Computing Alignments of Well-Formed Process Models using Local Search

FARBOD TAYMOURI, The University of Melbourne, Australia
JOSEP CARMONA, Universitat Politècnica de Catalunya, Spain

The alignment of observed and modeled behavior is an essential element for organizations, since it opens the door for conformance checking and enhancement of processes. The state of the art technique for computing alignments has exponential time and space complexity, hindering its applicability for medium and large instances. In this paper a novel approach is presented to tackle the challenge of computing an alignment for large problem instances that correspond to well-formed process models. Given an observed trace, first it uses a novel replay technique to find an initial candidate trace in the model. Then a local search framework is applied to try to improve the alignment until no further improvement is possible. The implementation of the presented technique reveals a magnificent reduction both in computation time and in memory usage. Moreover, although the proposed technique does not guarantee the derivation of an alignment with minimal cost, the experiments show that in practice the quality of the obtained solutions is close to optimal.

Additional Key Words and Phrases: Process Mining, Conformance Checking, Process models, Event logs.

ACM Reference Format:

1 INTRODUCTION

Organizations are facing a digital transformation, that primarily requires an active use of the tones of data available as a result of their operation. As processes are the main focus for the management of an organization, exposing the processes to the data available helps into assessing the alignment between observed and modeled behavior. When modeled and observed behavior are aligned, then one can be sure that the reality and the models describing it agree. However, an organization may need to react in case of finding deviations between observed and modeled behavior. Conformance checking techniques [van der Aalst 2016] tackle this fundamental problem: to analytically asses the adequacy of a process model in representing the traces in an event log, extracting the deviations in case they exist. Due to the potential existence of regulations, guidelines, frauds and errors, conformance checking is becoming an essential element for an organization to prove the adherence to a desired behavior [Carmona et al. 2018].

Current conformance checking techniques strongly rely on the notion of alignment: given an observed trace of activities representing a process instance, to find the best model trace that resembles it [Adriansyah 2014]. Alignments are crucial for conformance checking techniques, but also open the door to improving the use of process models in organizations [Polyvyanyy et al. 2017].
Due to the existence of concurrency and iteration, the behavior underlying process models can be exponential, a fact that hampers the application of the state-of-the-art technique for computing alignments, which is based on exploring the model state space. Hence, the aforementioned alignment technique can only guarantee the computation of an alignment when the process model does not exceed certain size, which in practice is often few dozen activities at most.

In practice, however, process models and event logs can be significantly bigger [4dt 2018]. When confronted to these problem instances, the available techniques will fail in providing an alignment. This is the start point for the contribution of this paper: to deploy light techniques for computing alignments for well-formed process models, that can be used in the large. Process models are well-formed if certain conditions on the structure of the net are satisfied. We consider that it is better to provide an alignment that is not optimal (i.e., that may not describe the best model run explaining the observed trace), than not providing an alignment at all. Dropping the optimality is not an objective of this work, but instead an artifact of the selection of techniques done, that are grounded on the structural theory of Petri nets, dynamic programming and local search methods. In practice, however, the results obtained are close to optimal.

Furthermore, in some situations one can live with sub-optimal solutions: For instance, when the model must be enhanced with the information existing in the event log (e.g., performance, decision point analysis), or when one aims to animate the model by replaying the log on top of it (two of the most celebrated functionalities of commercial process mining tools). In these scenarios, the information provided by a sub-optimal alignment may suffice to extend the process model.

Intuitively, the proposed technique works as follows: given a process model as a Free-Choice Petri net [Desel and Esparza 1995] satisfying the workflow structure and being weakly sound [van der Aalst et al. 2011], and a trace, a novel replay method is proposed. It applies the structural theory of Petri nets [Silva et al. 1998] to provide a set of transitions that should be fired, which is then used to select globally the set of transitions to replay the trace. The replay then relays in the workflow structure and the distance to the final marking (assumed to be a single place) to choose, among sets of enabled transitions, which one to fire at each reachable state in the replay. The replay is guaranteed to reach the final marking of the Petri net, thus providing a full sequence of the model. We then use a well-known technique from bioinformatics to align the two traces [Needleman and Wunsch 1970], and consequently an initial alignment is obtained. Finally, a local search technique is applied on top of the current alignment to try to improve it by merging as much as possible the deviations detected. Overall, our approach reduces the complexity to the NP class, when compared to the state-of-the-art approach.

The techniques of this paper have been implemented in a standalone tool [Taymouri 2017], and experiments done over the large problem instances publicly available nowadays reflect the capability of the technique in providing alignments in reasonable time. Remarkably, when compared to the reference technique [Adriansyah 2014] and its evolutions [van Dongen 2018], or a recent technique [Reißner et al. 2017], the results are close to optimal while there is a considerably reduction both in computation time and memory consumption, often of orders of magnitude.

The paper is organized as follows: in the next section, related work on the computation of alignments is provided. Then in Section 3 all the necessary background for understanding the techniques of this paper is introduced. Section 4 provides the framework proposed in this paper for computing alignments, which includes the three stages enumerated above. Then in Section 5 we report on the set of experiments performed and shortly present the tool developed. Section 6 concludes the paper and discusses future work.
2 RELATED WORK

The seminal work in [Adriansyah 2014] introduced the notion of alignment. For each observed trace σ in the event log, it identifies the most similar trace which can be reproduced by the model. The approach uses a depth-first search, alongside with the A^* method over the state space corresponding to the synchronous product between the model and the trace. Despite the fact that only a finite part needs to be considered on the size of the search space, it is worst-case exponential on the size of the synchronous product net. The approach is implemented in ProM [van Dongen et al. 2005], and can be considered as the state-of-the-art technique for computing alignments. A recent publication shows under which circumstances the A^* can be improved by extending the heuristic pruning the search space [van Dongen 2018].

Alternatives to the A^* have appeared very recently: in the approach presented in [de Leoni and Marrella 2017], the alignment problem is mapped as an automated planning instance. Unlike the A^*, the aforementioned work is only able to produce one optimal alignment (not all optimal), but it is expected to consume considerably less memory. Automata-based techniques have also appeared [Leemans et al. 2018; Reißner et al. 2017]. In particular, the technique in [Reißner et al. 2017] can compute all optimal alignments. The technique in [Reißner et al. 2017] relies on state space exploration and determinization of automata, whilst the technique in [Leemans et al. 2018] is based on computing several subsets of activities and projecting the alignment instances accordingly. A different perspective that uses event structures focusing in behavioral alignments is presented in [García-Bañuelos et al. 2018]. These alternative techniques are competitive for certain inputs, but at the same time are more sensitive to crucial aspects as problem size or degree of concurrency.

To tackle the computational challenge of computing an alignment, [Taymouri and Carmona 2016b] proposed an approach grounded on the resolution of Integer Linear Programming (ILP), alongside with partitioning the input observed trace σ. This technique can provide approximate alignments, a novel class of alignments where deviations can be explained between sets of transitions, instead of singleton pairs as in [Adriansyah 2014]. Since ILP is NP-hard, casting the problem of computing approximate alignments as the resolution of ILP models is not sufficient for alleviating the complexity of the problem. As the complexity of ILP is dominated by the number of variables and constraints, a recursive framework to compute approximate alignments that transforms the initial ILP encoding into several smaller and bounded ILP encodings is also presented. This approach reduces drastically both the memory and the CPU time required for computing approximate alignments. Although this approach is efficient both in time and memory, it is not complete, i.e., it cannot guarantee the computation of a real solution in general. A similar approach which can always guarantee a solution and heavily uses the resolution of ILP and marking equation in combination with a bounded backtracking is presented in [van Dongen et al. 2017]. The work presented in this paper takes another perspective, by only using ILP once to get an initial candidate alignment which is then improved through local search.

The technique in [Taymouri and Carmona 2016a], presents a framework to reduce a process model and the event log accordingly, with the goal to alleviate the computation of the alignments. The computed alignment, which is called macro-alignment, will be expanded based on the gathered information during the reduction. The approach is based on the notion of indication, closely related to a particular instance of the well-known notion of synchronic distance [Murata 1989]. The crucial observation is that transitions indicated by a given transition can be abstracted away without losing the required information for computing an alignment. Reductions done in the model can then be reflected in the trace, so that the problem instance to solve is greatly reduced. Remarkably, the approach can be integrated with other approaches of computing alignment, like the two previous ones.
A completely different line of work is by opting for a decomposition perspective [Munoz-Gama et al. 2014; van der Aalst 2013]. The proposed approach decomposes a given model to smaller parts and projects the observed trace to each corresponding part, and then computes the alignment for each part independently. This technique is very efficient, but the result is decisional (a yes/no answer on the fitness of the trace) and cannot provide a global alignment. Recently, [Verbeek and van der Aalst 2016] proposed a set of conditions for providing a global alignment from the decomposed alignments. In case the conditions are not satisfied, it produces a so-called pseudo-alignment which, as in the case of [Taymouri and Carmona 2016b], may not be executable in the net.

The approaches discussed so far provide an alignment between a model and a trace, but the work of this paper also relies on alignments between two traces seen as words, known as sequence alignment. In the area of process mining we are not the first proposing this: the work in [Jagadeesh Chandra Bose and van der Aalst 2010], presents the trace alignment approach, which given an event log, aligns the set of traces in the event log to address process model diagnostics and to explore the event log easily. As we do in this work, the refereed approach uses a dynamic programming approach for sequence alignment [Needleman and Wunsch 1970].

3 PRELIMINARIES

3.1 Sequences, Petri nets, Process Mining and Step Sequences

A sequence is an ordered collection of objects or alphabets in which repetitions are allowed. For example given a set of alphabets Σ = {a, b, c}, some sequences are ab, bac, and a, and a set of sequences is S = {ab, bac}. For two sets of sequences S_1 and S_2, the concatenation S_1S_2 consists of all sequences of the form uv where u is a sequence from S_1 and v is a sequence from S_2, i.e., $S_1S_2 = \{uv : u \in S_1, v \in S_2\}$. The Kleen star operator, *, is used to concatenate zero or more sequences from a given set. Formally, given a S of sequences, $S^* = \bigcup_{i \geq 0} S^i$. Similarly Kleen plus is defined as $S^+ = \bigcup_{i \geq 1} S^i$, or $S^+ = S^* - \{\emptyset\}$.

A Petri Net [Murata 1989] is a 3-tuple $N = (P, T, \mathcal{F})$, where P is the set of places, T is the set of transitions, $P \cap T = \emptyset$, $\mathcal{F} : (P \times T) \cup (T \times P) \rightarrow \{0, 1\}$ is the flow relation. A labeled Petri net (LPN) is a 3-tuple $\langle N, \Sigma, \ell \rangle$, where N is a Petri net, Σ is an alphabet (a set of labels) and $\ell : T \rightarrow \Sigma \cup \{\tau\}$ is a labeling function that assigns to each transition $t \in T$ either a symbol from Σ or the empty symbol τ. The set of labeled transitions is represented by T_ℓ. A marking is an assignment of non-negative integers to places. If k is assigned to place p by marking m (denoted $m[p] = k$), we say that p is marked with k tokens. Given a node $x \in P \cup T$, its pre-set and post-set are denoted by $\bullet x$ and x^\bullet respectively and an element with the same pre-set of x is called its sibling. Formally, $\bullet x = \{y | \mathcal{F}(y, x) = 1\}$, $x^\bullet = \{y | \mathcal{F}(x, y) = 1\}$. A Petri net is Free-choice (FC) if $\forall p_1, p_2 \in P : p_1^\bullet \cap p_2^\bullet \neq \emptyset \Rightarrow p_1^\bullet = p_2^\bullet$. Unless otherwise stated, in this paper all process models are represented by labeled FC Petri nets. For the sake of simplicity and to avoid complicated figures, labels are only shown when needed.

A transition t is enabled in a marking m when all places in $\bullet t$ are marked. More formally it is denoted by $\langle N, m \rangle[t]$, iff $\bullet t \subseteq m$. When a transition t is enabled, it can fire or execute by removing a token from each place in $\bullet t$ and putting a token to each place in x^\bullet. A marking m' is reachable from m if there is a sequence of firings $t_1t_2 \ldots t_n$ that transforms m into m', denoted by $m[t_1t_2 \ldots t_n]m'$. A sequence of transitions $t_1t_2 \ldots t_n$ is a feasible sequence if it is fireable from the initial marking m_0.

A Petri net is called live if no matter what marking has been reached every transitions of the model can be fired through some firing sequences. Furthermore, it is to be said bounded if none of the places can have infinite number of tokens for any reachable marking.
Next we define the notion of allocation [Desel and Esparza 1995] that is crucial for a technical result of this paper.

Definition 3.1 (Clusters). Let \(x \) be a node of a process model. The cluster \(x \), denoted by \([x]\) is the minimal set of nodes such that:

- \(x \in [x] \)
- If a place \(p \) belongs to \([x]\) then \(p^* \in [x] \)
- If a transition \(t \) belongs to \([x]\) then \(\bullet t \in [x] \)

The above definition induces some properties. For instance, the set \([|[x]|x \in (P \cup T)]\) is a partition of nodes of the corresponding model; another property is that in FC-nets, if an arbitrary marking enables a transition \(t \), then it enables every transitions of \([t]\) [Desel and Esparza 1995].

