was very fast paced and its
popularity skyrocketed, boosted by many brilliant engineers and an army of interns
from around the world. From 2010 to 2012, the ROS team produced no less than 6
releases,

• ROS Box Turtle

• ROS C Turtle

• ROS Diamond Back

• ROS Electric Emys

1https://www.sony.net/SonyInfo/News/Press_Archive/200205/02-017E/
2The original pitch deck of the ’Personal Robotics Program’ is available online https:

//tinyurl.com/ud4v2hl
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Figure A.1: Re-inventing the Wheel, by Jorge Cham.

• ROS Fuerte Turtle

• ROS Groovy Galapagos

It is also during that period that,

• Gazebo3 [148] became the main 3D simulator of ROS.

• the ROS community gained in structure with the launch of the ROS Answers
website4 and the first edition of the ROSCon conference.

• the Personal Robot 2, also known as PR2, was built.

In 2013, the news that Willow Garage was closing its doors has cast worriedness
in the robotics community as many had switched, partially or fully, to ROS. How-
ever everyone was quickly reassured when the creation of the Open Source Robotics
Foundation (OSRF) was made public, a new legal structure that would take on the
lead of ROS development. Followed years of growth and success both for the frame-
work and its community (Fig. A.2). Followed also the maturity of the framework,
with more and more commercial applications and robots delivered with ROS and a
software release cycle calked on the Ubuntu release cycle,

• ROS Hydro Medusa (2013)

• ROS Indigo Igloo (2014 - LTS)

• ROS Jade Turtle (2015)

• ROS Kinetic Kame (2016 - LTS)

• ROS Lunar Loggerhead (2017)

3http://gazebosim.org/
4https://answers.ros.org/
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(a) Growth of the ROS community as the
number of users on the different community
websites.

(b) Number of ROS-powered robots5.

(c) Citations of the original ROS paper [1].

Figure A.2: A collection of metrics showing the growth of the ROS community6.

• ROS Melodic Morenia (2018 - LTS)

• ROS Noetic Ninjemys (2020 - LTS)

where ’LTS’ stands for Long Term Support. Releases tagged LTS are supported for
five years.

Most modern robot manufacturers provide nowadays off-the-shelf ROS API
(Fig. A.2(b)).

6Only accounts for robots registered on https://robots.ros.org/.
6https://metrics.ros.org/index.html
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Appendix B
Reminders

B.1 Jacobians on vector spaces

For a multivariate function f(·) : Rm → Rn, the Jacobian matrix is the n×m matrix
of all first-order partial derivatives,

∂f(x)

∂x
=


∂f1
∂x1

. . . ∂f1
∂xm

...
...

∂fn
∂x1

. . . ∂fn
∂xm

 ∈ Rn×m . (B.1)

(B.1) shows that each column entry of the Jacobian matrix corresponds to the
variation of the function f(·) with respect to the perturbation of a single variable in

the vector x. For convenience we note J
f(x)
x , ∂f(x)

∂x
, allowing the chain rule to be

explicit as shown in Section B.2. Furthermore, one can write ji, the i -th column of
J
f(x)
x as,

ji =
∂f(x)

∂x
, lim

h→0

f(x + hei)− f(x)

h
∈ Rn , (B.2)

where ei is the i -th vector of the natural basis of Rm.

By concatenating all columns in (B.2) and dropping the basis vectors ei, (B.1)
can be written in a compact form,

Jf(x)
x , lim

h→0

f(x + h)− f(x)

h
∈ Rn×m . (B.3)

Note that (B.3) is only a notation convenience since the denominator h ∈ Rm and
division by vector is undefined. Such notation then requires to be scattered to
instances of (B.2) for computation.
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B.2 The chain rule

The chain rule is a formula for computing the derivative of the composition of
functions. For y = f(x) and z = g(y) we have h = g ◦ f the composed function
which maps x→ z, or z = g(f(x)).
The derivative of the composition reads,

h′ = (g′ ◦ f) · f ′ (B.4a)

or equivalently in terms of the variables,

h′(x) = g′(f(x)) · f ′(x) (B.4b)

or equivalently in Liebniz’s notation

∂z

∂x
=
∂z

∂y

∂y

∂x
. (B.4c)

Replacing (B.4c) with the Jacobians notation defined in Section B.1 reads,

Jz
x = Jz

yJy
x . (B.5)

One may see how this notation helps in keeping tracks of the correctness of the
chain. The super- and sub- scripts (y) of consecutive Jacobians must be the same
(Jz

yJy
x, reading from right to left). The subscript (x) of the element on the left-hand-

side of the equal operator (Jz
x) is the same as the subscript (x) of the right-most

element on the right-hand-side of the equal operator (Jy
x). Similarly the superscript

(z) of the element on the left-hand-side of the equal operator (Jz
x) is the same as the

superscript (z) of the left-most element on the right-hand-side of the equal operator
(Jz

y).
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Appendix C
Lie theory take away

This Appendix provides all of the necessary mathematical material for using the Lie
theory with each of the typical Lie group used in robotics.

