
IS - Flow Problems and Control, Optimisation, and UncertaintyAdjoint-based optimization methods for flows problems

VII International Conference on Computational Methods in Marine Engineering
MARINE 2017

M. Visonneau, P. Queutey and D. Le Touzé (Eds)
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Abstract. Over the last decade, adjoint sensitivity analysis has become an established technique
for the task of shape optimisation when many degrees of freedom are present. The success stems
from the fact that the adjoint approach only needs one flow simulation for both the primal and
the adjoint system, no matter how many design parameters are present. The derivation of the
continuous adjoint approach is based on an augmented cost function which inheres the primal
governing equations (here the RANS-equations) as constraints which have to be satisfied in the
computational domain. Accordingly, the primal RANS equations are augmented with Lagrange
multipliers and added to the thermal-fluid dynamic cost function. For shape optimisation,
the variational formulation of the augmented cost function indicates the behaviour of the cost
function with the variation of the shape, i.e. the variation of the surface mesh in normal direction.

We present the derivation and application of the continuous adjoint approach for the incom-
pressible Reynolds-averaged Navier-Stokes (RANS) equations augmented with heat transfer.
The derived approach is implemented into the framework of the C++ CFD toolbox OpenFOAM
in order to derive a complete design cycle for shape optimisation. The derived optimisation pro-
cess is applied to dimpled surface geometries in order to optimise cooling devices.

1 INTRODUCTION

Originally arising in control theory [1], adjoint sensitivity analysis has made its way into the
area of fluid mechanics [2, 3]. Since then the method has become an established technique for
shape and topology optimisation of fluid problems, especially when many degrees of freedom
are present [4, 5]. The success stems from the fact that the adjoint approach only needs two
flow simulations, one for the primal and one for the adjoint system, no matter how many
design parameters are present. This is a clear advantage over standard parametric geometry
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optimization, which needs usually as many flow solutions as parameter combinations are present.
This benefit, especially for large application cases and consequently adjoint based optimization
methods, has become an important tool in the optimization of industrially relevant application
(e.g. [6–12]).

In this approach, we apply the the continuous adjoint approach to the incompressible Reynolds-
averaged Navier-Stokes (RANS) equations augmented with heat transfer. We derive the ac-
cording adjoint system and adjoint boundary conditions for maximizing heat flux over a certain
boundary. The derived optimization process is applied to dimpled surface geometries (see [15,16])
in order to optimize cooling devices.

2 THE GENERAL OPTIMIZATION PROBLEM

Let I be a specific cost function defined on an admissible domain Ω ⊂ RN with boundary Γ.
The domain Ω will be allowed to vary during the design process and is parametrized through a
set of design variables β. In addition, a set of given constraints r(s) has to be obeyed, typically
a set of partial differential equations (governing equations) with state variables s. We can
formulate the problem by

max
β

I(s,β) subject to r(s,β) = 0 in Ω. (1)

This means we adapt the domain Ω by changing the design parameter β in order to improve
the cost function I.

The dependency of the cost function I(s,β) with respect to their parameters is expressed by
their total variation:

δI = δsI + δβI =
∂I

∂s
δs

︸ ︷︷ ︸
flow

+
∂I

∂β
δβ

︸ ︷︷ ︸
geometry

. (2)

The necessary information for geometry variation comes from the so-called sensitivity ∂I/∂β
of the cost function with respect to the design parameters.The sensitivity reveals how the cost
function is affected by an admissible variation δβ of the design parameters β. In our approach,
we assume shape optimization, which means we want to deform the surface mesh of the simu-
lation domain. Thus, the design parameters are the positions of the nodes of the surface mesh.
Variation of the design parameter means in this context the variation in the direction of the
corresponding normal vector, i.e. inward or outward movement of the surface node.

In general, the evaluation of the second right hand side term of (2) requires a solution of the
flow field for each design parameter βi [4, 5]. Thus, if one considers the variation of the surface
nodes as design parameters, as we are going to do in the following, one has to carry out as many
solution r(s, βi) as design parameters βi are present. Typically, the number of surface nodes βi
is of the order i = 106 − 107. In order to avoid such computational effort, on changes from to
the dual or adjoint formulation of the governing equations, what we demonstrate in the next
sections.
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3 THE PRIMAL EQUATION SYSTEM

The primal equation system of the optimization problem is constituted by the governing
equations of the flow problem, i.e. the incompressible Navier-Stokes equations:

∂t(ρu) + (u · ∇)u = −∇p+∇ · [2νD(u)], (3)

∂tρ+∇ · u = 0.

