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Abstract 

In this thesis, it will be analysed some of the main algorithms used for one of the 

events in the Formula student Germany competition in the driverless category. This 

event is called Skidpad. It consists on an 8 shaped track and the car has to 

complete the track as fast as it can.  

The algorithms that will be analysed are the SLAM, the path, the planner, the 

controller and the main Skidpad algorithm. 
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Resum 

En aquesta tesis, s’analitzaran alguns dels algorismes principals utilitzats per una 

de les proves de la competició Formula Student Germany en la categoria Driverless. 

Aquesta prova s’anomena Skidpad. Consisteix en un circuit en forma de 8. 

L’objectiu es completar-lo en el menor temps possible. 

Els algorismes analitzats son el SLAM, el path, el planner, el controller i el Skidpad 

algorithm. 
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Resumen 

En esta tesis se analizarán algunos de los algoritmos principales utilizados para 

una de las pruebas de la competición Formula Student Germany en la categoría 

Driverless. Esta prueba se llama Skidpad y consiste en un circuito con forma de 8. 

El objetivo es completarlo en el menor tiempo posible. 

Los algoritmos analizados son el SLAM, el path, el planner, el controller y el 

Skidpad algorithm. 
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1. Introduction 

This thesis consists on the analysis of the main algorithms needed to complete the 

Skidpad event in a Formula Student competition. This thesis is made by Alvaro 

Linuesa, member of the autonomous control section of the ETSEIB Motorsport 

team. But first, let me introduce to you to the ETSEIB Motorsport team and to the 

Formula Student Germany competition.  

All the algorithms described in this thesis will run on a single seater car named 

XALOC. 

 

 

Figure 1- The car "XALOC" 

 

1.1. ETSEIB Motorsport 

 

This project is being developed in the ETSEIB Motorsport team. ETSEIB Motorsport 

was founded on 2007. It is formed entirely by students from different schools of the 

UPC, basically from the ETSEIB school and the ETSETB school. The team is 13 

years old. Their goal is to design and build a single seater formula style car.  

In their origins, they made combustion cars.  In the 2011/2012 season, they built 

their first electric car. Finally, on the 2018/2019 season, they decided to jump into 

the Driverless category and made the first Formula Student Driverless car in Spain, 

the XALOC. 

In the current 2019/2020 season, the team is formed by two sub-teams. The EV 

team and the DV team. This project is being developed in the DV team. 
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The team is formed by 20 students from ETSEIB and ETSETB. These students are 

distributed in 4 sections: management, perception, hardware and control. 

Each section has some specific roles.  

• Management: This section is in charge of the team organization, the treasury 

and the contact with the sponsors. They also are in charge of representing 

the team in the Business Plan event and the Cost event. 

 

• Perception: This section can be seen as the eyes of the car. They use a 

LIDAR and two cameras to acquire the information from the track and format 

it to the required format. 

 

• Control: This section can be seen as the nerves and the brain of the car. 

From the information obtained by the perception section, the section designs 

the algorithms for the control of the car. 

 

• Hardware: This section oversees all the electronic and mechanical parts of 

the car.  

 

1.2. Formula Student Germany 

 

Formula student Germany is a competition which challenges students from all over 

the world to design and build a single seater racecar. From the organization it is 

described as:  

“Students build a single seat formula racecar with which they can compete against 

teams from all over the world. The competition is not won solely by the team with 

the fastest car, but rather by the team with the best overall package of construction, 

performance, and financial and sales planning. 

Formula Student challenges the team members to go the extra step in their 

education by incorporating into it intensive experience in building and 

manufacturing as well as considering the economic aspects of the automotive 

industry. Teams take on the assumption that they are a manufacturer developing a 

prototype to be evaluated for production. The target audience is the non-

professional Weekend-Racer. The racecar must show very good driving 

characteristics such as acceleration, braking and handling. It should be offered at 

a very reasonable cost and be reliable and dependable. Additionally, the car's 

market value increases through other factors such as aesthetics, comfort and the 

use of readily available, standard purchase components.  

The challenge the teams face is to compose a complete package consisting of a 

well-constructed racecar and a sales plan that best matches these given criteria. 
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The decision is made by a jury of experts from the motorsport, automotive and 

supplier industries. The jury will judge every team's car and sales plan based on 

construction, cost planning and sales presentation. The rest of the judging will be 

done out on the track, where the students demonstrate in a number of performance 

tests how well their self-built racecars fare in their true environment.” 

The competition consists on achieving the maximum points as possible. It has three 

categories: Electric Vehicles (EV), Combustion Vehicles (CV) and Driverless 

Vehicles (DV). The cars entering each category must follow a set of rules to ensure 

the security of all the competitors and to regulate noncompetitive behaviors. 

The competition is divided into two main blocks, the static events, and the dynamic 

events. 

In the static events, the economic and technical aspects are valued. The static 

events are the Business Plan event, the cost and manufacturing event and the 

engineering design event. 

In the dynamic events, it is valued the behavior of the vehicle in the track. In the DV 

category, the dynamic events are the Skidpad, the acceleration, the autocross, the 

trackdrive and the efficiency test. The tracks of these events are made with cones 

from 3 different colors. The blue cones are always on the left side of the car, the 

yellow cones are always on the right side of the car. Finally, the orange cones 

represent the beginning and the endings of the track. 

Each of the events have an own punctuation. They are shown in the table below. 

