

HOT SPOT PREDICTION FOR ROUTING

OF CAR SHARING AND OTHER VEHICLES USING AI

A Degree Thesis Submitted to the Faculty of the Escola
Tècnica d'Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya
by

Christian Soler Lozano

In partial fulfilment of the requirements for the degree in
TELECOMMUNICATIONS TECHNOLOGIES AND SERVICES

ENGINEERING

Advisor: Elisa Sayrol Clols

Barcelona, June 2020

Abstract

Deep learning techniques have shown to improve by far existing methods in many
engineering problems whenever large amounts of data is available and powerful
processors (GPUs) are available for training. In Urban Mobility issues, large amounts of
data might be generated and analyzed, for example, to choose dynamic routing to reduce
traffic congestion. In this project we pretend to apply deep learning techniques, specifically
LSTM, to improve an aspect of Urban Mobility in the Metropolitan Area of Barcelona. The
main goal of this project is to predict, from a sequence of pick-ups and drop-offs, the next
pick-up of car sharing, taxis, and other passenger vehicles. The pick-up must be a
hotspot, being a hotspot a place that stands out above the other collecting points.

1

Resum

Les tècniques d’aprenentatge profund han demostrat que milloren els mètodes existents
en molts problemes d’enginyeria sempre que hi hagin grans quantitats de dades i es
disposin de processadors potents (GPUs) per a l’entrenament. En problemes de mobilitat
urbana es poden generar i analitzar gran quantitats de dades, per exemple, per elegir de
manera dinàmica una ruta per tal reduir la congestió del trànsit. En aquest projecte es
pretén aplicar tècniques d'aprenentatge profund, específicament LSTM, per tal de millorar
un dels aspectes de la Mobilitat Urbana a l’Àrea Metropolitana de Barcelona. L’objectiu
principal d’aquest projecte és predir, a partir d’una seqüència de punts d’inici i finalització,
el proper punt de recollida de car sharing, taxis i altres vehicles de passatgers. Aquest
punt de recollida és un hotspot , és a dir, un punt que destaca per sobre dels altres punts
de recollida.

2

Resumen

Las técnicas de aprendizaje profundo han demostrado que mejoran los métodos
existentes en muchos problemas de ingeniería siempre que haya grandes cantidades de
datos y se dispongan de procesadores potentes (GPUs) para el entrenamiento. En
problemas de movilidad urbana se pueden generar y analizar grandes cantidades de
datos, por ejemplo, para elegir de manera dinámica una ruta para reducir la congestión
del tráfico. En este proyecto se pretende aplicar técnicas de aprendizaje profundo,
específicamente LSTM, para mejorar uno de los aspectos de la Movilidad Urbana en el
Área Metropolitana de Barcelona. El objetivo principal de este proyecto es predecir, a
partir de una secuencia de puntos de inicio y finalización, el próximo punto de recogida de
car sharing , taxis y otros vehículos de pasajeros. Este punto de recogida es un hotspot ,
es decir, un punto que destaca por encima de los otros puntos de recogida.

3

Acknowledgements

I would like to thank Elisa Sayrol for her dedication along these months and for all the
contribution and advice in order to successfully develop this project.

To Javer Hernando and Miquel Angel India for the advice and improvements of the
implemented model. As well as Miquel Estrada for providing the taxi’s dataset to train the
model.

To Judith Soler and Àlex Martinavarro for the translation and linguistic correction of this
project. I totally encourage my sister to keep learning NLP since she has a strong
potential to do it.

Finally, to my parents, family and friends for their support along the project and career.

4

Revision history and approval record

Revision Date Purpose

0 1/06/2020 Document creation

1 29/06/2020 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

 Christian Soler Lozano christian.soler.lozano@gmail.com

 Elisa Sayrol Clols elisa.sayrol@upc.edu

Written by: Reviewed and approved by:

Date 30/05/2020 Date 29/06/2020

Name Christian Soler Lozano Name Elisa Sayrol Clols

Position Project Author Position Project Supervisor

5

Table of contents

Abstract 1

Resum 2

Resumen 3

Acknowledgements 4

Revision history and approval record 5

Table of contents 6

List of Figures 8

List of Tables: 9

Introduction 10
Statement of purpose 10

Requirements and specifications 11

Work plan 11

Tasks 11

Milestones 13

Gantt diagram 14

Description of the deviations from the initial plan and incidences 14

State of the art of the technology used or applied in this thesis: 15
Related work 15

Haversine distance 15

Projective transformation 16

Clustering 16

Word embeddings 17

RNN 18

LSTM 19

Attention model 21

Project development: 23
Preprocessing 23

Flowgraph of the preprocessing 23

Data format 23

Delete data 24

Projective transformation 25

6

Clusters generation 26

Hotspot generation 27

Group trips 28

Model 29

Diagram of the model 29

Word embeddings 30

Attention model 31

LSTM 32

Loss functions 32

As classification 32

As regression 33

Results 35
Model as classification 35

Model as regression 37

Balancing the data 38

Comparison with decision trees 39

Other tests 40

Budget 41

Conclusions and future development: 42

Bibliography: 43

Glossary 45

7

List of Figures

Figure 1. Sequence of pick-ups and drop-offs. 10

Figure 2. Queen-King embedding example. 17

Figure 3. CBOW and Skip-gram comparison. 18

Figure 4. LSTM cell. 20

Figure 5. Problem with RNN. 21

Figure 6. Attention model. 22

Figure 7. Preprocessing flowgraph. 23

Figure 8. Map of the regions used. 25

Figure 9. Pick-up, drop-off and cluster points on the map. 27

Figure 10. Heat maps generated at different times. 28

Figure 11. Algorithm used to generate hotspots. 28

Figure 12. How the slider window works. 29

Figure 13. Diagram of the classification model. 30

Figure 14. CBOW applied to clusters. 31

Figure 15. Attention model. 31

Figure 16. LSTM layer with dimensions. 32

Figure 17. Loss function for classification. 33

Figure 18. Loss function for regression. 34

Figure 19. How the model works. 35

Figure 20. Classification loss curves. 36

Figure 21. Classification confusion matrix. 36

Figure 22. Classification distances histogram. 37

Figure 23. Regression loss curves. 37

Figure 24. Regression distances histogram. 38

Figure 25. Classification with balanced data. 39

8

List of Tables:

Table 1. Taxi data fields. 24

Table 2. Used points for the projective transformation. 26

Table 3. Project budget. 41

9

1. Introduction

1.1. Statement of purpose
Nowadays, car sharing and taxi predominates over personal cars since it presents a huge
advantage especially in large cities. This is because it may be difficult to find a parking
slot, it is much cheaper if the ride is shared and finally it reduces the carbon footprint. In
order to reduce the impact of shared vehicles or taxis turning around or having to go to
distant points in order to attract customers, it would be good to make a prediction of the
nearest place where there may be a request for service.

The main goal of this project is to predict from a sequence of pick-ups and drop-offs of car
sharing, taxis, and other passenger vehicles (figure 1), the next pick-up. The pick-up must
be a hotspot, being a hotspot a point that stands out above the others.

Figure 1. Sequence of pick-ups and drop-offs.

The model used to make predictions consists of embeddings, recurrent neural networks
(RNNs) and attention models (AMs). These modules are normally used in Natural
Language Processing (NLP), as for example, in machine translation. In this project, the
RNNs, the AMs and the embeddings are implemented in order to perform a completely
different task such as hotspot prediction.

Using this model, car sharing vehicles can strategically place their cars in the areas of
greatest demand. When self-driving cars become an everyday reality, they will be able to
go automatically to the area that the model deems appropriate. While this is not possible,
users may be encouraged to leave the vehicle right in the area of the predicted hotspot.

