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Abstract

Particle finite element method (PFEM) is a computational tool suitable
for simulating fluid dynamics problems characterized by presence of mov-
ing boundaries. In this paper a new version of the method for incompressible
flow problems is proposed aiming at accuracy improvement. This goal is
achieved essentially by applying Strang operator splitting to Navier-Stokes
equations and selecting adequate integration schemes for the resulting ad-
vective and Stokes sub-problems. For achieving efficient implementation, the
pressure and the velocity in the Stokes part are decoupled via the fractional
step technique as in the classical PFEM. However, at the first fractional
step an explicit pressure prediction procedure for alleviating mass losses is
introduced. Three test cases are solved, validating the methodology and
estimating its accuracy. The numerical evidence proves that the proposed
scheme improves the accuracy of the PFEM.
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1. INTRODUCTION

Lagrangian finite element models for incompressible fluid flow problems
have emerged since more than two decades. They were found advantageous
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for applications characterized by large shape changes of the computational
domain shape and/or presence of moving boundaries [1, 2, 3, 4, 5]. The
main strength of Lagrangian fluid models stems from their intrinsic ability
of tracking the domain deformations: the domain boundaries are represented
by computational mesh that deforms together with the corresponding media.
Moreover, in Lagrangian models convective term of the momentum equation
vanishes, resulting in a symmetric generalized tangent matrix in implicit ver-
sions of the method, which is advantageous in the scope of using iterative
linear solvers. While these features of Lagrangian models are attractive for
solving various problems, such models are characterized by an important lim-
itation being prone to mesh degradation. Unlike another moving-grid class
of methods, namely the Arbitrary Lagrangian/Eulerian (ALE) approach [6],
purely Lagrangian methods do not permit applying mesh smoothing proce-
dures as the mesh position is uniquely defined by the solution of the physical
problem. Thus, mesh degradation cannot be tackled by adjusting nodal posi-
tions (done in ALE) and calls for obligatory re-meshing. Lagrangian finite el-
ement models for the fluid flows equipped with the re-meshing and boundary
recognition schemes received the name of the particle finite element method
(PFEM) [5]. In order to keep the re-meshing cost minimum, the procedure
used in the PFEM consists in reconnecting the existing nodes using Delau-
nay method [7]. The unknowns of the problem are stored at nodes (which
have the connotation of immaterial particles), since mesh elements are not
preserved from one time step to another. For further details regarding basic
”ingredients” of PFEM the reader is referred to [8].

Various versions of PFEM have been applied to the simulation of free-
surface hydrodynamics [5, 9], fluid-structure interaction [10, 8, 11, 12, 13,
14, 15, 16], immiscible two-fluid flows [17, 18, 19, 20] and thermo-mechanical
forming processes [21, 22] and bottle manufacturing [23, 24]. There also exist
Lagrangian models similar to PFEM, that have been applied to modeling of
material forming [3, 25, 26].

Even though the basic philosophy of the PFEM has not changed since its
emergence back in 2004 [5], active research has been devoted to improving
the approach with respect to robustness and accuracy. These can be defined
more specifically in terms of the following features:

• Alleviation of the mesh degradation impact

• Improvement of time accuracy of the method
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• Improvement of mass conservation of the method

Mesh degradation faced when applying the method to problems character-
ized by large distortions in the domain shape was already mentioned above.
In classical implicit PFEM simulations critical situations emerge when a mesh
element fully degrades (attaining zero area) or even inverts within one time
step, i.e. during the non-linear iteration process. For such cases re-meshing
procedure provides no remedy as it is performed only at the end of each time
step, once the convergence was achieved. For implicit models such situation
leads to immediate failure of the solver. In order to prevent such failures
several remedies were proposed. First one consisted in reducing time step
ensuring that no element is inverted. It was shown that the critical time step
can be estimated e.g. from Courant number of the problem [27]. Adaptive
time stepping is used in the vast majority of the existing PFEM solvers. The
disadvantage of this approach originates from the fact that the critical time
step may become excessively small, leading to a strong bottleneck in the
model from the computational efficiency point of view. Additional remedy
consists in adaptive mesh refinement/de-refinement that allows improving
element quality locally.