 

Table 1- FSG punctuations 
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In this thesis, it will be described the algorithms used in the Skidpad event. The 

Skidpad event consists on an eight shaped track. The car must perform two laps 

on the right circle and exit it, then it must perform two laps on the left circle and exit 

it. Finally, the car must stop in the designed space. The score is obtained by the 

average of the best time of each lap and using the next equation: 

𝑆𝑘𝑑𝑖𝑝𝑎𝑑 𝑠𝑐𝑜𝑟𝑒 = 71.5 ∗ (
(
𝑇𝑚𝑎𝑥
𝑇𝑡𝑒𝑎𝑚

)
2

1.25
− 0.8) 

 

 

 

 

 

 

  



 

 13 

2. State of the art of the technology used or applied in this 

thesis: 

2.1. ROS 

All the algorithms used in the car follow a ROS structure. But what is ROS? ROS 

stands for Robot Operating System. It is an open source, meta operating system 

for robots. It offers all the services expected from an operative system, including 

hardware abstraction, low level device control, implementation of commonly used 

functionality, message passing between processes, and package management. It 

also provides tools and libraries for obtaining, building, writing and running code 

across multiple computers. 

They way it works is really simple. There are some algorithms running in the called 

nodes. These algorithms can publish data or read published data via the topics. A 

topic is a “place” where data is published. The nodes can subscribe to the topics in 

order to get the information published in them. 

 

Figure 2- ROS behaviour 

 

The algorithms running in the nodes can be programmed by python or C++. 

The pipeline used in this project is really complex and requires many interpret nodes 

in order to format the information that is being published. 
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Figure 3- ROS control section pipeline 

 

2.2. GAZEBO 

Gazebo is a set of ROS packages that provides the necessary tools to simulate the ROS 

structures in a virtual environment.  

For the development of our algorithms, we have pretty complete simulator that was 

developed during last season. 

Without the simulator it will be impossible to develop any of the algorithms as it is 

mandatory to test all the programs before loading them into the car. 
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3. Methodology / project development and results:  

The control section has a complex algorithm pipeline to make the algorithms work. 

There are many interpret nodes to format the information and do some 

manipulations to the data. For the Skidpad event, there are 5 important modules 

operating. These modules are the SLAM, the path, the planner, the MPC and the 

main skidpad algorithm. These 5 modules will be analysed in this thesis. 

 

3.1. SLAM 

3.2. What is a SLAM? 

Simultaneous Localization and Mapping or SLAM is an intrinsic problem to mobile 

robots. It consists on mapping the environment of the vehicle while localizing it in 

the map that is being created. This can be seen as a trivial problem when having 

ideal data-inputs from the sensors. Unfortunately, noise free measurement doesn’t 

exist in the real world. This noisy measurement complicates the solution to the 

problem. 

An example could be a mobile vehicle in a landmark based environment equipped 

with some sensors such a LIDAR and some velocity sensors reading in both axes 

(Vx, Vy). The position of the vehicle pi = (Xi, Yi) will depend on the last position pi-1 = 

(Xi-1, Yi-1) and the velocity v = (Vx, Vy): 

𝑝𝑡 = 𝑝𝑖−1 + 𝑣𝑖∆𝑡 

And if we add noise: 

𝑝𝑡 = 𝑝𝑖−1 + 𝑣𝑖∆𝑡 + 𝑤𝑡 

 

As the second equation shows, the position estimation accumulates noise at every 

iteration. This does not only affect the location estimate but also the map created 

as well. Mapping is a function that totally depends on the current position even if 

we have a perfect perception system. 

To solve this noisy velocity readings, there is a SLAM technique based on ignoring 

those inputs and use only the perception reading to find its location. This is acquired 

using an inverse observation function. Knowing a perfectly mapped landmark 

located in (Xj, Yj) and we observe that landmark in (Xk, Yk), we can determine our 

location accordingly. However, if the measurements are noisy, we have the same 

problem: accumulative error. Figure 4 shows the error accumulation described. 

 

 



 

 16 

 

Figure 4- The SLAM problem 

 

This system has some complex mathematics behind. To understand them, it is 

needed an introduction to some of the basic notation used. 

The basic expressions are: 

• 𝜇𝑖: State of the system at the iteration i. This state contains all the information 

about the position of our vehicle and the map at the iteration i. Let`s assume 

that our vehicle is moving on a 2D environment formed by some punctual 

landmarks. The positions can be parametrized as ri = (Xi, Yi, θi)T and the map 

mi = (l0, l1,…,ln)T where each element is a landmark. The state vector will be: 

 

𝜇𝑖 = (
𝑟𝑖
𝑚𝑖
) 

 

 

• ui : Motion controls at the iteration i. They relate the last pose of the vehicle 

with the current pose. Let’s assume that our vehicle moves in a 2D 

environment according to a cinematic model. The control vector would be  

ui = (vi,wi)T. The next pose of the vehicle would be: 

 

𝑟𝑖 = 𝑟𝑖−1 + 

(

 
 
−
𝑣𝑖  

𝑤𝑖
sin(𝜃𝑖−1) + 

𝑣𝑖
𝑤𝑖
sin (𝜃𝑖−1 + 𝑤𝑖∆𝑡)

𝑣𝑖  

𝑤𝑖
cos(𝜃𝑖−1) − 

𝑣𝑖
𝑤𝑖
cos (𝜃𝑖−1 + 𝑤𝑖∆𝑡)

𝑤𝑖∆𝑡 )
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ri,mi 

ri:t,m 

• zi: Observation at the iteration i. This element provides information about the 

local environment. Let’s assume that our sensors provide coordinates of all 

the landmarks in its range in polar local coordinates zi = (Y0 … Yn)T. 