In the case of taxi drivers, they can maximize the number of rides they do, always
directing them to the areas where demand is assured. It also prevents them from
circulating without customers, which causes them to consume resources without making a
profit, while at the same time having a negative impact on the environment.

The model has been trained and tested using data from the taxi rides carried out in 2014
and 2015 in Barcelona. Taxi data has been collected since 2008, though GPS was not
implemented until 2010, and from 2010 to 2013 the amount of data was lower.

Rides do not consist of all the journey, only of the pick-ups and drop-offs. In fact, it is not
necessary to have the whole journey, as stated above, the model only predicts from the
pick-up and drop-off geolocation points. It is an advantage that the model works this way
as it can make a prediction without having to complete part of the journey as stated in [1].
As soon as the drop-off has been done, it will be able to predict the next pick-up.
Nevertheless, prediction is more difficult when the trajectory of the vehicles is not known.

Although the data that has been used comes from taxi rides provided by [2], the model
can also be adapted to car sharing. Taxi drivers have their own habits, but the model has
been trained without the taxi identifiers so that the model learns from the mobility patterns

10

of Barcelona and not the taxi drivers habits, thus making this model able to work with car
sharing vehicles.

Weather data has also been gathered to improve predictions from [3]. This data consists
of the precipitation data by time slots and the average temperature of the three reference
weather stations from Barcelona, which are the Fabra observatory, El Prat airport and the
city of Barcelona.

The project has been divided into different sections. In section 2, or state of the art,
published matter related to this work is presented. Academic concepts and used methods
are also introduced. Section 3, or project development, which is divided into two parts:
pre-processing, where data is modelled to be able to introduce it into the model, and
creation of the model, where the different parts of the model and their features are
detailed. Section 4 shows the results obtained from the prediction model. Section 5 is
about the budget. Finally, section 6 covers the conclusions and future development.

1.2. Requirements and specifications
In order to carry out the development of the project, Python has been used as a
programming language, and in tasks that required a lot of computational load, Cython [4]
has been used to compile.

The libraries used in this project are Pytorch, Pandas and Geopandas. Pytorch is an open
source machine learning library widely used in computer vision and NLP applications, and
it has been used to create the model. The Pandas library is used to process the data
before using it in the model, and the Geopandas library is used to process the geospatial
data. In addition, QGIS software [5] has also been used to edit geospatial contours.

In the beginning, the working environment was Google colab notebooks, where basically
tests were done. Afterwards, the code was executed on the Image Processing Group
(GPI) servers using Pycharm, an integrated development environment where code can be
edited and executed on the server remotely.

There is a previous work [6] that used the same data but with different purposes. The aim
of the mentioned work was focused on drop-off prediction rather than pick-ups. Also, the
procedures to develop the model are different as well as the data pre-processing. This
project is not a follow-up and the codes have been generated from scratch.

1.3. Work plan

1.3.1. Tasks

Project: Hot spot prediction of car sharing using AI WP ref: A
Major constituent: State of the art Sheet 1 of 9
Short description:
Search for information on the concepts being worked on, while
also searching and analyzing academic articles in order to carry
out the project.

Planned start date:
17/02/2020 (1W)
Planned end date:
22/03/2020 (5W)

Internal task T1:
Search and analyze papers

Deliverables:
Project approach

11

Project: Hot spot prediction of car sharing using AI WP ref: B
Major constituent: Data operations Sheet 2 of 9
Short description:
Because the raw data has unnecessary and incorrect values
and at the same time must be adapted to the input of the
model, operations with the data must be performed.
Also, in order to display the data, it is necessary to implement a
code capable of generating maps and graphs for visualization.

Planned start date:
24/02/2020 (2W)
Planned end date:
19/04/2020 (9W)

Internal task T1:
Data preparation
Internal task T2:
Data visualization

Deliverables:
Processed data

Data visualization

Project: Hot spot prediction of car sharing using AI WP ref: C
Major constituent: Clusters generation Sheet 3 of 9
Short description:
A set of location clusters is defined from location points in the
training data and applying a clustering algorithm.

Planned start date:
9/03/2020 (4W)
Planned end date:
29/03/2020 (6W)

Internal task T1:
Generate clusters

Deliverables:
Results from clustering

Project: Hot spot prediction of car sharing using AI WP ref: D
Major constituent: Neural Network - Word2Vec Sheet 4 of 9
Short description:
Model entries share common contexts, for this reason
word2vec is used so that the model can observe these
relationships.

Planned start date:
16/03/2020 (5W)
Planned end date:
15/05/2020 (13W)

Internal task T1:
Generate Word2Vec data representation.
Internal task T2:
Generate spatial cluster embedding.

Deliverables:
Word2Vec data representation

Spatial cluster embedding

Project: Hot spot prediction of car sharing using AI WP ref: E
Major constituent: Neural Network - LSTM Sheet 5 of 9
Short description:
The use of recurrent neural networks is necessary because
temporal data is used. LSTM will be used to perform the
temporary process.

Planned start date:
30/03/2020 (7W)
Planned end date:
26/04/2020 (10W)

Internal task T1:
LSTM model training
Internal task T2:
LSTM model test

Deliverables:

LSTM model

12

Project: Hot spot prediction of car sharing using AI WP ref: F
Major constituent: Neural Network - Attention model Sheet 6 of 9
Short description:
To learn which part of the trajectory is more important to focus
on.

Planned start date:
13/04/2020 (9W)
Planned end date:
4/05/2020 (12W)

Internal task T1:
Attention model training
Internal task T2:
Attention model test

Deliverables:

Attention model

Project: Hot spot prediction of car sharing using AI WP ref: G
Major constituent: Neural Network - Final Model Sheet 8 of 9
Short description:
When the different models have worked separately, they are put
together into a single model. Hyperparameters are also varied
and results are obtained in each case.

Planned start date:
4/05/2020 (12W)
Planned end date:
7/06/2020 (16W)

Internal task T1:
Union of the different parts in a single model
Internal task T2:
Hyperparameters variation and comparison of results

Deliverables:
Final model

Results and conclusions

Project: Hot spot prediction of car sharing using AI WP ref: H
Major constituent: Documentation Sheet 9 of 9
Short description:
During the project, three documents have to be delivered,
project proposal and work plan, critical review and final review.

Planned start date:
2/03/2020 (3W)
Planned end date:
28/06/2020 (19W)

Internal task T1:
Project Proposal and Work Plan
Internal task T2:
Critical Review
Internal task T3:
Final Review

Deliverables:
Project Proposal and Work Plan

Critical Review

Final Review

1.3.2. Milestones

WP# Task# Short title Milestone / deliverable Date (week)
H T1 Project Proposal and Work Plan Project Proposal and Work Plan 8/03/2020 (3W)
H T2 Critical Review Critical Review 14/04/2020 (9W)
H T3 Final Review Final Review 28/06/2020 (19W)

13

1.3.3. Gantt diagram

1.3.4. Description of the deviations from the initial plan and incidences

Minor changes have been made to the critical review. These changes are detailed below.
The semantic characterization has been integrated into the Word2Vec work package
under the name “spatial cluster embedding”. This has been done since both tasks are
related. Also, as the delivery date has changed, another week has been added. The final
review is the same duration but it has been delayed to next week.

14

2. State of the art of the technology used or applied in this
thesis:

First of all, this section starts by introducing the projects and studies on which this project
has been based or which have addressed this problem from a different perspective.
Hereafter, applied theory and used methods to carry out the project are introduced.

