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Abstract  

Deep  learning  techniques  have  shown  to  improve  by  far  existing  methods  in  many              
engineering  problems  whenever  large  amounts  of  data  is  available  and  powerful            
processors  (GPUs)  are  available  for  training.  In  Urban  Mobility  issues,  large  amounts  of              
data  might  be  generated  and  analyzed,  for  example,  to  choose  dynamic  routing  to  reduce               
traffic  congestion.  In  this  project  we  pretend  to  apply  deep  learning  techniques,  specifically              
LSTM,  to  improve  an  aspect  of  Urban  Mobility  in  the  Metropolitan  Area  of  Barcelona.  The                
main  goal  of  this  project  is  to  predict,  from  a  sequence  of  pick-ups  and  drop-offs,  the  next                  
pick-up  of  car  sharing,  taxis,  and  other  passenger  vehicles.  The  pick-up  must  be  a               
hotspot,   being   a   hotspot   a   place   that   stands   out   above   the   other   collecting   points.  
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Resum  

Les  tècniques  d’aprenentatge  profund  han  demostrat  que  milloren  els  mètodes  existents            
en  molts  problemes  d’enginyeria  sempre  que  hi  hagin  grans  quantitats  de  dades  i  es               
disposin  de  processadors  potents  (GPUs)  per  a  l’entrenament.  En  problemes  de  mobilitat             
urbana  es  poden  generar  i  analitzar  gran  quantitats  de  dades,  per  exemple,  per  elegir  de                
manera  dinàmica  una  ruta  per  tal  reduir  la  congestió  del  trànsit.  En  aquest  projecte  es                
pretén  aplicar  tècniques  d'aprenentatge  profund,  específicament  LSTM,  per  tal  de  millorar            
un  dels  aspectes  de  la  Mobilitat  Urbana  a  l’Àrea  Metropolitana  de  Barcelona.  L’objectiu              
principal  d’aquest  projecte  és  predir,  a  partir  d’una  seqüència  de  punts  d’inici  i  finalització,               
el  proper  punt  de  recollida  de car  sharing, taxis  i  altres  vehicles  de  passatgers.  Aquest                
punt  de  recollida  és  un hotspot ,  és  a  dir,  un  punt  que  destaca  per  sobre  dels  altres  punts                   
de   recollida.  
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Resumen  

Las  técnicas  de  aprendizaje  profundo  han  demostrado  que  mejoran  los  métodos            
existentes  en  muchos  problemas  de  ingeniería  siempre  que  haya  grandes  cantidades  de             
datos  y  se  dispongan  de  procesadores  potentes  (GPUs)  para  el  entrenamiento.  En             
problemas  de  movilidad  urbana  se  pueden  generar  y  analizar  grandes  cantidades  de             
datos,  por  ejemplo,  para  elegir  de  manera  dinámica  una  ruta  para  reducir  la  congestión               
del  tráfico.  En  este  proyecto  se  pretende  aplicar  técnicas  de  aprendizaje  profundo,             
específicamente  LSTM,  para  mejorar  uno  de  los  aspectos  de  la  Movilidad  Urbana  en  el               
Área  Metropolitana  de  Barcelona.  El  objetivo  principal  de  este  proyecto  es  predecir,  a              
partir  de  una  secuencia  de  puntos  de  inicio  y  finalización,  el  próximo  punto  de  recogida  de                 
car  sharing ,  taxis  y  otros  vehículos  de  pasajeros.  Este  punto  de  recogida  es  un hotspot ,                
es   decir,   un   punto   que   destaca   por   encima   de   los   otros   puntos   de   recogida.  
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1. Introduction  

1.1. Statement   of   purpose  
Nowadays,  car  sharing  and  taxi  predominates  over  personal  cars  since  it  presents  a  huge               
advantage  especially  in  large  cities.  This  is  because  it  may  be  difficult  to  find  a  parking                 
slot,  it  is  much  cheaper  if  the  ride  is  shared  and  finally  it  reduces  the  carbon  footprint.  In                   
order  to  reduce  the  impact  of  shared  vehicles  or  taxis  turning  around  or  having  to  go  to                  
distant  points  in  order  to  attract  customers,  it  would  be  good  to  make  a  prediction  of  the                  
nearest   place   where   there   may   be   a   request   for   service.  

The  main  goal  of  this  project  is  to  predict  from  a  sequence  of  pick-ups  and  drop-offs  of  car                   
sharing,  taxis,  and  other  passenger  vehicles  (figure  1),  the  next  pick-up.  The  pick-up  must               
be   a   hotspot,   being   a   hotspot   a   point   that   stands   out   above   the   others.  

 

Figure   1.   Sequence   of   pick-ups   and   drop-offs.  

The  model  used  to  make  predictions  consists  of  embeddings,  recurrent  neural  networks             
(RNNs)  and  attention  models  (AMs).  These  modules  are  normally  used  in  Natural             
Language  Processing  (NLP),  as  for  example,  in  machine  translation.  In  this  project,  the              
RNNs,  the  AMs  and  the  embeddings  are  implemented  in  order  to  perform  a  completely               
different   task   such   as   hotspot   prediction.  

Using  this  model,  car  sharing  vehicles  can  strategically  place  their  cars  in  the  areas  of                
greatest  demand.  When  self-driving  cars  become  an  everyday  reality,  they  will  be  able  to               
go  automatically  to  the  area  that  the  model  deems  appropriate.  While  this  is  not  possible,                
users   may   be   encouraged   to   leave   the   vehicle   right   in   the   area   of   the   predicted   hotspot.  

In  the  case  of  taxi  drivers,  they  can  maximize  the  number  of  rides  they  do,  always                 
directing  them  to  the  areas  where  demand  is  assured.  It  also  prevents  them  from               
circulating  without  customers,  which  causes  them  to  consume  resources  without  making  a             
profit,   while   at   the   same   time   having   a   negative   impact   on   the   environment.  

The  model  has  been  trained  and  tested  using  data  from  the  taxi  rides  carried  out  in  2014                  
and  2015  in  Barcelona.  Taxi  data  has  been  collected  since  2008,  though  GPS  was  not                
implemented   until   2010,   and   from   2010   to   2013   the   amount   of   data   was   lower.  

Rides  do  not  consist  of  all  the  journey,  only  of  the  pick-ups  and  drop-offs.  In  fact,  it  is  not                    
necessary  to  have  the  whole  journey,  as  stated  above,  the  model  only  predicts  from  the                
pick-up  and  drop-off  geolocation  points.  It  is  an  advantage  that  the  model  works  this  way                
as  it  can  make  a  prediction  without  having  to  complete  part  of  the  journey  as  stated  in  [1].                   
As  soon  as  the  drop-off  has  been  done,  it  will  be  able  to  predict  the  next  pick-up.                  
Nevertheless,   prediction   is   more   difficult   when   the   trajectory   of   the   vehicles   is   not   known.  

Although  the  data  that  has  been  used  comes  from  taxi  rides  provided  by  [2],  the  model                 
can  also  be  adapted  to  car  sharing.  Taxi  drivers  have  their  own  habits,  but  the  model  has                  
been  trained  without  the  taxi  identifiers  so  that  the  model  learns  from  the  mobility  patterns                
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of  Barcelona  and  not  the  taxi  drivers  habits,  thus  making  this  model  able  to  work  with  car                  
sharing   vehicles.   

Weather  data  has  also  been  gathered  to  improve  predictions  from  [3].  This  data  consists               
of  the  precipitation  data  by  time  slots  and  the  average  temperature  of  the  three  reference                
weather  stations  from  Barcelona,  which  are  the  Fabra  observatory,  El  Prat  airport  and  the               
city   of   Barcelona.  

The  project  has  been  divided  into  different  sections.  In  section  2,  or  state  of  the  art,                 
published  matter  related  to  this  work  is  presented.  Academic  concepts  and  used  methods              
are  also  introduced.  Section  3,  or  project  development,  which  is  divided  into  two  parts:               
pre-processing,  where  data  is  modelled  to  be  able  to  introduce  it  into  the  model,  and                
creation  of  the  model,  where  the  different  parts  of  the  model  and  their  features  are                
detailed.  Section  4  shows  the  results  obtained  from  the  prediction  model.  Section  5  is               
about   the   budget.   Finally,   section   6   covers   the   conclusions   and   future   development.  

1.2. Requirements   and   specifications  
In  order  to  carry  out  the  development  of  the  project,  Python  has  been  used  as  a                 
programming  language,  and  in  tasks  that  required  a  lot  of  computational  load,  Cython  [4]               
has   been   used   to   compile.  

The  libraries  used  in  this  project  are  Pytorch,  Pandas  and  Geopandas.  Pytorch  is  an  open                
source  machine  learning  library  widely  used  in  computer  vision  and  NLP  applications,  and              
it  has  been  used  to  create  the  model.  The  Pandas  library  is  used  to  process  the  data                  
before  using  it  in  the  model,  and  the  Geopandas  library  is  used  to  process  the  geospatial                 
data.   In   addition,   QGIS   software   [5]   has   also   been   used   to   edit   geospatial   contours.  

In  the  beginning,  the  working  environment  was  Google  colab  notebooks,  where  basically             
tests  were  done.  Afterwards,  the  code  was  executed  on  the  Image  Processing  Group              
(GPI)  servers  using  Pycharm,  an  integrated  development  environment  where  code  can  be             
edited   and   executed   on   the   server   remotely.  