The mapping process is named the inverse measurement model. The global 

coordinates of the landmark are a function of the current pose and the local 

observation. 

 

mi = h-1(𝜇𝑖, zi) 

 

SLAM algorithms can be classified into two main groups, the Full SLAM algorithms 

and the Online SLAM algorithms. 

• Online SLAM: Estimates the posterior pose over the momentary pose along 

with the map. It provides a map and a pose result for every iteration. It is a 

real-time algorithm: 

𝜇𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥  [𝑝(𝑟𝑖, 𝑚𝑖|𝑧1:𝑖, 𝑢1:𝑖) 

 

• Full SLAM: Calculates a posteriori over the entire path along with the map 

instead of just the current pose: 

𝜇𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥  [𝑝(𝑟1:𝑖, 𝑚|𝑧1:𝑖, 𝑢1:𝑖) 

 

 

Our vehicle uses an online SLAM based on an EKF. To understand how it, it has 

to be described how an EKF works first. 

 

3.2.1. Extended Kalman Filter 

An EKF is an algorithm designed to work with Gaussian distributions and linear 

approximations via Taylor expansion. 

The motion and measurement model in an EKF are non-linear functions: 

𝜇𝑖 = 𝑔(𝜇𝑖−1, 𝑢𝑖) , 𝑧�̅� = ℎ(𝜇�̅�) 

We can use this functions to compute the predicted pose and measurement, but 

we cannot use them to compute its covariance matrix as the output they produce is 

no longer Gaussian. We must use the Taylor expansion to linearize and solve this 

problem. When using Taylor expansion, we convert non-linear models into linear 

approximations of the models: 

𝐺𝑖 =
𝜕𝑔

𝜕𝑟𝑖
 𝑉𝑖 =

𝜕𝑔

𝜕𝑢𝑖
 𝐻𝑖 =

𝜕ℎ

𝜕𝜇�̅�
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Finally, the EKF algorithm: 

 

 

3.2.2. EKF SLAM 

Our EKF SLAM algorithm is inspired in the academic EKF SLAM algorithm from the 

Probabilistic Robotics book, by Sebastian Thurn. 

We consider an environment formed by punctual landmarks, from which we receive 

information about their polar coordinates at every iteration i. Our sensors do not 

have infinite range, so we receive the landmarks that are in range of them. We also 

do not know how many landmarks form the environment, so we have a dynamic 

map that grows every time we map a new landmark. Finally, we do not know about 

the correspondences between the landmarks, so we have to perform a data 

association process in order to decide if the landmarks we are receiving have 

already been mapped or not. 

 

 

Figure 5- EKF SLAM structure 

In our design, we assign and ID to each landmark to help with the landmark 

management process. This process is done in a peripheral class that contains a 

signature vector that associates each landmark of the state vector with a given id. 
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We also use a custom dynamic model to estimate the next translation and rotation 

at the iteration i. This dynamic model uses another EKF to fuse data from different 

sensors (phonic wheels, pneumatic pressure, IMU readings…) and a GPS 

observation (if available) and get an accurate estimation of the next pose. This 

estimation is re-filtered in the SLAM system to obtain the optimal estimation. 

 

 

Figure 6- Block scheme of the Dynamic State Estimation system and SLAM system working together 

 

3.3. Path algorithm 

To get the correct path that the race car will follow is the next step after getting the 

limits of the track. This task is done by the Path program.  

The purpose of the algorithm is to get the path that goes through the middle of the 

track limits. Therefore, the inputs of the Path algorithm are the cones that define 

the limits of the track. The output are the points of the computed path.  

This algorithm assumes that the input is correct because the TrackLimits system 

corrected the possible errors that could had happened. In the Skidpad event that is 

being analyzed, the Tracklimits algorithm is not used. The reason is because the 

system used for this specific event, creates its own tracklimits making the 

Tracklimits algorithm redundant and therefore not necessary. 
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The main goals of the Path algorithm are: 

• To design an algorithm that computes the path with a high probability of 

rightness. 

• To design an algorithm that computes the right path in the following 

scenarios: 

o The perception system only sees cones of one side of the track. 

o The perception system only sees one cone. 

o The perception system only sees one cone from one side and many 

from the other side. 

o The perception system sees many cones. 

• To achieve a fast and efficient algorithm. 

 

Structure of the algorithm: 

The Path algorithm consists on firstly doing a linear interpolation between the cones 

that define the limits of the track. The next step is to compute the Voronoi Diagram 

graph with the interpolated sites. And finally, the last step is to get the best trajectory 

with the information of the graph. 

When the TrackLimits system only computes one side of the limits of the track, the 

Path algorithm gets the other side of the track and computes the best path. To get 

the other side of the track, the Path program projects the known side limits to the 

other side. In the Skidpad event that functionality is not used, and a lighter version 

of the Path algorithm substitutes the full version. This is because, as it will be 

explained later, the algorithm has all the cones of the track pre-initialized making it 

impossible to see only one side of the track. 
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As the full algorithm will not be used, only the light version will be described. 

The first step of the algorithm is to check if the cone arrays are empty. In the 

Skidpad event, this is an impossible scenario, so the arrays will never be empty. 