Definition 3.2 (Allocations, Cyclic Allocations). Let \(C \) be a set of clusters of a model \(N = (P, T, \mathcal{F}) \), such that every cluster \(C \) contains at least one transition. An allocation is a function \(\alpha : C \Rightarrow T \) such that \(\forall c \in C, \alpha(c) \in c \). A transition \(t \) is said to be allocated by \(\alpha \) if \(t = \alpha(c) \) for some cluster \(c \). Furthermore, the set of transitions allocated by \(\alpha \) is denoted by \(\alpha(C) \). An allocation \(\alpha \) is called cyclic if for every cluster \(c \in C \), the set \(\alpha(c)^* \) contains only places of \(C \) [Desel and Esparza 1995].

Workflow processes can be represented in a simple way by using Workflow Nets (WF-nets). A WF-net is a Petri net where there is a place \(\text{start} \) (denoting the initial state of the system) with no incoming arcs and a place \(\text{end} \) (denoting the final state of the system) with no outgoing arcs, and every other node is on a directed path between \(\text{start} \) and \(\text{end} \). The transitions in a WF-net represent tasks. In conjunction with the assumption on the free-choice structure of the underlying net, this paper assumes process models are specified by weakly sound WF-nets [van der Aalst et al. 2011], for which every reachable marking has the option to reach the unique final marking, and there are no dead transitions.

Definition 3.3 (System Net, Full Firing Sequences). A system net is a tuple \(SN = (N, m_{\text{start}}, m_{\text{end}}) \), where \(N \) is a WF-net and the two last elements define the initial and final marking of the net, respectively. The set \(\{ \sigma | (N, m_{\text{start}}) \rightarrow^* (N, m_{\text{end}}) \} \) denotes all the full firing sequences of \(SN \).

Note that, a system net \(SN = (N, m_{\text{start}}, m_{\text{end}}) \) is live if no matter what marking has been reached, except \(m_{\text{end}} \), every transition of the model can be fired through some firing sequences. We now turn the focus to event logs and traces:

Definition 3.4 (Trace, Event Log, Parikh vector). Given an alphabet of events \(\Sigma = \{a_1, \ldots, a_n\} \), a trace is a word \(\sigma \in \Sigma^* \) that represents a finite sequence of events. An event log \(L \in B(\Sigma^*) \) is a multiset of traces \(|\sigma|^a \) represents the number of occurrences of \(a \) in \(\sigma \). The Parikh vector of a trace is a function \(\Sigma^* \rightarrow \mathbb{N}^n \) defined as \(\widehat{\sigma} = (|\sigma|_{a_1}, \ldots, |\sigma|_{a_n}) \). For simplicity, we will also represent \(|\sigma|_{a_i} \) as \(\widehat{\sigma}[a_i] \). The support of a Parikh vector \(\widehat{\sigma} \), denoted by \(\text{supp}(\widehat{\sigma}) \) is the set \(\{a_i | \widehat{\sigma}[a_i] > 0\} \). For a trace \(\sigma \), \(\sigma[1], \sigma[2], \ldots, \sigma[k] \) denote its first, second and \(k \)th elements respectively. For two Parikh vectors \(\widehat{\sigma}_1 \) and \(\widehat{\sigma}_2 \), \(\widehat{\sigma}_1 \leq \widehat{\sigma}_2 \) means that each component of the former is less than or equal to each corresponding component of the latter.

Alignments are strongly related to the notion of fitness: an alignment with no deviations describes a trace that perfectly fits the model. Consequently, the main metric in this paper to assess the adequacy of a model in describing a log is fitness [van der Aalst 2016], which is based on the reproducibility of a trace in a model:

Definition 3.5 (Fitting Trace). A trace \(\sigma \in \Sigma^* \) fits \(SN = (N, m_{\text{start}}, m_{\text{end}}) \) if \((N, m_{\text{start}}) \models \sigma((N, m_{\text{end}})) \).

Manuscript submitted to ACM
3.2 Petri nets and Linear Algebra

Let \(N = \langle P, T, F \rangle \) be a Petri net with initial marking \(m_0 \). Given a feasible sequence \(m_0[\sigma]m \), the number of tokens for a place \(p \) in \(m \) is equal to the tokens of \(p \) in \(m_0 \) plus the tokens added by the input transitions of \(p \) in \(\sigma \) minus the tokens removed by the output transitions of \(p \) in \(\sigma \):

\[
m[p] = m_0[p] + \sum_{t \in \sigma} |\sigma|_t F(t, p) - \sum_{t \in p^*} |\sigma|_t F(p, t)
\]

The marking equations for all the places in the net can be written in the following matrix form:

\[
m = m_0 + N \cdot X
\]

(1)

If (1) is infeasible, then \(m \) is not reachable from \(m_0 \). The inverse does not hold in general: there are markings satisfying (1) which are not reachable. Those markings (and the corresponding Parikh vectors) are said to be spurious [Silva et al. 1998].

For well-structured Petri nets classes equation (1) characterizes reachability. The largest class is FC, live, bounded and reversible nets, i.e., the initial marking can always be reached again, [Murata 1989]. For this class, equation (1) together with a collection of sets of places (called traps) of the system completely characterizes reachability [Desel and Esparza 1993]. For the rest of cases, the problem of the spurious solutions can be palliated by the use of traps [Esparza and Melzer 2000], or by the addition of some special places named cutting implicit places [Silva et al. 1998] to the original Petri net that remove spurious solutions from the original marking equation.

Notice that the marking equation, even when characterizing faithfully the set of reachable markings, can fail to provide the right Parikh sequence between any two reachable markings. We will come back to this observation in Section 4.

3.3 Alignment of Observed Behavior

As outlined above, the fitness dimension requires an alignment of an observed trace and a model: events of the observed trace need to be related to elements of the model and vice versa. Such an alignment reveals how the given trace can be replayed on the process model. The classical notion of aligning an event log and process model was introduced by [Adriansyah 2014]. To achieve an alignment, we need to relate moves in the observed trace to moves in the model. It may be the case that some of the moves in the observed trace can not be mimicked by the model and vice versa. For instance, consider the model \(N_1 \) in Fig. 1, with the following labels, \(\ell(t_1) = a_1, \ell(t_2) = a_2, \ell(t_3) = a_3 \) and \(\ell(t_4) = a_4 \), and the trace \(\sigma = a_1a_2a_3a_4 \); four possible alignments are:

![Fig. 1. Process model \(N_1 \).](image-url)
The set of all legal moves is denoted as A_{LM} and given an alignment $\alpha \in A_{LM}^*$, the projection of the first element (ignoring ⊥), $\alpha \downarrow_{LM}$, results in the observed trace σ, and projecting the second element (ignoring ⊥), $\alpha \downarrow_{AM}$, results in the model trace.

For the previous example, $\alpha_1 \downarrow_{LM} = t_1t_3t_4$ and $\alpha_1 \downarrow_{AM} = a_1a_4a_2$.

Cost can be associated to alignments, with asynchronous moves having greater cost than synchronous ones [Adriansyah 2014]. Once cost are defined, an alignment with optimal cost is preferred.

Definition 3.7 (Cost of an Alignment). We define the cost function $\lambda : A_{LM} \rightarrow \mathbb{N}$, as follows:

$$\forall (X, Y) \in A_{LM}, \quad \lambda((X, Y)) = \begin{cases}
\delta_S & \text{if } X = \ell(Y) \\
\delta_L & \text{if } Y = \bot \\
\delta_M & \text{if } X = \bot
\end{cases} \tag{2}$$

δ_S is the cost associated to a synchronous move, and δ_M and δ_L are the costs for asynchronous (move-in-model and move-in-log) moves, respectively. Therefore the cost of an alignment can be summed over costs of its moves, i.e., $\lambda(\alpha) = \Sigma_{(X,Y)\in\alpha}\lambda((X,Y))$.

Given an alignment computed over an observed trace σ, fitness (see Def. 3.5) can be defined as the ratio given by the number of events in σ which can be mimicked by the model, i.e., synchronous moves, to the total number of moves in σ. The fitness value, is the normalized associated cost, that is a quantity between 0 and 1, thus, the closer fitness value is to 1, the more similar is the model trace to the given observed trace. Formally:

Definition 3.8 (Cost Based Fitness Metric). For a given alignment α, the fitness value, π_{α}, is defined as follows:

$$\pi_{\alpha} = 1 - \frac{(\Sigma_{(X,\bot)\in\alpha}\delta_L + \Sigma_{(\bot,Y)\in\alpha}\delta_M)}{(\Sigma_{(X,Y)\in\alpha}\delta_S + \Sigma_{(X,\bot)\in\alpha}\delta_L + \Sigma_{(\bot,Y)\in\alpha}\delta_M)} \tag{3}$$

Def. 3.8 is the ratio of the total cost of synchronous moves to the whole cost of the alignment, i.e., synchronous and asynchronous moves. It is apparent from Eq. (3) that when there are no synchronous moves, i.e., $\Sigma_{(X,Y)\in\alpha}\delta_S = 0$.

\[350\]
\[\pi_{\alpha} = 0. \] On the other hand, if there are no deviations, i.e., \[\sum_{(X, \bot) \in \alpha} \delta_L = 0 \] and \[\sum_{(\bot, Y) \in \alpha} \delta_M = 0, \] then \[\pi_{\alpha} = 1. \] As an example given costs \(\delta_S = 1, \delta_L = 2 \) and \(\delta_M = 2, \) \[\pi_{\alpha} = 1 - \frac{2 \times 2 + 1 \times 2}{2 \times 1 + 2 \times 2 + 1 \times 2} = 0.25. \]

It is worth noting that regardless of the aforementioned example, in general, any non-negative cost values as defined in Eq. 2 can be considered. However, in this paper for the sake of simplicity we assume \(\delta_S = 1 \) for all synchronous moves, and \(\delta_L = \delta_M = 2 \) for all asynchronous moves.

4 LOCAL SEARCH COMPUTATION OF ALIGNMENTS

4.1 The Overall Perspective

Fig. 2 represents the overall proposed framework. The details of each part will be presented in upcoming sections. Short descriptions of each part are presented here:

- **Initial modeled trace generator.** Given a model, \(N \), and an observed trace \(\sigma \), in this stage an initial modeled trace \(\sigma_N \) is computed. Obviously, given a cost function, the closer \(\sigma_N \) is to \(\sigma \), the better. For solving this problem, some possibilities exist, based on replay [Rozinat and van der Aalst 2008; vanden Broucke et al. 2014]. In this work we will use a novel technique that incorporates the marking equation, i.e., Eq. (1), in order to attain the maximum similarity to the observed trace in terms of number of events fired, a term that we denote Parikh similarity. Then, since the set of firings is computed as the solution of the marking equation, a replay technique that considers the distances in the graph underlying the Petri net is used to obtain the real sequence. This approach has interesting features that makes it to avoid backtracking in the search for a model trace. See Alg. 1 lines 2-4.

- **Computing an Alignment.** Computing an alignment between the observed and modeled traces can be done through a well-known dynamic programming approach inspired from the bioinformatics field. The result is the initial base alignment, \(\alpha_b \). See Alg. 1 lines 6-8.

- **Fitness improvement.** The initial modeled trace, \(\sigma_N \), upon which \(\alpha_b \) is based, is not guaranteed in general to be the best possible alignment. To improve the fitness value of the initial alignment, a local search strategy is applied to reduce the number of asynchronous moves in \(\alpha_b \), while preserving the executable property of the modeled trace. See Alg. 1 line 10.

This way, fitness improvement can be done iteratively, i.e., recomputing the current alignment \(\alpha_b \) based on the previous improved alignment, until no more improvements can be made. This explains the arc-back from the fitness improvement part to the computing alignment part in Fig. 2.

Alg. 1 presents the general template for the framework proposed in this paper. Notice that particular instantiations can be done in some parts of the algorithm, so that a personalized version can be obtained by selecting each important piece. For instance, by choosing one or other replay technique, a different version will be derived. Next sections will
provide further details on each one of the stages.

Algorithm 1 Overall Framework

1: Input: Global Variables $SN(N, m_{start}, m_{end}), \sigma$ \hspace{1cm} \triangleright Inputs are the system net, observed trace
2: #Initial modeled trace generator
3: $\sigma_P \leftarrow \text{Result of Eq. 4}$ \hspace{1cm} \triangleright Computing Parikh vector, σ_P
4: $\sigma_N \leftarrow \text{Execute} (\sigma_P)$ \hspace{1cm} \triangleright Replaying σ_P to get model trace σ_N
5: while (Fitness can be improved) do
6: #Computing alignment
7: $M, S \leftarrow \text{Align} (\sigma, \sigma_N)$
8: $a_b \leftarrow \text{Traceback} (S)$ \hspace{1cm} \triangleright Aligning σ, σ_N to get score and source matrices M, S
9: #Fitness improvement
10: $b_a \leftarrow \text{Alignment-Reordering} (a_b)$ \hspace{1cm} \triangleright Using source matrix S, to traceback and obtain a_b
11: $a_b \leftarrow a$
12: $\sigma_N \leftarrow a_b \downarrow_{AM}$
13: end while
14: Return a_b

4.2 Initial model trace generator

Given an observed trace σ the objective of this part is to generate an executable modeled sequence σ_N, whose Parikh vector has the maximum similarity to $\tilde{\sigma}$. In this paper we propose a new approach for this problem, which can be performed in two stages. In case of Free-choice Petri nets and weakly sound models, formal guarantees will be provided that ensure the derivation of a model trace.