There  is  a  previous  work  [6]  that  used  the  same  data  but  with  different  purposes.  The  aim                  
of  the  mentioned  work  was  focused  on  drop-off  prediction  rather  than  pick-ups.  Also,  the               
procedures  to  develop  the  model  are  different  as  well  as  the  data  pre-processing.  This               
project   is   not   a   follow-up   and   the   codes   have   been   generated   from   scratch.  

1.3. Work   plan  

1.3.1. Tasks  

 
Project:   Hot   spot   prediction   of   car   sharing   using   AI  WP   ref:   A  
Major   constituent:   State   of   the   art  Sheet   1   of   9  
Short   description:  
Search   for   information   on   the   concepts   being   worked   on,   while  
also   searching   and   analyzing   academic   articles   in   order   to   carry  
out   the   project.  

Planned   start   date:   
17/02/2020   (1W)  
Planned   end   date:  
22/03/2020   (5W)  

Internal   task   T1:  
Search   and   analyze   papers  

Deliverables:  
Project   approach  
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Project:   Hot   spot   prediction   of   car   sharing   using   AI  WP   ref:   B  
Major   constituent:   Data   operations  Sheet   2   of   9  
Short   description:  
Because  the  raw  data  has  unnecessary  and  incorrect  values          
and  at  the  same  time  must  be  adapted  to  the  input  of  the              
model,   operations   with   the   data   must   be   performed.  
Also,  in  order  to  display  the  data,  it  is  necessary  to  implement  a              
code   capable   of   generating   maps   and   graphs   for   visualization.  

Planned   start   date:   
24/02/2020   (2W)  
Planned   end   date:  
19/04/2020   (9W)  

Internal   task   T1:  
Data   preparation  
Internal   task   T2:  
Data   visualization  

Deliverables:  
Processed   data  
 
Data   visualization  

 
Project:   Hot   spot   prediction   of   car   sharing   using   AI  WP   ref:   C  
Major   constituent:   Clusters   generation  Sheet   3   of   9  
Short   description:  
A  set  of  location  clusters  is  defined  from  location  points  in  the             
training   data   and   applying   a   clustering   algorithm.  

Planned   start   date:   
9/03/2020   (4W)  
Planned   end   date:  
29/03/2020   (6W)  

Internal   task   T1:  
Generate   clusters  

Deliverables:  
Results   from   clustering  

 
Project:   Hot   spot   prediction   of   car   sharing   using   AI  WP   ref:   D  
Major   constituent:   Neural   Network   -   Word2Vec  Sheet   4   of   9  
Short   description:  
Model  entries  share  common  contexts,  for  this  reason         
word2vec  is  used  so  that  the  model  can  observe  these           
relationships.  

Planned   start   date:   
16/03/2020   (5W)  
Planned   end   date:  
15/05/2020   (13W)  

Internal   task   T1:  
Generate   Word2Vec   data   representation.  
Internal   task   T2:  
Generate   spatial   cluster   embedding.  

Deliverables:  
Word2Vec   data   representation  
 
Spatial   cluster   embedding  

 
Project:   Hot   spot   prediction   of   car   sharing   using   AI  WP   ref:   E  
Major   constituent:   Neural   Network   -   LSTM  Sheet   5   of   9  
Short   description:  
The   use   of   recurrent   neural   networks   is   necessary   because  
temporal   data   is   used.   LSTM   will   be   used   to   perform   the  
temporary   process.  

Planned   start   date:   
30/03/2020   (7W)  
Planned   end   date:  
26/04/2020   (10W)  

Internal   task   T1:  
LSTM   model   training  
Internal   task   T2:  
LSTM   model   test  

Deliverables:  
 
LSTM   model  
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Project:   Hot   spot   prediction   of   car   sharing   using   AI  WP   ref:   F  
Major   constituent:   Neural   Network   -   Attention   model  Sheet   6   of   9  
Short   description:  
To  learn  which  part  of  the  trajectory  is  more  important  to  focus             
on.  
 

Planned   start   date:   
13/04/2020   (9W)  
Planned   end   date:  
4/05/2020   (12W)  

Internal   task   T1:  
Attention   model   training  
Internal   task   T2:  
Attention   model   test  

Deliverables:  
 
Attention   model  

 
Project:   Hot   spot   prediction   of   car   sharing   using   AI  WP   ref:   G  
Major   constituent:   Neural   Network   -   Final   Model  Sheet   8   of   9  
Short   description:  
When  the  different  models  have  worked  separately,  they  are  put           
together  into  a  single  model.  Hyperparameters  are  also  varied          
and   results   are   obtained   in   each   case.  

Planned   start   date:   
4/05/2020   (12W)  
Planned   end   date:  
7/06/2020   (16W)  

Internal   task   T1:  
Union   of   the   different   parts   in   a   single   model  
Internal   task   T2:  
Hyperparameters   variation   and   comparison   of   results  

Deliverables:  
Final   model  
 
Results   and   conclusions  

 
Project:   Hot   spot   prediction   of   car   sharing   using   AI  WP   ref:    H  
Major   constituent:   Documentation  Sheet   9   of   9  
Short   description:  
During   the   project,   three   documents   have   to   be   delivered,  
project   proposal   and   work   plan,   critical   review   and   final   review.  

Planned   start   date:   
2/03/2020   (3W)  
Planned   end   date:  
28/06/2020   (19W)  

Internal   task   T1:  
Project   Proposal   and   Work   Plan  
Internal   task   T2:  
Critical   Review  
Internal   task   T3:  
Final   Review  

Deliverables:  
Project   Proposal   and   Work   Plan  
 
Critical   Review  
 
Final   Review  

 

1.3.2. Milestones  
 

WP#   Task#   Short   title   Milestone   /   deliverable   Date   (week)  
H  T1   Project   Proposal   and   Work   Plan   Project   Proposal   and   Work   Plan   8/03/2020   (3W)  
H  T2   Critical   Review   Critical   Review   14/04/2020   (9W)  
H  T3   Final   Review   Final   Review   28/06/2020   (19W)  
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1.3.3. Gantt   diagram  

1.3.4. Description   of   the   deviations   from   the   initial   plan   and   incidences  

Minor  changes  have  been  made  to  the  critical  review.  These  changes  are  detailed  below.               
The  semantic  characterization  has  been  integrated  into  the  Word2Vec  work  package            
under  the  name  “spatial  cluster  embedding”.  This  has  been  done  since  both  tasks  are               
related.  Also,  as  the  delivery  date  has  changed,  another  week  has  been  added.  The  final                
review   is   the   same   duration   but   it   has   been   delayed   to   next   week.  
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2. State  of  the  art  of  the  technology  used  or  applied  in  this             
thesis:  

First  of  all,  this  section  starts  by  introducing  the  projects  and  studies  on  which  this  project                 
has  been  based  or  which  have  addressed  this  problem  from  a  different  perspective.              
Hereafter,   applied   theory   and   used   methods   to   carry   out   the   project   are   introduced.  

2.1. Related   work  
One  of  the  papers  on  which  part  of  this  work  has  been  based  [7]  is  that  of  predicting                   
drop-offs  based  on  modeling  the  behavior  of  taxi  drivers.  In  order  to  carry  out  the                
proposed  objectives,  the  model  they  use  has  been  adapted  so  that  it  does  not  depend  on                 
the  identifier  of  a  specific  vehicle.  Therefore,  the  model  does  not  associate  the  data  with                
the   behavior   of   a   specific   driver.   Also,   instead   of   predicting   drop-offs,   it   predicts   hotspots.  

There  are  other  studies  [8,  9]  that  use  meteorological  data  in  order  to  improve  predictions                
about  mobility  in  cities.  In  this  case,  data  such  as  precipitation  by  time  slots  and  the                 
average   temperature   of   the   city   of   Barcelona   have   been   included   in   the   model.  

Other  papers  as  in  [10],  use  the  full  trajectory  and  not  just  pick-up  and  drop-off  points.  The                  
model  in  [10]  uses  the  real  time  data  collected  along  the  day  to  define  the  upcoming                 
trajectory.  On  the  contrary,  in  the  developed  model  in  this  project,  the  predictions  are  only                
made  from  pick-ups  and  drop-offs.  This  is  done  in  order  to  be  able  to  predict  the  hotspot                  
instantaneously.  

There  is  another  study,  [11],  that  predicts  whether  an  event  will  occur  in  a  specific  area                 
based  on  the  analysis  of  web  sites.  These  models  do  not  use  LSTM  layers  but                
convolutional   layers   as   the   events   to   be   predicted   do   not   have   a   cyclic   behavior.  

Albert  Baldó,  a  civil  engineering  student,  is  currently  working  on  his  master  thesis  using               
the  same  data  as  in  this  project  to  analyse  the  profitability  of  cabs  from  a  statistical  point                  
of   view.  

2.2. Haversine   distance  
The  Haversine  formula  [12]  is  used  to  calculate  the  distance  between  two  points  over  the                
earth  given  their  longitudes  and  latitudes.  This  formula  calculates  the  great  circle  distance              
between   two   points,   that   is,   the   shortest   distance   on   a   sphere.  

Working  with  the  Haversine  distance  is  necessary  as  geospatial  data  is  given  in  latitudes               
and   longitudes.  

The   Haversine   formula   (1)   is   shown   below   with   an   explanation   of   its   parameters.  

 

φ  and  λ  are  respectively  the  latitude  and  longitude  in  radians  of  each  point  and  r  is  the                   
earth’s   radius.  
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2.3. Projective   transformation  
A  projective  transformation  [13,  14]  is  a  type  of  linear  transformation.  A  transformation  is  a                
function  that  transforms  a  vector  space  in  another.  This  transformation  is  linear  if  it  keeps                
the   scalar   multiplication   and   the   vector   addition.  