After the array analysis, an interpolation must be performed. This is because the 

trajectory that the Path algorithm obtains is formed by many edges of a Voronoi 

Diagram graph. The edges of the limits of the track tend to be very large. If these 

edges are used to get the trajectory, the obtained path would not be smooth. To get 

a more accurate trajectory, sites are added so that the edges of the Voronoi 

Diagram graph become shorter. Once we join all the edges the trajectory is much 

smoother and accurate. 

To build this smoother trajectory a linear interpolation of the cones is performed. 

The criteria used to do this interpolation is to have 3 cones per meter. To calculate 

the number of cones that have to be interpolated between two real cones, the 

following equation is used: 

𝑁 = ⌈𝑑(𝑐1, 𝑐2) ∗ 3⌉ 

Where N is the number of interpolated cones and 𝑑(𝑐1, 𝑐2) is the distance between 

two consecutives real cones. 

 

Figure 7- Full path algorithm 
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Figure 8-Interpolated cones (red) and input cones (yellow and blue). 

 

After the interpolation process, the cones are numerated in ascending order starting 

with the blue cones. 

 

After the interpolation, the algorithm needs to create a Voronoi Diagram. The 

Voronoi Diagram graph of the interpolated set of sites helps getting the path that 

follows the center of the track. The size of the graph increases with the number of 

sites. The interpolated cones graph is also much more precise regarding the 

trajectory we want to follow. This graph contains edges that follow the center of the 

track. If the edges are segregated and joined the together in the correct order, an 

accurate path will be obtained. 

 

 

  

 

Figure 9- Voronoi diagram 
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In the images, it can be seen how the edges are combined and joined together to 

create a line following the center of the track. The next step will be to obtain this 

line by segregating the edges and obtain the final trajectory. 

To do so, we must pay attention to the graph structure of edges, vertexes and sites. 

Two consecutive edges have a vertex in common and two consecutive vertexes 

have an edge in common as well. Now that this is known, the closest vertex to (0,0) 

has to be found and declare it as the initial vertex. Once the initial vertex is known, 

we find the initial vertex edge that is linked to two cones of a different color (blue 

and yellow) and with the highest index. The indexes are compared because there 

could be two initial vertex edges linked with cones of different color. The edges can 

point forward and backward. We want to get the edge that points forward. To do 

this, we compare the indexes of their linked cones and decide which is the one that 

is pointing. 

Now, the first two vertex of the trajectory which are linked by an edge are known. 

From this point, we recursively find the edge of the last vertex found that is linked 

to two cones of a different color and that is different than the last edge found.  

 

 

Figure 10- Trajectory algorithm 

 

Figure 11- Trajectory output 
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3.4. Planner 

Another of the algorithms involved in the Skidpad is the called planner. A planner 

is a routine of the vehicle that tells it where to go. It can be seen  

The planner can be seen as a series of checkpoints that tells the vehicle what its 

next objectives are and how to get to them. The points contain information of the 

state of the vehicle like its velocity. These checkpoints must be equally spaced in 

time by ∆T, the control frequency. This means that even if the distance between 

two points it’s not the same because the speed may vary, the time that passed 

between these two objectives will be always the same. 

In this project, it is used a velocity variable planner. In comparison to other planners, 

the one used for the project does not look for the optimal trajectory as it is already 

given by the path module. Thanks to this, a lot of computational time is reduced as 

many of these processes are iterative. Due to the narrowness of the track, it would 

not make a big difference to cut through the corners. It is possible to obtain an 

optimized trajectory once the car has completed a lap but in the Skidpad event, this 

upgrade is useless and was discarded when designing the algorithm. 

The planner performs two main tasks. The first task is to format the chaotic 

information received from the path module. Then, it decides the speed of the vehicle 

at every checkpoint. 

To obtain the velocity profile, it will be used the lateral acceleration as a velocity 

restriction. A car can have some slip problems when turning at high speeds due to 

high lateral forces. Slowing down can help to reduce those forces. Using the lateral 

acceleration formula, longitudinal velocity and lateral acceleration can be related by 

the turning radius. 

𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =
𝑣2

𝑅
 

Fixing the maximum lateral acceleration, it is obtained the maximum velocity at a 

given point by knowing its radius. 

𝑣𝑚𝑎𝑥 = √𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙
𝑚𝑎𝑥 ∗ 𝑅 

 

To obtain the velocity, the system must get the curvature at each position down the 

center line obtained by the path system. This center line may seem smooth but at 

closer look, it has some sharp edges. To get the velocity profile, those edges must 

be eliminated. This is done by applying a zero-degree spline. 

Once the initial path has been smoothed, a new set of points have to be obtained. 

The number of points that will be obtained is governed by the sampling variable. 

This variable must be high enough to assure a continuity of checkpoints but without 

compromising the processing time. 
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The points in the spline line can be calculated by a parameter comprised between 

0 and 1. The set of points is automatically obtained by a spline function. The values 

obtained are equally spaced using the sampling variable, but the product will not 

be. 

Given three consecutive points of the smoothed path, it can be calculated the radius 

of the circle they define. The equation used to determine this value returns the 

curvature. By knowing that the curvature is related to the radius, it can be obtained 

the maximum theoretical velocity at a point via an inverse function. 

 

 

Figure 12- Planner output 

The balls in figure 12 represents the velocity on each point. 

 

3.5. MPC 

This algorithm triggers once the vehicle knows its position (SLAM) and where it 

wants to go (PLANNER). Then the vehicle will need to know to steer to get to its 

desired position and ask the motor for the desired torque. This process is done in 

the controller node. 