2.1. Related work
One of the papers on which part of this work has been based [7] is that of predicting
drop-offs based on modeling the behavior of taxi drivers. In order to carry out the
proposed objectives, the model they use has been adapted so that it does not depend on
the identifier of a specific vehicle. Therefore, the model does not associate the data with
the behavior of a specific driver. Also, instead of predicting drop-offs, it predicts hotspots.

There are other studies [8, 9] that use meteorological data in order to improve predictions
about mobility in cities. In this case, data such as precipitation by time slots and the
average temperature of the city of Barcelona have been included in the model.

Other papers as in [10], use the full trajectory and not just pick-up and drop-off points. The
model in [10] uses the real time data collected along the day to define the upcoming
trajectory. On the contrary, in the developed model in this project, the predictions are only
made from pick-ups and drop-offs. This is done in order to be able to predict the hotspot
instantaneously.

There is another study, [11], that predicts whether an event will occur in a specific area
based on the analysis of web sites. These models do not use LSTM layers but
convolutional layers as the events to be predicted do not have a cyclic behavior.

Albert Baldó, a civil engineering student, is currently working on his master thesis using
the same data as in this project to analyse the profitability of cabs from a statistical point
of view.

2.2. Haversine distance
The Haversine formula [12] is used to calculate the distance between two points over the
earth given their longitudes and latitudes. This formula calculates the great circle distance
between two points, that is, the shortest distance on a sphere.

Working with the Haversine distance is necessary as geospatial data is given in latitudes
and longitudes.

The Haversine formula (1) is shown below with an explanation of its parameters.

φ and λ are respectively the latitude and longitude in radians of each point and r is the
earth’s radius.

15

2.3. Projective transformation
A projective transformation [13, 14] is a type of linear transformation. A transformation is a
function that transforms a vector space in another. This transformation is linear if it keeps
the scalar multiplication and the vector addition.

To apply a projective transformation to a vector, this has to be multiplied by a
transformation matrix, and as a result it obtains a vector with transformed coordinates.

Below it is shown a transformation matrix (2) with the result of the application on a vector.

In the transformation matrix, a elements form the rotation matrix, b elements form the
translation vector and the c elements form the projection vector.

As the transformation must be from a 2D vector space to another 2D vector space, but the
result of multiplying the transformation matrix by the vector gives a 3D vector, the vector is
divided by k .

An affine transformation is a particular case of projective transformation. In the case of
affine projection, it has only 6 degrees of freedom, while in the case of projective
transformation, it has 8. The difference in the transformation matrix is that in the case of
affine transformation, the projection vector is zero.

2.4. Clustering
There are different algorithms for generating clusters, such as K-means, which is one of
the most well-known and widely used, because it is fast and easy to understand. Though
it is not really an algorithm to generate clusters but a partitioning algorithm as it does not
find clusters but partitions the data. This algorithm has some drawbacks when generating
clusters from geospatial data, unlike other algorithms such as DBSCAN and HDBSCAN
[15, 16].

One of the problems with the K-means algorithm is that it is not good for geospatial data
because it minimizes the variance and not the geodesic distance, so the algorithm gives
worse results when it moves away from the equator [17].

Also, the K-means algorithm has a different operation compared to DBSCAN and
HDBSCAN as you have to select a priori the total number of clusters to be generated,
while in the case of DBSCAN and HDBSCAN they select automatically the total number of
clusters that should be generated.

In the end, the algorithm for generating clusters will depend on the type of data available.
In this case they are cardinal points and it is important to take into account the distance
used to calculate the clusters. As mentioned above, the Haversine distance is used to
calculate the distance between two cardinal points. The K-means algorithm uses
Euclidean distance, which is why it is not a suitable algorithm for geospatial data, while
DBSCAN and HDBSCAN can use the Haversine distance.

16

2.5. Word embeddings
In NLP, a word embedding [18, 19, 20] is a representation of a specific word. Word
embedding is able to capture the context of a word in a document, for example, the
semantic and syntactic similarities.

The reason for using the word embedding is because a lot of Machine Learning
Algorithms and almost all the Deep learning architectures can not process text directly. In
order to perform tasks, the data must be introduced as numbers rather than text.

Another way to introduce the data inside the model is by using one-hot vectors
codification. In case of words, these vectors have the same dimension as the corpus
length. All the values are zero except the element where the index represents the word
inside the vocabulary.

One of the problems of coding with one-hot vectors is that the parameters are
independent of each other. This makes words with similar meanings have no proximity
relationship while totally opposite words will not have a distance relationship either.

Another problem is the size of the corpus, if it is very large, it implies that the dimensions
with which the model has to work are also very large.

Word embeddings are the solution to these problems. One of its goals is for words with a
similar context to occupy close spatial positions. This is impossible in the case of one-hot
vectors because they are orthogonal to each other. Also because their encoding is no
longer one-hot, the size of their vectors no longer has to be equal to the size of the corpus
and then their size can be greatly reduced.

There are different ways to obtain embeddings, classified according to whether they are
embeddings based on frequency or prediction. Frequency-based ones are deterministic
methods and their results are limited. Predictive ones are based on neural networks and
have far surpassed the results of those based on frequency.

The first embeddings to make the queen-king example work (figure 2) are
prediction-based embeddings.

Figure 2. Queen-King embedding example[21].

17

Embeddings based on predictions appear with Word2Vec. The Word2Vec has two
methods to obtain word embeddings which are the Skip Gram and the Common Bag of
Words (CBOW) depicted in figure 3.

Figure 3. CBOW and Skip-gram comparison.

CBOW is based on predicting the probability of a word given a context. The context can
be a word or a set of words. The size of the context is determined by the window, a
window of size 1 implies that there is only one context word. Skip-gram does just the
opposite, predicting the words around it from a context word.

Both methods have their advantages and disadvantages. The CBOW is faster and
represents better the most common words. In the case of Skip-gram, it works better with
little data and represents rare words better.

CBOW

CBOW is based on neuronal networks. In order to understand the concept, a context
window of 1 is considered. In this case it implies that at the input of the model there is a
context word and at the output the word to be predicted. These words are represented as
one-hot vectors.

The model consists of two neuronal layers. The size of the first is equal to the size of the
embeddings and the size of the second is equal to the size of the one-hot vectors. Once
this model is trained, the first layer acts as a lookup table, as each of its rows represents
an embedding.

2.6. RNN
The idea that lies behind recurrent neural networks (RNNs) [22, 23] is to use sequential
information, that is, data sequences in which this data is not independent of each other.

In traditional neural networks, all inputs and outputs are independent of each other. They
work taking a fixed amount of data at the input and produce a fixed amount at the output,
and they do it with all the data at once. In contrast, RNNs do not capture all input data at
once, instead they work capturing each one of the pieces of data in an input sequence at
each instant of time.

18

The output at each instant of time of an RNN is known as the hidden state. This contains
information about the current entry, as well as all entries from previous times. That is, at
each instant of time, the output will be a function of the current input and a context, which
is the hidden state calculated at the previous instant.

One of the reasons why a recurrent neural network can remember sequence information
is because the hidden state acts as an internal memory and this makes it different from a
conventional neural network that has no memory. Recurrent neural networks are called
recurrent because they perform the same task for each of the elements of a sequence.

Typical application of RNN: voice recognition, machine translation, predictive analytics,
text classification... among many other applications that deal with sequential information.