The first stage, which is called ILP similarity, is originally presented in [Taymouri and Carmona 2016b]. By using equation (1), it relies on the resolution of an ILP, which provides a Parikh vector $\tilde{\sigma}_P$ whose elements are as similar as possible to the elements of $\tilde{\sigma}$. Given $\tilde{\sigma}_P$, the second stage presents a novel technique to replay the computed Parikh vector to get an executable sequence σ_N, which excludes replaying spurious elements of $\tilde{\sigma}_P$. It will be proved that given the solution of the first stage, the second stage is complete, i.e., it is able to find a solution.

ILP for Similarity: Seeking for an Optimal Parikh Vector. This stage will be centered on the marking equation of the input Petri net. Let $J = \Sigma \cap \text{supp}(\tilde{\sigma})$, i.e., the labels that appeared in the observed trace, the following ILP model computes a solution X (representing a Parikh vector of a sequence σ_P) that is as similar as possible with respect to the firing of the activities appearing in the observed trace:

$$\begin{align*}
\text{Maximize} \ (\sum_{\ell(t) \in J} X[t] - \delta \times \sum_{\ell(t) \notin J} X[t] + \delta \times \sum_{\ell(t) = r} X[t]), \\
\text{Subject to:} \\
\forall t \in X, \forall a \in \tilde{\sigma} \quad \text{If } \ell(t) \in J \text{ and } \ell(t) = a: \quad \tilde{\sigma}[a] = \sum_{\ell(t) = a} (X[t] + X^x[t]) \\
\end{align*}$$

(4)

$$m_{end} = m_{start} + N.X$$

δ in the objective function is a user defined value with $\delta \geq 1$, which penalizes transitions of the model which do not have any labels in J. The larger is the value of δ, the greater penalty the elements not in J do receive. Also note that
invisible transitions of the model, i.e., $\ell(t) = r$, receive 0 cost. Hence, model (4) searches for a vector X that is both a solution to the marking equation, and maximizes the similarity with respect to $\tilde{\sigma}$. Notice that the ILP problem has an additional set of variables X^s, which represent the slack variables needed when a solution for a given transition cannot equal the observed number of firings in the trace. By maximizing elements of X in J and minimizing those not in J, solutions to (4) clearly try to both assign zeros as much as possible to the X^s variables on the one side, and on the other side, try to do not fire the X variables not in J (i.e., activities not appearing in σ). Also, if for an arbitrary event in the observed trace there are some transitions of the model with the same label, then the number of firings for that event is equal to sum over all those transitions with that label.

An optimal solution X to (4), denoted by $\tilde{\sigma}_P$, represents the required transitions of the model and their number of occurrences which must be fired from the initial marking, m_{start}, to reach the final marking, m_{end}. Elements of $\tilde{\sigma}_P$ have the maximum similarity with respect to $\tilde{\sigma}$, a phenomena that we denote Parikh similarity.

For example, consider the model N_2 depicted in Fig. 3 and the observed trace $\sigma = a_1a_2a_4a_5a_7a_4a_3a_6$, where $\tilde{\sigma}$ is depicted in Fig. 5 (b) and $J = \{a_1, a_2, a_3, a_4, a_5, a_6, a_7\}$. Duplicate transitions are highlighted (t_2 and t_3, denoting the same label a_4). Setting $\delta = 1$ in Eq. (4) for this model and trace (described in detail in Fig. 4) results in the Parikh vector, X, which is called $\tilde{\sigma}_P$. X (and the slack variables X^s) is depicted in Fig. 5 (a).

Notice that a_4 occurred twice in σ, but based on N_2 only one of them is executed, since otherwise a token would be missed at place p_1. Transitions t_2 and t_3 with the label a_4 are eligible to be fired accordingly, hence in Fig. 4, the following constraint is proposed, i.e., $X[t_2] + X^s[t_2] + X[t_3] + X^s[t_3] = 2$. Furthermore, the occurrence of a_2 constitutes the constraint $X[t_5] + X^s[t_5] = 1$. Finally, based on the just mentioned constraint, Eq. (4) assigns $X[t_6] = 1$ and $X[t_2] = 1$ to maximize the objective function, increasing the similarity between elements of X and $\tilde{\sigma}$. Hence in Fig. 5 (a) it assigns $X[t_3] = 0$ and $X^s[t_3] = 1$ or $X^s[t_5] = 1$ and $X[t_5] = 0$ to make the corresponding constraint valid\(^1\). Note that a_7 occurred once in the observed trace, i.e., $\tilde{\sigma}(a_7) = 1$ and therefore it suggests the constraint $X[t_7] + X^s[t_7] = 1$, but t_7 will not be fired because otherwise the solution is infeasible\(^2\), hence $X[t_7] = 0$ and $X^s[t_7] = 1$. Also, notice that no event corresponding to transition t_{10} of the model occurred in σ, hence in the objective function this transition was penalized. Transition t_9 ($\ell(t_9) = r$), is a silent transition hence in the objective function it receives 0 cost. Finally, Fig. 5 (b) describes both $\ell(X)$, the computed Parikh vector with element labels, and $\tilde{\sigma}$, so that the reader can compare the similarity between elements of the two vectors.

\(^1\)Notice that the choice of assignment for X^s variables does not matter for the present approach.

\(^2\)If t_i is fired, then reaching the final marking based on the remaining constraints is infeasible because in that case t_1 and t_4 must be fired twice, but this contradicts the constraints $X[t_1] + X^s[t_1] = 1$ and $X[t_4] + X^s[t_4] = 1$.

Manuscript submitted to ACM
Fig. 3. Process model N_2.

Maximize \(X[t_1] + X[t_2] + X[t_3] + X[t_4] \)
\[+ X[t_5] + X[t_6] + X[t_7] + X[t_8] - 1 \times X[t_{10}] + 0 \times X[t_9] \]

Subject to:

\[
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
1 \\
0
\end{bmatrix}
= \begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{bmatrix}
\times \begin{bmatrix}
t_1 \\
t_2 \\
t_3 \\
t_4 \\
t_5 \\
t_6 \\
t_7 \\
t_8 \\
t_9 \\
t_{10}
\end{bmatrix}
\]

\[
\begin{aligned}
X[t_1] + X^*[t_1] &= \sigma[a_1], \\
X[t_2] + X^*[t_2] + X[t_3] + X^*[t_3] &= \sigma[a_4], \\
X[t_4] + X^*[t_4] &= \sigma[a_3], \\
X[t_5] + X^*[t_5] &= \sigma[a_5], \\
X[t_6] + X^*[t_6] &= \sigma[a_6], \\
X[t_7] + X^*[t_7] &= \sigma[a_7], \\
X[t_8] + X^*[t_8] &= \sigma[a_2], \\
X \geq 0, X^* \geq 0
\end{aligned}
\]

or

\[
\begin{aligned}
X[t_2] + X^*[t_2] + X[t_3] + X^*[t_3] &= 2, \\
X[t_4] + X^*[t_4] &= 1, \\
X[t_5] + X^*[t_5] &= 1, \\
X[t_6] + X^*[t_6] &= 1, \\
X[t_7] + X^*[t_7] &= 1, \\
X[t_8] + X^*[t_8] &= 1, \\
X \geq 0, X^* \geq 0, m_{start} \geq 0, m_{end} \geq 0
\end{aligned}
\]

Fig. 4. ILP formulation for model N_2.

Manuscript submitted to ACM
Replay The Parikh Vector: Computing An Executable Model Trace. This stage consists of executing the computed Parikh vector \(\sigma_P \), in order to get a feasible sequence \(\sigma_N \). As commented before, this step assumes a model specified over a FC, weakly sound Petri net\(^3\). The benefits of getting a sequence, from the computed Parikh vector \(\sigma_P \) are twofold. First, for computing the initial alignment \(\alpha_b \), both observed and modeled traces are needed whereas at this point there is no information about the order of elements in \(\sigma_P \). Second, because the computed Parikh vector is the resolution of an ILP instance based on the marking equation, i.e. Eq. (1), it may contain some spurious elements (see section 3.2). Therefore to fix this problem, i.e., getting a real solution which can be executed, \(\sigma_P \) is replayed from the initial marking to the final marking. Obviously, there is not a unique way to execute a given Parikh vector.

The most simple way of executing a given Parikh vector \(\sigma_P \) is based on the idea of using a tree based search approach or "generate and test", which could be done with the use of a depth-first search (DFS) mixed with a backtracking approach. This approach starts at the initial marking and fires transitions in \(\sigma_P \) as much as possible, and backtracks whenever a deadlock situation is encountered. In the worst case, this approach may require to explore the full set of reachable markings in order to find a solution.

The approach proposed in this paper prevents the backtracking mechanism. In our technique, a transition of the model is selected to be fired depending on its graph distance to the final marking (i.e., to the place corresponding to the final marking): intuitively, a transition with the farthest distance to the final marking is on priority to be fired. To achieve this goal, the Floyd–Warshall algorithm, which computes the shortest path between two arbitrary nodes in a graph, is used as the main criterion. The computed shortest paths are represented by the distance matrix \(D \), which is computed only once for the graph underlying the WF-net. Avoiding backtracking is the advantage of this approach, which comes at the expense of getting a modeled trace that is not guaranteed to resemble optimally the observed trace, thus potentially lowering the quality of the corresponding alignment. In practice however, the sequences obtained by this approach are rather useful in our setting. Definition 4.1 states the corresponding firing policy based on the mentioned criterion. It provides only the necessary criterion for a transition to be on priority of firing, whereas the sufficient condition will be discussed shortly afterwards.

Definition 4.1 (Firing policy). Given Parikh vector \(\sigma_P \) and system net \(SN = (N, m_{\text{start}}, m_{\text{end}}) \) with \(m_{\text{end}} = \{p_e\} \), where \(p_e \) is the end place in \(SN \); Let \(T_{m_i} = \{ t \in T | t \leq m_i \} \), i.e., enabled transitions in marking \(m_i \), and \(T_{m_i} \cap \text{supp}(\sigma_P) = \)

![Equation](image)

\(^3\)In spite of this assumption, in practice it performs well for more general classes, including unstructured Petri nets. This is illustrated in the experimental results provided in this paper.

Manuscript submitted to ACM
\{t_1, t_2, \ldots, t_n\}, i.e., enabled transitions that belong to \(\overrightarrow{\sigma_P}\) in marking \(m_i\). If \(D(t_k, p_e)\) represents the minimum distance of \(t_k\) to \(p_e\) then it is on priority to be fired if \(\forall i \neq k: t_i \in T_{m_i} \cap \text{supp}(\overrightarrow{\sigma_P}), D(t_k, p_e) > D(t_i, p_e)\).

Consider the model \(N_3\) and computed Parikh vector in Figures 6 and 7 (a), respectively. The initial and final marking of the model are \(m_{\text{start}}[p_0] = 1, m_{\text{end}}[p_e] = 1\) respectively. DFS starts at \(t_1\), and without loss of generality let us assume that given a set of enabled transitions the one with larger subscript is chosen first, i.e., between \(t_8\) and \(t_9\), the latter will be expanded (fired) first. Executing \(\overrightarrow{\sigma_P}\) via backtracking by DFS, is represented in Fig. 7 (b) and red colors represent where the algorithm has to backtrack. On the other hand executing \(\overrightarrow{\sigma_P}\) using Def. 4.1 does not need any backtracking. See Fig. 7 (d), distances are represented on the top of each transition. The gray colored transitions represent those which are enabled at the corresponding marking, i.e. \(T_{m_i} \cap \text{supp}(\overrightarrow{\sigma_P})\), but they are not on priority to be fired due to Def. 4.1. For example if \(m[p_2] = 1\), then both \(t_2\) with \(D(t_2, p_e) = 9\) and \(t_4\) with \(D(t_4, p_e) = 5\) are enabled, but the former will be fired since it is farther than the later from the final marking, or when \(m[p_1] = 1\) then \(t_8\) with \(D(t_8, p_e) = 5\), \(t_9\) with \(D(t_9, p_e) = 1\) and \(t_7\) with \(D(t_7, p_e) = 9\) are enabled, where the later is farther with respect to others to the final marking, therefore it will be fired. Finally the computed modeled traces \(\sigma_N\) by two approaches are represented in Fig. 7 (b) and (d), respectively.
Fig. 7. (a) Parikh vector, (b) Executing $\vec{\sigma_P}$ using DFS, (c) The modeled trace computed by DFS, (d) Executing $\vec{\sigma_P}$ using the proposed approach, (e) The modeled trace computed by the proposed approach.
As mentioned already, replaying \(\vec{\sigma}_P \) based on Def. 4.1, i.e., granting priority of firing to the farthest transition with respect to \(p_e \) avoids backtracking, but in some situations causes to miss some other transitions which are supposed to be fired based on \(\vec{\sigma}_P \). Hence, being in the farthest distance with respect to \(p_e \), albeit necessary, is not a sufficient criterion of being on priority of firing for the technique of this paper.

