

Formula Student Driverless: The autonomous systems in

the Skidpad event.

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Alvaro Linuesa Cabré

In partial fulfilment

of the requirements for the degree in

TELECOMMUNICATION ENGINEERING

Advisor: Albert Aguasca

Barcelona, June 2020

 1

Abstract

In this thesis, it will be analysed some of the main algorithms used for one of the

events in the Formula student Germany competition in the driverless category. This

event is called Skidpad. It consists on an 8 shaped track and the car has to

complete the track as fast as it can.

The algorithms that will be analysed are the SLAM, the path, the planner, the

controller and the main Skidpad algorithm.

 2

Resum

En aquesta tesis, s’analitzaran alguns dels algorismes principals utilitzats per una

de les proves de la competició Formula Student Germany en la categoria Driverless.

Aquesta prova s’anomena Skidpad. Consisteix en un circuit en forma de 8.

L’objectiu es completar-lo en el menor temps possible.

Els algorismes analitzats son el SLAM, el path, el planner, el controller i el Skidpad

algorithm.

 3

Resumen

En esta tesis se analizarán algunos de los algoritmos principales utilizados para

una de las pruebas de la competición Formula Student Germany en la categoría

Driverless. Esta prueba se llama Skidpad y consiste en un circuito con forma de 8.

El objetivo es completarlo en el menor tiempo posible.

Los algoritmos analizados son el SLAM, el path, el planner, el controller y el

Skidpad algorithm.

 4

Acknowledgements

This project would not had been possible without the people forming the ETSEIB

Motorsport team. Specially Adria Lopez, Albert Gassol, Pablo de Juan, Pilar Martí,

Jordi Espasa and Felix Martí who worked with me in the Autonomous Control

section and developed many of the essential algorithms.

Albert Aguasca was also essential for the project. He is our project supervisor and

is always eager to help us.

 5

Revision history and approval record

Revision Date Purpose

0 14/05/2020 Document creation

1 27/05/2020 Document revision

2 13/06/2020 Document revision

3 27/06/2020 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Alvaro Linuesa Cabré Alvaro.linuesa96@gmail.com

Albert Aguasca aguasca@tsc.upc.edu

Written by: Reviewed and approved by:

Date 27/06/2020 Date 27/06/2020

Name Alvaro Linuesa Name Albert Aguasca

Position Project Author Position Project Supervisor

 6

Table of contents

Abstract .. 1

Resum .. 2

Resumen .. 3

Acknowledgements .. 4

Revision history and approval record .. 5

Table of contents .. 6

List of Figures ... 7

List of Tables: ... 8

1. Introduction .. 9

1.1. ETSEIB Motorsport ... 9

1.2. Formula Student Germany ... 10

2. State of the art of the technology used or applied in this thesis: 13

2.1. ROS ... 13

2.2. GAZEBO .. 14

3. Methodology / project development and results: .. 15

3.1. SLAM ... 15

3.1.1. What is a SLAM? ... 15

3.1.2. Extended Kalman Filter ... 17

3.1.3. EKF SLAM .. 18

3.2. Path algorithm .. 19

3.3. Planner ... 24

3.4. MPC ... 25

3.5. Skidpad algorithm ... 30

3.5.1. System initialization ... 30

3.5.1.1. Perfect map ... 30

3.5.1.2. Graph creation .. 31

3.5.2. Update phase .. 32

4. Budget ... 34

5. Environment Impact ... 35

6. Conclusions and future development: .. 44

Bibliography: ... 45

Appendices (optional): .. 46

Glossary ... 47

 7

List of Figures

Figure 1- The car "XALOC" ... 9

Figure 2- ROS behaviour .. 13

Figure 3- ROS control section pipeline ... 14

Figure 4- The SLAM problem .. 16

Figure 5- EKF SLAM structure .. 18

Figure 6- Block scheme of the Dynamic State Estimation system and SLAM system

working together ... 19

Figure 7- Full path algorithm ... 21

Figure 8-Interpolated cones (red) and input cones (yellow and blue). 22

Figure 9- Voronoi diagram .. 22

Figure 10- Trajectory algorithm ... 23

Figure 11- Trajectory output .. 23

Figure 12- Planner output ... 25

Figure 13- Biccyle model .. 26

Figure 14- Arrows representing the desired steering angle ... 28

Figure 15- Skidpad layout ... 31

Figure 16- Gates and graph of the algorithm .. 32

Figure 17- Algorithm running on the simulator .. 33

Figure 18- Material contribution to the weight ... 39

Figure 19- CO2 emitted .. 39

Figure 20- CO2 emitted in the vehicle manufacturing ... 41

Figure 21- CO2 contribution .. 42

file:///C:/Users/PORTATIL/Desktop/TFG_SKIDPAD_ALVARO.docx%23_Toc44338244
file:///C:/Users/PORTATIL/Desktop/TFG_SKIDPAD_ALVARO.docx%23_Toc44338246
file:///C:/Users/PORTATIL/Desktop/TFG_SKIDPAD_ALVARO.docx%23_Toc44338248
file:///C:/Users/PORTATIL/Desktop/TFG_SKIDPAD_ALVARO.docx%23_Toc44338252

 8

List of Tables:

Table 1- FSG punctuations ... 11

Table 2- 2019/2020 budget ... 34

Table 3- Composition of the car .. 36

Table 4- Electrical components composition ... 37

Table 5- Conversion from kg of material to kg of CO2 .. 37

Table 6- Conversion from the car materials to CO2 .. 38

Table 7- Energy consumption adn CO2 eq. .. 41

Table 8- Energy consumption and CO2 eq from the battery pack 41

file:///C:/Users/PORTATIL/Desktop/TFG_SKIDPAD_ALVARO.docx%23_Toc44316840

 9

1. Introduction

This thesis consists on the analysis of the main algorithms needed to complete the

Skidpad event in a Formula Student competition. This thesis is made by Alvaro

Linuesa, member of the autonomous control section of the ETSEIB Motorsport

team. But first, let me introduce to you to the ETSEIB Motorsport team and to the

Formula Student Germany competition.