2.6.1. LSTM

One of the major problems that RNN networks have is the vanishing or explosion of
gradients. This problem arises in backpropagation during training, especially in networks
of very long sequences. Due to the chain rule, gradients must be multiplied continuously
by matrices, causing the gradient to fade or explode depending on whether they are
decreasing or increasing exponentially respectively. Then, having a small gradient causes
the weights of the grid not to update, causing the model to not learn; or the gradients to
become very large, causing the model to become unstable.

Due to this problem with gradients, RNNs cannot work with very long sequences. A very
simple example would be a very long text in which, at the beginning, it is mentioned that
someone has a parrot called Beethoven, and after a few sentences without mentioning it,
it had to predict how the following sentence continues: “Beethoven, my pet…, can open
doors”. In this case the model would not know which pet this sentence is referring to,
because the relevant information from the beginning would have been lost, and would end
up predicting that instead of a parrot, it is perhaps a cat or a dog.

A typical RNN network will only be able to use information from the nearby context to
predict the word because it only has short-term memory, while a Long Short-Term Memory
(LSTM) [24] network will be able to use contextual information from a text that has
appeared earlier in some sentences, as it also has a long-term memory.

In each of the cells of a normal RNN, the way they work is very simple. The input in an
instant of time and the hidden state of the previous instants go through an activation
function to obtain the output in this instant of time, or what is the same, the hidden state in
this instant.

The cells of an LSTM, unlike a normal RNN, have a more complex function. Each LSTM
cell (figure 4) takes three pieces of data that are the current input and two from the
previous cell that are short-term memory and long-term-memory. Both short-term memory
and long-term memory are also called hidden states and cell states, respectively.

Each of the cells has gates in order to regulate the information that has to be discarded or
maintained at each instant of time before passing the hidden state and the cell state to the
next cell. The gateways for regulating information are called input gate, forget gate, and
output gate.

19

Figure 4. LSTM cell [24].

Input Gate

The input gate (formula 3) decides what new information should be stored in long-term
memory. It does this based on information from the current entry and the hidden state of
the previous instant. It has to filter the information by selecting which of this is relevant
and discarding those pieces that are not useful.

The first multiplier term acts as a filter. The sigmoid (σ) makes its values go between 0
and 1 indicating how relevant the information is, being 0 not relevant and 1 very relevant.
The second term is the current input and the hidden state to which the filter is applied.
These values are passed by an activation function tanh to regulate the network.

Where the W are the weights, H t-1 is the hidden state and x t is the input.

Forget gate

The forget gate (formula 4) decides which pieces of information in the long-term memory
should be discarded or kept. The sum of the input gate and the forget gate create the
long-term memory of the current instant (formula 5).

The formula (4) shows the filter, which is the first multiplier term, which is applied to
long-term memory, which is the second multiplier term. Finally, C t-1 is defined as the cell
state.

Output gate

The output gate (formula 6) captures the current input, the hidden state of the previous
state, and the long-term memory of the current instant in order to generate the hidden
state of the current instant, which matches the output of the current instant.

20

The first multiplier term is the filter, and the second term is the long-term memory of the
current instant to which the filter is applied.

2.7. Attention model
Attention models [25, 26] are used in neural networks in order to focus on the most
relevant parts of the data.

There are different types of AMs. In order to understand the general operation of the
different models we will explain it as an example applied in seq2seq models.

The seq2seq model can be used in NLP to translate sentences from one language to
another. These consist of an encoder that encodes the input sequence and a decoder
that, from the output of the encoder, generates the sentence in the desired language.
Both, the encoder and the decoder, are made up of RNNs seen in section 2.6.

The encoder input is the hidden state generated by the encoder RNN. All the information
needed to generate the translated sequence is represented in the hidden state vector.

The fact that all the information is represented in a single vector results in a bottleneck
being generated between the encoder and the decoder. This may cause problems in the
case of very long sequences, because the model will find it difficult to retain the
information from the beginning of the sequence to be translated.

Figure 5 represents a seq2seq model that shows the bottleneck problem. The encoder is
represented in red and the decoder in green.

Figure 5. Problem with RNN [25].

In order to solve the bottleneck problem, an attention model (figure 6) has been used. The
core idea of the attention module is to focus on the most relevant parts of the input
sequence for each output.

Its operation is as follows. A context vector is added to each cell in the decoder. This
context vector is obtained from a weighted sum of the encoder hidden states. The way to
calculate weights is by passing the attention scores through a softmax. Attention scores
are obtained by multiplying the hidden state of the decoder at a specific instant with all the
hidden states of the encoder.

Once this is done, the decoder has direct access to the entire sequence of the decoder
and the information it obtains is no longer only the hidden state.

21

Figure 6. Attention model [25].

22

3. Project development:

The development of the project has been mainly divided into two parts: the preprocessing
of the data and the creation of the model. In the preprocessing of the data, data is
transformed into a proper format in order to be able to enter it in the model, and in the
creation of the model the different elements that form it and its operation are observed.

3.1. Preprocessing

3.1.1. Flowgraph of the preprocessing

The following figure 7 shows the different steps that have been followed to obtain the data
to enter the model. Each of these steps will be thoroughly explained below.

Figure 7. Preprocessing flowgraph.

3.1.2. Data format

The data used to carry out the research includes meteorological data from the city of
Barcelona and data retrieved from the taxis working in the metropolitan area of Barcelona
and other regions of Catalonia.

The data from the taxis is a representative sample from the taxi rides during the period
2014-2015

Each of the rows of the data represents a ride of a taxi, to be more specific, the pick-up
and drop-off. Each of its rides has the fields shown in table 1. The data used is in green.

23

TAXIS CONDUCTOR JORNADA CARRERA DATA_INICI

DIA_SETMANA HORA_INICI MINUTS_INICI DATA_FINAL HORA FINAL

MINUTS_FINAL TARIFA TARIFA_INTEL IMPORT SUPLEMENTO

TEMPS_OCUP KM_OCUPATS VELCOM_CAR VELMAX_CAR TEMPS_LLIU

KM_LLIURES VELCOM_LLI VELMAX_LLI ESTAT TIPUS

LATIINI LONGINI LATIFIN LONGFIN

Table 1. Taxi data fields.

The meteorological data has been gathered from the observatories of Barcelona city, the
airport and the Fabra observatory. The data used was the average temperature during the
day and the precipitation by time slots. A total of four slots: from 0 to 5, from 6 to 11, from
12 to 17, and from 18 to 23 hours.

As there were days where some weather stations had no information, weather data
comes from different sources. In first place from the observatory of Barcelona which better
represents all the regions where the forecast has been made. If the average temperature
was missing, the weather station used is El Prat airport due to its altitude above the sea
level. In the case of precipitation data, an average has been made between the Fabra
observatory and El Prat airport.

3.1.3. Delete data

There was missing data, for instance there were rides where relevant information to the
research had no assigned value (NaN). In cases like this, the rides had been removed.

Rides with wrong values had also been removed. In this case, the wrong values
correspond to latitude and longitude values equal to zero because perhaps the vehicle did
not have a built-in GPS or was not working at that time. This step would not really be
necessary since the values of latitude and longitude equal to zero are outside the
established perimeter to work as will be seen below.

Eventually, data from outside the perimeter of the region formed by Barcelona,
L’Hospitalet de Llobregat and El Prat de LLobregat has also been deleted. Also, within this
region, the areas where data had a low density of pick-up or drop-off points has been
removed. In order to delimit these areas, the census districts have been used, and some
parts of the fringing districts have been deleted. The districts that have been affected are
Nou Barris, Horta-Guinardó and Sarrià-Sant Gervasi. One of the reasons why these areas
have a low density of points is because they are located within the natural park of the
Serra de Collserola. The Prat de LLobregat area has also been modified, annexing some
parts of the municipalities of Viladecans and Sant Boi de Llobregat close to El Prat airport.