Operation Inverse Compose Exp Log Right- ⊕ Right- 	

Right Jacobians Jχ
−1

χ = −Adχ
Jχ◦γ
χ = Adγ−1

Jχ◦γ
γ = I

J
Exp(τ )
τ = Jr(τ ) J

Log(χ)
χ = J−1

r (τ )
Jχ⊕τ
χ = (AdExp(τ ))

−1

Jχ⊕τ
τ = Jr(τ )

Jγ	χ
χ = −J−1

l (τ )
Jγ	χ
τ = J−1

r (τ )

Table C.1: Elementary Jacobian blocks

Lie group M, ◦ sizedim X ∈M Constraint τ∧ ∈ m τ ∈ Rm

Vector n-D Rn,+ n n v ∈ Rn v − v = 0 v ∈ Rn v ∈ Rn

Complex number S1, · 2 1 z ∈ C z∗z = 1 iθ ∈ iR θ ∈ R

2D Rotation SO(2), · 4 1 R R>R = I [θ]× =

[
0 −θ
θ 0

]
∈ so(2) θ ∈ R

2D Rigid Motion SE(2), · 9 3 M =

[
R t
0 1

]
R>R = I

[
[θ]× ρ

0 0

]
∈se(2)

[
ρ
θ

]
∈ R3

Quaternion S3, · 4 3 q ∈ H q∗q = 1 θ/2 ∈ Hp θ ∈ R3

3D Rotation SO(3), · 9 3 R R>R = I [θ]× =

[
0 −θz θy
θz 0 −θx
−θy θx 0

]
∈ so(3) θ ∈ R3

3D Rigid Motion SE(3), · 16 6 M =

[
R t
0 1

]
R>R = I

[
[θ]× ρ

0 0

]
∈se(3)

[
ρ
θ

]
∈ R6

Table C.2: Typical Lie groups used in robotics, including the trivial Rn.

Note: All Jacobians in this document are right Jacobians, whose definition
reads: δf(X)

δX
→ limϕ→0

f(X⊕ϕ)	f(X)
ϕ

.
However, notice that one can relate the left- and right- Jacobians with the Ad-

joint, AdExp(τ ) = Jl(τ )J−1
r (τ ).
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Appendix D
The manif library

D.1 Implementation details

Listing D.1: Inheritance hierarchy of SE2.

/**

* The class LieGroupBase declares

* the interface common to all groups classes

* and defines some functions as composition of other.

*/

template <typename DerivedLieGroup>

struct LieGroupBase

{

// Must be implemented by DerivedLieGroup

DerivedTangent log(){

// Call the implementation from the derived class

derived().log();

}

Vector act(Vector v) { ... }

Jacobian adj() { ... }

DerivedLieGroup compose(DerivedLieGroup o) { ... }

DerivedLieGroup inverse() { ... }

// Useful, deduced functions

DerivedLieGroup rplus(DerivedTangent t) {

// Use of the basic functions
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return compose(t.exp())

}

DerivedLieGroup lplus(DerivedTangent t) { ... }

DerivedTangent rminus(DerivedLieGroup o) { ... }

DerivedTangent lminus(DerivedLieGroup o) { ... }

// Some specific helpers

void setIdentity() { ... }

void setRandom() { ... }

// Some operators for syntactic sugar

DerivedLieGroup operator +(DerivedTangent t) {

return this->rplus(t);

}

DerivedLieGroup operator -(DerivedTangent t) { ... }

}

/**

* [SE2Base description]

* @type {[type]}

*/

template <typename DerivedSO2>

struct SE2Base : LieGroupBase<DerivedSO2>

{

// Define the necessary functions

DerivedTangent log() {

// Compute Log

}

Vector act(Vector) { ... }

Jacobian adj() { ... }

DerivedLieGroup compose(DerivedLieGroup) { ... }

DerivedLieGroup inverse() { ... }

// SE2-specific functions

Scalar x() { ... }

Scalar y() { ... }

Scalar theta() { ... }

}

/**

* [SE2 description]

* @type {[type]}

*/

template <typename Scalar>
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struct SE2 : SE2Base<SE2<Scalar>>

{

// SE2 constructors

SE2() = default;

SE2(Scalar x, Scalar y, Scalar theta) { ... };

// Actual data member

Eigen::Vector4d data;