All the algorithms described in this thesis will run on a single seater car named

XALOC.

Figure 1- The car "XALOC"

1.1. ETSEIB Motorsport

This project is being developed in the ETSEIB Motorsport team. ETSEIB Motorsport

was founded on 2007. It is formed entirely by students from different schools of the

UPC, basically from the ETSEIB school and the ETSETB school. The team is 13

years old. Their goal is to design and build a single seater formula style car.

In their origins, they made combustion cars. In the 2011/2012 season, they built

their first electric car. Finally, on the 2018/2019 season, they decided to jump into

the Driverless category and made the first Formula Student Driverless car in Spain,

the XALOC.

In the current 2019/2020 season, the team is formed by two sub-teams. The EV

team and the DV team. This project is being developed in the DV team.

 10

The team is formed by 20 students from ETSEIB and ETSETB. These students are

distributed in 4 sections: management, perception, hardware and control.

Each section has some specific roles.

• Management: This section is in charge of the team organization, the treasury

and the contact with the sponsors. They also are in charge of representing

the team in the Business Plan event and the Cost event.

• Perception: This section can be seen as the eyes of the car. They use a

LIDAR and two cameras to acquire the information from the track and format

it to the required format.

• Control: This section can be seen as the nerves and the brain of the car.

From the information obtained by the perception section, the section designs

the algorithms for the control of the car.

• Hardware: This section oversees all the electronic and mechanical parts of

the car.

1.2. Formula Student Germany

Formula student Germany is a competition which challenges students from all over

the world to design and build a single seater racecar. From the organization it is

described as:

“Students build a single seat formula racecar with which they can compete against

teams from all over the world. The competition is not won solely by the team with

the fastest car, but rather by the team with the best overall package of construction,

performance, and financial and sales planning.

Formula Student challenges the team members to go the extra step in their

education by incorporating into it intensive experience in building and

manufacturing as well as considering the economic aspects of the automotive

industry. Teams take on the assumption that they are a manufacturer developing a

prototype to be evaluated for production. The target audience is the non-

professional Weekend-Racer. The racecar must show very good driving

characteristics such as acceleration, braking and handling. It should be offered at

a very reasonable cost and be reliable and dependable. Additionally, the car's

market value increases through other factors such as aesthetics, comfort and the

use of readily available, standard purchase components.

The challenge the teams face is to compose a complete package consisting of a

well-constructed racecar and a sales plan that best matches these given criteria.

 11

The decision is made by a jury of experts from the motorsport, automotive and

supplier industries. The jury will judge every team's car and sales plan based on

construction, cost planning and sales presentation. The rest of the judging will be

done out on the track, where the students demonstrate in a number of performance

tests how well their self-built racecars fare in their true environment.”

The competition consists on achieving the maximum points as possible. It has three

categories: Electric Vehicles (EV), Combustion Vehicles (CV) and Driverless

Vehicles (DV). The cars entering each category must follow a set of rules to ensure

the security of all the competitors and to regulate noncompetitive behaviors.

The competition is divided into two main blocks, the static events, and the dynamic

events.

In the static events, the economic and technical aspects are valued. The static

events are the Business Plan event, the cost and manufacturing event and the

engineering design event.

In the dynamic events, it is valued the behavior of the vehicle in the track. In the DV

category, the dynamic events are the Skidpad, the acceleration, the autocross, the

trackdrive and the efficiency test. The tracks of these events are made with cones

from 3 different colors. The blue cones are always on the left side of the car, the

yellow cones are always on the right side of the car. Finally, the orange cones

represent the beginning and the endings of the track.

Each of the events have an own punctuation. They are shown in the table below.

Table 1- FSG punctuations

 12

In this thesis, it will be described the algorithms used in the Skidpad event. The

Skidpad event consists on an eight shaped track. The car must perform two laps

on the right circle and exit it, then it must perform two laps on the left circle and exit

it. Finally, the car must stop in the designed space. The score is obtained by the

average of the best time of each lap and using the next equation:

𝑆𝑘𝑑𝑖𝑝𝑎𝑑 𝑠𝑐𝑜𝑟𝑒 = 71.5 ∗ (
(
𝑇𝑚𝑎𝑥
𝑇𝑡𝑒𝑎𝑚

)
2

1.25
− 0.8)

 13

2. State of the art of the technology used or applied in this

thesis:

2.1. ROS

All the algorithms used in the car follow a ROS structure. But what is ROS? ROS

stands for Robot Operating System. It is an open source, meta operating system

for robots. It offers all the services expected from an operative system, including

hardware abstraction, low level device control, implementation of commonly used

functionality, message passing between processes, and package management. It

also provides tools and libraries for obtaining, building, writing and running code

across multiple computers.

They way it works is really simple. There are some algorithms running in the called

nodes. These algorithms can publish data or read published data via the topics. A

topic is a “place” where data is published. The nodes can subscribe to the topics in

order to get the information published in them.

Figure 2- ROS behaviour

The algorithms running in the nodes can be programmed by python or C++.

The pipeline used in this project is really complex and requires many interpret nodes

in order to format the information that is being published.

 14

Figure 3- ROS control section pipeline

2.2. GAZEBO

Gazebo is a set of ROS packages that provides the necessary tools to simulate the ROS

structures in a virtual environment.

For the development of our algorithms, we have pretty complete simulator that was

developed during last season.

Without the simulator it will be impossible to develop any of the algorithms as it is

mandatory to test all the programs before loading them into the car.

 15

3. Methodology / project development and results:

The control section has a complex algorithm pipeline to make the algorithms work.