The map below (figure 8) shows the different areas that have been used for the research.

24

Figure 8. Map of the regions used.

3.1.4. Projective transformation

Geospatial data is usually accompanied by a Coordinate Reference System (CRS) so that
it can be accurately represented on a map. Apart from being able to represent the data on
a map, it is also used to add geospatial data, georeferenced tags or to obtain information
about which area they are in, for example, which neighborhood, district or municipality
they belong to.

In the case of taxi data, the CRS used is unknown and could not be found out. If the data
is represented directly without indicating which CRS it uses, the data is represented over
the sea and it is impossible to work with geospatial information.

To solve this problem, a projective transformation has been made to pass the geospatial
data from the unknown CRS to a known CRS like WGS 84 (EPSG: 4326). This CRS is
used by GPS satellite navigation systems. Data on geospatial information such as
neighborhoods are in the same CRC.

To apply the projective transformation it is necessary to know four points of the unknown
CRS and its equivalent value in the desired CRS. When the different points of the data are
represented as an image, the outline of Barcelona emerges, therefore, it is easier to select
the four points.

Once the four points are set, the transformation matrix can be found. Once it is found, the
projective transformation can be applied to all data as seen in the state of the art, thus
obtaining data represented with the new CRS.

Once the projective transformation is applied, data from outside the desired perimetre can
be removed, as stated in the previous section.

The chart below (table 2) shows the different points that have been used.

25

Used points for the projective transformation

Unknown CRS WGS84 CRS

Latitude Longitude Latitude Longitude

41.173598 2.043031 41.289430 2.072530

41.243839 2.079819 41.406391 2.133120

41.249379 2.108135 41.415700 2.180420

41.236262 2.119755 41.393757 2.199570

Table 2. Used points for the projective transformation.

3.1.5. Clusters generation

Within the dataset, there is a lot of geospatial data made up of latitudes and longitudes.
This way of representing information is very redundant. For example, the first numbers to
be represented are always the same as it is only being analysed in the region of
Barcelona. Points that are very close or almost overlapping have different values of
latitude and longitude, when it would be interesting for them to have the same value to
indicate that they are in the same area or region.

A way to represent this spatial information in a more compact way is by generating
clusters. This also makes it easier to enter the data into the model and at the same time
indicates that a set of points belong to the same region.

The algorithm used to generate clusters is HDBSCAN, which, as seen in the state of the
art, is a good option for generating geospatial data clusters as it uses the Haversine
distance.

When the HDBSCAN algorithm is applied, this does not return the centroid of each
generated cluster but it returns to which cluster points belong. Also, if the point does not
belong to any cluster, it will be classified as noise.

To be able to calculate the distance among the different clusters is necessary to provide
each cluster center. Also, it is needed to be able to visualize the clusters on a map as a
single point. That center represents all the points that belong to the same cluster.

To calculate the centers of each cluster, the first thing to be done is calculating their
centroids from all points that belong to the same cluster. Then, as the centroid may not
match any point in the cluster, the point closest to the centroid is assigned as the center of
each cluster.

Once the centers of all the clusters have been calculated, there are points to which no
cluster has been assigned and have been classified as noise. With these points the
Haversine distance among them and all the clusters is calculated, and the cluster with
which they have a minimum distance is selected.

26

All points that would have been considered noisy and whose distance to any cluster were
very large, exceeding a certain threshold, could have been dismissed. This has not been
applied as all points have a close cluster that represents them accurately.

It is also possible to select which areas are more relevant depending on the available
data. For example, in areas where there is a higher concentration of points, there will be a
greater amount of clusters than in areas with a lower concentration.

To generate clusters, all available data is used, regardless of the relationships among
them, such as a specific time or day. As clusters are a representation of the different
latitudes and longitudes to introduce into the model, both pick-up and drop-off data are
used to generate the clusters.

In the following illustration (figure 9), the generated clusters are represented in red, the
pick-up points in green, and the drop-off points in blue. Drop-offs are more scattered
because cabs usually leave customers at the place they ask for. This does not usually
happen with pick-ups as it is usually the customer who goes to the area where there are
cabs.

Figure 9. Pick-up, drop-off and cluster points on the map.

3.1.6. Hotspot generation

As mentioned above, clusters have not been generated with any time reference in mind,
this is why hotspots are generated from previously calculated clusters, so hotspots do
take these relationships into account.

The following three images (figure 10) show how the distribution of pick-ups is not uniform
over time. On Saturdays night, from 2 to 3, the growing demand is located in nightlife
areas such as the Olympic Port and the Paral·lel Street, while on Monday mornings, from
9 to 10, the demand is no longer around nightlife spots, and new areas are activated, like
the ones around the cruises.

27

Figure 10. Heat maps generated at different times.

Hotspots are a subset of clusters that are generated taking into account the hours and
days of the week. Each hotspot has the same identifier as a cluster. There are a total of
114 hotspots, but in a given hour and day there are only between 6 and 17 hotspots.

This is how the algorithm in charge of the generation of these hotspots works. Where
each of the steps is displayed in the image below (figure 11):

1) First of all, the points of a given moment are selected, for example, a Monday
morning from 8 to 9 hours. The selected points are in blue and the clusters
previously calculated are in red. Then the closest points that each cluster has are
assigned to each of them.

2) Clusters that have assigned points that exceed a certain threshold are considered
hotspots. These are represented in yellow. Each cluster identifies which hotspot is
the closest by calculating the Haversine distance between it and the different
hotspots. The threshold used is 10.

3) Once each cluster knows which hotspot is the closest to it, the cluster assigns it to
itself. In the picture, the hotspots are surrounded by a gray circle, and each of the
clusters is represented by the color of the assigned hotspot.

Figure 11. Algorithm used to generate hotspots.

3.1.7. Group trips

The way in which the data enters the model is in a format of pick-up and drop-off
sequences. How these sequences are obtained is explained in this section.

28

First of all, all the data is sorted in the following order: starting with the taxi driver's
identifier, starting date, starting hour and starting minutes. This is the only place where the
taxi driver's identifier is used and it is only used to create the sequences. As mentioned
previously, the taxi driver identifier is not introduced in the model.

Once all the data has been sorted by time, the different rides are gathered in groups of 4.
In order that the different rides are consecutive, the time gap between a drop-off and a
pick-up must not exceed more than two hours. The amount of rides and the time
difference are hyperparameters to take into account.

The groups are made according to a sliding window taking into account the time gap and
that within the window all the rides are from the same taxi driver. The following image
(figure 12) shows how the sliding window works, where P refers to pick-up and D to
drop-off.

Figure 12. How the slider window works.

Once the sequences have been obtained, the pick-up to be predicted from the sequence
is known at this point, and it is replaced by its equivalent hotspot.

Finally, the generated dataset is splitted between a training dataset and validation dataset.
The training dataset has 80% of data and the validation dataset has 20% of data. A test
dataset has not been created since there is not enough data available.

3.2. Model

3.2.1. Diagram of the model

The following diagram (figure 13) shows the model used to make the prediction. The
model consists of an embedding layer, an attention model, an LSTM layer, a dropout
layer, and specific classification or regression layers. The model is represented in the
diagram as a classification, and the specific regression layers will be shown later.

Each of the parts that make up the model will be explained in more detail below.

29

Figure 13. Diagram of the classification model.