The controller used for this step is an MPC. Unlike many different controllers, the 

MPC objective is to get the position in which the steering should be to ger from A 

to B and how much throttle is required to achieve a reference velocity. 

There are many different types of MPC. They have as an advantage the possibility 

to plan many steps in advance. They use optimizers to minimize the difference 

between the controlled system and its planned task. The optimizer finds a solution 

to a problem given a certain cost function and some restrictions. In the MPC, the 

restrictions define the plant of the system we want to control. In our case, it is a 

kinematic model of the vehicle. In this type of model, the forces acting on the system 

are not considered. The plant is defined by the velocities. This means that the 

wheels never loose grip with the ground and the vehicle goes accordingly to the 

steering position. 
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The difference between the solution obtained and the planned task can be 

measured by a set of indicators that will define the cost function. Before the 

execution of the solver, the MPC receives the planned task, which is composed by 

a series of reference points that contains information of position and velocity.  

The kinematic model used in the MPC is a model based on the bicycle model. It is 

an efficient simple and fast system to control a driverless vehicle.  

As our vehicle is a 4 wheeled car, an equivalent wheel has to be created for each 

pair of wheels. This is done by averaging the angle and speed of each pair of 

wheels. 

 

 

Figure 13- Biccyle model 

 

The variables that compose the model are x, y, ϕ for the position of the vehicle and 

v for its speed. There are some control variables also, such as a for the acceleration 

and δ for the angle of the frontal wheel. The model also has some internal 

components and some constants. These constants, Lr and Lf, defines the distances 

between the center of gravity (COG) and the front and rear wheel. Finally, the model 

has a constant to dictate how often the controls can be adjusted, ∆T.  

 

In the following lines, the equations that form the system will be introduced. All of 

them are expressed with a zero equality as they were introduced in the solver this 

way. 

First, the next position of the vehicle based on its current position needs to be 

calculated. The factors used for this equation are the current position, the steering 

position and the velocity. To describe the steering position, it will be used the 

variable β. 
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𝛽 = tan−1 (
𝐿𝑟

𝐿𝑟 + 𝐿𝑓
∗  tan 𝛿0) 

0 = 𝑥1 − 𝑥0  +  𝑣0  ∗ cos(𝑝𝑠𝑖0  +  𝛽) ∗ ∆𝑇 

0 = 𝑦1 − 𝑦0  +  𝑣0  ∗ sin(𝑝𝑠𝑖0  +  𝛽) ∗ ∆𝑇 

 

Then, it needs to get updated the velocity: 

 

0 = 𝑣1 − 𝑣0 + 𝑎0 ∗ ∆𝑇 

 

The next step is to update the angle of the car. The equation used is: 

 

0 =  𝑝𝑠𝑖1 − 𝑝𝑠𝑖0 + 𝑣0 ∗
𝛿0
𝐿𝑓
∗ ∆𝑇 

 

The physical constraints of the actuators need to be considered also. As sudden 

changes are not desired, we can smooth them by adding two inequations on the 

control variable: 

 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 ≤ 𝑎1 − 𝑎0 ≤ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 

−𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑠𝑡𝑒𝑝 ≤ 𝛿1 − 𝛿0 ≤ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑠𝑡𝑒𝑝 

 

The cost function: 

The objective of the cost function is to measure the validity of the solution s. The 

cost function error grows quadratically. This translates into a faster ascending rate 

as the vehicle derivates more from the planned trajectory. The error is also 

undefined, this means that a maximum error value is set. Bigger errors than this 

value grows at a faster rate, while smaller errors grows slower. 

The cost function is formed by two modules, Q and dR. Q represents the error 

related to the state of the vehicle while dR regulates the changes in the control 

variables. 

 

𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑓 = 𝑊𝑠𝑙𝑜𝑝𝑒 ∗ (𝑄 + 𝑑𝑅) 
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Each module is regulated by a weight that varies from 0 to 1. Q and dR are weights 

of each module. All weights are unified. This means that the addition of 

complementary weights is equal to one.  

𝑄 + 𝑑𝑅 = 1 

 

Figure 14- Arrows representing the desired steering angle 

 

 

Q module: 

The difference between the predicted state of the car at one instant and its 

respective desired state is the way in which the error is obtained. 

First, we need to consider the lateral and longitudinal error of the vehicle relative to 

the planner. The error needs to be measured locally to each planned point. For this, 

a reference change from global to local will be performed. 

 

𝑑𝑖𝑓𝑓𝑥 = 𝑠𝑥 − 𝑝𝑥 

𝑑𝑖𝑓𝑓𝑦 = 𝑠𝑦 − 𝑝𝑦 

𝑑𝑖𝑓𝑓𝑙𝑜𝑛  =    𝑑𝑖𝑓𝑓𝑥  ∗  𝑐𝑜𝑠(𝑝𝑝𝑠𝑖)  + 𝑑𝑖𝑓𝑓𝑦  ∗  𝑠𝑖𝑛(𝑝𝑝𝑠𝑖) 

𝑑𝑖𝑓𝑓𝑙𝑎𝑡  =  − 𝑑𝑖𝑓𝑓𝑥  ∗  𝑠𝑖𝑛(𝑝𝑝𝑠𝑖)  +  𝑑𝑖𝑓𝑓𝑦  ∗  𝑐𝑜𝑠(𝑝𝑝𝑠𝑖) 

 

 



 

 29 

The angles are constraint from 180º to -179º. Even though the angle difference can 

be obtained by subtracting the planner and the robot predicted angles, the value 

might not be the expected one. For example: 

𝑑𝑖𝑓𝑓𝑝𝑠𝑖  =  𝑠𝑝𝑠𝑖  −  𝑝𝑝𝑠𝑖 = 180
° − (−179°) =  359° 

sin (−1°) =  sin (359°) ≈ −1° ∗ (2𝜋
180°⁄ ) 

cos (−1°) =  cos (359°) 

For the cost function calculations, the outcome is different. Absolute magnitudes 

are used in the cost function. That means that the smallest absolute value of the 

angle is used. This is obtained by small angles approximations using the sin 

function. 