To  apply  a  projective  transformation  to  a  vector,  this  has  to  be  multiplied  by  a                
transformation   matrix,   and   as   a   result   it   obtains   a   vector   with   transformed   coordinates.  

Below   it   is   shown   a   transformation   matrix   (2)   with   the   result   of   the   application   on   a   vector.  

 

In  the  transformation  matrix, a  elements  form  the  rotation  matrix, b  elements  form  the               
translation   vector   and   the    c    elements   form   the   projection   vector.  

As  the  transformation  must  be  from  a  2D  vector  space  to  another  2D  vector  space,  but  the                  
result  of  multiplying  the  transformation  matrix  by  the  vector  gives  a  3D  vector,  the  vector  is                 
divided   by    k .  

An  affine  transformation  is  a  particular  case  of  projective  transformation.  In  the  case  of               
affine  projection,  it  has  only  6  degrees  of  freedom,  while  in  the  case  of  projective                
transformation,  it  has  8.  The  difference  in  the  transformation  matrix  is  that  in  the  case  of                 
affine   transformation,   the   projection   vector   is   zero.  

2.4. Clustering  
There  are  different  algorithms  for  generating  clusters,  such  as  K-means,  which  is  one  of               
the  most  well-known  and  widely  used,  because  it  is  fast  and  easy  to  understand.  Though                
it  is  not  really  an  algorithm  to  generate  clusters  but  a  partitioning  algorithm  as  it  does  not                  
find  clusters  but  partitions  the  data.  This  algorithm  has  some  drawbacks  when  generating              
clusters  from  geospatial  data,  unlike  other  algorithms  such  as  DBSCAN  and  HDBSCAN             
[15,   16].  

One  of  the  problems  with  the  K-means  algorithm  is  that  it  is  not  good  for  geospatial  data                  
because  it  minimizes  the  variance  and  not  the  geodesic  distance,  so  the  algorithm  gives               
worse   results   when   it   moves   away   from   the   equator   [17].  

Also,  the  K-means  algorithm  has  a  different  operation  compared  to  DBSCAN  and             
HDBSCAN  as  you  have  to  select  a  priori  the  total  number  of  clusters  to  be  generated,                 
while  in  the  case  of  DBSCAN  and  HDBSCAN  they  select  automatically  the  total  number  of                
clusters   that   should   be   generated.  

In  the  end,  the  algorithm  for  generating  clusters  will  depend  on  the  type  of  data  available.                 
In  this  case  they  are  cardinal  points  and  it  is  important  to  take  into  account  the  distance                  
used  to  calculate  the  clusters.  As  mentioned  above,  the  Haversine  distance  is  used  to               
calculate  the  distance  between  two  cardinal  points.  The  K-means  algorithm  uses            
Euclidean  distance,  which  is  why  it  is  not  a  suitable  algorithm  for  geospatial  data,  while                
DBSCAN   and   HDBSCAN   can   use   the   Haversine   distance.  
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2.5. Word   embeddings  
In  NLP,  a  word  embedding  [18,  19,  20]  is  a  representation  of  a  specific  word.  Word                 
embedding  is  able  to  capture  the  context  of  a  word  in  a  document,  for  example,  the                 
semantic   and   syntactic   similarities.  

The  reason  for  using  the  word  embedding  is  because  a  lot  of  Machine  Learning               
Algorithms  and  almost  all  the  Deep  learning  architectures  can  not  process  text  directly.  In               
order   to   perform   tasks,   the   data   must   be   introduced   as   numbers   rather   than   text.  

Another  way  to  introduce  the  data  inside  the  model  is  by  using  one-hot  vectors               
codification.  In  case  of  words,  these  vectors  have  the  same  dimension  as  the  corpus               
length.  All  the  values  are  zero  except  the  element  where  the  index  represents  the  word                
inside   the   vocabulary.  

One  of  the  problems  of  coding  with  one-hot  vectors  is  that  the  parameters  are               
independent  of  each  other.  This  makes  words  with  similar  meanings  have  no  proximity              
relationship   while   totally   opposite   words   will   not   have   a   distance   relationship   either.  

Another  problem  is  the  size  of  the  corpus,  if  it  is  very  large,  it  implies  that  the  dimensions                   
with   which   the   model   has   to   work   are   also   very   large.  

Word  embeddings  are  the  solution  to  these  problems.  One  of  its  goals  is  for  words  with  a                  
similar  context  to  occupy  close  spatial  positions.  This  is  impossible  in  the  case  of  one-hot                
vectors  because  they  are  orthogonal  to  each  other.  Also  because  their  encoding  is  no               
longer  one-hot,  the  size  of  their  vectors  no  longer  has  to  be  equal  to  the  size  of  the  corpus                    
and   then   their   size   can   be   greatly   reduced.  

There  are  different  ways  to  obtain  embeddings,  classified  according  to  whether  they  are              
embeddings  based  on  frequency  or  prediction.  Frequency-based  ones  are  deterministic           
methods  and  their  results  are  limited.  Predictive  ones  are  based  on  neural  networks  and               
have   far   surpassed   the   results   of   those   based   on   frequency.  

The  first  embeddings  to  make  the  queen-king  example  work  (figure  2)  are             
prediction-based   embeddings.  

 

Figure   2.   Queen-King   embedding   example[21].  
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Embeddings  based  on  predictions  appear  with  Word2Vec.  The  Word2Vec  has  two            
methods  to  obtain  word  embeddings  which  are  the  Skip  Gram  and  the  Common  Bag  of                
Words   (CBOW)   depicted   in   figure   3.  

 

Figure   3.   CBOW   and   Skip-gram   comparison.  

CBOW  is  based  on  predicting  the  probability  of  a  word  given  a  context.  The  context  can                 
be  a  word  or  a  set  of  words.  The  size  of  the  context  is  determined  by  the  window,  a                    
window  of  size  1  implies  that  there  is  only  one  context  word.  Skip-gram  does  just  the                 
opposite,   predicting   the   words   around   it   from   a   context   word.  

Both  methods  have  their  advantages  and  disadvantages.  The  CBOW  is  faster  and             
represents  better  the  most  common  words.  In  the  case  of  Skip-gram,  it  works  better  with                
little   data   and   represents   rare   words   better.  

CBOW  

CBOW  is  based  on  neuronal  networks.  In  order  to  understand  the  concept,  a  context               
window  of  1  is  considered.  In  this  case  it  implies  that  at  the  input  of  the  model  there  is  a                     
context  word  and  at  the  output  the  word  to  be  predicted.  These  words  are  represented  as                 
one-hot   vectors.  

The  model  consists  of  two  neuronal  layers.  The  size  of  the  first  is  equal  to  the  size  of  the                    
embeddings  and  the  size  of  the  second  is  equal  to  the  size  of  the  one-hot  vectors.  Once                  
this  model  is  trained,  the  first  layer  acts  as  a  lookup  table,  as  each  of  its  rows  represents                   
an   embedding.  

2.6. RNN  
The  idea  that  lies  behind  recurrent  neural  networks  (RNNs)  [22,  23]  is  to  use  sequential                
information,   that   is,   data   sequences   in   which   this   data   is   not   independent   of   each   other.  

In  traditional  neural  networks,  all  inputs  and  outputs  are  independent  of  each  other.  They               
work  taking  a  fixed  amount  of  data  at  the  input  and  produce  a  fixed  amount  at  the  output,                   
and  they  do  it  with  all  the  data  at  once.  In  contrast,  RNNs  do  not  capture  all  input  data  at                     
once,  instead  they  work  capturing  each  one  of  the  pieces  of  data  in  an  input  sequence  at                  
each   instant   of   time.  
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The  output  at  each  instant  of  time  of  an  RNN  is  known  as  the  hidden  state.  This  contains                   
information  about  the  current  entry,  as  well  as  all  entries  from  previous  times.  That  is,  at                 
each  instant  of  time,  the  output  will  be  a  function  of  the  current  input  and  a  context,  which                   
is   the   hidden   state   calculated   at   the   previous   instant.  

One  of  the  reasons  why  a  recurrent  neural  network  can  remember  sequence  information              
is  because  the  hidden  state  acts  as  an  internal  memory  and  this  makes  it  different  from  a                  
conventional  neural  network  that  has  no  memory.  Recurrent  neural  networks  are  called             
recurrent   because   they   perform   the   same   task   for   each   of   the   elements   of   a   sequence.  

Typical  application  of  RNN:  voice  recognition,  machine  translation,  predictive  analytics,           
text   classification...   among   many   other   applications   that   deal   with   sequential   information.  

2.6.1. LSTM  

One  of  the  major  problems  that  RNN  networks  have  is  the  vanishing  or  explosion  of                
gradients.  This  problem  arises  in  backpropagation  during  training,  especially  in  networks            
of  very  long  sequences.  Due  to  the  chain  rule,  gradients  must  be  multiplied  continuously               
by  matrices,  causing  the  gradient  to  fade  or  explode  depending  on  whether  they  are               
decreasing  or  increasing  exponentially  respectively.  Then,  having  a  small  gradient  causes            
the  weights  of  the  grid  not  to  update,  causing  the  model  to  not  learn;  or  the  gradients  to                   
become   very   large,   causing   the   model   to   become   unstable.  

Due  to  this  problem  with  gradients,  RNNs  cannot  work  with  very  long  sequences.  A  very                
simple  example  would  be  a  very  long  text  in  which,  at  the  beginning,  it  is  mentioned  that                  
someone  has  a  parrot  called  Beethoven,  and  after  a  few  sentences  without  mentioning  it,               
it  had  to  predict  how  the  following  sentence  continues:  “Beethoven,  my  pet…,  can  open               
doors”.  In  this  case  the  model  would  not  know  which  pet  this  sentence  is  referring  to,                 
because  the  relevant  information  from  the  beginning  would  have  been  lost,  and  would  end               
up   predicting   that   instead   of   a   parrot,   it   is   perhaps   a   cat   or   a   dog.  

