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1 INTRODUCTION
Velocity Prediction Programs (VPP) are among the most commonly used tools in racing 

yacht design. Whether looking at a parameter-based variant with few degrees of freedom or a 
full 6 DOF experimental/CFD data postprocessor, their output is often critical to design 
decisions. In the past, research in this area has mostly concentrated on monohulls, since most 
major regattas were sailed in these boats. 

Following the 34th America’s Cup, (foiling) multihulls have moved into the focus of elite 
sailors and designers. However, publically available information on velocity prediction for 
these boats remains relatively sparse, especially if resources do not allow for extensive wind 
tunnel or RANS-CFD studies. Hence the computational techniques used in this study are 
deliberately restricted to freely available software and self-programmed code that can be run on 
a standard desktop computer.

2 FORCE DECOMPOSITION
VPPs are essentially optimisation tools for the determination of trim settings for the objective 

of maximum speed under the constraint of the equilibrium of forces and moments acting on the 
yacht, as expressed in Eq. (1).

�𝐹𝐹𝐹𝐹 = �𝑀𝑀𝑀𝑀 = 0 (1)

To apply the constraints, these forces have to be modelled, for which they are decomposed 
according to the fluid they operate in and the part of the boat they apply to.

Figure 1 shows the forces acting on the catamaran as considered in this study. The model 
assumes linearity of forces and small heel angles, since the righting moment is at its maximum 
with the windward hull just clearing the water or during level foiling. As a result vertical 
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aerodynamic forces can be omitted and the vertical position of the centre of gravity becomes 
irrelevant.

Aerodynamic forces are divided into wing and windage forces. Hydrodynamic forces are 
split into the contributions from the hull, daggerboard and rudder. For these the inclusion of the 
vertical forces is particularly important to simulate the foiling states. Dynamic lift on the hull 
is neglected since it is assumed to be small compared to static buoyancy and the forces exerted 
by the appendages plus the small error only applies to non-foiling states. 

Figure 1: Mechanic model of the catamaran

3 WINDAGE
The windage force is calculated as the product of force coefficient, dynamic pressure and 

area, as shown in Eq. (2). This universal approach is adapted for each of the three groups into 
which individual parts are divided depending on their geometrical characteristics. 

𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖(𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) = 𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹𝑖𝑖𝑖𝑖 ∗
𝜌𝜌𝜌𝜌
2
∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖) ∗ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 (2)

Group one contains cables and parts with circular cross-sections and small diameters in 
relation to their length. For these items two dimensional, laminar flow can be assumed [1],
giving a force coefficient of 1.1. Changes in apparent wind speed with height are incorporated 
through vertical segmentation and calculation of projected areas.

The second group consists of so-called platform components, whose main extents lie in a 
plane approximately parallel to the water surface. Hence hulls, beams, crew and the bowsprit 
are believed to be affected by constant apparent wind. The treatment of these parts is inspired 
by a method commonly used for monohulls [1], which was modified to account for the 
characteristics of the catamaran. Forces are considered to act on projected frontal and lateral 
areas independent of the wind angle. For the lateral projected area, which changes with the wind 
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angle, a conservative estimation of twice the area of a single hull has been used, as it is not clear 
how much flow reestablishment the separation distance between the hulls allows. A force 
coefficient of 0.6 was used for group two as suggested by FOSSATI [1]. Furthermore the lateral 
windage force is taken into account in this study since it influences the side force that has to be 
produced by the appendages.

Group three contains mostly smaller pieces of equipment and other items with unknown 
aerodynamic characteristics. Their contribution is estimated at ten percent of platform windage.

4 LIFTING LINE METHODS

4.1 Wing Forces
To capture the effects of flow around wings of finite span and the variation of apparent wind 

with height as well as the planform and trim of the wing, the forces acting on the wing are 
calculated by means of a lifting line method as described by GRAF et al. [2], which is 
summarised in the following.

Lifting Line methods are the expansion of the Kutta-Joukowski-theorem into the third 
dimension. The lifting vortex is elongated normal to the aerofoil section, resulting in a vortex
filament. At the wing tips this vortex filament is aligned with the incident flow and extended to 
infinity to satisfy Thompson’s law. The result is a so-called horseshoe vortex consisting of the 
bound vortex and two free vortex filaments. Changes in lift are modelled by altering vorticity 
through shedding of a free vortex filament [3]. A vortex sheet is created by decreasing the 
distance between two neighbouring free vortex filaments to zero. The influence of shed vorticity 
is expressed as velocity induced normal to incident flow and span, which reduces the effective 
angle of attack. The approach presented below assumes a bound vortex parallel to the vertical 
axis which simplifies the mathematics, but restricts the longitudinal alignment of the wing 
sections and the rake of the wing.