There are many interpret nodes to format the information and do some

manipulations to the data. For the Skidpad event, there are 5 important modules

operating. These modules are the SLAM, the path, the planner, the MPC and the

main skidpad algorithm. These 5 modules will be analysed in this thesis.

3.1. SLAM

3.2. What is a SLAM?

Simultaneous Localization and Mapping or SLAM is an intrinsic problem to mobile

robots. It consists on mapping the environment of the vehicle while localizing it in

the map that is being created. This can be seen as a trivial problem when having

ideal data-inputs from the sensors. Unfortunately, noise free measurement doesn’t

exist in the real world. This noisy measurement complicates the solution to the

problem.

An example could be a mobile vehicle in a landmark based environment equipped

with some sensors such a LIDAR and some velocity sensors reading in both axes

(Vx, Vy). The position of the vehicle pi = (Xi, Yi) will depend on the last position pi-1 =

(Xi-1, Yi-1) and the velocity v = (Vx, Vy):

𝑝𝑡 = 𝑝𝑖−1 + 𝑣𝑖∆𝑡

And if we add noise:

𝑝𝑡 = 𝑝𝑖−1 + 𝑣𝑖∆𝑡 + 𝑤𝑡

As the second equation shows, the position estimation accumulates noise at every

iteration. This does not only affect the location estimate but also the map created

as well. Mapping is a function that totally depends on the current position even if

we have a perfect perception system.

To solve this noisy velocity readings, there is a SLAM technique based on ignoring

those inputs and use only the perception reading to find its location. This is acquired

using an inverse observation function. Knowing a perfectly mapped landmark

located in (Xj, Yj) and we observe that landmark in (Xk, Yk), we can determine our

location accordingly. However, if the measurements are noisy, we have the same

problem: accumulative error. Figure 4 shows the error accumulation described.

 16

Figure 4- The SLAM problem

This system has some complex mathematics behind. To understand them, it is

needed an introduction to some of the basic notation used.

The basic expressions are:

• 𝜇𝑖: State of the system at the iteration i. This state contains all the information

about the position of our vehicle and the map at the iteration i. Let`s assume

that our vehicle is moving on a 2D environment formed by some punctual

landmarks. The positions can be parametrized as ri = (Xi, Yi, θi)T and the map

mi = (l0, l1,…,ln)T where each element is a landmark. The state vector will be:

𝜇𝑖 = (
𝑟𝑖
𝑚𝑖
)

• ui : Motion controls at the iteration i. They relate the last pose of the vehicle

with the current pose. Let’s assume that our vehicle moves in a 2D

environment according to a cinematic model. The control vector would be

ui = (vi,wi)T. The next pose of the vehicle would be:

𝑟𝑖 = 𝑟𝑖−1 +

(

−
𝑣𝑖

𝑤𝑖
sin(𝜃𝑖−1) +

𝑣𝑖
𝑤𝑖
sin (𝜃𝑖−1 + 𝑤𝑖∆𝑡)

𝑣𝑖

𝑤𝑖
cos(𝜃𝑖−1) −

𝑣𝑖
𝑤𝑖
cos (𝜃𝑖−1 + 𝑤𝑖∆𝑡)

𝑤𝑖∆𝑡)

 17

ri,mi

ri:t,m

• zi: Observation at the iteration i. This element provides information about the

local environment. Let’s assume that our sensors provide coordinates of all

the landmarks in its range in polar local coordinates zi = (Y0 … Yn)T.

The mapping process is named the inverse measurement model. The global

coordinates of the landmark are a function of the current pose and the local

observation.

mi = h-1(𝜇𝑖, zi)

SLAM algorithms can be classified into two main groups, the Full SLAM algorithms

and the Online SLAM algorithms.

• Online SLAM: Estimates the posterior pose over the momentary pose along

with the map. It provides a map and a pose result for every iteration. It is a

real-time algorithm:

𝜇𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥 [𝑝(𝑟𝑖, 𝑚𝑖|𝑧1:𝑖, 𝑢1:𝑖)

• Full SLAM: Calculates a posteriori over the entire path along with the map

instead of just the current pose:

𝜇𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥 [𝑝(𝑟1:𝑖, 𝑚|𝑧1:𝑖, 𝑢1:𝑖)

Our vehicle uses an online SLAM based on an EKF. To understand how it, it has

to be described how an EKF works first.

3.2.1. Extended Kalman Filter

An EKF is an algorithm designed to work with Gaussian distributions and linear

approximations via Taylor expansion.

The motion and measurement model in an EKF are non-linear functions:

𝜇𝑖 = 𝑔(𝜇𝑖−1, 𝑢𝑖) , 𝑧�̅� = ℎ(𝜇�̅�)

We can use this functions to compute the predicted pose and measurement, but

we cannot use them to compute its covariance matrix as the output they produce is

no longer Gaussian. We must use the Taylor expansion to linearize and solve this

problem. When using Taylor expansion, we convert non-linear models into linear

approximations of the models:

𝐺𝑖 =
𝜕𝑔

𝜕𝑟𝑖
 𝑉𝑖 =

𝜕𝑔

𝜕𝑢𝑖
 𝐻𝑖 =

𝜕ℎ

𝜕𝜇�̅�

 18

Finally, the EKF algorithm:

3.2.2. EKF SLAM

Our EKF SLAM algorithm is inspired in the academic EKF SLAM algorithm from the

Probabilistic Robotics book, by Sebastian Thurn.

We consider an environment formed by punctual landmarks, from which we receive

information about their polar coordinates at every iteration i. Our sensors do not

have infinite range, so we receive the landmarks that are in range of them. We also

do not know how many landmarks form the environment, so we have a dynamic

map that grows every time we map a new landmark. Finally, we do not know about

the correspondences between the landmarks, so we have to perform a data

association process in order to decide if the landmarks we are receiving have

already been mapped or not.