A  typical  RNN  network  will  only  be  able  to  use  information  from  the  nearby  context  to                 
predict  the  word  because  it  only  has  short-term  memory,  while  a  Long  Short-Term  Memory               
(LSTM)  [24]  network  will  be  able  to  use  contextual  information  from  a  text  that  has                
appeared   earlier   in   some   sentences,   as   it   also   has   a   long-term   memory.  

In  each  of  the  cells  of  a  normal  RNN,  the  way  they  work  is  very  simple.  The  input  in  an                     
instant  of  time  and  the  hidden  state  of  the  previous  instants  go  through  an  activation                
function  to  obtain  the  output  in  this  instant  of  time,  or  what  is  the  same,  the  hidden  state  in                    
this   instant.  

The  cells  of  an  LSTM,  unlike  a  normal  RNN,  have  a  more  complex  function.  Each  LSTM                 
cell  (figure  4)  takes  three  pieces  of  data  that  are  the  current  input  and  two  from  the                  
previous  cell  that  are  short-term  memory  and  long-term-memory.  Both  short-term  memory            
and   long-term   memory   are   also   called   hidden   states   and   cell   states,   respectively.  

Each  of  the  cells  has  gates  in  order  to  regulate  the  information  that  has  to  be  discarded  or                   
maintained  at  each  instant  of  time  before  passing  the  hidden  state  and  the  cell  state  to  the                  
next  cell.  The  gateways  for  regulating  information  are  called  input  gate,  forget  gate,  and               
output   gate.  
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Figure   4.   LSTM   cell   [24].  

Input   Gate  

The  input  gate  (formula  3)  decides  what  new  information  should  be  stored  in  long-term               
memory.  It  does  this  based  on  information  from  the  current  entry  and  the  hidden  state  of                 
the  previous  instant.  It  has  to  filter  the  information  by  selecting  which  of  this  is  relevant                 
and   discarding   those   pieces   that   are   not   useful.  

 

The  first  multiplier  term  acts  as  a  filter.  The  sigmoid  (σ)  makes  its  values  go  between  0                  
and  1  indicating  how  relevant  the  information  is,  being  0  not  relevant  and  1  very  relevant.                 
The  second  term  is  the  current  input  and  the  hidden  state  to  which  the  filter  is  applied.                  
These   values   are   passed   by   an   activation   function   tanh   to   regulate   the   network.   

Where   the   W   are   the   weights,   H t-1    is   the   hidden   state   and   x t    is   the   input.  

Forget   gate  

The  forget  gate  (formula  4)  decides  which  pieces  of  information  in  the  long-term  memory               
should  be  discarded  or  kept.  The  sum  of  the  input  gate  and  the  forget  gate  create  the                  
long-term   memory   of   the   current   instant   (formula   5).   

     

The  formula  (4)  shows  the  filter,  which  is  the  first  multiplier  term,  which  is  applied  to                 
long-term  memory,  which  is  the  second  multiplier  term.  Finally,  C t-1  is  defined  as  the  cell                
state.  

Output   gate  

The  output  gate  (formula  6)  captures  the  current  input,  the  hidden  state  of  the  previous                
state,  and  the  long-term  memory  of  the  current  instant  in  order  to  generate  the  hidden                
state   of   the   current   instant,   which   matches   the   output   of   the   current   instant.  
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The  first  multiplier  term  is  the  filter,  and  the  second  term  is  the  long-term  memory  of  the                  
current   instant   to   which   the   filter   is   applied.  

2.7. Attention   model  
Attention  models  [25,  26]  are  used  in  neural  networks  in  order  to  focus  on  the  most                 
relevant   parts   of   the   data.  

There  are  different  types  of  AMs.  In  order  to  understand  the  general  operation  of  the                
different   models   we   will   explain   it   as   an   example   applied   in   seq2seq   models.  

The  seq2seq  model  can  be  used  in  NLP  to  translate  sentences  from  one  language  to                
another.  These  consist  of  an  encoder  that  encodes  the  input  sequence  and  a  decoder               
that,  from  the  output  of  the  encoder,  generates  the  sentence  in  the  desired  language.               
Both,   the   encoder   and   the   decoder,   are   made   up   of   RNNs   seen   in   section   2.6.  

The  encoder  input  is  the  hidden  state  generated  by  the  encoder  RNN.  All  the  information                
needed   to   generate   the   translated   sequence   is   represented   in   the   hidden   state   vector.  

The  fact  that  all  the  information  is  represented  in  a  single  vector  results  in  a  bottleneck                 
being  generated  between  the  encoder  and  the  decoder.  This  may  cause  problems  in  the               
case  of  very  long  sequences,  because  the  model  will  find  it  difficult  to  retain  the                
information   from   the   beginning   of   the   sequence   to   be   translated.  

Figure  5  represents  a  seq2seq  model  that  shows  the  bottleneck  problem.  The  encoder  is               
represented   in   red   and   the   decoder   in   green.  

 

Figure   5.   Problem   with   RNN   [25].  

In  order  to  solve  the  bottleneck  problem,  an  attention  model  (figure  6)  has  been  used.  The                 
core  idea  of  the  attention  module  is  to  focus  on  the  most  relevant  parts  of  the  input                  
sequence   for   each   output.  

Its  operation  is  as  follows.  A  context  vector  is  added  to  each  cell  in  the  decoder.  This                  
context  vector  is  obtained  from  a  weighted  sum  of  the  encoder  hidden  states.  The  way  to                 
calculate  weights  is  by  passing  the  attention  scores  through  a  softmax.  Attention  scores              
are  obtained  by  multiplying  the  hidden  state  of  the  decoder  at  a  specific  instant  with  all  the                  
hidden   states   of   the   encoder.  

Once  this  is  done,  the  decoder  has  direct  access  to  the  entire  sequence  of  the  decoder                 
and   the   information   it   obtains   is   no   longer   only   the   hidden   state.  
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Figure   6.   Attention   model   [25].  
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3. Project   development:   

The  development  of  the  project  has  been  mainly  divided  into  two  parts:  the  preprocessing               
of  the  data  and  the  creation  of  the  model.  In  the  preprocessing  of  the  data,  data  is                  
transformed  into  a  proper  format  in  order  to  be  able  to  enter  it  in  the  model,  and  in  the                    
creation   of   the   model   the   different   elements   that   form   it   and   its   operation   are   observed.  

3.1. Preprocessing  

3.1.1. Flowgraph   of   the   preprocessing  

The  following  figure  7  shows  the  different  steps  that  have  been  followed  to  obtain  the  data                 
to   enter   the   model.   Each   of   these   steps   will   be   thoroughly   explained   below.  

Figure   7.   Preprocessing   flowgraph.  

3.1.2. Data   format  

The  data  used  to  carry  out  the  research  includes  meteorological  data  from  the  city  of                
Barcelona  and  data  retrieved  from  the  taxis  working  in  the  metropolitan  area  of  Barcelona               
and   other   regions   of   Catalonia.  

The  data  from  the  taxis  is  a  representative  sample  from  the  taxi  rides  during  the  period                 
2014-2015  

Each  of  the  rows  of  the  data  represents  a  ride  of  a  taxi,  to  be  more  specific,  the  pick-up                    
and   drop-off.   Each   of   its   rides   has   the   fields   shown   in   table   1.   The   data   used   is   in   green.  
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TAXIS  CONDUCTOR  JORNADA  CARRERA  DATA_INICI  

DIA_SETMANA  HORA_INICI  MINUTS_INICI  DATA_FINAL  HORA   FINAL  

MINUTS_FINAL  TARIFA  TARIFA_INTEL  IMPORT  SUPLEMENTO  

TEMPS_OCUP  KM_OCUPATS  VELCOM_CAR  VELMAX_CAR  TEMPS_LLIU  

KM_LLIURES  VELCOM_LLI  VELMAX_LLI  ESTAT  TIPUS  

LATIINI  LONGINI  LATIFIN  LONGFIN   

Table   1.   Taxi   data   fields.  

The  meteorological  data  has  been  gathered  from  the  observatories  of  Barcelona  city,  the              
airport  and  the  Fabra  observatory.  The  data  used  was  the  average  temperature  during  the               
day  and  the  precipitation  by  time  slots.  A  total  of  four  slots:  from  0  to  5,  from  6  to  11,  from                      
12   to   17,   and   from   18   to   23   hours.  

As  there  were  days  where  some  weather  stations  had  no  information,  weather  data              
comes  from  different  sources.  In  first  place  from  the  observatory  of  Barcelona  which  better               
represents  all  the  regions  where  the  forecast  has  been  made.  If  the  average  temperature               
was  missing,  the  weather  station  used  is  El  Prat  airport  due  to  its  altitude  above  the  sea                  
level.  In  the  case  of  precipitation  data,  an  average  has  been  made  between  the  Fabra                
observatory   and   El   Prat   airport.  

3.1.3. Delete   data  

There  was  missing  data,  for  instance  there  were  rides  where  relevant  information  to  the               
research   had   no   assigned   value   ( NaN ).   In   cases   like   this,   the   rides   had   been   removed.  