For example consider the model \(N_4 \) in Fig. 8 (a), after firing \(t_1 \) and \(t_2 \) the corresponding Parikh vector is shown in Fig. 8 (b). One sees that both \(t_5 \) and \(t_{10} \) are enabled in \(supp(\vec{\sigma}_P) \). Based on the given marking of the model, \(t_5 \) which is the farthest transition with respect to \(p_e \), has the priority of firing, while doing so causes \(t_{10} \) to be missed in the replay, although it is supposed to be fired according to \(\vec{\sigma}_P \). To avoid such problems, a transition with priority of firing must be fired legitimately according to Def. 4.2 as follows:

Definition 4.2 (Legitimacy). Assume \(t_k \) is defined according to Def. 4.1, and let \(T_S = \{ t_j | t_j \in T_{m_i} \cap supp(\vec{\sigma}_P), t_j =* t_k \} \), i.e., \(T_S \) represents the enabled siblings of \(t_k \) which are in \(supp(\vec{\sigma}_P) \) as well, then \(t_k \) will be fired legitimately if and only if, \(\exists t_j \in T_S \) and \(\exists c \in \mathbb{N} \), where \(D(t_k, t_j) = c \).

Def. 4.2 informally states that, the priority of firing is granted to the farthest transition \(t_k \) if and only if, at least one of its siblings in \(T_S \) would be structurally accessible after it is fired. Notice that, as it happens with Def. 4.1, there may be more than one transition legitimated to be fired according to Def. 4.2, which would require to pick any of them for firing. Def. 4.1 and 4.2 provide the necessary and sufficient criterion for a transition to be fired on priority which guarantees no elements in \(T_{m_i} \cap supp(\vec{\sigma}_P) \) are missed, i.e. all of them will be fired without backtracking. It can be extended to all encountered reachable markings and corresponding enabled transitions of \(\vec{\sigma}_P \) given that they are not spurious (spurious elements, by definition, will not get enabled).

Theorem 4.3 (Completeness given legitimate firing). Given the context provided on a transition \(t_k \) by Def. 4.2, all elements of \(T_{m_i} \cap supp(\vec{\sigma}_P) \) are fired without backtracking if and only if \(t_k \) fired legitimately.

Prior to prove Theorem 4.3, first it must be established that for a reachable marking \(m_i \), all the corresponding enabled transitions, i.e. \(T_{m_i} \cap supp(\vec{\sigma}_P) \), are able to be fired in some order. Formally, it is presented in the following Lemma.

This Lemma can be extended to all reachable markings from \(m_{start} \) to \(m_{end} \).

Lemma 4.4. Let Parikh vector \(\vec{\sigma}_P \), system net \(SN = (N, m_{start}, m_{end}) \) and an arbitrary marking \(m_i \neq m_{end} \) that is reachable from \(m_{start} \). \(\forall t_j \in T_{m_i} \cap supp(\vec{\sigma}_P) \), there exists at least one sequence of transitions \(\sigma_O \) such that \(supp(\sigma_O) \subseteq supp(\vec{\sigma}_P), \sigma_O \triangleq \vec{\sigma}_P \) and \(\vec{\sigma}_O[t_j] = \vec{\sigma}_P[t_j] \).
The proof of Lemma 4.4 is presented in Appendix A.1. It must be emphasized that Lemma 4.4 declares, given marking \(m_i \), for all enabled transitions of \(\text{supp}(\vec{\sigma}_P) \), there exists at least one firing sequence according to their occurrences. It does not claim that all elements in \(\vec{\sigma}_P \) are able to be fired in some order entirely. Furthermore, the following consequence can be obtained from Lemma 4.4.

Lemma 4.5. For an arbitrary marking \(m_i \), let \(t_k \in T_{m_i} \cap \text{supp}(\vec{\sigma}_P) \) and let without loss of generality \(\vec{\sigma}_P[t_k] = n_k = 1 \). Then by virtue of Lemma 4.4, there exists a sequence of firing, \(T_M \), where \(\text{supp}(\sigma_{T_M}) \subseteq \text{supp}(\vec{\sigma}_P) \), with \(\sigma_{T_M} \subseteq \vec{\sigma}_P \) such that the following holds, \(m_y = m_i + N \cdot \vec{\sigma}_{T_M} \) where \(*_{k} \leq m_y \).

![Diagram](image.png)

Fig. 9. (a) Process model \(N_i \), (b) Parikh vector.

Lemma 4.5 states that given an arbitrary marking \(m_i \), \(\forall t_k \in T_{m_i} \cap \text{supp}(\vec{\sigma}_P) \), \(*_{k} \) will get or remains marked such that \(t_k \) be able to fire \(n_k \) times. To clarify this issue, a simple example is provided. Consider the model and \(\vec{\sigma}_P \) in Fig. 9 (a), (b). Take a closer look at \(t_7; t_8; t_9 \in \text{supp}(\vec{\sigma}_P) \) with \(\vec{\sigma}_P[t_7] = \vec{\sigma}_P[t_8] = \vec{\sigma}_P[t_9] = 1 \) which are highlighted. Based on Lemma 4.4 given that they are enabled, there exists at least one firing order which contains them, for example \(t_5 t_7 t_9 \) or \(t_7 t_5 t_8 \) are two firing orders. Note that according to Lemma 4.5 the set of places \(\{p_6, p_7\} = *_{t_7} = *_{t_8} = *_{t_9} \) remains or gets marked to let \(t_7, t_8 \) and \(t_9 \) get fired according to the mentioned firing sequences. At the end of this example it must be stressed that Lemma 4.4 and 4.5 state that for an arbitrary marking there is at least one order of firing to fire all transitions in \(T_{m_i} \cap \text{supp}(\vec{\sigma}_P) \) according to their occurrences. The proof of Theorem 4.3 based on Lemmas 4.4, 4.5 is provided in Appendix A.2.

In Def. 4.2 if \(t_k \) was unable to be fired legitimately, another candidate in \(T_P \) which fulfills Def. 4.2, will be selected and fired. Therefore, \(t_k \) would be the last transition to be fired for that marking. As an example, consider again the model in Fig. 8, based on the provided marking, \(t_3 \) and \(t_{10} \) are enabled, \(D(t_3, p_e) = 7 \) and \(D(t_{10}, p_e) = 5 \), and \(*_{t_3} = * t_{10} \), but because of \(D(t_3, t_{10}) = \infty \), i.e., there is no direct path from \(t_3 \) to \(t_{10} \), the former is unable to be fired legitimately, therefore \(t_{10} \) is fired instead.

The replaying approach presented in this paper avoids the necessity of backtracking, guarantees that the policy based on the legitimate firing will not miss the firing of any enabled transition encountered during the process. Nonetheless, for a given system net \(SN \) and \(\vec{\sigma}_P \), regardless of replaying approach the final marking \(m_{end} \) is reachable. More formally it is stated as follow:

\[\text{This corollary can be rephrased for } n_k > 1 \text{ easily, but to keep things simple it was presented for } n_k = 1. \]
Theorem 4.6 (Reachability of the final marking). Let $\tilde{\sigma}_P$ be the Parikh vector which is computed based on Eq. (4) for a given system net $SN = (N, m_{start}, m_{end})$, then $\exists \sigma_R$ such that $\tilde{\sigma}_R \leq \tilde{\sigma}_P$ and $m_{start}(\sigma_R)m_{end}$.

The proof of Theorem 4.6 is provided in Appendix A.3. It is worth stressing again that the existence of a firing sequence given a Parikh vector is only guaranteed for weakly sound bounded free-choice models, and not for more general Petri net classes. A representative example is as follows, consider the model in Fig. 10 which is not a FC-net, and an observed trace $\sigma = a_1 a_2 a_8 a_9 a_6$, the computed Parikh vector based on Eq. 4, i.e., $\tilde{\sigma}_P$, contains t_1, t_2, t_8, t_9, t_6 which is not realizable in the net. One can see that despite of having a feasible solution for Eq. 4, i.e., $\tilde{\sigma}_P$, it is unable to be fired and reach us from initial marking p_1 to final marking p_6. Indeed whenever places p_1 and p_6 get marked then t_8 and t_9 can fire spuriously, namely they make negative marking for p_7 and p_8 and fill in these transitions at the same time.

The mechanics of executing $\tilde{\sigma}_P$ are demonstrated by Alg. 2, 3 and 4. The global variables are: $\tilde{\sigma}_P$ and its support, which are computed as shown in the previous section, the distance matrix D and the system net, SN. Alg. 2, for a given marking, i.e., m_{curr}, identifies the farthest transition and its siblings, i.e., t_k and T_S, among the enabled set of transitions in $supp(\tilde{\sigma}_P)$, line (5-7). If $T_S = \phi$ then t_k is fired simply and the current marking, m_{curr}, and $\tilde{\sigma}_P$ will be updated accordingly, line (8-10), otherwise it is examined whether it can be fired legitimately, line (12-15). If t_k was unable to be fired legitimately, other candidates in T_S are examined in the same way until one could be fired legitimately, line (17-23). Alg. 2 continues this procedure until it reaches the final marking, hence there is a loop in line 4. Notice that silent transitions, i.e., $\ell(t) = \tau$, are removed from the computed σ_N since they are invisible.

At the end one can see that for Alg. 2 the distance matrix D is computed once for a given model and event log. So the time complexity is $\max \{\Theta(|P| + |T|)^3, \Theta(||\tilde{\sigma}_P||_1)\}$ where the first term denotes the time complexity of computing D by Floyd - Warshall algorithm which relays on the number of places and transitions in the model, and the second term represents the number of elements in the Parikh vector $\tilde{\sigma}_P$ which are supposed to be replayed.
Algorithm 2 EXECUTE σ_p

1. **Input:** Global Variables $\text{supp}(\sigma_p), D, SN(N, m_{start}, m_{end})$

2. $\sigma_N \leftarrow \phi$ \hspace{1cm} \triangleright Initialize the modeled trace

3. $m_{curr} \leftarrow m_{start}$

4. **while** $(\text{supp}(\sigma_p) \neq \phi \land m_{curr} \neq m_{end})$ **do**

5. $T_C \leftarrow \{ t \in T \mid t \leq m_{curr}[p] \}$ \hspace{1cm} \triangleright Enabled transitions in the m_{curr}

6. $T_m \leftarrow T_m \cap \text{supp}(\sigma_p)$ \hspace{1cm} \triangleright Enabled transitions in $\text{supp}(\sigma_p)$

7. $T_S, t_k \leftarrow \text{MAX_DIST}(T_m)$ \hspace{1cm} \triangleright Finding the farthest transition and its siblings

8. **if** $T_S = \phi$ **then**

9. $\text{FIRE_UPDATE}(t_k)$ \hspace{1cm} \triangleright Firing and updating the marking of the model

10. $\sigma_N \leftarrow \sigma_N t_k$ \hspace{1cm} \triangleright Concatenating the fired transition

else

11. Paths$\leftarrow \{ c \in \mathbb{N} \mid \exists t_j \in T_S, D(t_k, t_j) = c \}$

12. **if** Paths $\neq \phi$ **then**

13. $\text{FIRE_UPDATE}(t_k)$ \hspace{1cm} \triangleright Examine the legitimacy definition

14. $\sigma_N \leftarrow \sigma_N t_k$

15. **else**

16. **while** Paths $= \phi$ **do**

17. $T_S \leftarrow T_S \setminus \{t_k\}$

18. $T_S, t_k \leftarrow \text{MAX_DIST}(T_S)$

19. Paths$\leftarrow \{ c \in \mathbb{N} \mid \exists t_j \in T_S, D(t_k, t_j) = c \}$

20. **end while**

21. $\text{FIRE_UPDATE}(t_k)$

22. $\sigma_N \leftarrow \sigma_N t_k$

23. **end if**

24. **end if**

25. **end if**

26. **end while**

27. **Return** σ_N

Algorithm 3 MAX_DIST

1. **Input:** T_{in}

2. $t_k \leftarrow \{ t \in T_{in} \mid \forall t_i \in T_{in}, D(t) > D(t_i) \}$ \hspace{1cm} \triangleright T_{in} is a set of transitions

3. $T_S \leftarrow \{ t \in T_{in} \mid t \in t_k \}$ \hspace{1cm} \triangleright Farthest transition, i.e., t_k

4. **Return** T_S, t_k

Algorithm 4 FIRE_UPDATE

1. **Input:** t_k

2. Initialize X with $0, X[t_k] \leftarrow 1$

3. $m_{next} = m_{curr} + N \cdot X$

4. $\sigma_p[t_k] \leftarrow \sigma_p[t_k] - 1$ \hspace{1cm} \triangleright Updating σ_p

5. Update $\text{supp}(\sigma_p)$

6. $m_{curr} \leftarrow m_{next}$ \hspace{1cm} \triangleright Updating the current marking

7. **Return**
4.2.1 The feasibility of executing σ_p. It is worth to point out that in the procedures just mentioned for executing σ_p to obtain σ_N, $\sigma_N \leq \sigma_p$. This is due to the fact that computing σ_p by the formulation in Eq. (4) relays on marking equation, i.e., Eq. (1), therefore on occasions it may have spurious elements, i.e., those which are not reachable during replaying. Therefore in the worst case no complete modeled trace σ_N with the following condition i.e., $\sigma_N = \sigma_p$, is guaranteed to be generated neither by the proposed approach nor other replaying techniques. However based on the following Theorem, the proposed approach always finds a sequence like σ_N such that $m_{\text{start}}(\sigma_N)m_{\text{end}}$.