}

Listing D.2: ‘TangentBase’ class pseudo-code

/**

*

*/

template <typename DerivedTangent>

struct TangentBase

{

// Must be implemented by DerivedTangent

LieAlg generator();

LieAlg hat();

DerivedLieGroup exp();

Jacobian rjac();

Jacobian ljac();

// Useful, deduced functions

void setZero();

void setRandom();

Jacobian rjacinv();

Jacobian ljacinv();

Jacobian smallAdj();

}

D.2 Writing generic code

In this example we tackle the problem of writing a Lie group abstract de Casteljau
algorithm [149]. This algorithm, developed by Paul de Faget de Casteljau, is a
recursive geometric algorithm which approximates polynomials in Bernstein form or
Bézier curves. In Appendix D.2, the algorithm is used to compute N elements of a
discrete smooth spline ∈ G that fits a user-provided collection of points lying on a
manifold G.

Listing D.3: A group-abstract ‘DeCasteljau‘ algorithm

/**

* @brief Curve fitting using the DeCasteljau algorithm
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* on Lie groups.

*

* @param trajectory, a discretized trajectory.

* @param degree, the degree of smoothness of the fitted curve.

* @param k_interp, the number of points to interpolate

* between two consecutive points of the trajectory.

* interpolate k_interp for t in ]0,1].

* @param closed_curve Whether the input trajectory is closed or not.

* If true, the first and the last points of the input trajectory are

used

* to interpolate points inbetween. Default false.

* @return The interpolated smooth trajectory

*

* @note A naive implementation of the DeCasteljau algorithm

* on Lie groups.

*

* @link https://www.wikiwand.com/en/De_Casteljau%27s_algorithm

*/

template <typename LieGroup>

std::vector<typename LieGroup::LieGroup>

decasteljau(const std::vector<LieGroup>& trajectory,

const unsigned int degree,

const unsigned int k_interp,

const bool closed_curve = false)

{

MANIF_CHECK(trajectory.size() > 2,

"Input trajectory must have more than two points!");

MANIF_CHECK(degree <= trajectory.size(),

"Degree must be less or equal to the number of input points!");

MANIF_CHECK(k_interp > 0,

"k_interp must be greater than zero!");

// Number of connected, non-overlapping segments

const unsigned int n_segments = static_cast<unsigned int>(

std::floor(double(trajectory.size()-degree)/double((degree-1)

+1))

);

std::vector<std::vector<const LieGroup*>> segments_control_points;

for (unsigned int t=0; t<n_segments; ++t)

{

segments_control_points.emplace_back(std::vector<const LieGroup

*>());

// Retrieve control points of the current segment

for (unsigned int n=0; n<degree; ++n)

{

segments_control_points.back().push_back(
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&trajectory[t*(degree-1)+n]

);

}

}

// Close the curve if there are left-over points

if (closed_curve && (n_segments*(degree-1)) <= trajectory.size()-1)

{

const unsigned int last_pts_idx = n_segments*(degree-1);

const unsigned int left_over = trajectory.size()-1-last_pts_idx;

segments_control_points.emplace_back(std::vector<const LieGroup

*>());

// Get the left-over points

for (unsigned int p=last_pts_idx; p<trajectory.size(); ++p)

{

segments_control_points.back().push_back( &trajectory[p] );

}

// Add a extra points from the beginning of the trajectory

for (unsigned int p=0; p<degree-left_over-1; ++p)

{

segments_control_points.back().push_back( &trajectory[p] );

}

}

const unsigned int segment_k_interp = (degree == 2) ?

k_interp : k_interp * degree;

// Actual curve fitting

std::vector<LieGroup> curve;

for (unsigned int s=0; s<segments_control_points.size(); ++s)

{

for (unsigned int t=1; t<=segment_k_interp; ++t)

{

// t in [0,1]

const double t_01 = static_cast<double>(t)/(segment_k_interp);

std::vector<LieGroup> Qs, Qs_tmp;

for (const auto m : segments_control_points[s])

Qs.emplace_back(*m);

// recursive chunk of the algo,

// compute tmp control points.

for (unsigned int i=0; i<degree-1; ++i)

{

for (unsigned int q=0; q<Qs.size()-1; ++q)

{
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Qs_tmp.push_back( Qs[q].rplus(Qs[q+1].rminus(Qs[q]) * t_01)

);

}

Qs = Qs_tmp;

Qs_tmp.clear();

}

curve.push_back(Qs[0]);

}

}

return curve;

}

D.3 On-manifold optimization using Ceres

and manif

Group-abstract ‘LocalParameterization‘

Benefiting for the possibility of writing generic code with manif, one can write a
single wrapper-class to implement the local-parameterization required by Ceres for
any Lie group implemented in manif. Following Section 6.2 and Appendix D.2, we
define a group-abstract ‘LocalParameterization’ as follows,