Qualitatively different remedy was established recently. Methods split-
ting the solution into an explicit and an implicit step were developed. These
rely on resolving nodal advection explicitly, while treating the rest of the
problem implicitly (it was introduced for Lagrangian PFEM in [28, 29] and
for Lagrangian-Eulerian PFEM in [30]). Since in these methods mesh nodes
move during the explicit step only and elements do not deform during the
implicit step, one ensures convergent solutions without severe time step re-
strictions. Moreover, in its original form the explicit-implicit scheme [28]
treats the implicit step as linear. A version of the method that introduced
an additional step for correcting nodal positions was proposed in [27].

While the above-mentioned remedy alleviated time step limitations and
led to solvers with improved computational efficiency, these newest versions
of the PFEM turned out to exhibit low time accuracy. This originated from
the fact that the solution of the governing equations was performed using an
operator splitting equivalent to that of Lie-Trotter method, which is known
to reduce the time accuracy [31, 32, 33].

Yet another crucial issue of the PFEM models affecting their accuracy
has been the mass conservation quality. Vast majority of PFEM models use
popular fractional step approach [34, 35, 36] in its algebraic version (see e.g.
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[37]) for decoupling the velocity and the pressure, leading to strong computa-
tional speed-up of the model. However, as shown in [38] fractional step-based
solvers typically lead to considerable mass conservation deficiencies, partic-
ularly evident when applied to the simulation of free surface flow problems.
This deficiency is associated with the artificial zero-pressure boundary condi-
tion used for solving the Poisson’s equation arising in the second step of the
method. To palliate this problem, several authors proposed approaches based
on introducing artificial compressibility which enables pressure condensation
and does not require solving Poisson’s equation for the pressure [11, 12, 39].
This strategy led to an additional volumetric stiffness contribution (propor-
tional to the artificial compressibility constant) to the generalized tangent
matrix of the problem. It became evident that these methods are efficient
only when moderate values of the artificial compressibility constant (bulk
modulus) are used and thus can be applied to a limited number of problems.
Large value of the bulk modulus led to ill conditioning of the discrete system
of equations.

Present work focuses on improving the accuracy and robustness of the
method focusing on the above-described three features. We strive to develop
a second order time-accurate version of PFEM with good mass conserva-
tion features and suitable for modeling truly incompressible flows. The key
feature of the method is the application of a second-order-accurate opera-
tor splitting procedure to the Navier-Stokes equations. The overall scheme
proposed consists of three steps: two of them in which the mesh is moving
and one where the Stokes equation is solved on a ”frozen” mesh. Due to the
implicit nature of the pressure in incompressible flows, pressure is integrated
implicitly. However, for relieving the mass losses an explicit pressure predic-
tion step is introduced within the framework of the fractional step method.
Being explicit, this step introduces no modification in the tangent matrix.

The paper is structured as follows: first, the system of equations gov-
erning an incompressible Newtonian fluid flow is presented. Next, the main
ingredients of the improved PFEM version are introduced, particularly the
Strang advection-diffusion splitting which ensures improved accuracy. Next,
temporal and spatial discretization of the governing equations is shown. The
overall solution algorithm is outlined. The paper concludes with three nu-
merical examples. In the first two the method is examined with respect to
its time accuracy. The third one focuses on the mass conservation quality of
the method.
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2. NUMERICAL MODEL

2.1. Governing equations at a continuum level

Let Ωt denote a domain containing a viscous incompressible fluid with
a fixed boundary ΓD and a free surface ΓN . The evolution of the velocity
v = v(x, t) and the pressure p = p(x, t) are governed by the Navier-Stokes
equations given by

ρ
∂v

∂t
+ ρv · ∇v = −∇p+ ∇ · (2µ∇sv) + ρb (1)

∇ · v = 0 (2)

where µ is the dynamic viscosity, ρ is the density, b is the body force, ∇
is the gradient operator and ∇s its symmetric part.

Eqs.1 and 2 are completed with the standard Neumann (Eq.3) and Dirich-
let (Eq.4) boundary conditions at ΓN and ΓD, respectively.

−pn + 2µ∇sv · n = t̄ on ΓN (3)

v = v̄ on ΓD (4)

Next subsection introduces splitting strategies that decouple the momen-
tum equation into advective and diffusive parts emphasising their impact in
the context of the PFEM.

2.2. Operator splitting for the PFEM

Classical implicit PFEM In the traditional versions of PFEM [5, 9, 10,
8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] the strategy for solving
the Navier-Stokes equations on the moving grid consisted in solving momen-
tum and continuity (Eqs. 1, 2) for velocity and pressure and, consequently
updating the mesh position integrating the following equation dx

dt
= v. This

procedure was carried out at each iteration step of the non-linear implicit
solver. As already mentioned, the deficiency of this approach consisted in
the fact that the elements could be inverted at any non-linear iteration step.