Figure 2 illustrates the discretisation of the wing. A horseshoe vortex consisting of the bound 
vortex along the quarter-chord line and the root and tip vortices represents the basis. Vortex 
sheets are distributed at constant intervals along the bound vortex, forming panels limited by
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their upper and lower borders. The induced velocity is calculated at collocation points 
positioned in each panel’s vertical centre.

Figure 2: Wing discretisation

Biot-Savart’s law is applied to determine the influence of a free vortex (orange highlighting) 
filament in collocation point Pc [4], Eq. (3).

𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −
1

4𝜋𝜋𝜋𝜋
Г
∆𝑧𝑧𝑧𝑧 

(3)

The effect of a vortex sheet created by the linear change in vorticity (Г2-Г1) between z1 and 
z2 is computed by Eq. (4) [2].

𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −
1

4𝜋𝜋𝜋𝜋
∗
Г2 − Г1
𝑟𝑟𝑟𝑟2 − 𝑟𝑟𝑟𝑟1

ln �
𝑧𝑧𝑧𝑧2 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖
𝑧𝑧𝑧𝑧1 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖

� (4)

The total velocity induced at Pc is calculated as the sum of the induced velocities of all panels 
plus the contributions of the root and tip vortices. Self-induction is excluded since the natural 
logarithm is not defined for a negative argument. To model the weakening of the root vortex 
through the endplate effects of the platform, the factor EP is adopted [2], Eq. (5).

𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �� −
1

4𝜋𝜋𝜋𝜋
∗
Г𝑖𝑖𝑖𝑖 − Г𝑖𝑖𝑖𝑖−1
𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖−1

ln�
𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖−1 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

�
𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=1

� − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
1

4𝜋𝜋𝜋𝜋
Г0

�𝑧𝑧𝑧𝑧0 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�
+

1
4𝜋𝜋𝜋𝜋

Г𝑁𝑁𝑁𝑁
(𝑧𝑧𝑧𝑧𝑁𝑁𝑁𝑁 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

(5)

Eq. (5) can be rewritten by summarising the geometric relations into factors, Eq. (6).

�� −
1

4𝜋𝜋𝜋𝜋
∗ Г𝑖𝑖𝑖𝑖 − Г𝑖𝑖𝑖𝑖−1 ∗ fsheetij

𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖≠𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=1

� − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
Г0
4𝜋𝜋𝜋𝜋

𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 +
Г𝑁𝑁𝑁𝑁
4𝜋𝜋𝜋𝜋

𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 (6)
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Since the induced velocities have to be known at the boundaries of each centre to determine 
the vorticities for the next iteration, induced velocities are interpolated from two neighbouring 
panels. At the root and tip of the wing they are extrapolated [2], as shown in Eqs. (7-9).

𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
(𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+1 + 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

2
(7)

𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0 = 2𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 − 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 (8)

𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁 = 2𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁−1 − 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁−1 (9)

Vorticity is derived from Kutta’s law which specifies lift as the product of density, velocity 
and vorticity and the equivalent definition of lift as function of lift coefficient, dynamic pressure 
and reference area [2], Eq. (10).

𝐿𝐿𝐿𝐿 = 𝜌𝜌𝜌𝜌𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑢𝑢𝑢𝑢 ∗ Г =
𝜌𝜌𝜌𝜌
2
∗ 𝑢𝑢𝑢𝑢2 ∗ 𝐴𝐴𝐴𝐴 ∗ 𝑐𝑐𝑐𝑐𝐿𝐿𝐿𝐿 (10)

The lift coefficient depends on the Reynolds number and the angle of attack, which is 
affected by the induced velocities [2], as shown in Eq. (11).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = AoA −
𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢𝑢𝑢

(11)

Combining Eqs. (10) and (11) results in Eq. (12) [2].