Rides  with  wrong  values  had  also  been  removed.  In  this  case,  the  wrong  values               
correspond  to  latitude  and  longitude  values  equal  to  zero  because  perhaps  the  vehicle  did               
not  have  a  built-in  GPS  or  was  not  working  at  that  time.  This  step  would  not  really  be                   
necessary  since  the  values  of  latitude  and  longitude  equal  to  zero  are  outside  the               
established   perimeter   to   work   as   will   be   seen   below.  

Eventually,  data  from  outside  the  perimeter  of  the  region  formed  by  Barcelona,             
L’Hospitalet  de  Llobregat  and  El  Prat  de  LLobregat  has  also  been  deleted.  Also,  within  this                
region,  the  areas  where  data  had  a  low  density  of  pick-up  or  drop-off  points  has  been                 
removed.  In  order  to  delimit  these  areas,  the  census  districts  have  been  used,  and  some                
parts  of  the  fringing  districts  have  been  deleted.  The  districts  that  have  been  affected  are                
Nou  Barris,  Horta-Guinardó  and  Sarrià-Sant  Gervasi.  One  of  the  reasons  why  these  areas              
have  a  low  density  of  points  is  because  they  are  located  within  the  natural  park  of  the                  
Serra  de  Collserola.  The  Prat  de  LLobregat  area  has  also  been  modified,  annexing  some               
parts   of   the   municipalities   of   Viladecans   and   Sant   Boi   de   Llobregat   close   to   El   Prat   airport.  

The   map   below   (figure   8)   shows   the   different   areas   that   have   been   used   for   the   research.  
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Figure   8.   Map   of   the   regions   used.  

3.1.4. Projective   transformation  

Geospatial  data  is  usually  accompanied  by  a  Coordinate  Reference  System  (CRS)  so  that              
it  can  be  accurately  represented  on  a  map.  Apart  from  being  able  to  represent  the  data  on                  
a  map,  it  is  also  used  to  add  geospatial  data,  georeferenced  tags  or  to  obtain  information                 
about  which  area  they  are  in,  for  example,  which  neighborhood,  district  or  municipality              
they   belong   to.  

In  the  case  of  taxi  data,  the  CRS  used  is  unknown  and  could  not  be  found  out.  If  the  data                     
is  represented  directly  without  indicating  which  CRS  it  uses,  the  data  is  represented  over               
the   sea   and   it   is   impossible   to   work   with   geospatial   information.  

To  solve  this  problem,  a  projective  transformation  has  been  made  to  pass  the  geospatial               
data  from  the  unknown  CRS  to  a  known  CRS  like  WGS  84  (EPSG:  4326).  This  CRS  is                  
used  by  GPS  satellite  navigation  systems.  Data  on  geospatial  information  such  as             
neighborhoods   are   in   the   same   CRC.  

To  apply  the  projective  transformation  it  is  necessary  to  know  four  points  of  the  unknown                
CRS  and  its  equivalent  value  in  the  desired  CRS.  When  the  different  points  of  the  data  are                  
represented  as  an  image,  the  outline  of  Barcelona  emerges,  therefore,  it  is  easier  to  select                
the   four   points.  

Once  the  four  points  are  set,  the  transformation  matrix  can  be  found.  Once  it  is  found,  the                  
projective  transformation  can  be  applied  to  all  data  as  seen  in  the  state  of  the  art,  thus                  
obtaining   data   represented   with   the   new   CRS.  

Once  the  projective  transformation  is  applied,  data  from  outside  the  desired  perimetre  can              
be   removed,   as   stated   in   the   previous   section.  

The   chart   below   (table   2)   shows   the   different   points   that   have   been   used.  
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Used   points   for   the   projective   transformation  

Unknown   CRS  WGS84   CRS  

Latitude  Longitude  Latitude  Longitude  

41.173598  2.043031  41.289430  2.072530  

41.243839  2.079819  41.406391  2.133120  

41.249379  2.108135  41.415700  2.180420  

41.236262  2.119755  41.393757  2.199570  

Table   2.   Used   points   for   the   projective   transformation.  

3.1.5. Clusters   generation  

Within  the  dataset,  there  is  a  lot  of  geospatial  data  made  up  of  latitudes  and  longitudes.                 
This  way  of  representing  information  is  very  redundant.  For  example,  the  first  numbers  to               
be  represented  are  always  the  same  as  it  is  only  being  analysed  in  the  region  of                 
Barcelona.  Points  that  are  very  close  or  almost  overlapping  have  different  values  of              
latitude  and  longitude,  when  it  would  be  interesting  for  them  to  have  the  same  value  to                 
indicate   that   they   are   in   the   same   area   or   region.  

A  way  to  represent  this  spatial  information  in  a  more  compact  way  is  by  generating                
clusters.  This  also  makes  it  easier  to  enter  the  data  into  the  model  and  at  the  same  time                   
indicates   that   a   set   of   points   belong   to   the   same   region.  

The  algorithm  used  to  generate  clusters  is  HDBSCAN,  which,  as  seen  in  the  state  of  the                 
art,  is  a  good  option  for  generating  geospatial  data  clusters  as  it  uses  the  Haversine                
distance.  

When  the  HDBSCAN  algorithm  is  applied,  this  does  not  return  the  centroid  of  each               
generated  cluster  but  it  returns  to  which  cluster  points  belong.  Also,  if  the  point  does  not                 
belong   to   any   cluster,   it   will   be   classified   as   noise.  

To  be  able  to  calculate  the  distance  among  the  different  clusters  is  necessary  to  provide                
each  cluster  center.  Also,  it  is  needed  to  be  able  to  visualize  the  clusters  on  a  map  as  a                    
single   point.   That   center   represents   all   the   points   that   belong   to   the   same   cluster.  

To  calculate  the  centers  of  each  cluster,  the  first  thing  to  be  done  is  calculating  their                 
centroids  from  all  points  that  belong  to  the  same  cluster.  Then,  as  the  centroid  may  not                 
match  any  point  in  the  cluster,  the  point  closest  to  the  centroid  is  assigned  as  the  center  of                   
each   cluster.  

Once  the  centers  of  all  the  clusters  have  been  calculated,  there  are  points  to  which  no                 
cluster  has  been  assigned  and  have  been  classified  as  noise.  With  these  points  the               
Haversine  distance  among  them  and  all  the  clusters  is  calculated,  and  the  cluster  with               
which   they   have   a   minimum   distance   is   selected.  
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All  points  that  would  have  been  considered  noisy  and  whose  distance  to  any  cluster  were                
very  large,  exceeding  a  certain  threshold,  could  have  been  dismissed.  This  has  not  been               
applied   as   all   points   have   a   close   cluster   that   represents   them   accurately.  

It  is  also  possible  to  select  which  areas  are  more  relevant  depending  on  the  available                
data.  For  example,  in  areas  where  there  is  a  higher  concentration  of  points,  there  will  be  a                  
greater   amount   of   clusters   than   in   areas   with   a   lower   concentration.  

To  generate  clusters,  all  available  data  is  used,  regardless  of  the  relationships  among              
them,  such  as  a  specific  time  or  day.  As  clusters  are  a  representation  of  the  different                 
latitudes  and  longitudes  to  introduce  into  the  model,  both  pick-up  and  drop-off  data  are               
used   to   generate   the   clusters.  

In  the  following  illustration  (figure  9),  the  generated  clusters  are  represented  in  red,  the               
pick-up  points  in  green,  and  the  drop-off  points  in  blue.  Drop-offs  are  more  scattered               
because  cabs  usually  leave  customers  at  the  place  they  ask  for.  This  does  not  usually                
happen  with  pick-ups  as  it  is  usually  the  customer  who  goes  to  the  area  where  there  are                  
cabs.  

 

Figure   9.   Pick-up,   drop-off   and   cluster   points   on   the   map.  

3.1.6. Hotspot   generation  

As  mentioned  above,  clusters  have  not  been  generated  with  any  time  reference  in  mind,               
this  is  why  hotspots  are  generated  from  previously  calculated  clusters,  so  hotspots  do              
take   these   relationships   into   account.  

The  following  three  images  (figure  10)  show  how  the  distribution  of  pick-ups  is  not  uniform                
over  time.  On  Saturdays  night,  from  2  to  3,  the  growing  demand  is  located  in  nightlife                 
areas  such  as  the  Olympic  Port  and  the  Paral·lel  Street,  while  on  Monday  mornings,  from                
9  to  10,  the  demand  is  no  longer  around  nightlife  spots,  and  new  areas  are  activated,  like                  
the   ones   around   the   cruises.  
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Figure   10.   Heat   maps   generated   at   different   times.  

Hotspots  are  a  subset  of  clusters  that  are  generated  taking  into  account  the  hours  and                
days  of  the  week.  Each  hotspot  has  the  same  identifier  as  a  cluster.  There  are  a  total  of                   
114   hotspots,   but   in   a   given   hour   and   day   there   are   only   between   6   and   17   hotspots.  

This  is  how  the  algorithm  in  charge  of  the  generation  of  these  hotspots  works.  Where                
each   of   the   steps   is   displayed   in   the   image   below   (figure   11):  

1) First  of  all,  the  points  of  a  given  moment  are  selected,  for  example,  a  Monday                
morning  from  8  to  9  hours.  The  selected  points  are  in  blue  and  the  clusters                
previously  calculated  are  in  red.  Then  the  closest  points  that  each  cluster  has  are               
assigned   to   each   of   them.  

2) Clusters  that  have  assigned  points  that  exceed  a  certain  threshold  are  considered             
hotspots.  These  are  represented  in  yellow.  Each  cluster  identifies  which  hotspot  is             
the  closest  by  calculating  the  Haversine  distance  between  it  and  the  different             
hotspots.   The   threshold   used   is   10.  