Splitting in modern explicit-implicit PFEM Recent versions of
PFEM rely on explicit-implicit schemes resulting from applying operator
splitting methodology [28]. Generally, operator splitting methods[40, 41, 42]
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are widely used for solving convection-diffusion equations. Momentum con-
servation Eq.1 belongs to this class of equations.

Splitting methods are based on the assumption that the problem can be
separated into two [43] i.e. advective one and diffusion (Stokes) one. As a
consequence of this split, simpler equations are obtained which can be solved
at a much lower computational cost than the original system. The solution
of the original problem is obtained knowing the solutions of the sub-problems
[44]. The sub-problems are often solved sequentially, i.e. the output of the
first sub-problem is the input to the next sub-problem within a time step.

In the context of PFEM [28, 27] the advective problem serves as the basis
for the movement of the mesh nodes (immaterial particles of the PFEM).
Once the advection problem is solved in a single explicit step, the end-of-step
domain configuration is obtained and this configuration is used for solving
the Stokes problem. Application of this split to the momentum conservation
Eq.1 can be written as:

ρ
∂v∗

∂t
+ ρv∗ · ∇v∗ = 0 with v∗(t,x) = v(t,x) tε[t, t + δt] (5)

ρ
∂v

∂t
= −∇p+∇ · (2µ∇sv) + ρb with

v(t,x) = v∗(t + δt,x) tε[t, t + δt] (6)

This type of splitting is known in literature as ”Lie-Trotter method” [42].
Although Lie-Trotter split has been commonly used due to simplicity of its
implementation, the main drawback is that it leads to reduction of time
accuracy of the overall method to first order independent of the accuracy of
the time integration schemes used for the resulting sub-problems [45, 33].

Strang operator splitting for PFEM In the present work we propose
to employ a different strategy for decoupling the advection and the Stokes
steps in order to improve the time accuracy of the method. The idea con-
sists in applying the Strang splitting method, which is expected to improve
the time accuracy of the resulting scheme to second order according to the
demonstration of [45] made for scalar convection-diffusion equation.

As a result of applying the Strang operator splitting, Eq.1 can be divided
and the unknown solution at t+ δt is obtained in three following steps:
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ρ
∂v∗

∂t
+ ρv∗ · ∇v∗ = 0 with v∗(t,x) = v(t,x) tε[t, t + δt/2] (7)

ρ
∂v

∂t
= −∇p+∇ · (2µ∇sv) + ρb with

v(t,x) = v∗(t + δt/2,x) tε[t, t + δ t] (8)

ρ
∂v̂

∂t
+ρv̂·∇v̂ = 0 with v̂(t+δt/2,x) = v(t+δt,x) tε[t+δt/2, t+δt] (9)

Eq.7 must be solved for half of the time increment δt/2. The solution of
Eq.7 is used as the initial condition of Eq.8 which is solved for a full time
increment δt. The obtained result of Eq.8 is the initial condition for Eq.9.
Lastly, Eq.9 is solved for a half time increment, δt/2.

As Strang splitting is expected to provide second order accuracy [46],
at least a second-order scheme for time discretization should be employed
for the advection and diffusion sub-problems in order to obtain a globally
second-order method. Spatial discretization and time integration of Eq.8
and Eqs.7,9 is explained in the following sub-section.

2.3. Crank-Nicolson scheme and FEM for the solution of the diffusive part.

Let us concentrate first of the solution of Stokes equation (Eq. 8) on a
”frozen” mesh (this expression is used in order to emphasize that the mesh
position does not change during the corresponding step). The integration
of nodal motion (Eqs.7 and 9) is described in Section 2.4. At this point we
consider that the first mesh motion step is performed and the configuration
for solving Stokes problem is obtained.

For the momentum conservation (Eq.8) we use a second order scheme,
namely, the Crank-Nicolson one. In principle, any second-order time inte-
gration scheme can be used. Using time integration scheme of higher order is
not justified as Strang splitting would annihilate its benefit reducing the accu-
racy to second order. Crank-Nicholson scheme applied for time discretization
of the momentum equation leads to:
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ρ
vn+1 − vn

∆t
=

1

2
{−(∇pn+1 +∇pn) +

∇ · (2µ∇svn+1) +∇ · (2µ∇svn)}+ ρb (10)

From now on, to reduce the clutter, the super-index n+ 1 will be ne-
glected.