Г =
𝑢𝑢𝑢𝑢
2
∗ 𝐴𝐴𝐴𝐴 ∗ 𝑐𝑐𝑐𝑐𝐿𝐿𝐿𝐿 �𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 −

𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢𝑢𝑢

,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� (12)

Induced drag is proportional to the ratio of induced to incident velocity and lift. Parasitic 
profile drag is added to obtain total drag [2]. The required drag coefficient is obtained by 
interpolating in a table listing it as function of angle of attack and the Reynolds number, Eq. 
(13).

𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡 =
𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑢𝑢𝑢𝑢

∗ 𝐿𝐿𝐿𝐿 +
𝜌𝜌𝜌𝜌𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2
∗ 𝑢𝑢𝑢𝑢2 ∗ 𝐴𝐴𝐴𝐴 ∗ 𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) (13)

To enable trimming of the wing two parameters have been introduced. The angle between 
the root section and centreline of the yacht is denoted as αCL whereas twist is defined as the 
angle differential between root and tip section. Twist is varied linearly along the span, Eq. (14).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧𝑧𝑧) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧𝑧𝑧) − 𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑠𝑠𝑠𝑠

∗ (𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧0) (14)

Since the wing operates within the part of the planetary boundary layer with the highest 
velocity gradients, its vertical position can be altered according to the elevation of the platform.

4.2 Appendage forces
The forces produced by the appendages are calculated with a lifting line approach similar to 

that presented in Section 4.1. However, since the appendages are non-planar wings, a three-
dimensional approach has been selected. Additionally, the boundary conditions have been 
revisited to incorporate effects of surface proximity and surface piercing when foiling.

In contrast to the vortex sheets of wing, the appendages are modelled by horseshoe vortices 
distributed along the span. This choice has been made to simplify the mathematical
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relationships in the third dimension. The reduction in accuracy is compensated for by an 
increase in the number of panels. Figure 3 shows the discretisation of a three-dimensional wing.

Figure 3: Discretization of appendages wing

Induced velocities are calculated from the three dimensional form of the Biot-Savart-law [4],
Eq. (15).

𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖��������⃑ =
Г

4𝜋𝜋𝜋𝜋
�
𝑟𝑟𝑟𝑟 × 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡����⃑

|𝑟𝑟𝑟𝑟|3
𝑒𝑒𝑒𝑒

(15)

Using the definitions from figure 3 Eq. (15) can be rewritten [4] as Eq. (16).

𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖��������⃑ =
Г𝑖𝑖𝑖𝑖−1
4𝜋𝜋𝜋𝜋

(𝑟𝑟𝑟𝑟1���⃑ × 𝑟𝑟𝑟𝑟2���⃑ )
|𝑟𝑟𝑟𝑟1���⃑ × 𝑟𝑟𝑟𝑟2���⃑ |2 ∗ 𝑟𝑟𝑟𝑟0���⃑ ∗ �

𝑟𝑟𝑟𝑟1���⃑
|𝑟𝑟𝑟𝑟1���⃑ | −

𝑟𝑟𝑟𝑟2���⃑
|𝑟𝑟𝑟𝑟2���⃑ |� (16)

The expression is transformed into Eq. (17) to avoid the singularity that occurs when vectors 
𝑟𝑟𝑟𝑟1���⃑ and 𝑟𝑟𝑟𝑟2���⃑ are parallel [5].

𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖��������⃑ =
Г𝑖𝑖𝑖𝑖−1
4𝜋𝜋𝜋𝜋

(|𝑟𝑟𝑟𝑟1���⃑ | + |𝑟𝑟𝑟𝑟2���⃑ |)(𝑟𝑟𝑟𝑟1���⃑ × 𝑟𝑟𝑟𝑟2���⃑ )
|𝑟𝑟𝑟𝑟1���⃑ ||𝑟𝑟𝑟𝑟2���⃑ | ∗ (|𝑟𝑟𝑟𝑟1���⃑ | ∗ |𝑟𝑟𝑟𝑟2���⃑ | + 𝑟𝑟𝑟𝑟1���⃑ ∗ 𝑟𝑟𝑟𝑟2���⃑ )

(17)

To avoid the singularity in the Biot-Savart-law for distances approaching zero and improve 
numerical stability, two factors ki and kbi are introduced that gradually reduce the influence of 
the vortices when in close proximity to each other [6]. ecore denotes the diameter of the viscous 
vortex core and was set to 0.01 m for this study. A value of 2 was selected for m in Eq. (18) 
based on the recommendations of ABEDI [6].