Theorem 4.7 (Existence of the modeled trace). For the proposed replaying approach given the contexts of Def. 4.1, 4.2, $\exists \sigma_N$ where $\sigma_N \leq \sigma_p$ such that $m_{\text{start}}(\sigma_N)m_{\text{end}}$.

The proof of Theorem 4.7 is presented in Appendix A.4. Theorem 4.7 states that the proposed technique finds a sequence like σ_N by which m_{end} is reachable from m_{start}, in other words the technique is complete. The following theorem proves that σ_N is the longest sequence among the existing sequences by which the final marking is reachable from the initial marking.

Theorem 4.8 (Length optimality of modeled trace). Given the context of Theorem 4.7, $\exists \sigma'_N$ where $\sigma_N \leq \sigma'_N \leq \sigma_p$ and $|\sigma_N| < |\sigma'_N|$ such that $m_{\text{start}}(\sigma'_N)m_{\text{end}}$.

The proof of Theorem 4.8 is given in Appendix A.5. According to the above theorem since $\sigma_N \leq \sigma_p$ then some elements of σ_p are spurious, i.e., never get enabled, and hence will not be fired. This is regardless of having well-formed or not WF-net models, but for unstructured models, i.e., Spaghetti, σ_p may have in general more spurious elements. To enlighten this issue consider the model N_6 in Fig. 11 (a) and observed trace $\sigma = t_1t_2t_3t_7t_6t_8t_10$. The computed Parikh vector σ_p is represented in Fig. 11 (b). One can see that $\sigma_p[t_5] = \sigma_p[t_6] = \sigma_p[t_7] = 1$ whereas the corresponding counterparts in σ_N are zero. Those spurious elements (see Sect. 3.2) never get enabled while σ_p is being replayed; also note that they do not violate constraints of Eq. (4) while σ_p is computed.
4.3 Aligning σ and σ_N

This subsection is centered around aligning a model trace σ_N, computed with the strategy described in the previous section, and an observed trace σ. The computed alignment is called initial or base alignment, α_b. It is called initial, since its fitness value might be improved by rearranging some parts. Informally, we will proceed in two steps: first, we will treat σ and σ_N as mere words, and will align them through a sequence alignment technique. Since the obtained sequence alignment allows for illegal moves (c.f. Def. 3.6), it is converted into an alignment by transforming each illegal move into a pair of asynchronous moves. Let us first start by defining the alignment of sequences:

Definition 4.9 (Alignment of Sequences). Assume that S represents the alphabet and let S_A and S_B be two members of S^* with length m and n respectively. Let \bot denote the empty set, then:

- (A, B) is a *match*, if $A \in S_A$, $B \in S_B$ and $A = B$
- (A, B) is a *mismatch*, if $A \in S_A$, $B \in S_B$ and $A \neq B$
- (A, B) is a *gap*, if $A = \bot$ and $B \in S_B$
- (A, B) is a *gap*, if $A \in S_A$ and $B = \bot$

If S_M contains all possible pairs of elements as defined above, then given a sequence alignment $\alpha \in S_M$, the projection of the first element (ignoring \bot) results in S_A, and projecting the second element (ignoring \bot) results in S_B.

![Diagram of a process model](image)

Fig. 11. (a) Process model N_6, (b) Related Parikh vectors.
In Def. 4.9, match and gap are the same as synchronous and asynchronous moves in Def. 3.6, but mismatch has no
counterpart in the latter. So after aligning modeled and observed trace, i.e., \(\sigma_N \) and \(\sigma \), by this method, if a mismatch pair
\((X, Y)\) with \(X \in \sigma, Y \in \sigma_N \) and \(\ell(Y) \neq X \) occurs, then it will be transformed to \((X, \perp)\) and \((\perp, Y)\) to preserve properties of
Def.3.6.

We use a well-known technique based on dynamic programming for obtaining a sequence alignment between \(\sigma_N \)
and \(\sigma \) [Needleman and Wunsch 1970]. This technique builds up the solution by determining all similarities between
arbitrary prefixes of the two sequences. The algorithm starts with shorter prefixes, and uses previously computed
results to solve the problem for larger prefixes. It attempts to maximize similarity between the two input sequences
by employing a scoring matrix to penalize gaps and mismatches among them. The scoring matrix can be obtained by
aligning the corresponding two sequences. Formally, we use the notion of alignment between two sequences presented
in [Neapolitan 2014], which is based on the seminal work in [Needleman and Wunsch 1970].

To this end, a primary matrix is created, where the first row and column are filled by observed and modeled traces
respectively, as depicted in Fig. 12 (a). The second row and the second column are initialized with numbers starting from
0,-1,2,..., they are depicted in yellow color in the figure. The task then is to fill the remaining cells with the recurrence
Eq. (5), in which \(\delta \) represents the gap penalty, and \(s(i, j) \) represents both the match and mismatch cost between two
elements \(t_i \) and \(a_j \) which are modeled and observed trace elements, respectively.\(^5\)

\[
SIM(t_i, a_j) = \max \begin{cases}
SIM(t_{i-1}, a_{j-1}) + s(t_i, a_j) \\
SIM(t_{i-1}, a_j) - \delta \\
SIM(t_i, a_{j-1}) - \delta
\end{cases}, \quad \text{where} \quad s(t_i, a_j) = \begin{cases}
\beta & \text{if } \ell(t_i) = a_j \\
-\beta & \text{if } \ell(t_i) \neq a_j
\end{cases} \quad (5)
\]

To enlighten of how to fill the scoring matrix, consider \(\sigma_N = t_1 t_4 t_5 t_6 \) with \(\ell(t_1) = a_1, \ell(t_4) = a_4, \ell(t_5) = a_5, \ell(t_6) = a_6 \)
and observed trace \(\sigma = a_1 a_4 a_6 \). Also assume \(\delta = 1 \) and \(\beta = 1 \). Generally speaking, by the approach of [Needleman and
Wunsch 1970] filling the primary matrix is as follows: start from the up left corner as depicted in Fig. 12 (b). Move
through the cells row by row, calculating the score for each cell by Eq. (5). The score is calculated as the best possible
score (i.e. highest) from existing scores to the left, top or top-left (diagonal). When a score is calculated from the top, or
from the left this represents a gap, see Fig. 12 (c). When the score is calculated from the diagonal, this represents either
a match or a mismatch. In case of a mismatch, this will be treated in the next stage. The final scoring matrix is depicted
in Fig. 12 (d). Once it is computed, given \(\delta \) and \(\beta \), the bottom right entry of the matrix gives the maximum score, i.e.,
the number which indicates maximum similarity among the given strings, among all possible sequence alignments.

\(^5\)At this point, it must be stressed that the costs used in the algorithm for sequence alignment are not related to the cost for an alignment, as defined in
Def. 3.7.
Farbod Taymouri and Josep Carmona

Fig. 12. (a) Primary matrix, (b) and (c) Filling the matrix, (d) Final scoring matrix

\[
\begin{array}{ccc}
0 & -1 & -2 & -3 \\
t_1 & -1 & -2 & -3 \\
t_4 & -2 & -3 & -3 \\
t_5 & -3 & -4 & -3 \\
t_6 & -4 & -5 & -3 \\
\end{array}
\]

\[
s(t_1, a_1) = 1 \\
SIM(t_1, a_1) = \text{MAX} \begin{cases}
SIM(0, 0) + s(t_1, a_1) = 1 \\
SIM(t_1, 0) - 1 = -2 \\
SIM(0, a_1) - 1 = -2
\end{cases}
\]

\[
s(t_1, a_4) = -1 \\
SIM(t_1, a_4) = \text{MAX} \begin{cases}
SIM(0, a_1) + s(t_1, a_4) = 0 \\
SIM(t_1, a_1) - 1 = 0 \\
SIM(0, a_4) - 1 = -3
\end{cases}
\]

\[
s(t_6, a_6) = 1 \\
SIM(t_6, a_6) = \text{MAX} \begin{cases}
SIM(t_6, a_4) + s(t_6, a_6) = 2 \\
SIM(t_6, a_4) - 1 = -1 \\
SIM(t_6, a_6) - 1 = -1
\end{cases}
\]

Fig. 13. (a) Trace back of the scoring matrix, (b) The computed alignment

\[
\begin{array}{ccc}
0 & -1 & -2 & -3 \\
t_1 & -1 & -2 & -3 \\
t_4 & -2 & -3 & -3 \\
t_5 & -3 & -4 & -3 \\
t_6 & -4 & -5 & -3 \\
\end{array}
\]

\[
\alpha_b = \begin{array}{cccc}
\hline
\alpha_1 & \alpha_4 & \alpha_6 \\
\hline
t_1 & -1 & 0 & -1 \\
t_4 & -2 & 2 & 1 \\
t_5 & -3 & 1 & 0 \\
t_6 & -4 & -2 & 0 \\
\hline
\end{array}
\]

(b)
To compute the alignment that corresponds to this sequence alignment, we start from the bottom right element, and compare the value with three possible sources, i.e., top, left and diagonal to identify from which one of them it came from. If it was fed by a diagonal entry, either it represents a synchronous move between corresponding elements, or a mismatch. In the later case, it will be decomposed to (⊥, ⊥) and (⊥, ⊥) to satisfy Def. 3.8. If it was fed by a top or left entries, then it represents an asynchronous move, see Fig. 13 (a). Following the above described steps, the alignment of two sequences can be found which is represented in Fig. 13 (b). Note that given δ and β, the score of a_{b} is $(+1)(+1)(-1)(+1)\delta=2$. Also based on Def. 3.8 by assuming $\delta_T = 1$, $\delta_L = \delta_M = 2$, a_{b} has the fitness value, 1-2/5 or 60%.

Notice that in some situations there may be two or more possible alignments between the two sequences which has the same maximum score, i.e., a_{b} is not unique.

The corresponding procedures for computing a_{b} is represented in Alg. 5 and 6. Alg. 5 starts to compute the scoring matrix M for given σ_N and σ by initializing it, lines 4-9. Then, it fills each entry according to Eq. (5), lines 11-21, and at the same time for each entry books the source of the computed score, i.e., top, left or diagonal, in matrix S, line 21. Alg. 6 to obtain a_{b} uses the source matrix S to trace back by starting at its right bottom element $S[|\sigma_N|, |\sigma|]$, lines 3-4, to find a path to the top left element $S[1, 1]$, lines 5-16. According to the content of the element under consideration, the corresponding synchronous or asynchronous moves are added to a_{b}. This procedure continues until it reaches the top left element. The time complexity of computing a_{b} is related to the computation of scoring matrix M, which is $\Theta(|\sigma_N| \times |\sigma|)$.

Algorithm 5 Align σ, σ_N

```plaintext
1: Input: $\sigma, \sigma_N, \ell, \beta, \delta$
2: $M \leftarrow \phi$
3: $S \leftarrow \phi$
4: for $i \leftarrow 0$ to $|\sigma|$ do
5:    $M[0, i] \leftarrow -i$
6: end for
7: for $j \leftarrow 0$ to $|\sigma_N|$ do
8:    $M[j, 0] \leftarrow -j$
9: end for
10: for $j \leftarrow 1$ to $|\sigma_N|$ do
11:   for $i \leftarrow 1$ to $|\sigma|$ do
12:     if $(\ell(\sigma_N[j]) = \sigma[i])$ then
13:         $s(\sigma_N[j], \sigma[i]) \leftarrow \beta$
14:     else
15:         $s(\sigma_N[j], \sigma[i]) \leftarrow -\beta$
16:     end if
17:     $diag \leftarrow M[j - 1, i - 1] + s(\sigma_N[j], \sigma[i])$
18:     $top \leftarrow M[j - 1, i] - \delta$
19:     $left \leftarrow M[j, i - 1] - \delta$
20:     $M[j, i], S[j, i] = \text{Max}(\text{diag, top, left})$
21: end for
22: end for
23: Return $M, S$
```

Manuscript submitted to ACM
Algorithm 6 Traceback

1. **Input:** S

2. $\alpha_b \leftarrow \phi$

3. $j \leftarrow |\sigma_N|$

4. $i \leftarrow |\sigma|$

5. **while** ($i \neq 0 \lor j \neq 0$) **do**

6. **if** ($S[j,i] = \text{diag}$) **then** $\alpha_b \leftarrow \alpha_b(\sigma[i], \sigma_N[j])$

7. $i \leftarrow i - 1$

8. $j \leftarrow j - 1$

9. **end if**

10. **if** ($S[j,i] = \text{top}$) **then** $\alpha_b \leftarrow \alpha_b(\bot, \sigma_N[j])$

11. $j \leftarrow j - 1$

12. **end if**

13. **if** ($S[j,i] = \text{left}$) **then** $\alpha_b \leftarrow \alpha_b(\sigma[i], \bot)$

14. $i \leftarrow i - 1$

15. **end if**

16. **end while**

17. **for** (u, v) in α_b **do**

18. **if** (u, v) is a mismatch **then**

19. Replace (u, v) with ($u, \bot), (\bot, v$)

20. **end if**

21. **end for**

22. **Return** α_b

4.4 Fitness improvement by local search

Although sequence alignment is guaranteed to be optimal, the alignment α_b arising from the sequence alignment is not guaranteed to be the best one by which the model mimics the observed trace. The root cause of this problem comes from the fact that there may be several traces which can be obtained by executing the computed Parikh vector $\bar{\sigma}_b$.

