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I. EXTENDED ABSTRACT

While MPI [1] + X (where X is another parallel program-
ming model) has been proposed and used by the community,
we propose a hybrid programming model that combines task-
based model + MPI. Task-based workflows offer the necessary
abstraction to simplify the application development for large
scale execution, and supporting tasks that launch MPI execu-
tions enables to exploit the performance capabilities of many-
core systems. Hence, application programmers can get the
maximum performance out of the underlying systems without
compromising the programmability of the application.

We present an extension to PyCOMPSs framework [2],
a task-based parallel programming model for the execution
of Python applications. Throughout this paper, we name the
tasks that natively execute MPI code as Native MPI Tasks,
as opposed to tasks that call external MPI binaries. Having
Native MPI tasks as part of the programming model means
that in the same source file users can have two types of task:
tasks that execute MPI code and other tasks that execute non-
MPI code. PyCOMPSs organizes the tasks in Directed Acyclic
Graph (DAG) and manages their scheduling and execution,
hence users can focus only on the logic of the task.

A. Native MPI in PyCOMPSs

Tasks are defined in PyCOMPSs by annotating application’s
method with Python decorators. Through the @task annota-
tion, developers indicate that a function in the code becomes
a task. Following the same approach, a method is declared as
Native MPI task by means of the @mpi decorator. The number
of MPI processes per Native MPI task can be specified using
@constraints decorator as shown in the sample code snippet
in Figure 1.

PyCOMPSs runtime will manage the input and output data
of Native MPI tasks like any non-MPI task in a completely
transparent manner to the user. The runtime will ensure that
all the processes in the MPI environment have access to all
the input data of the task. The return output of a Native MPI
task – if any – is a list containing the output of all the MPI
processes invoked for the task.

@constraints(computingUnits=4)
@mpi(runner=’mpirun’, computingNodes=1)
@task(returns=int)
def return ranks(random num):

from mpi4py import MPI
rank = MPI.COMM WORLD.rank
return rank*random num

Fig. 1. Simple Native MPI task in PyCOMPSs. return ranks task will be
executed by 4 MPI processes as specified in computingUnits on 1 node. It
returns a list of each MPI rank multiplied by the random num input value.

Similar to non-MPI PyCOMPSs tasks, the execution de-
tails of Native MPI tasks are completely abstracted from
the runtime; the MPI environment is encapsulated within
the Native MPI task that launched it. Thus, one workflow
can have multiple Native MPI tasks, each with different
configuration parameters (i.e., number of computing nodes and
MPI processes) and combine them with other tasks in the task
execution graph.

PyCOMPSs runtime launches special Python worker pro-
cesses for Native MPI tasks at the time of the task execution to
launch the MPI environment and manage the task execution. If
two Native MPI tasks are scheduled for execution at the same
time, the runtime launches an exclusive MPI worker for each
of them. Hence, each of the tasks will have its own isolated
execution environment.

B. Evaluation

In this section, we evaluate performance benefits and trade-
offs of using Native MPI tasks in PyCOMPSs. Experiments
were conducted on the MareNostrum4 supercomputer; which
includes a set of high-memory computing nodes with 48
cores and 370 GB of memory each. Each experiment was
run multiple times: using sequential implementation of the
targeted tasks and a parallel implementation with an increasing
number of MPI processes (2, 4 and 8). In all experiments, the
sequential implementation of the task is used as the baseline.

For the purpose of this evaluation, we developed an appli-
cation that calculates the term frequency (TF-IDF) of a web
archive file. We used an input web archive file of a total size of
186 Gbytes. The application consists of a reading task which
reads a record from the file and a compute task that calculates
TF-IDF. The total number of tasks for this application is 1440
tasks; 720 read tasks and 720 corresponding compute tasks.



Figure 2 shows the performance results of the application.
As shown in Figure 2(a) the average time per compute task
decreases while increasing the number of MPI processes per
compute task. Using 8 MPI processes per compute task, we
obtained up to 7x speedup in the average time per compute
task. In addition to that, as shown in Figure 2(b), the perfor-
mance improvement per compute task is reflected as up to 3x
speedup improvement in the total execution time.

(a) Average Time Per Compute Task

(b) Total Execution Time

Fig. 2. Performance Results for Web Archive Analysis Application

To further understand the performance and behaviour of
Native Python MPI tasks in PyCOMPSs, several experiments
were conducted on the Web Archive Analysis. Each experi-
ment was launched multiple times with a sequential implemen-
tation task and then a parallel Native MPI task implementation
with different numbers of MPI processes (2, 4, 8, 16 and 48)
on different number of nodes (4, 8 and 12).

As shown in Figure 3, as the number of nodes increases,
task parallelism increases so the total execution time of both
applications improves. For a specific number of nodes, total
execution time decreases until it reaches a point after which it
starts to increase as the number of MPI processes per Native
MPI task increases. This point is 8 MPI processes for 4, 8
nodes and 16 MPI processes for 12 nodes. This is because
Native Python MPI tasks use the @constraint decorator of
PyCOMPSs to specify the number of MPI processes per task.
Increasing the number of MPI processes per task (i.e. increas-
ing task constraints) decreases task parallelism. This effect is
mitigated as the number of resources increases because there
are enough resources to maintain the same level or allow for
more task parallelism. This can be noted in Figure I-B where
for 4 and 8 nodes the total execution time degrades at 8 MPI
processes but when the number of nodes is increased to 12,
this point shifts to 16 MPI processes.

Fig. 3. Scalability Results

C. Conclusion

Enabling the execution of MPI code natively in PyCOMPSs
tasks offers great benefits in terms of both programmability
and performance for Python applications. However, a tradeoff
arises between MPI parallelism per task and task parallelism
that may negatively affect the total time of the application. As
future work, we plan to improve the scheduling of tasks to
better utilize the underlying infrastructure.
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