𝑘𝑘𝑘𝑘𝑖𝑖𝑖𝑖 =
�
�𝑟𝑟𝑟𝑟𝚤𝚤𝚤𝚤��⃑ × 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ �
�𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ �

�
𝑚𝑚𝑚𝑚

�𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2𝑚𝑚𝑚𝑚 + �
�𝑟𝑟𝑟𝑟𝚤𝚤𝚤𝚤��⃑ × 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ �
�𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ �

�
2𝑚𝑚𝑚𝑚

�

1
𝑚𝑚𝑚𝑚

(18)
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𝑘𝑘𝑘𝑘𝑏𝑏𝑏𝑏 =
�|𝑟𝑟𝑟𝑟1���⃑ × 𝑟𝑟𝑟𝑟0���⃑ |

|𝑟𝑟𝑟𝑟0���⃑ | �
𝑚𝑚𝑚𝑚

�𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2𝑚𝑚𝑚𝑚 + �|𝑟𝑟𝑟𝑟1���⃑ × 𝑟𝑟𝑟𝑟0���⃑ |
|𝑟𝑟𝑟𝑟0���⃑ | �

2𝑚𝑚𝑚𝑚
�

1
𝑚𝑚𝑚𝑚

(19)

Using the notation from figure 3 and applying Eqs. (18) and (19) to the bound and free vortex 
filaments, an expression for the total influence of a horseshoe vortex can be derived [5], Eq. 
(20).

𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤,𝑖𝑖𝑖𝑖−1�����������⃑ =
Г𝑖𝑖𝑖𝑖−1
4𝜋𝜋𝜋𝜋

⎣
⎢
⎢
⎢
⎡

𝑘𝑘𝑘𝑘2

� 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴
�����⃑
�𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ �

× 𝑟𝑟𝑟𝑟2���⃑ �

|𝑟𝑟𝑟𝑟2���⃑ | ∗ �|𝑟𝑟𝑟𝑟2���⃑ | − 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑
�𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ �

∗ 𝑟𝑟𝑟𝑟2���⃑ �
+ 𝑘𝑘𝑘𝑘𝑏𝑏𝑏𝑏

(|𝑟𝑟𝑟𝑟1���⃑ | + |𝑟𝑟𝑟𝑟2���⃑ |)(𝑟𝑟𝑟𝑟1���⃑ × 𝑟𝑟𝑟𝑟2���⃑ )
|𝑟𝑟𝑟𝑟1���⃑ ||𝑟𝑟𝑟𝑟2���⃑ | ∗ (|𝑟𝑟𝑟𝑟1���⃑ ||𝑟𝑟𝑟𝑟2���⃑ | + 𝑟𝑟𝑟𝑟1���⃑ ∗ 𝑟𝑟𝑟𝑟2���⃑ )

− 𝑘𝑘𝑘𝑘1

� 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴
�����⃑
�𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ �

× 𝑟𝑟𝑟𝑟1���⃑ �

|𝑟𝑟𝑟𝑟1���⃑ | ∗ �|𝑟𝑟𝑟𝑟1���⃑ | − 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑
�𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ �

∗ 𝑟𝑟𝑟𝑟1���⃑ �
⎦
⎥
⎥
⎥
⎤

(20)

Again the geometrical relationships can be factored out, transforming Eq. (20) to Eq. (21).

𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤,𝑖𝑖𝑖𝑖−1�����������⃑ =
Г𝑖𝑖𝑖𝑖−1
4𝜋𝜋𝜋𝜋

∗ 𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖−1 (21)

The total induced velocity at point PC is the sum of the velocities induced by each individual 
horseshoe vortex, as expressed in Eq. (22).

𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤���⃑ = �𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤,𝚥𝚥𝚥𝚥�����⃑
𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=1

(22)

Local flow conditions are determined by the total induced velocity to the incident flow.

𝑡𝑡𝑡𝑡𝚤𝚤𝚤𝚤����⃑ = 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ + 𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖����������⃑ (23)

The angle of attack is derived using vector calculus, as in Eq. (24). 𝑞𝑞𝑞𝑞𝚤𝚤𝚤𝚤���⃑ and 𝑐𝑐𝑐𝑐𝚤𝚤𝚤𝚤��⃑ denote the 
vectors normal to the wing surface and along the chord, respectively [5].