Therefore the initial computed alignment α_b in sub-Sec. 4.3, might be far away from what is desired, i.e., the optimal one.

This section is centered around **reordering** the initial alignment α_b, with the aim of improving the corresponding fitness value. This is obtained by trying to increase the number of synchronous moves between observed and modeled traces, given that the modeled trace σ_N remains executable. More rigorously, the reordering of α_b can be accomplished by a local search approach in which a move in log, i.e. (a_i, \bot), will be merged by the corresponding move in model, i.e., (\bot, t_j) and $\ell(t_j) = a_i$, to make a synchronous move, i.e., (a_i, t_j). This can only be done if: first, the resulted modeled trace remains executable, and second, the order of events in the observed trace remains unchanged. The iterative approach stops once no more merging can be made. To clear up this idea, first the formal definitions will be presented and then an illustrative example will be provided.

Definition 4.10 (Alignment reordering). Given a system net $SN(N, m_{start}, m_{end})$ and an alignment α. Let σ_\bot and $\sigma_{N,\bot}$ be the projection of α onto the first and second elements (including \bot), respectively. The move in log (a_i, \bot) with $a_i = \sigma_\bot[i]$, can be merged with the move in model (\bot, t_j) with $t_j = \sigma_{N,\bot}[j]$, to make the synchronous move (a_i, t_j) given that the following conditions are met:

- $\ell(t_j) = a_i$

Manuscript submitted to ACM
Computing Alignments of Well-Formed Process Models using Local Search

After merging, the new modeled trace $\sigma'_{N,i}$ with the following changes

$$
\sigma'_{N,i}[k] = \begin{cases}
\sigma_{N,i}[k] & \text{if } k \neq i, j \\
\bot & \text{if } k = j \\
t_j & \text{if } k = i
\end{cases}
$$

must be executable, i.e., $(N, m_{\text{start}})(\sigma'_{N,i})(N, m_{\text{end}})$.

Merging two moves that satisfy Def. 4.10 will contribute to a fitness increase, since the number of synchronous moves will rise and the number of asynchronous moves will decrease. As implicitly stated in Def. 4.10, it must be emphasized that, after merging, the order of events in the given observed trace, i.e., σ, will not be changed.

Based on Def. 4.10, the reordering of the initial alignment α_b can be done in an iterative way as long as no more synchronous moves can be obtained, hence the arc back from fitness improvement part to computing alignment part in Fig. 2.

To illustrate how the reordering of an alignment works, a simple example is presented. Consider the model and initial alignment α_b in Fig. 14 (a), (b) respectively. The appropriate asynchronous moves which are candidate for merging and deriving new synchronous moves are highlighted with the same color in Fig. 14 (b)\(^6\). One can see that (a_{16}, \bot) and (\bot, t_{22}), highlighted in green, can be merged to make the synchronous move (a_{16}, t_{22}), and the resulted modeled trace remains executable. The same holds for moves $(\bot, t_{24}), (a_{22}, \bot)$, highlighted in blue, to make (a_{22}, t_{22}). In contrast,

\(^6\)Please note that t_{24} is an invisible transition hence not considered as a candidate, and therefore it is not highlighted.

Manuscript submitted to ACM
the two asynchronous moves \((\perp, t_{17})\), \((a_{17}, \perp)\) can not be merged since otherwise the resulted modeled trace is not executable.

4.4.1 A large example. This subsection presents a large example, to shed light on how the fitness value of and initial alignment, \(\sigma_b\), can be significantly improved by the reordering technique in Def. 4.10 just mentioned in the previous section.

Consider the model in Fig. 15 (a), observed and modeled traces \(\sigma, \sigma_N\) in Fig. 15 (b). \(\sigma_N\) was computed by the method in Sec. 4.2. Notice that in the model, for the sake of simplicity, the subscript of each transition and its label are the same except those highlighted, which represent transitions with the same label. The initial alignment \(\sigma_b\), its fitness \(\pi_{\sigma_b}\), and \(\sigma_{N\perp}\) is depicted in Fig. 16 (a), (b). For the moment we ask the reader to ignore highlighted parts.

The initial \(\sigma_b\) is far from the optimal alignment. As mentioned already, this problem might be somewhat alleviated by reordering \(\sigma_b\), i.e., by merging the appropriate moves in log and model, to improve the corresponding fitness and preserve the executable property of the modeled trace simultaneously.

For example in Fig. 16 (a), the asynchronous moves \((a_3, \perp)\) and \((\perp, t_8)\), highlighted in green color, can be merged to make a synchronous move \((a_3, t_3)\), highlighted with the same color in Fig. 16 (b). Notice that the resulted modeled trace remains executable. The same holds for asynchronous moves \((a_6, \perp)\), \((a_8, \perp)\), which can be transformed to synchronous moves \((a_6, t_3)\), \((a_8, t_8)\) by the corresponding merging which is highlighted accordingly. It is worth to note that \((a_{10}, \perp)\) and \((\perp, t_{10})\), highlighted with red, cannot be merged to \((a_{10}, t_{10})\) because in that case the resulting modeled trace is not executable. In contrast, \((a_{10}, \perp)\) and \((\perp, t_{18})\) can be merged without violating any conditions mentioned in Def. 4.10, as depicted in Fig. 16 (c) highlighted with gray. The same holds for \((a_{23}, \perp)\), which can be merged with its counterpart move in mode, i.e., \((\perp, t_{22})\). The corresponding merging is depicted in Fig. 16 (e). The last two merged moves reveal that transitions with the same label do not pose any challenges during the reordering of \(\sigma_b\). The final alignment and corresponding modeled trace, where no more reordering can be applied, are shown in Fig. 17 (a), (b).

To measure how much the fitness value is improved for the mentioned example, one can see that for the initial alignment \(\sigma_b\) in Fig. 16 (a), based on Def. 3.8 with \(\delta_S = 1, \delta_L = 2, \delta_M = 2, \pi_{\sigma_b} = 1 - \frac{16 \times 4^2 + 18 \times 2}{11 \times 1 + 10 \times 2 + 16 \times 2} = 0.139\) and for the alignments depicted in Fig. 16 (c), (e) after merging highlighted moves are 0.188 and 0.25 respectively. Finally, the alignment \(\sigma\), see Fig. 17 (a), for which no more fitness improvement can be obtained has \(\pi_{\sigma} = 1 - \frac{2 \times 2 + 4 \times 2}{25 \times 1 + 8 \times 2 + 4 \times 2} = 0.675\), which represents rather magnificent fitness improvement, even though it is not the optimal one. The optimal alignment \(\sigma_{opt}\), with \(\pi_{\sigma_{opt}} = 0.764\), for the mentioned example provided by state of the art approach [Adriansyah 2014] is depicted in Fig. 17 (c). One can see that the only difference for this example between our approach and the approach in [Adriansyah 2014] is the synchronous move \((a_{10}, t_{10})\) in \(\sigma_{opt}\).
Fig. 15. (a) Process model N_h, (b) Observed trace σ and modeled trace σ_N with and without labels.
Fig. 16. (a) Initial alignment. (b) Initial modeled trace including \(\bot \).

\[\alpha_0 = \begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\end{array} \]

\(\pi_{\alpha_0} = 1 - \frac{18 \times 2 \times 16 \times 2}{11 \times 1 \times 18 \times 2 \times 16 \times 2} = 0.139 \)

\[\sigma_{N, \bot} = t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_{10} t_{11} t_{12} t_{13} t_{14} t_{15} t_{16} t_{17} t_{18} t_{19} t_{20} t_{21} t_{22} t_{23} t_{24} t_{25} t_{26} t_{27} t_{28} \]

\(\alpha_\oplus = \begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\end{array} \]

\(\pi_{\alpha_\oplus} = 1 - \frac{13 \times 2 \times 16 \times 2}{13 \times 1 \times 13 \times 2 \times 16 \times 2} = 0.188 \)

\(\sigma_{N, \bot} = t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_{10} t_{11} t_{12} t_{13} t_{14} t_{15} t_{16} t_{17} t_{18} t_{19} t_{20} t_{21} t_{22} t_{23} t_{24} t_{25} t_{26} \)

\(\alpha_\ominus = \begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\end{array} \]

\(\pi_{\alpha_\ominus} = 1 - \frac{11 \times 2 \times 13 \times 2}{16 \times 1 \times 11 \times 2 \times 13 \times 2} = 0.25 \)

\(\sigma_{N, \bot} = t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_{10} t_{11} t_{12} t_{13} t_{14} t_{15} t_{16} t_{17} t_{18} t_{20} t_{21} t_{22} t_{23} t_{24} t_{25} t_{26} \)
Fig. 17. (a) Final alignment, (b) Final modeled trace including ⊥, (c) Optimal alignment provided by state of the art approach [Adriansyah 2014]

The corresponding procedures required for the reordering of an alignment \(\alpha \) are depicted by Alg. 7 and 8. The input alignment will be considered as the initial alignment, \(\alpha^b \). Given \(\alpha^b \), for each move in log, \((a_i, ⊥)\), Alg. 7 finds the corresponding move in model \((⊥, t_j)\) with \(a_i = \ell(t_j)\) to be merged, then examines whether the synchronous move \((a_i, t_j)\) can be made with the use of flipping corresponding elements, lines 5-8. Whenever the candidate synchronous move is created without violating the conditions in Def. 4.10, then it breaks the current loop, line 9, and starts the same move.

\[
\alpha = \begin{array}{cccccccccccccccc}
& a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_9 & a_{30} & a_4 & a_{11} & a_{12} & a_{13} & ⊥ & a_{35} & a_{36} & ⊥ & a_{37} \\
& t_1 & t_2 & t_3 & t_6 & t_7 & t_9 & ⊥ & t_4 & t_{11} & t_{12} & t_{13} & t_5 & t_{35} & t_{36} & t_{37} & t_{38} \\
t_{14} & ⊥ & t_{33} & t_{15} & t_{16} & t_{19} & t_{18} & t_{20} & t_{21} & t_{23} & t_{22} & t_{24} & t_{25} & t_{28}
\end{array}
\]

\[
(\alpha)
\]

\[
σ_{N, ⊥} = t_1 t_2 t_3 t_6 t_7 t_9 ⊥ t_4 t_{11} t_{12} t_{13} t_5 t_{35} t_{36} t_{37} t_{14} ⊥ t_{33} t_{15} t_{16} t_{19} t_{18} t_{20} t_{21} t_{23} t_{22} t_{24} t_{25} t_{28}
\]

\[
(\sigma_{N, ⊥})
\]

\[
α_{opt} = \begin{array}{cccccccccccccccc}
& a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_9 & ⊥ & a_{10} & a_{11} & a_{12} & a_{13} & a_{35} & a_{36} & a_{37} & a_{14} \\
& t_1 & t_2 & t_3 & t_6 & t_7 & t_9 & ⊥ & t_5 & t_{10} & t_4 & t_{11} & t_{12} & t_{13} & t_{35} & t_{36} & t_{37} & t_{14} \\
& t_{33} & ⊥ & t_{15} & t_{16} & t_{19} & t_{18} & t_{20} & t_{21} & t_{23} & t_{22} & t_{24} & t_{25} & t_{28}
\end{array}
\]

\[
(α_{opt})
\]

\[
π_α = 1 - \frac{1\times 2 + 1\times 2}{25\times 1 + 2\times 2 + 4\times 2} = 0.675
\]

\[
π_{α_{opt}} = 1 - \frac{1\times 2 + 3\times 2}{26\times 1 + 1\times 2 + 3\times 2} = 0.764
\]
Algorithm 7 Alignment Reordering
1: **Input:** Global Variables \(SN(N, m_{\text{start}}, m_{\text{end}}), \alpha_b \)
2: prev-fitness \(\leftarrow 0 \)
3: curr-fitness \(\leftarrow \pi_{\alpha_b} \)
4: while (curr-fitness > prev-fitness) do
5: for \((a_i, \bot)\) in \(\alpha_b \) do
6: for \((\bot, t_j)\) in \(\alpha_b \) do
7: if \((a_i = \ell(t_j))\) then
8: if (Merge\((a_i, \bot), (\bot, t_j)\)) then
9: Break
10: end if
11: end if
12: end for
13: end for
14: prev-fitness \(\leftarrow \) curr-fitness
15: curr-fitness \(\leftarrow \pi_{\alpha_b} \)
16: end while
17: Return \(\alpha_b \)

Algorithm 8 Merge
1: **Input:** \((a_i, \bot), (\bot, t_j)\) \(\triangleright \) Inputs are move in log and model respectively
2: \(\sigma_{N, \bot}[i] \leftarrow t_j \)
3: \(\sigma_{N, \bot}[j] \leftarrow \bot \)
4: if \((m_{\text{start}}(\sigma_{N, \bot} m_{\text{end}}))\) then \(\triangleright \) Examine whether the resulted modeled trace is executable
5: Update \(\pi_{\alpha_b} \)
6: Return 1
7: else \(\triangleright \) Undo the flipping if \(\sigma_{N, \bot} \) is not executable
8: \(\sigma_{N, \bot}[i] \leftarrow \bot \)
9: \(\sigma_{N, \bot}[j] \leftarrow t_j \)
10: Return 0
11: end if

procedure for the another move in log\(^7\). Merging corresponding asynchronous moves can be accomplished successfully if the resulted modeled trace \(\sigma_N \) is executable, Alg 8, line 4.