In the present work the fractional step method [34, 36, 35] is applied
to the momentum equation in order to obtain an efficient implementation.
Fractional step methods decouple the pressure from the velocity, making the
solution procedure much less computationally expensive[37]. This method is
used in many Lagrangian fluid models, such as e.g. [47, 5, 48, 49]. However,
as we shall see further, the fractional step used here will have a certain
modification with respect to its standard version, so as to ensure good mass
conservation features of the overall scheme.

According to the fractional step approach Eq.10 can be written as

ρ

∆t
ṽ−∇ · (µ∇sṽ) =

ρ

∆t
vn −∇p? +∇ · (µ∇svn) + ρb (11)

v = ṽ− ∆t

2ρ
(∇p−∇p?) (12)

where ṽ is the intermediate velocity. Here a new variable, p∗ has been
introduced. This variable will represent an approximation to the end-of-step
pressure pn+1. The approximation we propose will be defined below. Note
that considering p∗ = pn, one obtains the standard fractional step, where
the fractional momentum equation is solved using the historical value of the
pressure.

Applying the incompressibility condition Eq.2 to Eq.12 leads to the Pois-
son’s equation for the pressure

∇ · ṽ− ∆t

2ρ
∇ · (∇p−∇p?) = 0 (13)

Explicit pressure prediction for improving mass conservation
As already mentioned, in a standard second order fractional step approach,

p? = pn and thus the pressure gradient term inside Eq.11 represents the gra-
dient of the historical pressure. This term remains constant within the first
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fractional step (solution for intermediate velocity ṽ). While the time step
is small enough, approximating the current pressure by the pressure of the
previous step might be acceptable. However, for large time steps, the quality
of such an approximation deteriorates. Following the idea presented in [50],
an improved prediction of p∗ can be computed. To accomplish this, the pre-
dicted pressure is obtained using the assumption of slight compressibility[51].
Thus, the density changes are related to the pressure changes by the following
relationship:

dp =
κ

ρ
dρ (14)

where κ is the elastic bulk modulus of the fluid. Then applying the material
time derivative to the equation above and using the equation of conservation
of mass we get:

Dp

Dt
=
κ

ρ

Dρ

Dt
= −κ∇ · v (15)

The time-discretized version of the equation can be written as

pn+1 − pn

∆t
= −κ∇ · vn+1 (16)

Renaming pn+1 as p∗ (emphasizing that this is only a prediction for the
end-of-step pressure), we propose to evaluate p∗ using the vn instead of vn+1.
Thus the predicted pressure can be evaluated explicitly as

p∗ = pn − κ∇ · vn∆t (17)

Its space-discrete version can be written as

Mpp∗ = Mppn − κB vn∆t (18)

where Mp is the mass matrix and B is the strain rate matrix.
The pressure obtained from Eq. 18 provides an initial guess for the pres-

sure and is used in Eq.11 to evaluate the intermediate velocity.
It should be noted that unlike similar pressure prediction schemes pre-

sented in [38, 49] present approach is explicit. It is characterized by a neg-
ligible computational cost in case of using lumped mass matrix in the term
Mpp∗.

The values of the pressure obtained using Eq.17 can be used as a boundary
condition for the Eq.13 instead of the traditional zero pressure at the free
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surface for inviscid or low viscosity flows known to introduce severe mass
losses [38].

Using higher order explicit tie integration schemes for obtaining pressure
prediction appears unfeasible as it would require evaluating the unknown
velocity at the intermediate steps, strongly increasing the computational cost.
Although the scheme employed here (Eq. 18) is first order accurate, it is used
only for obtaining the initial guess for the pressure. Afterwards the pressure
is corrected via solving Poisson’s equation.

Weak form of the problem: spatial discretization

The weak form of the governing equations is obtained using standard
Finite Element procedure. Eqs. 11-13 and the natural boundary condition
are multiplied by a vector of linear finite element trial functions N and are
integrated over the domain Ω.