Figure 5- EKF SLAM structure

In our design, we assign and ID to each landmark to help with the landmark

management process. This process is done in a peripheral class that contains a

signature vector that associates each landmark of the state vector with a given id.

 19

We also use a custom dynamic model to estimate the next translation and rotation

at the iteration i. This dynamic model uses another EKF to fuse data from different

sensors (phonic wheels, pneumatic pressure, IMU readings…) and a GPS

observation (if available) and get an accurate estimation of the next pose. This

estimation is re-filtered in the SLAM system to obtain the optimal estimation.

Figure 6- Block scheme of the Dynamic State Estimation system and SLAM system working together

3.3. Path algorithm

To get the correct path that the race car will follow is the next step after getting the

limits of the track. This task is done by the Path program.

The purpose of the algorithm is to get the path that goes through the middle of the

track limits. Therefore, the inputs of the Path algorithm are the cones that define

the limits of the track. The output are the points of the computed path.

This algorithm assumes that the input is correct because the TrackLimits system

corrected the possible errors that could had happened. In the Skidpad event that is

being analyzed, the Tracklimits algorithm is not used. The reason is because the

system used for this specific event, creates its own tracklimits making the

Tracklimits algorithm redundant and therefore not necessary.

 20

The main goals of the Path algorithm are:

• To design an algorithm that computes the path with a high probability of

rightness.

• To design an algorithm that computes the right path in the following

scenarios:

o The perception system only sees cones of one side of the track.

o The perception system only sees one cone.

o The perception system only sees one cone from one side and many

from the other side.

o The perception system sees many cones.

• To achieve a fast and efficient algorithm.

Structure of the algorithm:

The Path algorithm consists on firstly doing a linear interpolation between the cones

that define the limits of the track. The next step is to compute the Voronoi Diagram

graph with the interpolated sites. And finally, the last step is to get the best trajectory

with the information of the graph.

When the TrackLimits system only computes one side of the limits of the track, the

Path algorithm gets the other side of the track and computes the best path. To get

the other side of the track, the Path program projects the known side limits to the

other side. In the Skidpad event that functionality is not used, and a lighter version

of the Path algorithm substitutes the full version. This is because, as it will be

explained later, the algorithm has all the cones of the track pre-initialized making it

impossible to see only one side of the track.

 21

As the full algorithm will not be used, only the light version will be described.

The first step of the algorithm is to check if the cone arrays are empty. In the

Skidpad event, this is an impossible scenario, so the arrays will never be empty.

After the array analysis, an interpolation must be performed. This is because the

trajectory that the Path algorithm obtains is formed by many edges of a Voronoi

Diagram graph. The edges of the limits of the track tend to be very large. If these

edges are used to get the trajectory, the obtained path would not be smooth. To get

a more accurate trajectory, sites are added so that the edges of the Voronoi

Diagram graph become shorter. Once we join all the edges the trajectory is much

smoother and accurate.

To build this smoother trajectory a linear interpolation of the cones is performed.

The criteria used to do this interpolation is to have 3 cones per meter. To calculate

the number of cones that have to be interpolated between two real cones, the

following equation is used:

𝑁 = ⌈𝑑(𝑐1, 𝑐2) ∗ 3⌉

Where N is the number of interpolated cones and 𝑑(𝑐1, 𝑐2) is the distance between

two consecutives real cones.

Figure 7- Full path algorithm

 22

Figure 8-Interpolated cones (red) and input cones (yellow and blue).

After the interpolation process, the cones are numerated in ascending order starting

with the blue cones.

After the interpolation, the algorithm needs to create a Voronoi Diagram. The

Voronoi Diagram graph of the interpolated set of sites helps getting the path that

follows the center of the track. The size of the graph increases with the number of

sites. The interpolated cones graph is also much more precise regarding the

trajectory we want to follow. This graph contains edges that follow the center of the

track. If the edges are segregated and joined the together in the correct order, an

accurate path will be obtained.

Figure 9- Voronoi diagram

 23

In the images, it can be seen how the edges are combined and joined together to

create a line following the center of the track. The next step will be to obtain this

line by segregating the edges and obtain the final trajectory.

To do so, we must pay attention to the graph structure of edges, vertexes and sites.

Two consecutive edges have a vertex in common and two consecutive vertexes

have an edge in common as well. Now that this is known, the closest vertex to (0,0)

has to be found and declare it as the initial vertex. Once the initial vertex is known,

we find the initial vertex edge that is linked to two cones of a different color (blue

and yellow) and with the highest index. The indexes are compared because there

could be two initial vertex edges linked with cones of different color. The edges can

point forward and backward. We want to get the edge that points forward. To do

this, we compare the indexes of their linked cones and decide which is the one that

is pointing.

Now, the first two vertex of the trajectory which are linked by an edge are known.

From this point, we recursively find the edge of the last vertex found that is linked

to two cones of a different color and that is different than the last edge found.

Figure 10- Trajectory algorithm

Figure 11- Trajectory output

 24

3.4. Planner

Another of the algorithms involved in the Skidpad is the called planner. A planner

is a routine of the vehicle that tells it where to go. It can be seen

The planner can be seen as a series of checkpoints that tells the vehicle what its

next objectives are and how to get to them. The points contain information of the

state of the vehicle like its velocity. These checkpoints must be equally spaced in

time by ∆T, the control frequency. This means that even if the distance between

two points it’s not the same because the speed may vary, the time that passed

between these two objectives will be always the same.

In this project, it is used a velocity variable planner. In comparison to other planners,

the one used for the project does not look for the optimal trajectory as it is already

given by the path module. Thanks to this, a lot of computational time is reduced as

many of these processes are iterative. Due to the narrowness of the track, it would

not make a big difference to cut through the corners. It is possible to obtain an

optimized trajectory once the car has completed a lap but in the Skidpad event, this

upgrade is useless and was discarded when designing the algorithm.