Listing D.4: Group-abstract ‘LocalParameterization‘

template <typename _LieGroup>

class LocalParameterizationFunctor

{

using LieGroup = _LieGroup;

using Tangent = typename _LieGroup::Tangent;

template <typename _Scalar>

using LieGroupT = typename LieGroup::template LieGroupTemplate<

_Scalar>;

template <typename _Scalar>

using TangentT = typename Tangent::template TangentTemplate<_Scalar

>;

public:

LocalParameterizationFunctor() = default;

virtual ~LocalParameterizationFunctor() = default;

template<typename T>

bool operator()(const T* state_raw,
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const T* delta_raw,

T* state_plus_delta_raw) const

{

const Eigen::Map<const LieGroupT<T>> state(state_raw);

const Eigen::Map<const TangentT<T>> delta(delta_raw);

Eigen::Map<LieGroupT<T>> state_plus_delta(state_plus_delta_raw);

state_plus_delta = state + delta;

return true;

}

};

//

...

// Some typedef helpers

using LocalParameterizationSO2 = LocalParameterizationFunctor<SO2d>;

using LocalParameterizationSE2 = LocalParameterizationFunctor<SE2d>;

using LocalParameterizationSO3 = LocalParameterizationFunctor<SO3d>;

using LocalParameterizationSE3 = LocalParameterizationFunctor<SE3d>;

// Helper function to create a Ceres

// autodiff local parameterization wrapper.

template <typename _LieGroup>

std::shared_ptr<

ceres::AutoDiffLocalParameterization<

LocalParameterizationFunctor<_LieGroup>,

_LieGroup::RepSize, _LieGroup::DoF>

>

make_local_parameterization_autodiff()

{

return std::make_shared<

ceres::AutoDiffLocalParameterization<

LocalParameterizationFunctor<_LieGroup>,

_LieGroup::RepSize,

_LieGroup::DoF>>();

}

Its use is shown below in Appendix D.3.

A Ceres problem example

This example highlights the use of the predefined Ceres helper classes available with
manif. In this example, we compute some average point from 4 points in SE(2).

Listing D.5: Ceres problem

// Tell Ceres not to take ownership of the raw pointers

Ceres::Problem::Options problem_options;

problem_options.cost_function_ownership = Ceres::

DO_NOT_TAKE_OWNERSHIP;

problem_options.local_parameterization_ownership =
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Ceres::DO_NOT_TAKE_OWNERSHIP;

Ceres::Problem problem(problem_options);

// We use a first manif helper that creates a Ceres cost-function.

// The cost function computes the distance between

// the desired state and the current state

// Create 4 objectives which are ’close’ in SE2.

std::shared_ptr<Ceres::CostFunction> obj_pi_over_4 =

manif::make_objective_autodiff<SE2d>(3, 3, M_PI/4.);

std::shared_ptr<Ceres::CostFunction> obj_3_pi_over_8 =

manif::make_objective_autodiff<SE2d>(3, 1, 3.*M_PI/8.);

std::shared_ptr<Ceres::CostFunction> obj_5_pi_over_8 =

manif::make_objective_autodiff<SE2d>(1, 1, 5.*M_PI/8.);

std::shared_ptr<Ceres::CostFunction> obj_3_pi_over_4 =

manif::make_objective_autodiff<SE2d>(1, 3, 3.*M_PI/4.);

SE2d average_state(0,0,0);

/////////////////////////////////

// Add residual blocks to Ceres problem

problem.AddResidualBlock( obj_pi_over_4.get(),

nullptr,

average_state.data() );

problem.AddResidualBlock( obj_3_pi_over_8.get(),

nullptr,

average_state.data() );

problem.AddResidualBlock( obj_5_pi_over_8.get(),

nullptr,

average_state.data() );

problem.AddResidualBlock( obj_3_pi_over_4.get(),

nullptr,

average_state.data() );

// We use a second manif helper that creates

// a Ceres local parameterization

// for our optimized state block.

std::shared_ptr<Ceres::LocalParameterization> local_parameterization

=
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manif::make_local_parametrization_autodiff<SE2d>();

problem.SetParameterization( average_state.data(),

local_parameterization.get() );

// Run the solver!

Ceres::Solver::Options options;

options.minimizer_progress_to_stdout = true;

Ceres::Solver::Summary summary;

Ceres::Solve(options, &problem, &summary);

std::cout << "summary:\n" << summary.FullReport() << "\n";

std::cout << "Average state:\nx:" << average_state.x()

<< "\ny:" << average_state.y()

<< "\nt:" << average_state.angle()

<< "\n\n";
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