To solve this problem, atan2 is used. That function requires two parameters, the 

opposed and the adjacent sides of the triangle view from the angle we want to find. 

The reason why the atan2 is used for the small angle approximation is because its 

higher precision. 

𝑑𝑖𝑓𝑓𝑝𝑠𝑖  =  𝑎𝑡𝑎𝑛2(sin(𝑠𝑝𝑠𝑖  −  𝑝𝑝𝑠𝑖) , cos(𝑠𝑝𝑠𝑖  −  𝑝𝑝𝑠𝑖) ) 

 

Another part of the cost function considers the difference in speed between the 

predicted state and the reference, the planner. 

𝑑𝑖𝑓𝑓𝑣  =  𝑠𝑣  − 𝑝𝑣 

 

Once we have the differences measured, we can add them up in the Q module. All 

the differences will be squared as the cost function is quadratic. Each difference 

will be also multiplied by its weights. 

 

𝑄 = 𝑄 ∗ (𝑄𝑒𝑙𝑜𝑛 ∗ 𝑑𝑖𝑓𝑓𝑙𝑜𝑛
2 + 𝑄𝑒𝑙𝑎𝑡 ∗ 𝑑𝑖𝑓𝑓𝑙𝑎𝑡

2  + 𝑄𝑒𝑝𝑠𝑖 ∗ 𝑑𝑖𝑓𝑓𝑝𝑠𝑖
2 + 𝑄𝑒𝑣 ∗ 𝑑𝑖𝑓𝑓𝑣

2) 

 

dR module: 

The error in this module will be obtained by measuring the difference of the control 

variables between each control step. The objective is to smoothen the robot 

movements by minimizing the gap between each sequential action of the control 

variables. 

 

𝑠𝑡𝑒𝑝𝛿 = 𝑠𝛿
𝑡+1 − 𝑠𝛿

𝑡  

𝑠𝑡𝑒𝑝𝑎 = 𝑠𝑎
𝑡+1 − 𝑠𝑎

𝑡  
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𝑑𝑅 = 𝑑𝑅 ∗ (𝑑𝑅𝛿 ∗ 𝑠𝑡𝑒𝑝𝛿
2 + 𝑑𝑅𝑎 ∗ 𝑠𝑡𝑒𝑝𝑎

2) 

 

There is a need to translate the MPC commands, accelerations or decelerations 

and steering angles, to send them to the hardware elements as they do not use the 

same base neither units. We have three controllable elements in the robot: The 

main motor that receives a torque command, the brake that receives a value 

between 0 and 1, 1 signaling the hardest braking value, and the steering wheel. 

To perform this translation, we will not consider the limitations of the pneumatics as 

our car does not work near their adherence limit. Using the radius of the wheel and 

the mass of the vehicle we obtain the main motor commands. 

On the other side if the acceleration value is negative, we need to activate the 

brakes. Since it is plausible that we need to activate the brakes beyond the 

adherence limit we will consider the pneumatics friction. To determine the position 

of the brake, from 0 to 1, we have the following parameter: the maximum pressure 

in the brake line and the ratio between pressure and torque for the front and rear 

wheels 

 

 

3.6. Skidpad algorithm 

The main idea of the algorithm is to create a perfect map of the track and modify it 

on the run. Then, using a graph, a trajectory is created. 

The algorithm has two main phases, the initialization, and the update. 

 

3.6.1. System initialization 

In this phase of the algorithm, the system will initialize all the necessary variables 

and systems needed by the algorithm. It has two parts: the perfect map and the 

graph initialization. 

 

3.6.1.1. Perfect map 

The first step of the algorithm is the creation of a perfect map. It can be done as we 

know exactly how the track will be and the dimensions of it as it is given to us in the 

rules. Using trigonometry, the position of each cone is determined. 

Thanks to the possibility to know how the circuit is before the event, it is possible to 

know the separation, in degrees, and the radius of each circle. 
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As it can be seen in the figure 15, the cones in the circles are separated by 22.5º, 

except the ones marked in red that have a separation of 9º. With this information, 

the dimensions of the track and using polar coordinates, the global position of each 

cone is determined. 

To initialize each cone, it is used a struct named Cone. This struct has two attributes, 

X and Y, which are used for the global position in the map for each cone. 

The cones are stored in a vector. The position of each cone inside this vector will 

be important for future steps of the Skidpad algorithm.  

 

3.6.1.2. Graph creation 

The idea of the graph is to create a gate between each pair of cones and connect 

these gates following a graph structure. 

To create the gates, we must link the left cone to the right cone of each pair. As we 

know exactly where in the Cone vector is each cone, we can link them easily using 

loop structures. 

Once we have all the gates, the next step is to determine the middle point of them. 

This is determined by performing the average of each coordinate of the pair of 

cones of the gate. 