3.2.2. Word embeddings

Embeddings for time, location, and weather data are created. Within the time embeddings
there are the weekday (0,6), hour (0,23), month (0,11), and day type (0,2) embeddings.
Within the location embeddings there are the temporal cluster (0, #clusters), and the
spatial cluster (0, #regions) embeddings. Within the weather embeddings there are the
temperature (minimum temperature, maximum temperature) and rainfall embeddings
(0,1).

The day type embedding is used to classify days as workday, pre-holiday or holiday. To
know what type day is, bank holidays that took place in Barcelona during the time period
of the taxi data have been used.

The temperature has been taken in absolute value, obtaining an input range that goes
from the minimum temperature to the maximum temperature. In the case of precipitation,
it has been considered in binary mode, being 0 a non-rainy day and 1 a rainy day.

The temporal cluster embedding takes into account the temporal relationships between
the different pick-ups and drop-offs of the sequences. Spatial cluster embedding takes into
account the spatial relationships between clusters, assigning each cluster to a region and
then embedding regions. The regions used include L’Hospitalet de Llobregat, El Prat de
LLobregat, and the neighborhoods of Barcelona that were within the working perimeter,
summing up to 65 neighbourhoods.

The output dimensions of all embeddings, except the temporal cluster embeddings is 10.
On the other hand, the dimension of the temporal cluster embeddings is 20.

Embeddings have been generated in two different ways, pre-trained and trained during
training. In the pre-trained ones, their weights are previously calculated before starting
training the whole model; while the others are updated during the training initializing their

30

weights with random values at the beginning. The weights of the pre-trained can continue
to be updated during training or freeze, so that their weights do not vary.

The temporal cluster embedding is pre-trained with unfreezed weights, thus they will keep
being updated during training. All the others are trained during the training.

The way in which the weights of the temporal cluster embeddings have been generated is
with the CBOW embeddings creation technique, seen in the word embeddings from the
the state of the art section. Embeddings have been generated using Gensim [27], a
module that implements Word2Vec algorithms. The clusters sequences of pick-ups and
drop-offs have been used as sentences (figure 14) and a window of length 5 is applied on
each side.

Figure 14. CBOW applied to clusters.

The model only took into account the prediction by hours and not by minutes, this is why
there are no minute embeddings.

3.2.3. Attention model

The input of each LSTM cell in the model is the concatenation of the vectors of the time,
location and weather embeddings. In order for the model to know which of this data to
focus on, an attention model is added to decide which of this data is most relevant.

The attention model used in this model (figure 15) consists of three layers which are two
permutation layers and a dense layer. Then there is a multiplication between the input
vector and the vector resulting from going through the three layers.

Figure 15. Attention model.

The dense layer generates the weights that afterwards will be multiplied by the input
sequence, highlighting which part is more relevant, whether it is time, weather or location.

31

The authors do not explain in the paper the permutation functionality, but by performing
those permutations the results have shown that the model is more robust [7].

3.2.4. LSTM

The model has a recurrent neural network layer (figure 16), which contains LSTM cells.
The reason LSTM cells are used instead of basic RNN cells is because of the gradient
vanishing and exploding problems that the latter has, as stated before in the state of the
art section.

Figure 16. LSTM layer with dimensions.

The recurrent neural network consists of a single layer of LSTM cells. The total amount of
LSTM cells that the model has is equal to the length of the sequence of pick-ups and
drop-offs minus one, as the last pick-up in the sequence is the one that has to be
predicted and this is compared to the output of the model. Then the input sequence
dimension is equal to 6.

The result of the attention model is entered at the input of each LSTM cell, then the input
dimension matches the output dimension of the attention model which is 90.

The hidden state and cell state dimension is 110. This dimension matches the output
dimension of a cell because the output of an LSTM cell matches the hidden state.

Of all the outputs of the LSTM, the only output used is that of the LSTM cell with the last
drop-off in the sequence as input. This output is passed through a dropout layer that
during training, randomly zeroes some of the elements of the output of the LSTM with
probability 0.5. A dropout layer is an effective technique for regularization, which makes
the model generalize better.

3.2.5. Loss functions

3.2.5.1. As classification

When the model functions as a classifier, it is predicting the class among a group of
classes, where each class has a unique identifier.

32

The model by classification (figure 17) has to predict a hotspot among a group of
hotspots. That is, it considers each one of the hotspots like different classes.

Figure 17. Loss function for classification.

The first layer that it has is a linear layer. The number of neurons in this linear layer equals
the total number of clusters that have been created. The number of neurons could also be
equal to the total number of hotspots but due to the indices they have match those of the
clusters, and the hotspots are a subset of the clusters, which means that the total amount
of hotspots is less than the total number of clusters. Hotspot indices must be mapped so
that their values range from zero to the maximum number of hotspots minus one.

After the linear layer, there is a softmax layer which is used to sum the probabilities
obtained in the linear layer up to 1. The output of the softmax describes the probability of
each of the existing hotspots being predicted.

Finally, the softmax result and the target to be predicted are entered into the negative
log-likelihood loss function (NLLLoss). The network assigns high confidence to the correct
class, the “unhappiness” is low, but when the network assigns low confidence to the
correct class, the “unhappiness” is high [28].

The merging of applying a softmax layer and a negative log-likelihood loss function is the
same as applying the cross entropy loss directly.

The value of the loss function obtained is not enough to know if the model is really doing
well, so it is necessary to apply other metrics. In this application we will use the confusion
matrix and the histogram of distances. Despite the accuracy has also been used, it did
not provide enough information.

3.2.5.2. As regression

The regression model (figure 18), instead of predicting a hotspot, predicts the latitude and
longitude of a hotspot from the total number of existing hotspots.

33

Figure 18. Loss function for regression.

The first layer is a linear layer with the number of neurons equal to the number of existing
clusters. Also, as in the case of classification, the number of neurons can be equal to the
number of hotspots. It should be noted then, that the values of the indexes must be
reassigned so that their values range from zero to the maximum number of hotspots
minus one.

Then, instead of having a softmax layer as in the case of classification, it has a linear
layer. In this case, the total number of neurons in this layer is two. Each of these neurons
represents the latitude and longitude to be predicted.

Finally, a custom loss function based on Haversine distance has been created. At the
input of this function there are the predicted latitude and longitude, and the latitude and
the longitude to be predicted when training.

34

4. Results

The following section will show the different results obtained from the execution of the
model. The results have been divided into different subsections. The first shows the
results obtained as a classifier. The second shows the results as a regression. The third
discusses the results by balancing the data. The fourth compares the results of the model
with the results obtained from decision trees. Finally, the last section describes other tests
that have been done.

Initially, the optimizer used by the model was the SGD. This was later replaced by the
Adam optimizer and there was a noticeable improvement in the results obtained. In the
case of regression, the prediction goes from 2 Km to 1.4 Km. Adam has been used as an
optimizer in all of the results below. Unless otherwise stated, all results refer to the
validation dataset.

4.1. Model as classification
When the model operates as a classifier, it is predicting the class among a group of
classes, where each class has a unique identifier. These classes can be hotspots and
clusters or also the neighborhoods and districts of Barcelona for example. In this case the
classes will be the hotspots, so the goal of this work is to predict hotspots.

The parameters used were: batch size of 128, a learning rate of 0,001 in the first 15
epochs and a learning rate of 0,0001 for the following 35 epochs.With an overall of 50
epochs.

The accuracy obtained is 36% of a total of 10925 predictions. However, by analysing the
results, it can be clearly seen that the predictions bring the driver to the most concurrent
hotspots. These concurrent hotspots have constant demand and do not represent a
missed opportunity for the driver. Therefore, in 64% of the cases the vehicle will have
assured demand (figure 19).

Figure 19. How the model works.