This equations forms the primal system with primal variables: pressure p and velocity u =
(u1, . . . , u3)

T . Here, D(u) = 1
2 [∇u+ (∇u)T ] is the stress tensor and ν the kinematic viscosity.

In order to treat heat transfer problems the system (3) is equipped with a thermal diffusion
equation and thermal diffusivity α:

∂T

∂t
+ (u · ∇)T = ∇(α · ∇T ). (4)

The primal flow field can be described by the state vector s = (u, p, T )T , which is a solution
of the system (3,4). Since we focus on steady state solutions, we omit the time-derivatives and
rewrite the system in residual form:

r(s) =



(r1, r2, r3)

T

r4
r5


 =



(u · ∇)u+∇p−∇ · [2νD(u)]

−∇ · u
(u · ∇)T −∇(α · ∇T )


 = 0 (5)

4 THE ADJOINT FORMULATION

In order to derive the adjoint system and the desired sensitivities we have to formulate an
augmented cost function which obeys the governing equations as a constraint. This leads to a
formulation of the adjoint system and adjoint boundary conditions. The necessary procedure
will be demonstrated in the following.

4.1 The augmented cost function

The general approach of deriving the adjoint sensitivity analysis starts from an augmented
objective function L, which is based of the cost function I augmented by the residual form of
the state equation r(s,β) = 0, and the adjoint state variables ŝ acting as Lagrange multipliers.
This approach is meaningful since the fulfilment of the governing equations acts as a constraint
on the optimisation problem.

L(s,β) = I(s,β) +

∫

Ω

ŝTr dΩ. (6)

Since (6) depends on the solution of the continuous flow field r and the current design expressed
by the vector of design variables β the total variation of L due to a change in Ω is

δL =


∂I

∂s
+

∫

Ω

ŝT
∂r

∂s
dΩ


 δs +


 ∂I

∂β
+

∫

Ω

ŝT
∂r

∂β
dΩ


 δβ. (7)

Choosing ŝ such that the first right hand side term in (7) vanishes identically, i.e. for all
admissible states s, we write:
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∂I

∂s
δs+

∫

Ω

ŝT
∂r

∂s
dΩδs. = 0. (8)

This choice of the adjoint state vector ŝ motivates the alternative viewpoint of the adjoint
variables as Lagrangian multipliers [4]. Consequently, the sensitivity of (6) reduces to

δβL =
∂I

∂β
δβ

︸ ︷︷ ︸
=δβI

+

∫

Ω

ŝT
∂r

∂β
δβ

︸ ︷︷ ︸
=δβr

dΩ. (9)

4.2 Sensitivity of the cost function

The sensitivity of the cost function with respect to the design parameters (9) can be refor-
mulated in order to shift the variation of the state vector from β to s. By using the fact that
the variation of r vanishes for any admissible variation of s, we deduce

0 = δr = δβr + δsr, (10)

and thus

δβr = −δsr. (11)

Substituting (11) into (9) yields

δβL = δβI −
∫

Ω

ŝT δsr dΩ. (12)

Now we are able to calculate (9) by the variation due to the design parameters and an inner
product between the variation of the governing equation with respect to the design variables β
and the adjoint state vector ŝ. The latter is just the solution of the adjoint system, i.e. the
solution of our adjoint flow equation.

4.3 The adjoint equation system

Starting point of the adjoint approach is variation of the Lagrange function (8). This variation
has to be identically zero, i.e.

δsL = δsI +

∫

Ω
ŝT δsr dΩ ≡ 0. (13)

The vector ŝ can be interpreted from two different viewpoints: as vector of the Lagrange multi-
pliers, or as adjoint state vector with adjoint velocity, adjoint pressure and adjoint temperature,
i.e. ŝ = (û, p̂, T̂ )T .

After several transformations and the demand that the derived equations have to be fulfilled
for all variations of the primal state one derives the corresponding inhomogeneous continuous
adjoint system (see [13] for details):
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D(û)u+∇ · (2νD(û))−∇p̂+ T∇T̂ =
∂IΩ
∂u

,

∇ · û =
∂IΩ
∂p

, (14)

u · ∇T̂ +∇ · (α∇T̂ ) =
∂IΩ
∂T

.