3) Once  each  cluster  knows  which  hotspot  is  the  closest  to  it,  the  cluster  assigns  it  to                 
itself.  In  the  picture,  the  hotspots  are  surrounded  by  a  gray  circle,  and  each  of  the                 
clusters   is   represented   by   the   color   of   the   assigned   hotspot.  

 

Figure   11.   Algorithm   used   to   generate   hotspots.  

3.1.7. Group   trips  

The  way  in  which  the  data  enters  the  model  is  in  a  format  of  pick-up  and  drop-off                  
sequences.   How   these   sequences   are   obtained   is   explained   in   this   section.  
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First  of  all,  all  the  data  is  sorted  in  the  following  order:  starting  with  the  taxi  driver's                  
identifier,  starting  date,  starting  hour  and  starting  minutes.  This  is  the  only  place  where  the                
taxi  driver's  identifier  is  used  and  it  is  only  used  to  create  the  sequences.  As  mentioned                 
previously,   the   taxi   driver   identifier   is   not   introduced   in   the   model.  

Once  all  the  data  has  been  sorted  by  time,  the  different  rides  are  gathered  in  groups  of  4.                   
In  order  that  the  different  rides  are  consecutive,  the  time  gap  between  a  drop-off  and  a                 
pick-up  must  not  exceed  more  than  two  hours.  The  amount  of  rides  and  the  time                
difference   are   hyperparameters   to   take   into   account.  

The  groups  are  made  according  to  a  sliding  window  taking  into  account  the  time  gap  and                 
that  within  the  window  all  the  rides  are  from  the  same  taxi  driver.  The  following  image                 
(figure  12)  shows  how  the  sliding  window  works,  where  P  refers  to  pick-up  and  D  to                 
drop-off.  

 

Figure   12.   How   the   slider   window   works.  

Once  the  sequences  have  been  obtained,  the  pick-up  to  be  predicted  from  the  sequence               
is   known   at   this   point,   and   it   is   replaced   by   its   equivalent   hotspot.  

Finally,  the  generated  dataset  is  splitted  between  a  training  dataset  and  validation  dataset.              
The  training  dataset  has  80%  of  data  and  the  validation  dataset  has  20%  of  data.  A  test                  
dataset   has   not   been   created   since   there   is   not   enough   data   available.  

3.2. Model  

3.2.1. Diagram   of   the   model  

The  following  diagram  (figure  13)  shows  the  model  used  to  make  the  prediction.  The               
model  consists  of  an  embedding  layer,  an  attention  model,  an  LSTM  layer,  a  dropout               
layer,  and  specific  classification  or  regression  layers.  The  model  is  represented  in  the              
diagram   as   a   classification,   and   the   specific   regression   layers   will   be   shown   later.  

Each   of   the   parts   that   make   up   the   model   will   be   explained   in   more   detail   below.  
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Figure   13.   Diagram   of   the   classification   model.  

3.2.2. Word   embeddings  

Embeddings  for  time,  location,  and  weather  data  are  created.  Within  the  time  embeddings              
there  are  the  weekday  (0,6),  hour  (0,23),  month  (0,11),  and  day  type  (0,2)  embeddings.               
Within  the  location  embeddings  there  are  the  temporal  cluster  (0,  #clusters),  and  the              
spatial  cluster  (0,  #regions)  embeddings.  Within  the  weather  embeddings  there  are  the             
temperature  (minimum  temperature,  maximum  temperature)  and  rainfall  embeddings         
(0,1).  

The  day  type  embedding  is  used  to  classify  days  as  workday,  pre-holiday  or  holiday.  To                
know  what  type  day  is,  bank  holidays  that  took  place  in  Barcelona  during  the  time  period                 
of   the   taxi   data   have   been   used.  

The  temperature  has  been  taken  in  absolute  value,  obtaining  an  input  range  that  goes               
from  the  minimum  temperature  to  the  maximum  temperature.  In  the  case  of  precipitation,              
it   has   been   considered   in   binary   mode,   being   0   a   non-rainy   day   and   1   a   rainy   day.  

The  temporal  cluster  embedding  takes  into  account  the  temporal  relationships  between            
the  different  pick-ups  and  drop-offs  of  the  sequences.  Spatial  cluster  embedding  takes  into              
account  the  spatial  relationships  between  clusters,  assigning  each  cluster  to  a  region  and              
then  embedding  regions.  The  regions  used  include  L’Hospitalet  de  Llobregat,  El  Prat  de              
LLobregat,  and  the  neighborhoods  of  Barcelona  that  were  within  the  working  perimeter,             
summing   up   to   65   neighbourhoods.  

The  output  dimensions  of  all  embeddings,  except  the  temporal  cluster  embeddings  is  10.              
On   the   other   hand,   the   dimension   of   the   temporal   cluster   embeddings   is   20.  

Embeddings  have  been  generated  in  two  different  ways,  pre-trained  and  trained  during             
training.  In  the  pre-trained  ones,  their  weights  are  previously  calculated  before  starting             
training  the  whole  model;  while  the  others  are  updated  during  the  training  initializing  their               
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weights  with  random  values  at  the  beginning.  The  weights  of  the  pre-trained  can  continue               
to   be   updated   during   training   or   freeze,   so   that   their   weights   do   not   vary.  

The  temporal  cluster  embedding  is  pre-trained  with  unfreezed  weights,  thus  they  will  keep              
being   updated    during   training.   All   the   others   are   trained   during   the   training.  

The  way  in  which  the  weights  of  the  temporal  cluster  embeddings  have  been  generated  is                
with  the  CBOW  embeddings  creation  technique,  seen  in  the  word  embeddings  from  the              
the  state  of  the  art  section.  Embeddings  have  been  generated  using  Gensim  [27],  a               
module  that  implements  Word2Vec  algorithms.  The  clusters  sequences  of  pick-ups  and            
drop-offs  have  been  used  as  sentences  (figure  14)  and  a  window  of  length  5  is  applied  on                  
each   side.  

 

Figure   14.   CBOW   applied   to   clusters.  

The  model  only  took  into  account  the  prediction  by  hours  and  not  by  minutes,  this  is  why                  
there   are   no   minute   embeddings.  

3.2.3. Attention   model  

The  input  of  each  LSTM  cell  in  the  model  is  the  concatenation  of  the  vectors  of  the  time,                   
location  and  weather  embeddings.  In  order  for  the  model  to  know  which  of  this  data  to                 
focus   on,   an   attention   model   is   added   to   decide   which   of   this   data   is   most   relevant.  

The  attention  model  used  in  this  model  (figure  15)  consists  of  three  layers  which  are  two                 
permutation  layers  and  a  dense  layer.  Then  there  is  a  multiplication  between  the  input               
vector   and   the   vector   resulting   from   going   through   the   three   layers.  

 

Figure   15.   Attention   model.  

The  dense  layer  generates  the  weights  that  afterwards  will  be  multiplied  by  the  input               
sequence,   highlighting   which   part   is   more   relevant,   whether   it   is   time,   weather   or   location.  
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The  authors  do  not  explain  in  the  paper  the  permutation  functionality,  but  by  performing               
those   permutations   the   results   have   shown   that   the   model   is   more   robust   [7].  

3.2.4. LSTM  

The  model  has  a  recurrent  neural  network  layer  (figure  16),  which  contains  LSTM  cells.               
The  reason  LSTM  cells  are  used  instead  of  basic  RNN  cells  is  because  of  the  gradient                 
vanishing  and  exploding  problems  that  the  latter  has,  as  stated  before  in  the  state  of  the                 
art   section.  

 

Figure   16.   LSTM   layer   with   dimensions.  

The  recurrent  neural  network  consists  of  a  single  layer  of  LSTM  cells.  The  total  amount  of                 
LSTM  cells  that  the  model  has  is  equal  to  the  length  of  the  sequence  of  pick-ups  and                  
drop-offs  minus  one,  as  the  last  pick-up  in  the  sequence  is  the  one  that  has  to  be                  
predicted  and  this  is  compared  to  the  output  of  the  model.  Then  the  input  sequence                
dimension   is   equal   to   6.  

The  result  of  the  attention  model  is  entered  at  the  input  of  each  LSTM  cell,  then  the  input                   
dimension   matches   the   output   dimension   of   the   attention   model   which   is   90.  

The  hidden  state  and  cell  state  dimension  is  110.  This  dimension  matches  the  output               
dimension   of   a   cell   because   the   output   of   an   LSTM   cell   matches   the   hidden   state.  

Of  all  the  outputs  of  the  LSTM,  the  only  output  used  is  that  of  the  LSTM  cell  with  the  last                     
drop-off  in  the  sequence  as  input.  This  output  is  passed  through  a  dropout  layer  that                
during  training,  randomly  zeroes  some  of  the  elements  of  the  output  of  the  LSTM  with                
probability  0.5.  A  dropout  layer  is  an  effective  technique  for  regularization,  which  makes              
the   model   generalize   better.  

3.2.5. Loss   functions  

3.2.5.1. As   classification  

When  the  model  functions  as  a  classifier,  it  is  predicting  the  class  among  a  group  of                 
classes,   where    each   class   has   a   unique   identifier.  
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The  model  by  classification  (figure  17)  has  to  predict  a  hotspot  among  a  group  of                
hotspots.   That   is,   it   considers   each   one   of   the   hotspots   like   different   classes.  

 

Figure   17.   Loss   function   for   classification.  