The planner performs two main tasks. The first task is to format the chaotic

information received from the path module. Then, it decides the speed of the vehicle

at every checkpoint.

To obtain the velocity profile, it will be used the lateral acceleration as a velocity

restriction. A car can have some slip problems when turning at high speeds due to

high lateral forces. Slowing down can help to reduce those forces. Using the lateral

acceleration formula, longitudinal velocity and lateral acceleration can be related by

the turning radius.

𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =
𝑣2

𝑅

Fixing the maximum lateral acceleration, it is obtained the maximum velocity at a

given point by knowing its radius.

𝑣𝑚𝑎𝑥 = √𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙
𝑚𝑎𝑥 ∗ 𝑅

To obtain the velocity, the system must get the curvature at each position down the

center line obtained by the path system. This center line may seem smooth but at

closer look, it has some sharp edges. To get the velocity profile, those edges must

be eliminated. This is done by applying a zero-degree spline.

Once the initial path has been smoothed, a new set of points have to be obtained.

The number of points that will be obtained is governed by the sampling variable.

This variable must be high enough to assure a continuity of checkpoints but without

compromising the processing time.

 25

The points in the spline line can be calculated by a parameter comprised between

0 and 1. The set of points is automatically obtained by a spline function. The values

obtained are equally spaced using the sampling variable, but the product will not

be.

Given three consecutive points of the smoothed path, it can be calculated the radius

of the circle they define. The equation used to determine this value returns the

curvature. By knowing that the curvature is related to the radius, it can be obtained

the maximum theoretical velocity at a point via an inverse function.

Figure 12- Planner output

The balls in figure 12 represents the velocity on each point.

3.5. MPC

This algorithm triggers once the vehicle knows its position (SLAM) and where it

wants to go (PLANNER). Then the vehicle will need to know to steer to get to its

desired position and ask the motor for the desired torque. This process is done in

the controller node.

The controller used for this step is an MPC. Unlike many different controllers, the

MPC objective is to get the position in which the steering should be to ger from A

to B and how much throttle is required to achieve a reference velocity.

There are many different types of MPC. They have as an advantage the possibility

to plan many steps in advance. They use optimizers to minimize the difference

between the controlled system and its planned task. The optimizer finds a solution

to a problem given a certain cost function and some restrictions. In the MPC, the

restrictions define the plant of the system we want to control. In our case, it is a

kinematic model of the vehicle. In this type of model, the forces acting on the system

are not considered. The plant is defined by the velocities. This means that the

wheels never loose grip with the ground and the vehicle goes accordingly to the

steering position.

 26

The difference between the solution obtained and the planned task can be

measured by a set of indicators that will define the cost function. Before the

execution of the solver, the MPC receives the planned task, which is composed by

a series of reference points that contains information of position and velocity.

The kinematic model used in the MPC is a model based on the bicycle model. It is

an efficient simple and fast system to control a driverless vehicle.

As our vehicle is a 4 wheeled car, an equivalent wheel has to be created for each

pair of wheels. This is done by averaging the angle and speed of each pair of

wheels.

Figure 13- Biccyle model

The variables that compose the model are x, y, ϕ for the position of the vehicle and

v for its speed. There are some control variables also, such as a for the acceleration

and δ for the angle of the frontal wheel. The model also has some internal

components and some constants. These constants, Lr and Lf, defines the distances

between the center of gravity (COG) and the front and rear wheel. Finally, the model

has a constant to dictate how often the controls can be adjusted, ∆T.

In the following lines, the equations that form the system will be introduced. All of

them are expressed with a zero equality as they were introduced in the solver this

way.

First, the next position of the vehicle based on its current position needs to be

calculated. The factors used for this equation are the current position, the steering

position and the velocity. To describe the steering position, it will be used the

variable β.

 27

𝛽 = tan−1 (
𝐿𝑟

𝐿𝑟 + 𝐿𝑓
∗ tan 𝛿0)

0 = 𝑥1 − 𝑥0 + 𝑣0 ∗ cos(𝑝𝑠𝑖0 + 𝛽) ∗ ∆𝑇

0 = 𝑦1 − 𝑦0 + 𝑣0 ∗ sin(𝑝𝑠𝑖0 + 𝛽) ∗ ∆𝑇

Then, it needs to get updated the velocity:

0 = 𝑣1 − 𝑣0 + 𝑎0 ∗ ∆𝑇

The next step is to update the angle of the car. The equation used is:

0 = 𝑝𝑠𝑖1 − 𝑝𝑠𝑖0 + 𝑣0 ∗
𝛿0
𝐿𝑓
∗ ∆𝑇

The physical constraints of the actuators need to be considered also. As sudden

changes are not desired, we can smooth them by adding two inequations on the

control variable:

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝 ≤ 𝑎1 − 𝑎0 ≤ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑒𝑝

−𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑠𝑡𝑒𝑝 ≤ 𝛿1 − 𝛿0 ≤ 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑠𝑡𝑒𝑝

The cost function:

The objective of the cost function is to measure the validity of the solution s. The

cost function error grows quadratically. This translates into a faster ascending rate

as the vehicle derivates more from the planned trajectory. The error is also

undefined, this means that a maximum error value is set. Bigger errors than this

value grows at a faster rate, while smaller errors grows slower.

The cost function is formed by two modules, Q and dR. Q represents the error

related to the state of the vehicle while dR regulates the changes in the control

variables.

𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑓 = 𝑊𝑠𝑙𝑜𝑝𝑒 ∗ (𝑄 + 𝑑𝑅)

 28

Each module is regulated by a weight that varies from 0 to 1. Q and dR are weights

of each module. All weights are unified. This means that the addition of

complementary weights is equal to one.