5 EXPERIMENTS

The proposed approach in this paper has been implemented in Python 2.7 as the prototype tool ILPSDP\(^3\) and Gurobi [Gurobi Optimization 2016] was used as the LP solver. The standalone files for both Linux and Microsoft Windows operating systems can be downloaded from [Taymouri 2017]. The tool has been evaluated over different family of examples, from artificial to realistic, containing transitions with duplicate labels, and from well-structured to completely spaghetti. Well-structured models are similar in structure to the one shown in Figure 15(a), where one can see branching (e.g., choice at place \(p_2 \) between \(t_2 \) and \(t_{15} \)), concurrency (e.g., transitions \(t_5 \) and \(t_6 \) are concurrent), or loops (backward arc through transition \(t_{33} \)).

\(^7\)It is worth to mention that the approach considered in Alg. 7 is the simplest one to clear-up the idea in an algorithmic way, obviously for extremely large observed traces incorporating a hash function to map corresponding moves would be more efficient.

\(^3\)The experiments have been done on a desktop computer with Intel Core i7-2.20GHz, and 8GB of RAM.
The results of ILPSDP are compared with the state of the art techniques for computing alignments [Adriansyah 2014] (denoted A^*), the recent technique reported in [van Dongen 2018] (denoted Inc)\(^9\), and the automata-based technique [Reißner et al. 2017] (denoted DAFSA). The specification of benchmark datasets selected from [Taymouri and Carmona 2016a], [Munoz-Gama et al. 2014], [Taymouri and Carmona 2016b] and [4dt 2018], are presented in Tables 1-3. In short each table contains the following information about each dataset:

- **Model Characteristics:**
 - $|P|$, $|T|$, and $|Arc|$: They represent the number of places, transitions, and arcs in the process model respectively.
 - Ex.Cycl.: This parameter, i.e., Extended Cyclomatic complexity, shows the count of potential paths through the model. The higher the count, the more complex the model [Lassen and van der Aalst 2009].
 - Struct.: The Structuredness metric, quantifies a WF-net in terms of basic structures like sequence, choice, iteration and etc, or in general the atomic patterns that are understood by the people [Lassen and van der Aalst 2009].

- **Event log Characteristics:**
 - Cases(dist.): This column shows the number of cases in an input event log. Since a case might happen several times, the number of distinct cases are mentioned too.
 - Fitting: This column indicates whether the corresponding cases are executable.
 - $|\sigma_{avg}|$: This column indicates the average length of observed traces (cases).
 - $|Events|$: This column represents the number of events in an input event log.

In more detail, all the models in Table 1 are acyclic and without invisible transitions. Event logs of prAm6, prBm6, prEm6, prFm6 and prDm6 are very fitting. In contrast, prCm6 contains traces with many deviations. Models in Table 2, are well-structured, cyclic and have invisible transitions. Models in Table 3 are cyclic and with invisible transitions, Documentflow1 and Documentflow2 are spaghetti models (see the corresponding structuredness values), and do have small numbers of understandable atomic parts. The remaining models are well-structured.

In addition, to assess how the proposed approach can deal with instances containing duplicate transitions, a set of benchmarks of this type, classified by different amount of errors, 25%, 35%, 50%, 75%, were generated by PLG2 [Burattin 2016]\(^10\). These numbers denote the extent of deviations (making a fitting trace into a non-fitting trace. This can be done by inserting or removing events, and reshuffling the current events) in each event log. The details of these datasets are reported in Table 4.

\(^9\) The approach [van Dongen 2018] was not accessible at the time of writing this paper, so we include for the sake of reference the numbers for these benchmarks that are reported in the aforementioned paper. In addition, according to that paper, the experiments were conducted in single-threaded mode on a 2.8 GHz Intel Xeon W3530 CPU.

\(^10\) At the time of generating models for the experiments, PLG2 in fact was unable to produce models containing duplicate labels from scratch, therefore the generated models and logs were modified in order to have duplicate transitions.
Table 1. BPM2013 artificial benchmark datasets [Munoz-Gama et al. 2014, Taymouri and Carmona 2016b]

| Name | $|P|$ | $|\mathcal{T}|$ | $|\mathcal{A}|$ | Ex.Cycl. | Struct. | Cases (dist.) | Fitting | $|\sigma|_{avg}$ | $|\text{Events}|$ |
|---------|-----|--------|--------|----------------|---------|-------------|---------|---------------|---------------|
| prAm6 | 363 | 347 | 846 | 10001 | 3156 | 1200 (1049) | No | 31 | 37961 |
| prBm6 | 317 | 317 | 752 | 3098 | 2354 | 1200 (1126) | Yes | 43 | 49792 |
| prCm6 | 317 | 317 | 752 | 3098 | 2354 | 500 (500) | No | 43 | 21465 |
| prDm6 | 529 | 429 | 1140 | 10003 | 2840 | 1200 (1200) | No | 248 | 298322 |
| prEm6 | 277 | 275 | 652 | 10003 | 2532 | 1200 (1200) | No | 98 | 118513 |
| prFm6 | 362 | 299 | 772 | 10002 | 2843 | 1200 (1200) | No | 240 | 288931 |
| prGm6 | 357 | 335 | 826 | 10003 | 3557 | 1200 (1200) | No | 143 | 171685 |

Table 2. Artificial benchmark datasets [Taymouri and Carmona 2016b, Taymouri and Carmona 2016a]

| Name | $|P|$ | $|\mathcal{T}|$ | $|\mathcal{A}|$ | Ex.Cycl. | Struct. | Cases (dist.) | Fitting | $|\sigma|_{avg}$ | $|\text{Events}|$ |
|---------|-----|--------|--------|----------------|---------|-------------|---------|---------------|---------------|
| M_1 | 40 | 39 | 92 | 341 | 1284 | 500 (453) | No | 13 | 6555 |
| M_2 | 34 | 34 | 80 | 672 | 1351 | 500 (500) | No | 17 | 8809 |
| M_3 | 108 | 123 | 276 | 900 | 6355 | 500 (462) | No | 37 | 17980 |
| M_4 | 36 | 52 | 106 | 21 | 127 | 500 (496) | No | 26 | 13421 |
| M_5 | 35 | 33 | 78 | 9321 | 314 | 500 (500) | No | 34 | 17028 |
| M_6 | 69 | 72 | 168 | 9857 | 2225 | 500 (500) | No | 53 | 26719 |
| M_7 | 65 | 62 | 148 | 9948 | 10479 | 500 (500) | No | 37 | 18803 |
| M_8 | 17 | 15 | 36 | 10 | 66 | 500 (432) | No | 17 | 8246 |
| M_9 | 47 | 55 | 120 | 60 | 271 | 500 (500) | No | 44 | 22163 |
| M_{10}| 150 | 146 | 354 | 10011 | 6234 | 500 (500) | No | 58 | 29118 |

Table 3. Realistic benchmark datasets [Taymouri and Carmona 2016b, Taymouri and Carmona 2016a, 4dt 2018]

| Name | $|P|$ | $|\mathcal{T}|$ | $|\mathcal{A}|$ | Ex.Cycl. | Struct. | Cases (dist.) | Fitting | $|\sigma|_{avg}$ | $|\text{Events}|$ |
|---------|-----|--------|--------|----------------|---------|-------------|---------|---------------|---------------|
| Doc1. | 334 | 447 | 2059 | 9906 | 6.3E8 | 12391 (1411)| No | 5 | 65653 |
| Doc2. | 337 | 456 | 2025 | 9919 | 7.6E8 | 12391 (1411)| No | 5 | 65653 |
| Traffic.| 15 | 23 | 48 | 22 | 156 | 10000 (231) | No | 4 | 561470 |
| BPI2017 | 134 | 279 | 558 | 152 | 11320 | 31509 (15930)| No | 38 | 1202226 |
| BPI2018 | 228 | 550 | 1100 | 330 | 20142 | 43809 (28457)| No | 57 | 2514266 |

Table 4. Models with duplicate transitions

| Name | $|P|$ | $|\mathcal{T}|$ | $|\mathcal{A}|$ | Ex.Cycl. | Struct. | Cases (dist.) | Fitting | $|\sigma|_{avg}$ | Duplicate Trans. | $|\text{Events}|$ |
|---------|-----|--------|--------|----------------|---------|-------------|---------|---------------|------------------|---------------|
| ML_1 | 27 | 35 | 74 | 24 | 106 | 500 (499) | No | 28 | 2 | 14474 |
| ML_2 | 165 | 177 | 404 | 9299 | 533027 | 500 (500) | No | 87 | 12 | 43890 |
| ML_3 | 45 | 45 | 106 | 94 | 2550 | 500 (499) | No | 26 | 2 | 13251 |
| ML_4 | 36 | 33 | 80 | 3646 | 2330 | 500 (500) | No | 28 | 6 | 14074 |
| ML_5 | 159 | 172 | 390 | 3405 | 27317 | 500 (284) | No | 42 | 14 | 21026 |
Execution Times Comparison. Fig. 18 (a) and Fig. 18 (b), (c), (d) provide the required execution times for the mentioned datasets by ILPSDP, A^*, Inc and DAFSA. As stated before, for Inc only a subset of the benchmarks was reported, due to the tool not being currently available.

One can see that for all benchmark datasets except M_8, M_9, ML_1 and $BankTransfer (Bank.)$, ILPSDP is faster than A^*. For the benchmarks where A^* is better, the effort to solve an ILP model and then apply a local search is greater than simply exploring the state-space of the model, since these instances are either small or contain very few deviations. Notice that Inc is also very competitive for the models that are well-structured. For DAFSA, when the state space becomes large (e.g., Documentflow or most of the rest of the examples), it cannot handle them. Hence, competency of ILPSDP becomes more clear in dealing with big models and long traces where the other approaches need to explore a large search space. As an example, for prDm6 A^* runs out of memory (N/A in the figure), and ILPSDP can accomplish the task in reasonable time. By the same token, for realistic datasets ILPSDP is faster on spaghetti or unstructured models, even when there are many loops, see the results for Documentflow1, Documentflow2.

Also, the required execution time for ILPSDP is not as sensitive to the number of transitions with the same labels or size of the problem as the rest of approaches. Fig.18 (b) illustrates this fact, see ML_3, ML_4 where the former model contains two duplicate transitions, and the later model has six duplicate transitions.

While the plots of Fig. 18 show the superiority of ILPSDP in terms of the execution time, in order to have more confidence on this trend we establish a paired t-test between the set of execution times by ILPSDP, and the one provided by A^*. The paired t-test is a statistical test where each subject or entity is measured twice, resulting in pairs of observations. In our setting, we executed each technique on every single dataset. In more detail, we propose the following hypotheses:

$$
\begin{align*}
H_0 : & \text{ True difference in average of execution times of ILPSDP and } A^* \text{ is equal to 0} \\
H_1 : & \text{ True difference in average of execution times of ILPSDP and } A^* \text{ is not equal to 0}
\end{align*}
$$

The result of this test according to numbers in Fig. 18, is presented in Table 5 as follows:

<table>
<thead>
<tr>
<th>Variables</th>
<th>D.F.</th>
<th>t statistic</th>
<th>p-value</th>
<th>95% Confidence Interval</th>
<th>Mean of diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILPSDP’s time, A^*’s time</td>
<td>17</td>
<td>4.4459</td>
<td>0.0001</td>
<td>[10122.06, 27472.01]</td>
<td>18797.04</td>
</tr>
</tbody>
</table>

In short, one can see that the p-value is 0.0001349; thus we can strongly reject H_0, and say that the execution times between ILPSDP and A^* are statistically different. It is worth noting that the reported 95% confidence interval provided by the t-test, i.e., [10122.06, 27472.01], has positive lower and upper bounds according to the test’s setting, and A^* with 95% confidence has longer execution time than ILPSDP if they run on same datasets.
Fig. 18. (a) Realistic dataset [Taymouri and Carmona 2016b], [4dt 2018], (b) Synthetic datasets with duplicate labels, (c) Synthetic dataset [Munoz-Gama et al. 2014], (d) Synthetic dataset [Taymouri and Carmona 2016a]
Fitness Comparison. Figure 19 represents the distributions of fitness values, according to Def. 3.8, with $\delta_S = 1$, $\delta_L = 2$ and $\delta_M = 2$ for the proposed approach and A^*, across various datasets. Indeed, Fig. 19 contains box-plots of corresponding fitness values. These plots shed light on the performance of the proposed approach in terms of the quality of the solutions. One can see that the proposed approach, as mentioned in the paper, is not guaranteed to provide the optimal solution, however in many cases the average of fitness values are close to the optimal solutions, see $prAm6, prBm6, M_4, ML_1, ML_2$.