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 = tan−1 �
𝑡𝑡𝑡𝑡𝚤𝚤𝚤𝚤����⃑ ∗ 𝑞𝑞𝑞𝑞𝚤𝚤𝚤𝚤���⃑
𝑡𝑡𝑡𝑡𝚤𝚤𝚤𝚤����⃑ ∗ 𝑐𝑐𝑐𝑐𝚤𝚤𝚤𝚤��⃑

� (24)

Equating the three dimensional form of the Kutta-Joukowski-theorem [4] with the well-
known formula defining lift as the product of lift coefficient, dynamic pressure and area yields 
an expression to calculate vorticity, as shown in Eq. (25). 𝑡𝑡𝑡𝑡𝚤𝚤𝚤𝚤��⃑ represents the vector along the span 
of the wing section.

𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
2

∗ 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴2 ∗ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = |Г𝑖𝑖𝑖𝑖 ∗ 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑡𝑡𝑡𝑡𝚤𝚤𝚤𝚤����⃑ × 𝑡𝑡𝑡𝑡𝚤𝚤𝚤𝚤��⃑ | (25)

Introducing local chord 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 and span 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 Eq. (25) can be transformed to Eq. (26).
1
2
∗ 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴2 ∗ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 = |Г𝑖𝑖𝑖𝑖 ∗ 𝑡𝑡𝑡𝑡𝚤𝚤𝚤𝚤����⃑ × 𝑡𝑡𝑡𝑡𝚤𝚤𝚤𝚤��⃑ |

(26)

Since vorticity has to be proportional to the lift coefficient, Eq. (26) can be transposed to 
result in the formula used to calculate vorticity, Eq. (27).
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Г𝑖𝑖𝑖𝑖 =
0.5 ∗ 𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴2 ∗ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 ∗ 𝑐𝑐𝑐𝑐𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖

|𝑡𝑡𝑡𝑡𝚤𝚤𝚤𝚤����⃑ × 𝑡𝑡𝑡𝑡𝚤𝚤𝚤𝚤��⃑ |
(27)

The total force exerted by a profile section is the sum of the parasitic profile drag and the 
force derived from the Kutta-Joukowski-theorem, Eq. (28).

𝐹𝐹𝐹𝐹𝚤𝚤𝚤𝚤��⃑ = 𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡��������⃑ + 𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ Г𝑖𝑖𝑖𝑖 × �𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ + 𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤���⃑ � (28)

Parasitic profile drag is calculated as the product of dynamic pressure, area and drag 
coefficient acting along the direction of the incident flow, as given in Eq. (29).

𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�������⃑ = 𝑐𝑐𝑐𝑐𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� ∗
𝜌𝜌𝜌𝜌𝑤𝑤𝑤𝑤𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

2
∗ �𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ �

2
∗ 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 ∗

𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑

�𝐵𝐵𝐵𝐵𝐴𝐴𝐴𝐴�����⃑ �
(29)

The effects of surface proximity have to be considered for the appendages. Since the surface
represents a constant pressure boundary, the pressure fields of the appendages deform the water 
surface [7]. As a result transverse waves are formed and the extents of the pressure fields are 
reduced. The latter is often modelled by virtual mirroring of the foil at the water surface to 
cancel out the foil’s influence. This approach neglects the deformation of the water surface, 
which can be justified by the long wavelength associated with high Froude numbers [8]. Hence 
the total induced velocity calculated in Eq. (22) has to be amended by the contribution of the 
mirror image, as shown in Eq. (30).

𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤���⃑ = �𝑣𝑣𝑣𝑣𝚤𝚤𝚤𝚤,𝚥𝚥𝚥𝚥�����⃑
𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=1

+ �𝑣𝑣𝑣𝑣𝑚𝑚𝑚𝑚𝚤𝚤𝚤𝚤,𝚥𝚥𝚥𝚥��������⃑
𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖=1

(30)

Since the densities of water and air differ by a factor of approximately 103, surface piercing 
states are modelled by setting the density of airborne sections to zero.

4.3 Implementation
Since the given equations are not independent of each other, the solution has to be found 

iteratively. The computation sequence given in [2] has been slightly modified from the original 
to reduce runtime in the present work. The sequence of computation steps is given below.

1. Assign geometric properties and apparent incident velocity to each profile section.
2. Calculate matrix of influence factors from geometric relations.
3. Determine angle of attack and derive lift coefficient for each section.
4. Obtain section vorticity from lift coefficient 
5. Compute total velocity induced in each panel using geometric influence factors.
6. Check convergence criteria and repeat steps 3.-5. if necessary.
7. Calculate section lift
8. Calculate induced and parasitic drag.
9. Determine driving and side forces from sectional lift, drag and AWA and integrate 

forces over span.