𝑄 + 𝑑𝑅 = 1

Figure 14- Arrows representing the desired steering angle

Q module:

The difference between the predicted state of the car at one instant and its

respective desired state is the way in which the error is obtained.

First, we need to consider the lateral and longitudinal error of the vehicle relative to

the planner. The error needs to be measured locally to each planned point. For this,

a reference change from global to local will be performed.

𝑑𝑖𝑓𝑓𝑥 = 𝑠𝑥 − 𝑝𝑥

𝑑𝑖𝑓𝑓𝑦 = 𝑠𝑦 − 𝑝𝑦

𝑑𝑖𝑓𝑓𝑙𝑜𝑛 = 𝑑𝑖𝑓𝑓𝑥 ∗ 𝑐𝑜𝑠(𝑝𝑝𝑠𝑖) + 𝑑𝑖𝑓𝑓𝑦 ∗ 𝑠𝑖𝑛(𝑝𝑝𝑠𝑖)

𝑑𝑖𝑓𝑓𝑙𝑎𝑡 = − 𝑑𝑖𝑓𝑓𝑥 ∗ 𝑠𝑖𝑛(𝑝𝑝𝑠𝑖) + 𝑑𝑖𝑓𝑓𝑦 ∗ 𝑐𝑜𝑠(𝑝𝑝𝑠𝑖)

 29

The angles are constraint from 180º to -179º. Even though the angle difference can

be obtained by subtracting the planner and the robot predicted angles, the value

might not be the expected one. For example:

𝑑𝑖𝑓𝑓𝑝𝑠𝑖 = 𝑠𝑝𝑠𝑖 − 𝑝𝑝𝑠𝑖 = 180
° − (−179°) = 359°

sin (−1°) = sin (359°) ≈ −1° ∗ (2𝜋
180°⁄)

cos (−1°) = cos (359°)

For the cost function calculations, the outcome is different. Absolute magnitudes

are used in the cost function. That means that the smallest absolute value of the

angle is used. This is obtained by small angles approximations using the sin

function.

To solve this problem, atan2 is used. That function requires two parameters, the

opposed and the adjacent sides of the triangle view from the angle we want to find.

The reason why the atan2 is used for the small angle approximation is because its

higher precision.

𝑑𝑖𝑓𝑓𝑝𝑠𝑖 = 𝑎𝑡𝑎𝑛2(sin(𝑠𝑝𝑠𝑖 − 𝑝𝑝𝑠𝑖) , cos(𝑠𝑝𝑠𝑖 − 𝑝𝑝𝑠𝑖))

Another part of the cost function considers the difference in speed between the

predicted state and the reference, the planner.

𝑑𝑖𝑓𝑓𝑣 = 𝑠𝑣 − 𝑝𝑣

Once we have the differences measured, we can add them up in the Q module. All

the differences will be squared as the cost function is quadratic. Each difference

will be also multiplied by its weights.

𝑄 = 𝑄 ∗ (𝑄𝑒𝑙𝑜𝑛 ∗ 𝑑𝑖𝑓𝑓𝑙𝑜𝑛
2 + 𝑄𝑒𝑙𝑎𝑡 ∗ 𝑑𝑖𝑓𝑓𝑙𝑎𝑡

2 + 𝑄𝑒𝑝𝑠𝑖 ∗ 𝑑𝑖𝑓𝑓𝑝𝑠𝑖
2 + 𝑄𝑒𝑣 ∗ 𝑑𝑖𝑓𝑓𝑣

2)

dR module:

The error in this module will be obtained by measuring the difference of the control

variables between each control step. The objective is to smoothen the robot

movements by minimizing the gap between each sequential action of the control

variables.

𝑠𝑡𝑒𝑝𝛿 = 𝑠𝛿
𝑡+1 − 𝑠𝛿

𝑡

𝑠𝑡𝑒𝑝𝑎 = 𝑠𝑎
𝑡+1 − 𝑠𝑎

𝑡

 30

𝑑𝑅 = 𝑑𝑅 ∗ (𝑑𝑅𝛿 ∗ 𝑠𝑡𝑒𝑝𝛿
2 + 𝑑𝑅𝑎 ∗ 𝑠𝑡𝑒𝑝𝑎

2)

There is a need to translate the MPC commands, accelerations or decelerations

and steering angles, to send them to the hardware elements as they do not use the

same base neither units. We have three controllable elements in the robot: The

main motor that receives a torque command, the brake that receives a value

between 0 and 1, 1 signaling the hardest braking value, and the steering wheel.

To perform this translation, we will not consider the limitations of the pneumatics as

our car does not work near their adherence limit. Using the radius of the wheel and

the mass of the vehicle we obtain the main motor commands.

On the other side if the acceleration value is negative, we need to activate the

brakes. Since it is plausible that we need to activate the brakes beyond the

adherence limit we will consider the pneumatics friction. To determine the position

of the brake, from 0 to 1, we have the following parameter: the maximum pressure

in the brake line and the ratio between pressure and torque for the front and rear

wheels

3.6. Skidpad algorithm

The main idea of the algorithm is to create a perfect map of the track and modify it

on the run. Then, using a graph, a trajectory is created.

The algorithm has two main phases, the initialization, and the update.

3.6.1. System initialization

In this phase of the algorithm, the system will initialize all the necessary variables

and systems needed by the algorithm. It has two parts: the perfect map and the

graph initialization.

3.6.1.1. Perfect map

The first step of the algorithm is the creation of a perfect map. It can be done as we

know exactly how the track will be and the dimensions of it as it is given to us in the

rules. Using trigonometry, the position of each cone is determined.

Thanks to the possibility to know how the circuit is before the event, it is possible to

know the separation, in degrees, and the radius of each circle.