The next step will be to link the points. The idea is to connect each one to the 

previous point and the next. This will allow the car to have “objectives”. This means 

that, for example, when the car is in the gate number 4, it will know that it came 

from the gate 3 and its next move would be to get to the gate 5. 

Figure 15- Skidpad layout 
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Figure 16- Gates and graph of the algorithm 

 

In the figure 16, the gates are represented with blue and red segments and the 

connections between them, with green lines. 

 

3.6.2. Update phase 

In this phase, a new map will be created from the perfect map and the cones will 

be updated to their real positions. 

While the creation phase only happens once during the execution of the algorithm, 

the update phase is executed each time a new cone is received. 

To update the position of the cones and modify the graph, the algorithm must 

perform a data association to associate the real cones to the one in the perfect map.  

From the SLAM system, the algorithm receives the cones seen by the car and 

performs a Hungarian Method based data association. This method consists on 

building a matrix with all the cones of the system. The rows of the matrix represent 

the cones obtained from the SLAM system. The columns are the cones from the 

perfect map. Each position of the matrix represents the quadratic distance between 

a perfect cone and a SLAM cone. The system will select the positions with the 

minimum distance between cones. Once two cones have been associated, they will 

not be eligible for future associations.  

While performing this data association process, the system also searches for the 

center of the track. This is done by looking for a rectangle shaped figure formed by 

four big orange cones. The algorithm is robust enough to find this rectangle by only 

having two of the corners. When this figure is detected, it will automatically find the 
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coordinates of the central point and will relocate all the cones in the map to make 

the centers match. This will allow the algorithm to perform a better data association 

as both the perfect map and the updated map will have the same central point. 

Once the data association is performed, the system must update the graph with the 

new cones positions. To do this, the algorithm will repeat the procedure followed in 

the graph creation but with the updated positions. 

Finally, the algorithm will format all the information obtained to make it compatible 

with the next algorithm in the pipeline, the path. 

After the path has processed the information, the planner will generate the velocity 

profile and will give it to the MPC 

 

 

 

Figure 17- Algorithm running on the simulator 
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4. Budget 

The project described in this Thesis is software based. All the software used is open 

code, so no licenses were paid. 

As this project is a part of a bigger project, it will be included the approximate budget of 

the whole project for the 2019/2020 season. 

 

Table 2- 2019/2020 budget 

In the budget above, it is not taken in consideration the budget from the season 

2018/2019. That is the reason why many of the sensors and the car itself are not 

included. 

DRIVERLESS BUDGET SEASON 2019/20
FORSEEN REAL COST DIFFERENCE SUBTOTAL

PERCEPTION MATERIAL 150€

Supports 150€ 8,90 € 141€

SENSORS MATERIALS 410€

Speed sensor (Phonic wheel) 120€ 0,00 € 120€

Speed sensor (Optic sensor) 200€ 0,00 € 200€

Pressure Brake Pedal Sensor 90€ 0,00 € 90€

ACTUATORS 1.800€

Steering Wheel actuator 600€ 0,00 € 600€

Emergency Brake System 800€ 484,90 € 315€

Service Brake 400€ 17,10 € 383€

PROCESSING MATERIAL 750€

NVIDIA (Image processing) 750€ 0,00 € 750€

CAR ADAPTATION 13.830€

LEDs & Buttons 50€ 0,00 € 50€

Wiring 300€ 0,00 € 300€

Battery cells 1.000€ 0,00 € 1.000€

Electrical Components 5.000€ 2.598,79 € 2.401€

PCB 400€ 0,00 € 400€

Aluminum 300€ 0,00 € 300€

Carbon Fibre 100€ 0,00 € 100€

Milling 2.000€ 0,00 € 2.000€

Machinnings 2.000€ 0,00 € 2.000€

Vinyil 200€ 0,00 € 200€

Brake lines (x2) 600€ 301,65 € 298€

Brake calippers(x3) 1.200€ 836,21 € 364€

Brake spare parts 200€ 635,87 € -436€

Wheel nuts 480€ 81,07 € 399€

OFFICE MATERIAL 1.000€

Roll-ups 500€ 0,00 € 500€

Office Material 200€ 53,00 € 147€

Copy shop 300€ 0,00 € 300€

TESTING MATERIAL 1.100 €

Cones 200 € 0,00 € 200 €

Wheels 900 € 3,94 € 896 €

TOOLS 1.450€

Quick Jack 100€ 0,00 € 100€

Push Bar 100€ 0,00 € 100€

Workshop tools 500€ 0,00 € 500€

Charger 250€ 0,00 € 250€

Battery cart 500€ 0,00 € 500€

COMPETITIONS 15.220€

FSS- Camping 2.600€ 0,00 € 2.600€

FSS-Inscription 1.800€ 1.800,00 € 0€

FSG-Inscription 1.300€ 840,34 € 460€

FSG-Camping 3.120€ 0,00 € 3.120€

FSG-Transport 800€ 0,00 € 800€

FSC-Camping 1.300€ 0,00 € 1.300€

FSC-Inscription 1.300€ 1.400,00 € -100€

Fuel 3.000€ 0,00 € 3.000€

TRANSPORT 1.300€

Fuel 1.300€ 0,00 € 1.300€

TICKETS 1.500€

Others 1.000€ 0,00 € 1.000€

Workshop Germany* 500€ 1.024,43 € -524€

Competition extras 0€ 0,00 € 0€

EXTRAS

Safety cushion 0€ 0€

TOTAL EXPENSES 38.510€ 10.086,20 €   28.424€
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5. Environment Impact  

Although this thesis is software related, the algorithms run in a real car, so it is 

relevant to analyse the environmental impact it has. This analysis was done by the 

ETSEIB Motorsport team the 2018/2019 season as a part of a requirement from 

the FSG organization. As the car for the season 2019/2020 has not changed, this 

analysis will represent in an accurate way the environmental impact of the car for 

this season. 