Multiplying Eqs. 11-13 and the natural boundary condition by a vector
of linear finite element trial functions N and integrating over the domain Ω
gives:

∫
Ω

ρN · ṽdΩ−∆t

∫
Ω

N · ∇ · (µ∇sṽ)dΩ =

∫
Ω

ρN · vndΩ−

∆t

∫
Ω

N · ∇p?dΩ + ∆t

∫
Ω

N · ∇ · (µ∇svn)dΩ + ∆t

∫
Ω

ρN · bdΩ +

∆t

∫
ΓN

N · ( t̄ + p?n− µ∇sṽ · n− µ∇svn · n) dΓ (19)

∆t

2

∫
Ω

N∇ · ∇pdΩ =
∆t

2

∫
Ω

N∇ · ∇p?dΩ +

∫
Ω

ρN∇ · ṽdΩ (20)

∫
Ω

ρN · vdΩ =

∫
Ω

ρN · ṽdΩ− ∆t

2

∫
Ω

N · (∇p−∇p?)dΩ +

∆t

2

∫
ΓN

N · (p− p?) ndΓ (21)

Next, subdividing the domain Ω into non-overlapping elements, Ωe, ap-
plying the divergence theorem to the diffusion terms and splitting the inte-
gral in the weak formulation into a sum of integrals over each element allows
rewriting the Eqs.19-21 as
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∑
elem

[

∫
Ωe

ρN · ṽdΩ + ∆t

∫
Ωe

∇N : µ∇sṽdΩ =∫
Ωe

ρN · vndΩ + ∆t

∫
Ωe

∇N : p?dΩ +

∆t

∫
Ωe

∇N : µ∇svndΩ + ∆t

∫
Ωe

ρN · bdΩ +

∫
ΓNe

N · t̄dΓ] (22)

∑
elem

[
∆t

2

∫
Ωe

∇N · ∇pdΩ =
∆t

2

∫
Ωe

∇N · ∇p?dΩ +

∫
Ωe

ρN∇ · ṽdΩ] (23)

∑
elem

[

∫
Ωe

ρN · vdΩ =

∫
Ωe

ρN · ṽdΩ +
∆t

2

∫
Ωe

∇N : (p− p?)dΩ] (24)

Considering linear finite element element approximations for the velocity
and the pressure unknowns vi (x) = NT (x) vi and p (x) = NT (x) p where
vi and p are the nodal values, leads to the following discrete form of the
governing equations

(M + ∆tK) ṽ = (M + ∆tK) vn + ∆tGp? + ∆tFb (25)

∆t

2
Lpn+1 =

∆t

2
Lp? −Dṽ (26)

vn+1 = ṽ +
∆t

2
M−1G(pn+1 − p?) (27)

The matrices and vectors presented above are defined as

K =
∑
elem

∫
Ωe

µ∇N∇sNdΩ (28)

M =
∑
elem

∫
Ωe

ρNNdΩ (29)

F =
∑
elem

∫
Ωe

ρNdΩ (30)
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G =
∑
elem

∫
Ωe

∇NNdΩ (31)

D =
∑
elem

∫
Ωe

ρN∇NdΩ (32)

L =
∑
elem

∫
Ωe

∇N∇NdΩ (33)

In order to obtain stable solutions, the Eq.26 must be stabilized since
equal order velocity-pressure interpolations were used. In this work ASGS
stabilization technique has been employed [52]. For the sake of simplicity,
stabilization terms are omitted here. They can be consulted in [53] where
the stabilization used here is described in detail.

Having presented the discrete version of Stokes problem to solve, the next
ingredient to be defined is the strategy employed for moving the mesh.

2.4. The Runge-Kutta scheme for the integration of the convective part

The convective part of the Navier-Stokes equations (Eqs.7-9) can be con-
verted into two ordinary differential equations taking into account the defi-
nition of the material derivative and the velocity of the particles as

Dv∗

Dt
= 0 (34)

Dx

Dt
= v∗ (35)

As already mentioned, in PFEM the mesh nodes are treated as immaterial
particles. Let us consider a particle p. Its position and velocity will be
designated as xp and v∗(xp), respectively. Then, integration of Eq.34 and
Eq.35 for such particle at the first advection step (i.e. from tn till tn+1/2)
yields:

v∗,n+1/2(xp) = v∗,n(xp) (36)

along with

xn+1/2
p = xnp +

∆t

2
v∗,n (37)
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As Eq.36 states that the two velocities (v∗,n+1/2(xp) and v∗,n(xp)) are
equal. Thus, according to Eq.37 the position of the particle depends on the
velocity at time tn, while the velocity Eq.36 does not depend on the position
of the particle. Therefore, the mesh movement does not depend on the
unknown velocity. In this work particle position (Eq.35) will be computed
by applying 4th order Runge-Kutta scheme. This explicit scheme is known
for providing very accurate trajectory integration at low cost and is widely
used in numerical particle tracing [54, 55]. According to this integration
scheme, the particle position can be computed as:

xn+1/2
p = xnp +

(∆t/2)