 31

As it can be seen in the figure 15, the cones in the circles are separated by 22.5º,

except the ones marked in red that have a separation of 9º. With this information,

the dimensions of the track and using polar coordinates, the global position of each

cone is determined.

To initialize each cone, it is used a struct named Cone. This struct has two attributes,

X and Y, which are used for the global position in the map for each cone.

The cones are stored in a vector. The position of each cone inside this vector will

be important for future steps of the Skidpad algorithm.

3.6.1.2. Graph creation

The idea of the graph is to create a gate between each pair of cones and connect

these gates following a graph structure.

To create the gates, we must link the left cone to the right cone of each pair. As we

know exactly where in the Cone vector is each cone, we can link them easily using

loop structures.

Once we have all the gates, the next step is to determine the middle point of them.

This is determined by performing the average of each coordinate of the pair of

cones of the gate.

The next step will be to link the points. The idea is to connect each one to the

previous point and the next. This will allow the car to have “objectives”. This means

that, for example, when the car is in the gate number 4, it will know that it came

from the gate 3 and its next move would be to get to the gate 5.

Figure 15- Skidpad layout

 32

Figure 16- Gates and graph of the algorithm

In the figure 16, the gates are represented with blue and red segments and the

connections between them, with green lines.

3.6.2. Update phase

In this phase, a new map will be created from the perfect map and the cones will

be updated to their real positions.

While the creation phase only happens once during the execution of the algorithm,

the update phase is executed each time a new cone is received.

To update the position of the cones and modify the graph, the algorithm must

perform a data association to associate the real cones to the one in the perfect map.

From the SLAM system, the algorithm receives the cones seen by the car and

performs a Hungarian Method based data association. This method consists on

building a matrix with all the cones of the system. The rows of the matrix represent

the cones obtained from the SLAM system. The columns are the cones from the

perfect map. Each position of the matrix represents the quadratic distance between

a perfect cone and a SLAM cone. The system will select the positions with the

minimum distance between cones. Once two cones have been associated, they will

not be eligible for future associations.

While performing this data association process, the system also searches for the

center of the track. This is done by looking for a rectangle shaped figure formed by

four big orange cones. The algorithm is robust enough to find this rectangle by only

having two of the corners. When this figure is detected, it will automatically find the

 33

coordinates of the central point and will relocate all the cones in the map to make

the centers match. This will allow the algorithm to perform a better data association

as both the perfect map and the updated map will have the same central point.

Once the data association is performed, the system must update the graph with the

new cones positions. To do this, the algorithm will repeat the procedure followed in

the graph creation but with the updated positions.

Finally, the algorithm will format all the information obtained to make it compatible

with the next algorithm in the pipeline, the path.

After the path has processed the information, the planner will generate the velocity

profile and will give it to the MPC

Figure 17- Algorithm running on the simulator

 34

4. Budget

The project described in this Thesis is software based. All the software used is open

code, so no licenses were paid.

As this project is a part of a bigger project, it will be included the approximate budget of

the whole project for the 2019/2020 season.

Table 2- 2019/2020 budget

In the budget above, it is not taken in consideration the budget from the season

2018/2019. That is the reason why many of the sensors and the car itself are not

included.

DRIVERLESS BUDGET SEASON 2019/20
FORSEEN REAL COST DIFFERENCE SUBTOTAL

PERCEPTION MATERIAL 150€

Supports 150€ 8,90 € 141€

SENSORS MATERIALS 410€

Speed sensor (Phonic wheel) 120€ 0,00 € 120€

Speed sensor (Optic sensor) 200€ 0,00 € 200€

Pressure Brake Pedal Sensor 90€ 0,00 € 90€

ACTUATORS 1.800€

Steering Wheel actuator 600€ 0,00 € 600€

Emergency Brake System 800€ 484,90 € 315€

Service Brake 400€ 17,10 € 383€

PROCESSING MATERIAL 750€

NVIDIA (Image processing) 750€ 0,00 € 750€

CAR ADAPTATION 13.830€

LEDs & Buttons 50€ 0,00 € 50€

Wiring 300€ 0,00 € 300€

Battery cells 1.000€ 0,00 € 1.000€

Electrical Components 5.000€ 2.598,79 € 2.401€

PCB 400€ 0,00 € 400€

Aluminum 300€ 0,00 € 300€

Carbon Fibre 100€ 0,00 € 100€

Milling 2.000€ 0,00 € 2.000€

Machinnings 2.000€ 0,00 € 2.000€

Vinyil 200€ 0,00 € 200€

Brake lines (x2) 600€ 301,65 € 298€

Brake calippers(x3) 1.200€ 836,21 € 364€

Brake spare parts 200€ 635,87 € -436€

Wheel nuts 480€ 81,07 € 399€

OFFICE MATERIAL 1.000€

Roll-ups 500€ 0,00 € 500€

Office Material 200€ 53,00 € 147€

Copy shop 300€ 0,00 € 300€

TESTING MATERIAL 1.100 €

Cones 200 € 0,00 € 200 €

Wheels 900 € 3,94 € 896 €

TOOLS 1.450€

Quick Jack 100€ 0,00 € 100€

Push Bar 100€ 0,00 € 100€

Workshop tools 500€ 0,00 € 500€

Charger 250€ 0,00 € 250€

Battery cart 500€ 0,00 € 500€

COMPETITIONS 15.220€

FSS- Camping 2.600€ 0,00 € 2.600€

FSS-Inscription 1.800€ 1.800,00 € 0€

FSG-Inscription 1.300€ 840,34 € 460€

FSG-Camping 3.120€ 0,00 € 3.120€

FSG-Transport 800€ 0,00 € 800€

FSC-Camping 1.300€ 0,00 € 1.300€

FSC-Inscription 1.300€ 1.400,00 € -100€

Fuel 3.000€ 0,00 € 3.000€

TRANSPORT 1.300€

Fuel 1.300€ 0,00 € 1.300€

TICKETS 1.500€

Others 1.000€ 0,00 € 1.000€

Workshop Germany* 500€ 1.024,43 € -524€

Competition extras 0€ 0,00 € 0€

EXTRAS

Safety cushion 0€ 0€

TOTAL EXPENSES 38.510€ 10.086,20 € 28.424€

 35

5. Environment Impact

Although this thesis is software related, the algorithms run in a real car, so it is

relevant to analyse the environmental impact it has. This analysis was done by the

ETSEIB Motorsport team the 2018/2019 season as a part of a requirement from

the FSG organization. As the car for the season 2019/2020 has not changed, this

analysis will represent in an accurate way the environmental impact of the car for

this season.