Since the method is only valid for primarily two-dimensional flow [2], stall has to be 
avoided, because of separated flow having a pronounced three dimensional flow pattern. To 
reduce the chance of trim optimisation leading to stalled wing sections, the progression of 
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the lift curve was altered. Figure 4 shows an exemplary comparison between the real trend 
of the lift coefficient as a function of angle of attack and the altered curve used for this study. 
It can be seen that in reality the lift drops somewhat after the stall angle is reached. The lift 
then starts to increase again after a local minimum is passed. The modified curve passes the 
local minimum and continues its descent until zero.

Figure 4: Comparison of real and modified lift curves

According to GRAF et al [2] the iterative process needs under-relaxation in order to achieve 
convergence. Under-relaxation factors of ω = 0.1 for the wing and ω = 0.05 for the appendages 
have been selected and used in Eq. (31).

𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜔𝜔𝜔𝜔���
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

+ 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1 − 𝜔𝜔𝜔𝜔)���������
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

(31)

5 HULL RESISTANCE
Hull resistance can be is split into frictional, wavemaking and viscous pressure components. 

In this study friction is assessed by applying the ITTC’57 friction line using the static wetted 
surface area.

For the computation of wavemaking drag OLIVER [9] suggested using the theory developed 
by MICHELL. His approach belongs to the group of slender ship theories to which the hulls 
concerned in this study seem ideally suited, with slenderness and length to beam ratios of 11.7 
and 17.6, respectively. One disadvantage arising from this choice is the neglect of viscous 
pressure resistance, since this is not captured in the theory. For more details the reader is 
referred to [10]

MICHELL’s theory is implemented into the potential flow research code Michlet, which was 
developed by CYBERIAD [10].

Figure 5 shows a comparison of predicted resistance using friction line and panel code to 
experimental towing tank data of a Tornado class catamaran hull. The resistance hump around 
hull speed is well captured. Although there is generally good agreement between the datasets 
up to a Froude number of around 0.8, the disparity between calculated wave-making resistance 
and measured residuary resistance increases with speed. This is in accordance with expectations 
since viscous pressure resistance is caused by the loss in momentum through friction, whose 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

c L
 [-

]

AoA [°]

cL real

cL modified

320



Richard G. J. Flay, Nils Hagemeister

10

share of the overall increases with speed. Hence, viscous pressure resistance will increase with 
speed as well. This relationship is also indicated by the shape of the curves with the predicted 
wave-making drag exhibiting asymptotic behaviour at high Froude numbers, while the 
residuary resistance values seem to follow the frictional resistance graph.

Figure 5: Comparison of predicted and experimental resistance data

Similar to the hydrostatic forces, the resistance of the hull has to be known as a function of 
the draft in order to be able to model the yacht’s transition to foiling. Hence resistance curves 
have been calculated for different drafts. The results are shown in figure 6 for a range of drafts 
between 0.05 m and 0.45 m.

Figure 6: Hull resistance curves for range of drafts

6 RESULTS
The models have been integrated into a VPP which has been implemented as a constraint 

optimisation routine in Matlab. Figure 7 shows a polar plot of the VPP outputs for 4 different 
wind speeds. It can be seen that speeds of the order of up to 2.5 times wind speed are reached. 
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It can be seen that an increase in wind speed and true wind angle creates the desired effect of 
an increase in boat speed. This trend continues until the wing lift cannot be increased by an 
increase in angle of attack anymore, or the minimum heeling moment constraint cannot be 
satisfied anymore. Furthermore, the transition to foiling can be clearly identified as distinct 
jumps in speed in two of the curves.

Figure 7: Speed polar plot for windspeeds of 5.0m/s (black), 7.5m/s (green), 10.0m/s (red) and 12.5m/s (blue)

7 CONCLUSIONS
- Different models aimed at the calculation of forces for the velocity prediction of 

catamarans have been presented.
- The results of the velocity prediction are encouraging for further research.
- The hardware demands of all models are such that they can be run on standard 

desktop computers and still deliver results within a fraction of a second.
- Apart from Matlab, only free software is used, limiting the required resources

required to achieve useful VPP predictions.
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