In this section a complete analysis of the CO2 sustainability of the manufacturing 

of the car is presented. 

Firstly, the overall composition of each component of the car is worked out, getting 

the kg of materials in each component. Thus, obtaining the total weight of the car 

filtered by materials.  
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Table 3- Composition of the car 

Decompositions 

In the following tables a more detailed breakdown is given for the electrical 

components section. 

 

 



 

 37 

 

Table 4- Electrical components composition 

 

In the following table the regular conversion from kg of material to kg of CO2 is 

given. It has been extracted from regular papers that cover that subject. 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 5- Conversion from kg of material to kg of 
CO2 



 

 38 

 

Table 6- Conversion from the car materials to CO2 
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Next on, graphics depicting the previous table are presented so as to get useful 

insights from it. 

 

Figure 18- Material contribution to the weight 

As it can be seen from the previous graphic the materials that contribute the most 

to the weight of the car are steel, aluminium and carbon fibre. Copper and tire 

rubber have also a meaningful influence on the final weight.  

 

Regarding the CO2 emitted the two major contributions come from CFRP and 

Aluminium, with 676 and 438 kg respectively. Despite that steel is the material with 

more weight in the car its CO2-eq is lower in comparison with the one of Aluminium 

and CFRP.  

 

 

Figure 19- CO2 emitted 
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This tables summarizes the main processes to build the car and the energy 

consumed in kWh to carry through those processes. Then, the manufacturing CO2-

eq of each process is founded by having the CO2 consumption of a kWh.  
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Table 7- Energy consumption and CO2 eq. 

 

 

Figure 20- CO2 emitted in the vehicle manufacturing 

 

In the previous graphic the parts that emit more CO2 are listed. These are the 

steering actuator and the brake pedal, mainly due to machining processes that are 

very energetically costly. 

The same concept is applied for the battery assembling process. 

 

 

Table 8- Energy consumption and CO2 eq from the battery pack 
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Finally, the total carbon footprint of the manufacturing of the car, including the 

materials, processes and building required, is calculated.  

 

 

 

 

 

 

 

The main contributions to CO2 emissions are materials, the battery (materials and 

manufacturing) and the building electricity consumption. 

 

Figure 21- CO2 contribution 
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The TOTAL GWP takes sense when associated with a Life Cycle Assessment 

(LCA), which in the case studied is of 5 years.  

If you actually consider in your scope the use phase of the vehicle (that is, the 

system boundaries here are from cradle to the end of the lifetime of the vehicle), 

then the carbon footprint of the vehicle fuel has to be taken into account. In our 

case, the fuel is electricity whereas in most cars the fuel is gasoline. 

In the previous analysis the carbon footprint of the vehicle fuel has not been taken 

into account. However, in the case of electric cars the GWP of charging the 

batteries is pretty small when comparing it with the GPW of gas. 

Moreover, the reduction in GWP of recycling parts or materials of the car has not 

been considered 
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6. Conclusions and future development:  

The algorithms described in the thesis are only a little part of the whole project. It is 

very big and have many people working on it. 

On the near future, the idea is to test all the algorithms in a real track. The algorithms 

were only tested in a virtual simulator. Because of the COVID19 all of the 

competitions were suspended and will take place next year. 

The idea of using a modular pipeline makes the implementation of the algorithm 

much easier. Thanks to that structure, many of the designed algorithms can be 

reused with some modifications to perform in all of the events. 

Talking about the skidpad, the central algorithm oversees formatting the data and 

interconnecting with other core algorithms. Thanks to this, future improvements will 

be much easier to implement as there will be no need to modify the whole code. 

The main ideas to enhance the performance of the algorithms are to try to 

implement some variation to the algorithms to make them more efficient. That will 

give us more computational capacity for other algorithms. Another idea is to try to 

implement some neural networks to the algorithms and have much accurate models. 

Also, due to an update to the rules for the 2021/2022 season in which It will be 

mandatory to have a car with manual and autonomous functions at the same time, 

the team will begin to organize the fusion of the cars (the not autonomous electric 

car and the driverless car) to build a rules compliant one. 
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Appendices: 

A video of a simulation of the Skidpad will be included with this thesis. The video 

shows some not desired behaviour of the algorithm due to the lack of computational 

power of the computer in which the simulator is running. 

In the video it can be appreciated the different algorithms working together and how 

the objective is accomplished. 
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Glossary 

EV: Electric vehicle 

CV: Combustion vehicle 

DV: Driverless vehicle 

ETSEIB: Escola tècnica superior d’enginyeria industrial de Barcelona 

ETSETB: Escola tècnica superior d’enginyeria de telecomunicacions de Barcelona 

SLAM: Simultaneous localization and mapping 

EKF: Extended Kalman filter 

MPC: Model predictive controller 

HV: High voltage 

LV: Low voltage 

PU: processing unit 

FH: Front hoop 

LCA: Life cycle assessment 

CFRP: Carbon fiber reinforced polymer 

GWP: Global warning potential 

 

 