Though, the proposed approach provides in average close to optimal solutions, the variations in the provided solutions is greater than A^*; this can be seen by larger interquartile ranges of fitness values for the proposed technique in Fig. 19. In order to have statistical confidence about this metric between the two approaches, we establish a statistical test, i.e., paired t-test, for datasets that both approach provided results. In short, we consider the following hypotheses:

\[
\begin{align*}
H_0 & : \text{True difference in means of fitness values of ILPSDP and } A^* \text{ is less than equal 0} \\
H_1 & : \text{True difference in means of fitness values of ILPSDP and } A^* \text{ is greater than 0}
\end{align*}
\]

The result of this test according to numbers in Fig. 19, is presented in Table 6 as follows:

<table>
<thead>
<tr>
<th>Variables</th>
<th>D.F.</th>
<th>t statistic</th>
<th>p-value</th>
<th>95% Confidence Interval</th>
<th>Mean of diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILPSDP’s fitness,</td>
<td>17</td>
<td>$t = 5.2669$</td>
<td>3.147e-05</td>
<td>[0.05618, inf]</td>
<td>0.08388</td>
</tr>
<tr>
<td>A^*’s fitness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The p-value = 3.147e-05 shows that A^* is better than ILPSDP in quality of alignments, i.e., fitness values. However, this is not a surprising fact since ILPSDP is based on heuristics, and there is no guarantee to find optimal solutions. Above that, the result of the paired t-test shows that alignment’s fitness values provided by A^*, on average around 0.08, are higher than the corresponding values provided by ILPSDP. However, it is worth mentioning that the largest difference between fitness values found in our experiments is around 0.2.
Fig. 19. Fitness distributions for the presented approach and the approach in [Adriansyah 2014]
Computing Alignments of Well-Formed Process Models using Local Search

Improvement of Fitness Values. Fig. 20 reports the average of initial and final fitness values for the computed alignment, before and after reordering based on Def. 4.10. The range of a fitness value represents the initial value for the base alignment a_b up to a stable alignment where no fitness improvement can be obtained. One can see that for large models and observed traces there is a magnificent jump for the corresponding fitness values, and clearly models with massive parallelizations can get maximum benefits of the proposed technique, see prDm6, prEm6 and prFm6.

Size Impact. To quantify how the presented approach is sensitive to the size of a given problem, i.e., in terms of the number of transitions of the model, we establish a linear regression between the number of transitions (T) and the corresponding execution time ($time$) in seconds for computing alignments given a process model. The result of the regression for ILPSDP is:

$$time = -918.01 + 11.13 \times T$$

(F-statistic: 14.63 on 1 and 26 DF, p-value: 0.0007372) (6)

and the regression for A^* is:

$$time = 8144.83 + 62.74 \times T$$

(F-statistic: 5.959 on 1 and 26 DF, p-value: 0.02176) (7)

First of all, according to the reported p-values of F-tests, one can see that both regression models are statistically significant at 5% confidence level. In other words, it shows that a linear relationship, statistically, can be used to model the association between the dependent variable (T) and the target variable ($time$). However, more sophisticated relations like exponential or nonlinear can be used to capture the existing association better. The above results state that the model’s size has much more effect (around six times) on the A^* than on ILPSDP, see the corresponding slopes. Another interpretation of the above regression models is that, adding one extra transition to the model size, on average, increases the execution time around 62.74 unit of time (second) for A^* and 11.13 for ILPSDP.
Memory Consumption. The memory usage of ILPSDP, A*, and DAFSA for all the benchmark datasets are represented in Fig. 21.

One can see that ILPSDP requires considerably less memory than the other two techniques for computing an alignment. For small and medium models, like prAm6, prBm6, prCm6, Bank transfer, the required memory for ILPSDP is at least 10 times less than the other approaches, and this ratio increases for large models with long traces. As an example, for prDm6 ILPSDP required around 105MB whereas A* needs more than 5500MB\(^1\). Notice that the memory consumption of ILPSDP is not sensitive to size of the model and length of the observed trace, whereas A* is significantly sensitive, due to expanding and exploring the corresponding search spaces, see prDm6, prFm6, prGm6, M6, M7 and M10. In addition, the required memory for ILPSDP is not sensitive to the labels of transitions i.e., silent or duplicate labels, see ML1, . . . , ML5.

6 CONCLUSION AND FUTURE WORK

Conformance checking is a crucial issue in diagnosing deviations of process models with their real behaviors. The best way to detect such deviations is by aligning observed and modeled behavior. A novel light and fast technique based on reordering of the initial alignment, which comes from replaying the resolution of an ILP instance is proposed in this paper. The technique has been implemented into a publicly available tool, and the evaluation shows promising capabilities to handle large instances including loops, silent transitions and transitions with duplicate labels. The evaluation reveals that this approach has very good performance in different perspectives, namely, execution time and memory consumption, and is able deal with large and as well as Spaghetti and well-structured models. Above that, experiments witnessed the obtained alignments are close to optimal alignments.

\(^1\)For each of benchmark datasets prDm6, prFm6, prGm6, M6, M7, M10, ML2 and ML3 the required memory for A* is more than 5500MB, but due to limited amount of memory of the machine by which the experiments were done, the total required could not be measured.
As future work, we see many possibilities. First, we want to incorporate a mechanism to slide the observed trace during the reordering of an initial alignment \(\alpha_1 \) to get a better result. Second the mentioned replaying technique can be improved and being smarter whenever it considers next transitions ahead of the current transition being fired, which might result in a better initial solution. Third, we would like to improve the reordering technique so that merging multiple moves simultaneously is allowed. Finally an improvement in our implementation can be obtained based on the following fact: since for many cases the initial modeled trace is the same hence, it is not necessary to compute it for each case separately. Therefore by grouping observed traces with identical model trace we can have a huge reduction in resource usage.

Acknowledgments We would like to thank B. van Dongen for interesting discussions. This work has been supported by MINECO and FEDER funds under grant TIN2018-87627-C2-1-R.

REFERENCES

2018. 4TU. Centre for Research Data. http://researchdata.4tu.nl/home/

Manuscript submitted to ACM

A PROOFS

A.1 Proof of Lemma 4.4

Proof. The proof has two parts, the first part shows the existence of σ_0 and the second part establishes there is a sequence of firing whose Parikh vector is σ_0. The second part is crucial due to the fact that Parikh vectors in general are not guaranteed to be executable (see the example provided at the end of Sect. 3.2), i.e., the final marking is not reachable by firing the elements of the Parikh vector.

- Part 1:
 This part proceeds by contradiction. Consider a transition like $t_j \in T_{m_i} \cap \text{supp}(\sigma_P)$ with $\sigma_P(t_j) = n_j$. To proceed, separate situations are considered as follows:

1. Let $\ell(t_j) = a_j \in \text{supp}(\sigma)$ with $\sigma(a_j) = n$, in other words for transition t_j the corresponding events, i.e., a_j, happened n times in the observed trace σ. Let’s assume that it is able to fire only n_i times, with $n_i < n_j$, and there is no Parikh vector to fire it n_j times. In other words there exist no σ_0 as stated by the lemma. However this is impossible due to violation of the following constraint of Eq. (4):

$$\sigma(a_j) = X[t_j] + X^2[t_j] + \text{Res} \quad \text{where} \quad n = n_j + n_2 + n_3$$

Stated differently, n_j times firing of t_j makes the equality sign $=$ to become $>$ since the difference value $n_j - n_i$ cannot be compensated by other terms in that equation. Therefore there is a Parikh vector σ_0 in which t_j fires n_j times.

In case of multiple transitions with the same label, for the sake of simplicity and comprehension the other corresponding terms are represented by the residual term, i.e., Res.
Computing Alignments of Well-Formed Process Models using Local Search

A.3 Proof of Theorem 4.6

Based on Lemmas 4.4 and 4.5, the proof of Theorem 4.3 is as follow:

Proof. Since SN is a WF-net, let \(m_{\text{end}} = \{ t_{\text{end}} \} \) and \(m_{\text{start}} = \{ t_{\text{start}} \} \), stated differently \(t_{\text{start}} \) and \(t_{\text{end}} \) are the only transitions of the model which consumes token from the initial marking and puts token to the final marking respectively. The first part of proof proceeds by contradiction. Assume that there is no \(\sigma_R \) by which \(m_{\text{end}} \) is reachable. Since \(t_{\text{end}} \) is the only element which marks \(m_{\text{end}} \) this assumption indicates \(t_{\text{end}} \notin \text{supp}(\sigma_R) \) which implies

\(^{13}\)We can easily make SN live by connecting the final place to the start place by a silent transition \(r \), a fact that does not harm the proof since the lemma holds for the elements different from \(r \).

Manuscript submitted to ACM
Thus \(t_{\text{end}} \) will be fired. By the same token, \(t_{\text{start}} \) will be fired because it is the only one transition of the model which consumes the initial token. Put it differently, \(t_{\text{start}}, t_{\text{end}} \in \text{supp}(\sigma_R) \). The second part of proof continues as follow. Due to firing of \(t_{\text{end}} \), some elements of \(\sigma_p \), denoted by \(\sigma_{P_k} \), must be fired to mark \(\sigma_{\text{end}} \) since otherwise some tokens will be missed and therefore it contradicts the solution of Eq. (4). Also, there is the same argument for elements of \(\sigma_{P_k} \) as well, and it continues until we reach transition(s) of the model which consume(s) the produced token(s) by \(t_{\text{start}} \). More formally:

\[
m_{\text{end}} = m_k + NX_{k+1}, \quad X_{k+1}[t_{\text{end}}] = 1, \quad \text{o/w } 0 \quad \text{and} \quad m_k \geq 0
\]

\[
m_k = m_{k-1} + NX_k, \quad \forall t \in \sigma_{P_k}, X_k[t] = 1, \quad \text{o/w } 0 \quad \text{and} \quad m_{k-1} \geq 0
\]

\[
m_2 = m_1 + NX_2, \quad \forall t \in \sigma_{P_2}, X_2[t] = 1, \quad \text{o/w } 0 \quad \text{and} \quad m_1 \geq 0
\]

\[
m_1 = m_{\text{start}} + NX_1, \quad X_1[t_{\text{start}}] = 1, \quad \text{o/w } 0 \quad \text{and} \quad m_{\text{start}} \geq 0
\]

This argumentation establishes the existence of a sequence like \(\sigma_R \) by which the final marking \(m_{\text{end}} \) is reachable from \(m_{\text{start}} \) and \(\sigma_R \leq \sigma_P \).

\(\square \)

\section*{A.4 Proof of Theorem 4.7}

Proof. The proof proceeds by contradiction. Suppose that for the proposed approach \(\overline{A} \sigma_N \) such that \(m_{\text{start}}[\sigma_N] m_{\text{end}} \). As such, it means the proposed technique reaches to an arbitrary marking \(m_i \neq m_{\text{end}} \) for which there are no enabled transitions, i.e., \(T_{m_i} = \phi \). However this is impossible due to the following reasons:

\begin{enumerate}
\item There is no deadlock in the model (except the final marking).
\item By virtue of Theorem 4.6 \(\exists \sigma_p \) such that \(m_{\text{start}}[\sigma] m_{\text{end}} \) therefore the initial assumption made at the beginning of the proof implies backtracking since \(m_i \geq 0 \) and \(m_i \neq m_{\text{end}} \) but it contradicts the presented replaying technique since by virtue of Theorem 4.3 it does not backtrack.
\end{enumerate}

Therefore the presented technique finds a sequence like \(\sigma_N \) such that \(m_{\text{start}}[\sigma_N] m_{\text{end}} \).

\(\square \)

\section*{A.5 Proof of Theorem 4.8}

Proof. We present the proof by contradiction as follows. Suppose that \(\exists \sigma'_N \), where \(\sigma_N \leq \sigma'_N \leq \sigma_P \) and \(|\sigma_N| < |\sigma'_N| \) such that \(m_{\text{start}}[\sigma'_N] m_{\text{end}} \), in other words \(\exists t_i \in \text{supp}(\sigma'_N) \) but \(t_i \notin \text{supp}(\sigma_N) \). The mentioned assumption implies that there is marking \(m_i' \) such that \(t_i \leq m_i' \) and it is not met while \(\sigma_N \) is being obtained. But this is impossible to have such an intermediate marking for the following reason. If we consider the corresponding reachability markings for two sequences, i.e., \(\sigma_N \) and \(\sigma'_N \), as follows:

\[
\begin{array}{ccccccccccc}
m_{\text{start}} & t_{\text{start}} & \cdots & m_i & \cdots & t_{\text{end}} & m_{\text{end}}. \\
m_{\text{start}} & t_{\text{start}} & \cdots & m_i & \rightarrow & m_i' & t_i & m_i' & \cdots & t_{\text{end}} & m_{\text{end}}. \\
& & & & & \sigma_N \\
& & & & & \sigma'_N
\end{array}
\]

Then to reach \(m_i' \), some transitions like \(t_j \) from the previous marking, let’s say \(m_i \), must be fired. If \(m_i \) is reachable while \(\sigma_N \) is being replied then \(m_i' \) is also reachable by virtue of Theorem 4.3, since all the enabled transitions of \(m_i \) will

\footnote{If \(\text{supp}(\sigma_P) > 1 \) then these elements are fired concurrently, i.e., there is no causality among them.}

\footnote{To make everything simple assumes only one transition is enough. It can be easily rephrased for the case with many transitions.}
be fired. Indeed it is impossible to have such a marking like m_i' and corresponding previous markings like m_i which are not met while σ_N is replayed since the initial marking of both σ_N and σ'_N is m_{start}. □