In the case one assumes only surface contributions, i.e. one focusses on shape rather than volume
or topology optimisation, one has to deal with the homogeneous adjoint system:

D(û)u+∇ · (2νD(û))−∇p̂+ T∇T̂ = 0,

∇ · û = 0, (15)

u · ∇T̂ +∇ · (α∇T̂ ) = 0.

4.4 Adjoint boundary conditions

In order to close the system (15) we have to fulfil appropriate boundary conditions.
Here one distincts between conditions which have to be fulfilled at the different types of

boundaries, i.e. inlet, wall and outlet, in order to incorporate the different situation at each
boundary type (see [7]).

To this use we split the adjoint velocity vector into tangential and normal parts, i.e.

û = ût + ûn = utt+ unn with t ⊥ n. (16)

With these assumptions and appropriate primal boundary conditions, we derive boundary con-
ditions for the adjoint variables at the inlet, wall and outlet:
Inlet

ût = 0, ûn = −∂IΓ
∂p

,
∂p̂

∂n
= 0, T̂ = 0. (17)

At the inlet, we assume Dirichlet conditions for primal velocity and primal temperature, and
Neumann conditions for the primal pressure.
Wall

ût = 0, ûn = −∂IΓ
∂p

,
∂p̂

∂n
= 0,

∂T̂

∂n
= − 1

α

IΓ
∂T

. (18)

At walls, we assume no-slip conditions for the primal velocity, Dirichlet conditions for the primal
temperature, and Neumann conditions for the primal pressure.
Outlet

unût + ν(n · ∇)ût =
∂IΓ
∂ut

,

û · u+ ûnun + ν(n · ∇)ûn + T T̂ +
∂IΓ
∂un

= p̂ (19)

unT̂ + α
∂T̂

∂n
=

∂IΓ
∂T

The boundary conditions are generally in the form that they contain surface contribution IΓ.
Choosing a concrete cost function leads to specific adjoint boundary conditions.
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5 OPTIMIZATION PROCEDURE

Obviously the optimization process depends on the overall design goal, i.e. minimizing or
maximising the cost function. The link between optimization of the cost function and parameter
variation is the total variation of the augmented cost function (6), i.e. the sum of the total
variation with respect to the state vector s and the design parameters β:

δL = δsL+ δβL. (20)

The variation with respect to the state vector s directly leads to the solution of the adjoint
system and was demonstrated in the foregoing section. What remains is the variation of the
Lagrangian L with respect to the normal displacement of the boundary, which was

δβL = δβI + δβ

∫

Ω
sTrΩ. (21)

These are the sensitivities of the system with respect to the design parameter β. They keep the
essential information how to deform the geometry in order to improve the cost function.

5.1 Sensitivities

In order to derive the sensitivity information one has to evaluate the variation of the state
vector s with respect to the surface variation. Following the approach in [5] we linearised around
a surface node xn with s(xn + βi) = s(n) + ∂βi +O(β2

i ) and approximate the variation as

δβs = δβs · δβ ≈ ∂ns · δβ (22)

This yields locally

δβL = δβI + ∂ns · ∂sIΓ (23)

Following the derivation in [7], i.e. considering no-slip condition at walls and the adjoint bound-
ary conditions, the local surface sensitivity of a normal displacement of the surface is

∂L

∂βi
≈ −ν

∂ut

∂ni

∂ût

∂ni
− α

∂T

∂ni

∂T̂

∂ni
=: σi (24)

with sensitivity vector σ = (σ1, . . . , σN )T , corresponding surface normal vector ni and N the
number of surface nodes.

5.2 Mesh deformation

The sensitivities represent the information how to deform the geometry, especially in which
direction: inward or outward movement of the surface node. In general, the resulting sensitivity
vector field will be highly distorted. In order to derive a smooth deformation vector field and
thus a continuous geometry update one has to smooth the sensitivity field σ. This is usually
carried out by solving a Laplace equation for σ with a suitable diffusivity γ:

∇ · (γ∇σ) = 0 (25)

which results in a smoothed sensitivity field σ̃, which is used to perform the mesh update. The
mesh update is carried out with a standard mesh motion approach in OpenFOAM.
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5.3 The general design cycle

The overall goal of the design process is to derive a method of a successive improvement of
the cost function based of the derived sensitivity information from the solution of the primal
and the adjoint system. This procedure is an iterative process, meaning we have to apply
the adjoint-based sensitivity analysis to the updated geometry in a repeated manner until it is
converged or a prescribed design goal is reached. The resulting design loop can be formulated
via the following steps:

For i:=1,N

• Step 1: Solve primal equation system (5).