6
(v1 + 2v2 + 2v3 + v4) (38)

where v1,v2,v3 and v4 are the intermediate velocities defined as:

v1 = v∗,n(xp1 = xnp )

v2 = v∗,n(xp2 = xnp +
∆t

4
v1)

v3 = v∗,n(xp3 = xnp +
∆t

4
v2)

v4 = v∗,n(xp4 = xnp +
∆t

2
v3) (39)

Considering the above, the movement of the particles following Eq.38 is
implemented. Fig. 1 illustrates the corresponding steps. Let us consider
that each node of the computational mesh has an immaterial (virtual) par-
ticle associated to it. On Fig. 1 mesh nodes are shown as squares, while
virtual particles are indicated as circles. The position of the two will be
denoted as xm (position of the mesh nodes) and xp (position of the virtual
particles). At the beginning of the mesh update step the positions of the
nodes and the virtual particles coincide: xp1 = xm. The velocity v1 equals
nodal velocity. During the second step of Runge-Kutta scheme the virtual
particle p moves according to xp2 = xnp + ∆t

4
v1 ( see Fig. 1-a). The velocity

at the virtual particle is being computed from the nodal velocities of the
mesh element containing the particle as v2 =

∑3
i=1Ni(xp2)v∗,ni (xm). Then

the virtual particle is set back to its original location (see dashed line in
the figure). During the third step, the virtual particle moves according to
xp3 = xnp + ∆t

4
v2 ( see Fig. 1-b). This gives the second approximation of

the particle position at the intermediate time t + ∆t/4. Then velocity is
evaluated as v3 =

∑3
i=1 Ni(xp3)v∗,ni (xm) ( see Fig. 1-c). Then the virtual
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Figure 1: Schematic representation of particle position evaluation during the first advective
step.

particle is brought back to its origin again. In forth step the particle moves
according to xp4 = xnp + ∆t

2
v3 and the end-of-step velocity v4 is evaluated:

v4 =
∑3

i=1Ni(xp4)v∗,ni (xm) ( see Fig. 1-d). After that the mesh nodes are
moved according to Eq. 38 using the 4 intermediate values of the position of
the corresponding particle. This gives the mesh configuration corresponding
to tn+1/2. We note that the described advective step involves motion of indi-
vidual (unconnected) particles. Thus no element can be inverted independent
of the time step used.

Once the particle advection is complete, they must be connected by a new
mesh. The mesh is generated using the Delaunay method [7] or (EDT)[56]
equipped with the alpha-shape technique [57] used for identifying the exter-
nal boundaries. Being standard for all the PFEM methods, the re-meshing
strategy is not described in detail here and reader is referred to [8] for stan-
dard implementation.

The obtained mesh configuration is used to solve the diffusion part (Stokes
Eq.) Eqs. 25-27 . After that, explicit mesh motion step is repeated following
the procedure described above, but applied from tn+1/2 till tn+1. The formulae
are as follows:
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xn+1
p = xn+1/2

p +
(∆t/2)

6
(v1 + 2v2 + 2v3 + v4) (40)

where v1,v2,v3 and v4 are the intermediate velocities defined as:

v1 = v∗,n+1/2(xp1 = xn+1/2
p )

v2 = v∗,n+1/2(xp2 = xn+1/2
p +

∆t

4
v1)

v3 = v∗,n+1/2(xp3 = xn+1/2
p +

∆t

4
v2)

v4 = v∗,n+1/2(xp4 = xn+1/2
p +

∆t

2
v3) (41)

It should be noted that the splitting of the Navier-Stokes Eqs. into an
advective and diffusive parts and performing the advective step via explicit
particle motion removes the stability restrictions defined by the CFL-number
as shown in [30]. Thus, the method proposed here, similarly to [30] and [28],
does not require reducing time step in order to avoid element inversions as
it was done in the former PFEM versions, where the implicit step was also
involving the mesh motion (such as [8]), [58], [12]). This does not mean
however, that any time step can be used in practice, as in the case of using
very large time steps the solution becomes unacceptably inaccurate.