The following graphic (figure 20) shows the training and validation loss. This can be
interpreted as, the lower its value, the better the model performs. On the contrary, when
its value is high, the model is performing poorly. This graphic alone does not provide

35

enough information to know how well the model performs. Therefore, a confusion matrix
and a distance histogram are required.

Figure 20. Classification loss curves.
In the confusion matrix (figure 21), the ordinate represents the classes to predict (the true
classes) and the abscissa represents the predicted ones. If all the values fall into the
diagonal, it means that the clases have been predicted successfully. In the generated
confusion matrix can be seen the mentioned diagonal. However, some of the values fall
outside diagonal meaning that the prediction has failed in some cases.

Figure 21. Classification confusion matrix.
The distances histogram (figure 22) represents the distances between the predicted
hotspots and the expected ones.

36

Figure 22. Classification distances histogram.

Every single bar represents an error of 100 meters. It can be seen that most of the cases
fall between 0 and 100 meters which represents a successful prediction. Almost 36% of
the prediction falls within the first bin. The rest falls abruptly and spread between 100 and
5000 meters beeing 5000 the most unlikely to happen. The rest of cases are considered
exceptions.

4.2. Model as regression
When the model works as a regression, the prediction represents the latitude and
longitude values of a particular hotspot instead of the hotspot index as in classification.

The parameters used were: batch size of 128, a learning rate of 0,0001 in the first 20
epochs and a learning rate of 0,00001 for the following 30 epochs.With an overall of 50
epochs.

The figure 23 represents a zoom in of the regression loss curves. This graphic can be
interpreted better than the graphics obtained in classification because their values are the
average of the distance error. The graphic shows that the curve stagnates which implies
that the model is not learning.

Figure 23. Regression loss curves.

37

Due to the nature of the analysis, the confusion matrix neither the accuracy value can not
be obtained since these analyses are only valid for classification. However, the distance
histogram (figure 24) could be obtained by using Haversine distance between the
predicted coordinates and the expected ones.

Figure 24. Regression distances histogram.

The figure shows how the distance distribution is decreasing exponentially and almost
none of the values do not exceed more than 5 km. The cases falling further than 13 km
are hotspots predicted in Barcelona rather than the airport or vice versa.

4.3. Balancing the data
The results of the model that have been seen so far ended up predicting predominant
hotspots. This tendency may be attributed to the fact that the model has been trained with
unbalanced data, meaning that the different classes to be predicted do not have the same
number of data. Some classes had enough data but some others did not. What ends up
happening is that the model predicts the most likely cases.

This is also observed in the confusion matrix of the model as a classifier seen in the
previous section (Figure 21). In the confusion matrix, quite pronounced vertical lines are
observed apart from the diagonal line. These belong precisely to the predominant
hotspots. They indicate that the model instead of selecting the hotspot it had to predict,
predicted precisely one of the predominant hotspots.

Different methods have been tried to balance the data. These have been upsampling,
adding weights to the loss function or even changing the loss function that has been used
so far for Focal loss [29]. Another available option could have been downsampling but it
could not be used since there was not enough data.

The upsampling pretends to increase the number of samples in classes that had less
data. This has been implemented by repeating the data of these classes to be
commensurate to the predominant ones.

38

Weights have also been applied to the loss function to punish the predominant classes
and highlight the lower populated ones. Its operation is equivalent to the upsampling.

Finally, an attempt has also been made to use Focal loss as a loss function. This method
is used in image processing to differentiate the foreground from the background in an
image. These two classes are very unbalanced and hence the need for this loss function.
What is usually applied in binary classification can also be applied when there are more
than two classes.

The graphic below shows the confusion matrix (figure 25) which has been generated after
applying the weights to the loss function. The model has been configured as defined in
section 4.1, only adding the weights to the loss function. At first glance, the model seems
to be doing better because the diagonal is more pronounced and no vertical elements are
observed. However, the results obtained are worse since the value of the accuracy is
16.9% of a total of 10925 predictions.

Figure 25. Classification with balanced data.

After applying all the methods separately to balance the data, the obtained results have
been worse than the unbalanced ones.

4.4. Comparison with decision trees
The decision tree [30] is a machine learning algorithm. Unlike models based on neural
networks, the internal decisions can be observed. The time to train these models is very
fast.

A classifier based on decision trees has been implemented. The results obtained have
been compared with those obtained with the model when it operates as a classifier. The
results obtained (accuracy of 15%) are approximately 20% worse than those obtained
using the deep learning model, which had an accuracy of 36%. It is also important to take
into account that the data with which the decision tree has been trained was unbalanced.
This affects the model, causing the decisions to be biased.

39

4.5. Other tests
Different tests have been done on the model. These tests include the one that does not
have the attention model and the one that freezes the weights of the temporal cluster
embedding. Tests have also been made by changing the entry data in the model and
adding the data of the taxi races during the period 2010-2013 apart from those of
2014-2015.

Testing the model without the attention model does not bring any improvement. When the
model works as a classifier, the results are slightly worse both in training and in validation.

Leaving the pre-trained weights of the temporal cluster embedding unfrozen results in a
slight improvement in regression results at the beginning. Under the same conditions
there is less error. When doing a complete training, the results obtained are quite similar.

A test was performed by changing the input pick-up and drop-off sequence so that all
values in the sequence were hotspots. The results improve by lowering the average
prediction distance to approximately 1200 meters. Doing so would really not make sense
because in some sequences there may be the same hotspots consecutively.

Taxi data from the 2010-2013 period has been added to see if this will improve results. By
doing so, there has been a slight improvement. For example, the error decreased below
the obtained under the same conditions using only the 2014-2015 data by a 3%.

40

5. Budget

Dedicated GPUs are required to train deep learning models. These can be purchased, or
contract them as a service that companies such as Google, Amazon or Microsoft offer,
through which you can access the servers where they are installed.

When contracting servers with GPUs, different users share the same resources as which
are limited, but not all users use them at the same time. In times of high demand you may
not be able to access it if you have a basic plan, then you could also hire another plan that
does not have this limitation, but the price may be very high.

In the case of physically buying one, they are usually expensive and the electricity
consumption is high as well. This is not very profitable if the total number of hours
required to train the model is not very high.

Deep learning models usually need to run for many hours to get results. The model used
in this project, as it does not have a very large amount of data, the computation time
needed is not very high, so the best option is hiring a server.

In order to train the model, the image processing group (GPI) servers were used free of
charge. In order to simulate the actual price that the project would have had if it had run
on a server, the hourly prices of servers such as AWS, Google Cloud, and Azure have
been used as a reference. As the project has been developed in 19 weeks, the price per
hour selected is part of a non-annual plan.

Employees

Type Quantity Hourly price Weekly hours Weeks Total

Senior engineer 1 25 € 2 19 950 €

Junior engineer 1 10 € 25 19 4750 €

Components

Type Hourly price Total hours Total

Cloud server with GPUs 0,7 € 50 35 €

TOTAL 5735 €

Table 3. Project budget.

41

6. Conclusions and future development:

A model capable of predicting hotspots has been developed over the course of this project
by using deep learning. The data has been pre-processed so that it can be entered
correctly into the model. This model consists of embedding layers, an attention model and
a LSTM layer.

The hotspot prediction has been approached in two different ways: as a regression and as
a classification. When the model operates as a classifier, it predicts a hotspot among a
group of hotspots. Meanwhile, when the model operates as a regression, it predicts the
latitude and longitude of the hotspot.