• Step 2: Solve the adjoint equation system (15).

• Step 3: Compute the sensitivity information (24).

• Step 4: Update the geometry based on Step 3.

• Step 5: Evaluate the cost function Ii.

• Step 6: Proceed if |Ii − Ii−1| > ε

The ingredients of this optimization cycle, i.e. primal and adjoint solver, sensitivity computation,
cost function evaluation and mesh deformation, are implemented in and use tools from the open-
source CFD toolbox OpenFOAM [14].

6 APPLICATION

As a proof-of-concept we apply the approach to a concave dimpled plate [15]. Compared to
ribs and fins, dimpled geometries show the best thermal-hydraulic performance defined as the
ratio between the heat exchange and the pressure loss (see [16] for details). Our design goal is
to maximise the wall heat flux on the lower boundary with the dimple.

6.1 The domain

We start from a rectangular domain with length x = 0.276m, width y = 0.08m, and height
z = 0.03m. The lower and upper faces are wall boundaries, the lateral ones are handled as
cyclic boundaries. The lower boundary is equipped with a dimple with diameter d=0.048m.
and height h=0.012m. The overall simulation domain and the lower wall with dimple are
represented in Figure 1.

Initial conditions for the simulations at the inlet are: velocity U = 5 m/s and temperature
T = 330 K. At wall boundaries we have: velocity U = 0 m/s and temperature T = 293 K.

6.2 Cost function

The design goal is to maximise the heat flux at the lower boundary. Consequently, the cost
function is chosen as the integral of the heat flux through the bottom face i.e. the normal
derivation of the temperature field on this patch:

I =

∫

wall

∂T

∂n
dΓ (26)
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Figure 1: Simulation domain (left) and lower wall with dimple (right)

6.3 Results

In the following we present and discuss the results of the application of the optimization cycle
from section 5.3 to the above described geometry in order to improve the cost function (26).

Figure 2: Wall heat flux vs. design iteration

Figure 2 represents the improvement of the wall heat flux on the lower boundary due to the
design cycles iterations. It is worth to note that the pressure loss of the optimized geometry is
merely increased by approx. 3%, while the wall heat flux is improved by approx. 15%.

A comparison between the shape of the initial dimple geometry and the optimized one is
depicted in Figure 3. It can be clearly seen that the algorithm flattens the upstream edge of the
dimple geometry while the downstream edge is slightly raised.

Flow fields for velocity and temperature of simulations of the initial and the optimized dimple
geometry are depicted in Figure 4 and Figure 5, respectively. One clearly sees how velocity and
temperature propagate into the dimpled domain, which results in an improved heat-flux at the
lower boundary.
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Figure 3: Comparison of initial and optimized dimple shape (longitudinal cut)

Figure 4: Velocity (top) and temperature (bottom) of the initial geometry

Figure 5: Velocity (top) and temperature (bottom) of the optimized geometry

7 SUMMARY AND OUTLOOK

We derived a continuous adjoint formulation of the steady-state, incompressible Navier-Stokes
equations augmented with a diffusion equation for the temperature. The derived general adjoint
system was adapted to specific maximisation of the heat flux at walls. The adjoint solver and
adjoint boundary conditions were implemented into the CFD toolbox OpenFOAM in order
to derive an optimization process involving mesh deformation based on the adjoint sensitivity
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analysis derived from the primal and the adjoint solution of the system.
As a proof-of-concept this optimization approach was applied to a dimpled channel geometry.

The results presented here a quite promising, since we were able to increase the wall heat flux
on the lower boundary by approx. 15% while the pressure drop just increase slightly by approx.
3%. Nevertheless, further improvement and validation of the approach is necessary.

Future work will focus on the mesh deformation algorithm, e.g. with a radial-basis function
approach, as well as the incorporation of additional cost function and a combination of these
cost functions. Especially the combination of maximising heat-transfer and minimising pressure
loss will be the next research topic in order to further improve heat exchangers for ducted flows.
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