The  first  layer  that  it  has  is  a  linear  layer.  The  number  of  neurons  in  this  linear  layer  equals                    
the  total  number  of  clusters  that  have  been  created.  The  number  of  neurons  could  also  be                 
equal  to  the  total  number  of  hotspots  but  due  to  the  indices  they  have  match  those  of  the                   
clusters,  and  the  hotspots  are  a  subset  of  the  clusters,  which  means  that  the  total  amount                 
of  hotspots  is  less  than  the  total  number  of  clusters.  Hotspot  indices  must  be  mapped  so                 
that   their   values   range   from   zero   to   the   maximum   number   of   hotspots   minus   one.  

After  the  linear  layer,  there  is  a  softmax  layer  which  is  used  to  sum  the  probabilities                 
obtained  in  the  linear  layer  up  to  1.  The  output  of  the  softmax  describes  the  probability  of                  
each   of   the   existing   hotspots   being   predicted.  

Finally,  the  softmax  result  and  the  target  to  be  predicted  are  entered  into  the  negative                
log-likelihood  loss  function  (NLLLoss).  The  network  assigns  high  confidence  to  the  correct             
class,  the  “unhappiness”  is  low,  but  when  the  network  assigns  low  confidence  to  the               
correct   class,   the   “unhappiness”   is   high   [28].  

The  merging  of  applying  a  softmax  layer  and  a  negative  log-likelihood  loss  function  is  the                
same   as   applying   the   cross   entropy   loss   directly.  

The  value  of  the  loss  function  obtained  is  not  enough  to  know  if  the  model  is  really  doing                   
well,  so  it  is  necessary  to  apply  other  metrics.  In  this  application  we  will  use  the  confusion                  
matrix  and  the  histogram  of  distances.  Despite  the  accuracy  has  also  been  used,  it  did                
not   provide   enough   information.  

3.2.5.2. As   regression  

The  regression  model  (figure  18),  instead  of  predicting  a  hotspot,  predicts  the  latitude  and               
longitude   of   a   hotspot   from   the   total   number   of   existing   hotspots.  
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Figure   18.   Loss   function   for   regression.  

The  first  layer  is  a  linear  layer  with  the  number  of  neurons  equal  to  the  number  of  existing                   
clusters.  Also,  as  in  the  case  of  classification,  the  number  of  neurons  can  be  equal  to  the                  
number  of  hotspots.  It  should  be  noted  then,  that  the  values  of  the  indexes  must  be                 
reassigned  so  that  their  values  range  from  zero  to  the  maximum  number  of  hotspots               
minus   one.  

Then,  instead  of  having  a  softmax  layer  as  in  the  case  of  classification,  it  has  a  linear                  
layer.  In  this  case,  the  total  number  of  neurons  in  this  layer  is  two.  Each  of  these  neurons                   
represents   the   latitude   and   longitude   to   be   predicted.  

Finally,  a  custom  loss  function  based  on  Haversine  distance  has  been  created.  At  the               
input  of  this  function  there  are  the  predicted  latitude  and  longitude,  and  the  latitude  and                
the   longitude   to   be   predicted   when   training.  
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4. Results  

The  following  section  will  show  the  different  results  obtained  from  the  execution  of  the               
model.  The  results  have  been  divided  into  different  subsections.  The  first  shows  the              
results  obtained  as  a  classifier.  The  second  shows  the  results  as  a  regression.  The  third                
discusses  the  results  by  balancing  the  data.  The  fourth  compares  the  results  of  the  model                
with  the  results  obtained  from  decision  trees.  Finally,  the  last  section  describes  other  tests               
that   have   been   done.  

Initially,  the  optimizer  used  by  the  model  was  the  SGD.  This  was  later  replaced  by  the                 
Adam  optimizer  and  there  was  a  noticeable  improvement  in  the  results  obtained.  In  the               
case  of  regression,  the  prediction  goes  from  2  Km  to  1.4  Km.  Adam  has  been  used  as  an                   
optimizer  in  all  of  the  results  below.  Unless  otherwise  stated,  all  results  refer  to  the                
validation   dataset.  

4.1. Model   as   classification  
When  the  model  operates  as  a  classifier,  it  is  predicting  the  class  among  a  group  of                 
classes,  where  each  class  has  a  unique  identifier.  These  classes  can  be  hotspots  and               
clusters  or  also  the  neighborhoods  and  districts  of  Barcelona  for  example.  In  this  case  the                
classes   will   be   the   hotspots,   so   the   goal   of   this   work   is   to   predict   hotspots.  

The  parameters  used  were:  batch  size  of  128,  a  learning  rate  of  0,001  in  the  first  15                  
epochs  and  a  learning  rate  of  0,0001  for  the  following  35  epochs.With  an  overall  of  50                 
epochs.  

The  accuracy  obtained  is  36%  of  a  total  of  10925  predictions.  However,  by  analysing  the                
results,  it  can  be  clearly  seen  that  the  predictions  bring  the  driver  to  the  most  concurrent                 
hotspots.  These  concurrent  hotspots  have  constant  demand  and  do  not  represent  a             
missed  opportunity  for  the  driver.  Therefore,  in  64%  of  the  cases  the  vehicle  will  have                
assured   demand   (figure   19).  

 

Figure   19.   How   the   model   works.  

The  following  graphic  (figure  20)  shows  the  training  and  validation  loss.  This  can  be               
interpreted  as,  the  lower  its  value,  the  better  the  model  performs.  On  the  contrary,  when                
its  value  is  high,  the  model  is  performing  poorly.  This  graphic  alone  does  not  provide                
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enough  information  to  know  how  well  the  model  performs.  Therefore,  a  confusion  matrix              
and   a   distance   histogram   are   required.  

 

Figure   20.   Classification   loss   curves.  
In  the  confusion  matrix  (figure  21),  the  ordinate  represents  the  classes  to  predict  (the  true                
classes)  and  the  abscissa  represents  the  predicted  ones.  If  all  the  values  fall  into  the                
diagonal,  it  means  that  the  clases  have  been  predicted  successfully.  In  the  generated              
confusion  matrix  can  be  seen  the  mentioned  diagonal.  However,  some  of  the  values  fall               
outside   diagonal   meaning   that   the   prediction   has   failed   in   some   cases.  

 

Figure   21.   Classification   confusion   matrix.  
The  distances  histogram  (figure  22)  represents  the  distances  between  the  predicted            
hotspots   and   the   expected   ones.  
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Figure   22.   Classification   distances   histogram.  

Every  single  bar  represents  an  error  of  100  meters.  It  can  be  seen  that  most  of  the  cases                   
fall  between  0  and  100  meters  which  represents  a  successful  prediction.  Almost  36%  of               
the  prediction  falls  within  the  first  bin.  The  rest  falls  abruptly  and  spread  between  100  and                 
5000  meters  beeing  5000  the  most  unlikely  to  happen.  The  rest  of  cases  are  considered                
exceptions.  

4.2. Model   as   regression  
When  the  model  works  as  a  regression,  the  prediction  represents  the  latitude  and              
longitude   values   of   a   particular   hotspot   instead   of   the   hotspot   index   as   in   classification.  

The  parameters  used  were:  batch  size  of  128,  a  learning  rate  of  0,0001  in  the  first  20                  
epochs  and  a  learning  rate  of  0,00001  for  the  following  30  epochs.With  an  overall  of  50                 
epochs.  

The  figure  23  represents  a  zoom  in  of  the  regression  loss  curves.  This  graphic  can  be                 
interpreted  better  than  the  graphics  obtained  in  classification  because  their  values  are  the              
average  of  the  distance  error.  The  graphic  shows  that  the  curve  stagnates  which  implies               
that   the   model   is   not   learning.  

Figure   23.   Regression   loss   curves.  
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Due  to  the  nature  of  the  analysis,  the  confusion  matrix  neither  the  accuracy  value  can  not                 
be  obtained  since  these  analyses  are  only  valid  for  classification.  However,  the  distance              
histogram  (figure  24)  could  be  obtained  by  using  Haversine  distance  between  the             
predicted   coordinates   and   the   expected   ones.  

 

Figure   24.   Regression   distances   histogram.  

The  figure  shows  how  the  distance  distribution  is  decreasing  exponentially  and  almost             
none  of  the  values  do  not  exceed  more  than  5  km.  The  cases  falling  further  than  13  km                   
are   hotspots   predicted   in   Barcelona   rather   than   the   airport   or   vice   versa.   

4.3. Balancing   the   data  
The  results  of  the  model  that  have  been  seen  so  far  ended  up  predicting  predominant                
hotspots.  This  tendency  may  be  attributed  to  the  fact  that  the  model  has  been  trained  with                 
unbalanced  data,  meaning  that  the  different  classes  to  be  predicted  do  not  have  the  same                
number  of  data.  Some  classes  had  enough  data  but  some  others  did  not.  What  ends  up                 
happening   is   that   the   model   predicts   the   most   likely   cases.  

This  is  also  observed  in  the  confusion  matrix  of  the  model  as  a  classifier  seen  in  the                  
previous  section  (Figure  21).  In  the  confusion  matrix,  quite  pronounced  vertical  lines  are              
observed  apart  from  the  diagonal  line.  These  belong  precisely  to  the  predominant             
hotspots.  They  indicate  that  the  model  instead  of  selecting  the  hotspot  it  had  to  predict,                
predicted   precisely   one   of   the   predominant   hotspots.  

Different  methods  have  been  tried  to  balance  the  data.  These  have  been  upsampling,              
adding  weights  to  the  loss  function  or  even  changing  the  loss  function  that  has  been  used                 
so  far  for  Focal  loss  [29].  Another  available  option  could  have  been  downsampling  but  it                
could   not   be   used   since   there   was   not   enough   data.  