The metrics of the predictions obtained, such as the accuracy value, are low values, but
these must be interpreted. The values at which the model is not wrong are not a problem,
and in the case of the values at which it is wrong, as it is predicting hotspots, they cannot
be considered serious errors either, since the algorithm is directing the taxi or car sharing
to a high demand hotspot. This analysis was possible by obtaining the confusion matrices
when the classifier was adopted. Histograms of distances also brought some lights to
understand the results. Hotspots, as discussed above, vary depending on the time and
day of the week, but the values of the hotspots that the model predicts are precisely
hotspots that are present every day of the week and at any time.

A future development could be to do transfer learning by first training the model with a
dataset with a lot of data and then adapting the model to the city of Barcelona, training it
with the datasets from the cabs from Barcelona that do not have as much data. An
example of a dataset with a lot of data that would be great for transfer learning would be
the New York City taxi dataset, which has approximately over 100 million taxi rides a year.

The current model could include an event predictor based on the analysis of web page
content, such as the one mentioned in the related work section, [11]. This one would be
able to predict one-off events, such as concerts and football matches. In this way, the
hotspots that are now activated and deactivated by the cyclical behavior of the taxi data,
would also be activated when there were specific events.

The current model predicts the hotspot from a sequence of fixed-length pick-ups and
drop-offs. Therefore, an improvement that could be implemented to the model would be
that it could predict from a variable length, so that the model could make predictions
without the need of having any ride.

42

Bibliography:

[1] De Brébisson A., Simon E., Auvolat A., Vincent P., Bengio Y. “Artificial Neural Networks Applied to
Taxi Destination Prediction”, arXiv:1508.00021, September 2015.

[2] Observatori del Taxi - Àrea Metropolitana de Barcelona. Provided by Miquel Estrada.
[3] AEMET - Meteorological data. [Online] Available: https://datosclima.es/
[4] Cython. [Online] Available: https://cython.org/
[5] QGIS. [Online] Available: https://www.qgis.org/es/site/
[6] Xavi Roig Aznar, “Destination prediction of car sharing and other vehicles using deep learning”.

Degree thesis, Faculty of the Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona,
Universitat Politècnica de Catalunya, Barcelona, 2014.

[7] Alberto Rossi, Gianni Barlacchi, Monica Bianchini, Bruno Lepri. “Modeling Taxi Drivers’ Behaviour for
the Next Destination Prediction”, arXiv:1807.08173, January 2019.

[8] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye,
Zhenhui Li. “Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction”,
arXiv:1802.08714, February 2018.

[9] Jintao Ke, Hongyu Zheng, Hai Yang, Xiqun (Michael)Chen. “Short-Term Forecasting of Passenger
Demand under On-Demand Ride Services: A Spatio-Temporal Deep Learning Approach”,
arXiv:1706.0627, June 2017.

[10] Amin Sadri, Flora D. Salim, Yongli Ren, Wei Shao, John C. Krumm, and Cecilia Mascolo. 2018.
“What Will You Do for the Rest of the Day? An Approach to Continuous Trajectory Prediction” Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 4, Article 186 (December 2018), 26 pages.
https://doi.org/10.1145/3287064

[11] Filipe Rodrigues, Ioulia Markou, Francisco Pereira. “Combining time-series and textual data for taxi
demand prediction in event areas: a deep learning approach”, arXiv:1808.05535, August 2018.

[12] “Calculate distance, bearing and more between Latitude/Longitude points”. Movable Type Scripts .
[Online] Available: https://www.movable-type.co.uk/scripts/latlong.html. [Accessed: June 2020].

[13] Daniel Lenton. "Part II: Projective Transformations in 2D". Medium , 2019. [Online] Available:
https://medium.com/@daniel.j.lenton/part-ii-projective-transformations-in-2d-2e99ac9c7e9f.
[Accessed: June 2020].

[14] Richard Hartley, Andrew Zisserman. “Multiple View Geometry in Computer Vision”, 2nd ed.
Cambridge University Press. ISBN: 9780521540513.

[15] "How HDBSCAN Works". HDBSCAN Reference - Read the Docs . [Online] Available:
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html. [Accessed: June 2020].

[16] "Comparing Python Clustering Algorithms". Notebooks - Jupyter NBViewer . [Online] Available:
https://nbviewer.jupyter.org/github/scikit-learn-contrib/hdbscan/blob/master/notebooks/Comparing%2
0Clustering%20Algorithms.ipynb [Accessed: June 2020].

[17] "Clustering geolocation coordinates". Datascience - Stackexchange , 2017. [Online] Available:
https://datascience.stackexchange.com/a/848. [Accessed: June 2020].

[18] Jason Brownlee. "What Are Word Embeddings for Text?". Machine Learning Mastery , 2017. [Online]
Available: https://machinelearningmastery.com/what-are-word-embeddings. [Accessed: June 2020].

[19] Neeraj Singh Sarwan "An Intuitive Understanding of Word Embeddings". Analytics Vidhya, 2017.
Available: https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/.
[Online] [Accessed: June 2020].

[20] McCormick, C. "Word2Vec Tutorial - The Skip-Gram Model". Chris McCormick, 2016. [Online]
Available: http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/. [Accessed:
June 2020].

[21] Colyer A. “The Amazing Power of Word Vectors”. kdnuggets, 2016 [Online] Available:
https://www.kdnuggets.com/2016/05/amazing-power-word-vectors.html. [Accessed: June 2020].

[22] Purnasai Gudikandula. "Recurrent Neural Networks and LSTM explained". Medium , 2019. [Online]
https://medium.com/@purnasaigudikandula/recurrent-neural-networks-and-lstm-explained-7f51c7f6b
bb9. [Accessed: June 2020].

[23] Aditi Mittal. "Understanding RNN and LSTM". Towards Data Science , 2019. [Online] Available:
https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e. [Accessed: June 2020].

43

[24] Gabriel Loye. "Long Short-Term Memory: From Zero to Hero with PyTorch". Floydhub , 2020. [Online]
https://blog.floydhub.com/long-short-term-memory-from-zero-to-hero-with-pytorch/. [Accessed: June
2020].

[25] Anusha Lihala. "Attention and its Different Forms". Towards Data Science , 2019. [Online] Available:
https://towardsdatascience.com/attention-and-its-different-forms-7fc3674d14dc. [Accessed: June
2020].

[26] Guillaume Genthial, Lucas Liu, Barak Oshri, Kushal Ranjan "Lecture Notes: Part VI Neural Machine
Translation, Seq2seq and Attention". Course CS224n - Stanford , winter 2019. [Online] Available:
http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes06-NMT_seq2seq_attention.pdf.
[Accessed: June 2020].

[27] Gensim. [Online] Available: https://radimrehurek.com/gensim/

[28] LJ Miranda. "Understanding softmax and the negative log-likelihood". Lj Miranda , 2017. [Online]
https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/.
[Accessed: June 2020].

[29] Lin T., Goyal P., Girshick R., He K., Dollár P. “Focal Loss for Dense Object Detection”,
arXiv:1708.02002, February 2018.

[30] Avinash Navlani. “Decision Tree Classification in Python”. Datacamp, 2018. [Online] Available:
https://www.datacamp.com/community/tutorials/decision-tree-classification-python. [Accessed: June
2020].

44

Glossary

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

AM Attention Model

NLP Natural Language Processing

GPI Image Processing Group

DBSCAN Density-Based Spatial Clustering of Applications with Noise

HDBSCAN Hierarchical DBSCAN

CBOW Common Bag of Words

CRS Coordinate Reference System

NLLLoss Negative Log-Likelihood Loss function

SGD Stochastic Gradient Descent

ML Machine Learning

DL Deep Learning

45