In this section a complete analysis of the CO2 sustainability of the manufacturing

of the car is presented.

Firstly, the overall composition of each component of the car is worked out, getting

the kg of materials in each component. Thus, obtaining the total weight of the car

filtered by materials.

 36

Table 3- Composition of the car

Decompositions

In the following tables a more detailed breakdown is given for the electrical

components section.

 37

Table 4- Electrical components composition

In the following table the regular conversion from kg of material to kg of CO2 is

given. It has been extracted from regular papers that cover that subject.

 Table 5- Conversion from kg of material to kg of
CO2

 38

Table 6- Conversion from the car materials to CO2

 39

Next on, graphics depicting the previous table are presented so as to get useful

insights from it.

Figure 18- Material contribution to the weight

As it can be seen from the previous graphic the materials that contribute the most

to the weight of the car are steel, aluminium and carbon fibre. Copper and tire

rubber have also a meaningful influence on the final weight.

Regarding the CO2 emitted the two major contributions come from CFRP and

Aluminium, with 676 and 438 kg respectively. Despite that steel is the material with

more weight in the car its CO2-eq is lower in comparison with the one of Aluminium

and CFRP.

Figure 19- CO2 emitted

 40

This tables summarizes the main processes to build the car and the energy

consumed in kWh to carry through those processes. Then, the manufacturing CO2-

eq of each process is founded by having the CO2 consumption of a kWh.

 41

Table 7- Energy consumption and CO2 eq.

Figure 20- CO2 emitted in the vehicle manufacturing

In the previous graphic the parts that emit more CO2 are listed. These are the

steering actuator and the brake pedal, mainly due to machining processes that are

very energetically costly.

The same concept is applied for the battery assembling process.

Table 8- Energy consumption and CO2 eq from the battery pack

 42

Finally, the total carbon footprint of the manufacturing of the car, including the

materials, processes and building required, is calculated.

The main contributions to CO2 emissions are materials, the battery (materials and

manufacturing) and the building electricity consumption.

Figure 21- CO2 contribution

 43

The TOTAL GWP takes sense when associated with a Life Cycle Assessment

(LCA), which in the case studied is of 5 years.

If you actually consider in your scope the use phase of the vehicle (that is, the

system boundaries here are from cradle to the end of the lifetime of the vehicle),

then the carbon footprint of the vehicle fuel has to be taken into account. In our

case, the fuel is electricity whereas in most cars the fuel is gasoline.

In the previous analysis the carbon footprint of the vehicle fuel has not been taken

into account. However, in the case of electric cars the GWP of charging the

batteries is pretty small when comparing it with the GPW of gas.

Moreover, the reduction in GWP of recycling parts or materials of the car has not

been considered

 44

6. Conclusions and future development:

The algorithms described in the thesis are only a little part of the whole project. It is

very big and have many people working on it.

On the near future, the idea is to test all the algorithms in a real track. The algorithms

were only tested in a virtual simulator. Because of the COVID19 all of the

competitions were suspended and will take place next year.

The idea of using a modular pipeline makes the implementation of the algorithm

much easier. Thanks to that structure, many of the designed algorithms can be

reused with some modifications to perform in all of the events.

Talking about the skidpad, the central algorithm oversees formatting the data and

interconnecting with other core algorithms. Thanks to this, future improvements will

be much easier to implement as there will be no need to modify the whole code.

The main ideas to enhance the performance of the algorithms are to try to

implement some variation to the algorithms to make them more efficient. That will

give us more computational capacity for other algorithms. Another idea is to try to

implement some neural networks to the algorithms and have much accurate models.

Also, due to an update to the rules for the 2021/2022 season in which It will be

mandatory to have a car with manual and autonomous functions at the same time,

the team will begin to organize the fusion of the cars (the not autonomous electric

car and the driverless car) to build a rules compliant one.

 45

Bibliography:

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. 2005. Probabilistic Robotics (Intelligent Robotics and

Autonomous Agents). The MIT Press.

Joan Solà, 2014. Simultaneous localization and mappin with extended Kalman filter.

https://www.formulastudent.de/fsg/

https://www.ros.org/

Most of the references from this thesis are own made.

https://www.formulastudent.de/fsg/
https://www.ros.org/

 46

Appendices:

A video of a simulation of the Skidpad will be included with this thesis. The video

shows some not desired behaviour of the algorithm due to the lack of computational

power of the computer in which the simulator is running.

In the video it can be appreciated the different algorithms working together and how

the objective is accomplished.

 47

Glossary

EV: Electric vehicle

CV: Combustion vehicle

DV: Driverless vehicle

ETSEIB: Escola tècnica superior d’enginyeria industrial de Barcelona

ETSETB: Escola tècnica superior d’enginyeria de telecomunicacions de Barcelona

SLAM: Simultaneous localization and mapping

EKF: Extended Kalman filter

MPC: Model predictive controller

HV: High voltage

LV: Low voltage

PU: processing unit

FH: Front hoop

LCA: Life cycle assessment

CFRP: Carbon fiber reinforced polymer

GWP: Global warning potential