The  upsampling  pretends  to  increase  the  number  of  samples  in  classes  that  had  less               
data.  This  has  been  implemented  by  repeating  the  data  of  these  classes  to  be               
commensurate   to   the   predominant   ones.  
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Weights  have  also  been  applied  to  the  loss  function  to  punish  the  predominant  classes               
and   highlight   the   lower   populated   ones.   Its   operation   is   equivalent   to   the   upsampling.  

Finally,  an  attempt  has  also  been  made  to  use  Focal  loss  as  a  loss  function.  This  method                  
is  used  in  image  processing  to  differentiate  the  foreground  from  the  background  in  an               
image.  These  two  classes  are  very  unbalanced  and  hence  the  need  for  this  loss  function.                
What  is  usually  applied  in  binary  classification  can  also  be  applied  when  there  are  more                
than   two   classes.  

The  graphic  below  shows  the  confusion  matrix  (figure  25)  which  has  been  generated  after               
applying  the  weights  to  the  loss  function.  The  model  has  been  configured  as  defined  in                
section  4.1,  only  adding  the  weights  to  the  loss  function.  At  first  glance,  the  model  seems                 
to  be  doing  better  because  the  diagonal  is  more  pronounced  and  no  vertical  elements  are                
observed.  However,  the  results  obtained  are  worse  since  the  value  of  the  accuracy  is               
16.9%   of   a   total   of   10925   predictions.  

 

Figure   25.   Classification   with   balanced   data.  

After  applying  all  the  methods  separately  to  balance  the  data,  the  obtained  results  have               
been   worse   than   the   unbalanced   ones.  

4.4. Comparison   with   decision   trees  
The  decision  tree  [30]  is  a  machine  learning  algorithm.  Unlike  models  based  on  neural               
networks,  the  internal  decisions  can  be  observed.  The  time  to  train  these  models  is  very                
fast.  

A  classifier  based  on  decision  trees  has  been  implemented.  The  results  obtained  have              
been  compared  with  those  obtained  with  the  model  when  it  operates  as  a  classifier.  The                
results  obtained  (accuracy  of  15%)  are  approximately  20%  worse  than  those  obtained             
using  the  deep  learning  model,  which  had  an  accuracy  of  36%.  It  is  also  important  to  take                  
into  account  that  the  data  with  which  the  decision  tree  has  been  trained  was  unbalanced.                
This   affects   the   model,   causing   the   decisions   to   be   biased.  
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4.5. Other   tests  
Different  tests  have  been  done  on  the  model.  These  tests  include  the  one  that  does  not                 
have  the  attention  model  and  the  one  that  freezes  the  weights  of  the  temporal  cluster                
embedding.  Tests  have  also  been  made  by  changing  the  entry  data  in  the  model  and                
adding  the  data  of  the  taxi  races  during  the  period  2010-2013  apart  from  those  of                
2014-2015.  

Testing  the  model  without  the  attention  model  does  not  bring  any  improvement.  When  the               
model   works   as   a   classifier,   the   results   are   slightly   worse   both   in   training   and   in   validation.  

Leaving  the  pre-trained  weights  of  the  temporal  cluster  embedding  unfrozen  results  in  a              
slight  improvement  in  regression  results  at  the  beginning.  Under  the  same  conditions             
there   is   less   error.   When   doing   a   complete   training,   the   results   obtained   are   quite   similar.  

A  test  was  performed  by  changing  the  input  pick-up  and  drop-off  sequence  so  that  all                
values  in  the  sequence  were  hotspots.  The  results  improve  by  lowering  the  average              
prediction  distance  to  approximately  1200  meters.  Doing  so  would  really  not  make  sense              
because   in   some   sequences   there   may   be   the   same   hotspots   consecutively.  

Taxi  data  from  the  2010-2013  period  has  been  added  to  see  if  this  will  improve  results.  By                  
doing  so,  there  has  been  a  slight  improvement.  For  example,  the  error  decreased  below               
the   obtained   under   the   same   conditions   using   only   the   2014-2015   data   by   a   3%.  
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5. Budget  

Dedicated  GPUs  are  required  to  train  deep  learning  models.  These  can  be  purchased,  or               
contract  them  as  a  service  that  companies  such  as  Google,  Amazon  or  Microsoft  offer,               
through   which   you   can   access   the   servers   where   they   are   installed.  

When  contracting  servers  with  GPUs,  different  users  share  the  same  resources  as  which              
are  limited,  but  not  all  users  use  them  at  the  same  time.  In  times  of  high  demand  you  may                    
not  be  able  to  access  it  if  you  have  a  basic  plan,  then  you  could  also  hire  another  plan  that                     
does   not   have   this   limitation,   but   the   price   may   be   very   high.  

In  the  case  of  physically  buying  one,  they  are  usually  expensive  and  the  electricity               
consumption  is  high  as  well.  This  is  not  very  profitable  if  the  total  number  of  hours                 
required   to   train   the   model   is   not   very   high.  

Deep  learning  models  usually  need  to  run  for  many  hours  to  get  results.  The  model  used                 
in  this  project,  as  it  does  not  have  a  very  large  amount  of  data,  the  computation  time                  
needed   is   not   very   high,   so   the   best   option   is   hiring   a   server.  

In  order  to  train  the  model,  the  image  processing  group  (GPI)  servers  were  used  free  of                 
charge.  In  order  to  simulate  the  actual  price  that  the  project  would  have  had  if  it  had  run                   
on  a  server,  the  hourly  prices  of  servers  such  as  AWS,  Google  Cloud,  and  Azure  have                 
been  used  as  a  reference.  As  the  project  has  been  developed  in  19  weeks,  the  price  per                  
hour   selected   is   part   of   a   non-annual   plan.  

 

Employees  

Type  Quantity  Hourly   price  Weekly   hours  Weeks  Total  

Senior   engineer  1  25   €  2  19  950   €  

Junior   engineer  1  10   €  25  19  4750   €  

 

Components  

Type  Hourly   price  Total   hours  Total  

Cloud   server   with   GPUs  0,7    €  50  35   €  

 

TOTAL  5735   €  

 

Table   3.   Project   budget.  
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6. Conclusions   and   future   development:   

A  model  capable  of  predicting  hotspots  has  been  developed  over  the  course  of  this  project                
by  using  deep  learning.  The  data  has  been  pre-processed  so  that  it  can  be  entered                
correctly  into  the  model.  This  model  consists  of  embedding  layers,  an  attention  model  and               
a   LSTM   layer.  

The  hotspot  prediction  has  been  approached  in  two  different  ways:  as  a  regression  and  as                
a  classification.  When  the  model  operates  as  a  classifier,  it  predicts  a  hotspot  among  a                
group  of  hotspots.  Meanwhile,  when  the  model  operates  as  a  regression,  it  predicts  the               
latitude   and   longitude   of   the   hotspot.  

The  metrics  of  the  predictions  obtained,  such  as  the  accuracy  value,  are  low  values,  but                
these  must  be  interpreted.  The  values  at  which  the  model  is  not  wrong  are  not  a  problem,                  
and  in  the  case  of  the  values  at  which  it  is  wrong,  as  it  is  predicting  hotspots,  they  cannot                    
be  considered  serious  errors  either,  since  the  algorithm  is  directing  the  taxi  or  car  sharing                
to  a  high  demand  hotspot.  This  analysis  was  possible  by  obtaining  the  confusion  matrices               
when  the  classifier  was  adopted.  Histograms  of  distances  also  brought  some  lights  to              
understand  the  results.  Hotspots,  as  discussed  above,  vary  depending  on  the  time  and              
day  of  the  week,  but  the  values  of  the  hotspots  that  the  model  predicts  are  precisely                 
hotspots   that   are   present   every   day   of   the   week   and   at   any   time.  

A  future  development  could  be  to  do  transfer  learning  by  first  training  the  model  with  a                 
dataset  with  a  lot  of  data  and  then  adapting  the  model  to  the  city  of  Barcelona,  training  it                   
with  the  datasets  from  the  cabs  from  Barcelona  that  do  not  have  as  much  data.  An                 
example  of  a  dataset  with  a  lot  of  data  that  would  be  great  for  transfer  learning  would  be                   
the   New   York   City   taxi   dataset,   which   has   approximately   over   100   million   taxi   rides   a   year.  

The  current  model  could  include  an  event  predictor  based  on  the  analysis  of  web  page                
content,  such  as  the  one  mentioned  in  the  related  work  section,  [11].  This  one  would  be                 
able  to  predict  one-off  events,  such  as  concerts  and  football  matches.  In  this  way,  the                
hotspots  that  are  now  activated  and  deactivated  by  the  cyclical  behavior  of  the  taxi  data,                
would   also   be   activated   when   there   were   specific   events.  

The  current  model  predicts  the  hotspot  from  a  sequence  of  fixed-length  pick-ups  and              
drop-offs.  Therefore,  an  improvement  that  could  be  implemented  to  the  model  would  be              
that  it  could  predict  from  a  variable  length,  so  that  the  model  could  make  predictions                
without   the   need   of   having   any   ride.  
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Glossary  

RNN  Recurrent   Neural   Network  

LSTM  Long   Short-Term   Memory  

AM  Attention   Model  

NLP  Natural   Language   Processing  

GPI Image   Processing   Group  

DBSCAN  Density-Based   Spatial   Clustering   of   Applications   with   Noise  

HDBSCAN  Hierarchical   DBSCAN  

CBOW  Common   Bag   of   Words  

CRS  Coordinate   Reference   System  

NLLLoss  Negative   Log-Likelihood   Loss   function  

SGD  Stochastic   Gradient   Descent  

ML  Machine   Learning  

DL  Deep   Learning  
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