Summarizing, the main difference between the approach proposed here
and the recently proposed semi-explicit PFEM approches ([30], [29], [28])
stems from the fact that it relies on a second-order accurate operator split
leading to two advective steps, that are integrated by a more accurate scheme.

In this work we shall concentrate on the class of Lagrangian methods
known as Particle Finite Element Methods (PFEM), which are very similar
to the classical Lagrangian Finite Element method used in solids.

2.5. OVERALL SOLUTION STRATEGY

To this end, all the ingredients of the PFEM model based on the Strang
split are specified. The problem to be solved can be formulated as: ”given the
nodal positions, the velocity and the pressure at time tn, find these variables
at tn+1”. The overall solution strategy is summarized in Algorithm 1.

3. EXAMPLES

The present formulation is implemented in Kratos Multiphysics code,
an in-house Open Source software [59], developed at CIMNE [60]. For the
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Algorithm 1: Solution algorithm for the simulation of incompressible
flows.
1 for t = tn+1 do
2 Move the particles to the new position at xn+1/2(Eq.38);
3 if the mesh is too distorted then
4 Re-mesh the fluid domain;
5 end
6 Compute prediction for the pressure p? (Eq.17);
7 Solve the Stokes problem on the ”frozen” mesh:

• Find intermediate velocity ṽ solving Eq.25 on Ω with ṽ = v̄ on ΓD ;

• Solve the Poisson’s equation for the pressure (Eq.26) on Ω with
p = p∗ on ΓN . Result: pn+1;

• Correct the velocity to obtain a divergence-free solution (Eq.27) on Ω
with vn+1 = v̄ on ΓD . Result: vn+1;

8 Move the particles to the new position xn+1(Eq.40);
9 if the mesh is too distorted then

10 Re-mesh the fluid domain;
11 end

12 end
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solution of the implicit step of the velocity as well as the pressure Pois-
son’s equation, conjugate gradient (CG) solver equipped with a diagonal
pre-conditioner is used. The convergence tolerance of the linear solver is set
to 10−6 and 10−4 for the velocity and the pressure, respectively.

3.1. Test with an analytic solution. Flow in a cavity.

The test proposed in [37] is used here to evaluate the temporal and the
spatial accuracy of the proposed method. It models a unit cavity filled with
an incompressible Newtonian fluid subjected to an external force correspond-
ing to the following analytic velocity and pressure fields:

vx(x, y, t) = f(x)f ′(y)g(t) (42)

vy(x, y, t) = −f ′(x)f(y)g(t) (43)

p = 100x2 (44)

where

f(x) = 100x2(1− x)2 (45)

g(t) = cos(4πt)e−t

Pressure was initialized according to the Eq. 44 in the entire domain and
fixed to zero at left upper corner (x,y)=(0,1). Velocity at all the walls was
fixed to zero. The viscosity µ and the density ρ were 0.001 kg/ms and 1
kg/m3, respectively.

External force to be prescribed in order to obtain the manufactured so-
lution defined by Eqs. 42-44 can be obtained by introducing Eqs. 42-45
inside the Navier-Stokes equations. Note that the external force vector in
the present example depends both on time and space and therefore must be
recomputed whenever particle movement is performed.

The example was solved using different meshes and time steps. The
meshes used were as follows: 20 × 20 (h=0.05 m), 40 × 40 (h=0.025 m),
100× 100 (h=0.01 m) and 200× 200 (h=0.005 m) triangular elements.

In order to evaluate the spatial and temporal accuracy, the idea presented
in [53] was followed. It consists in tracking a particle which is initially located
at the position (x,y)=(0.75, 0.25) during the entire simulation.

The final position of the selected particle at time 0.5 s is plotted on the
Fig.2(a). One can see that the particle position approaches the analytical
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solution as the mesh size decreases. To check the spatial accuracy of the
methodology, the example was simulated using a small time step (dt=0.0005
s) and the error in the final position of the inspected node was calculated as

Error =
√

(xr − xn)2 + (yr − yn)2) (46)

where xr and xn are the analytic and the numerical result, respectively.
Fig.2(b) presents the error calculated using the Eq.46 versus mesh size.

The method exhibits second order of convergence with respect to the mesh
size.
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Figure 2: Flow in cavity. Final position at 0.5s using different mesh resolutions.

To minimize the spatial error, the temporal accuracy is evaluated using a
fine structured mesh with 200 × 200 triangular elements (h=0.005 m). The
example was simulated for 0.5 s using time steps varying from 0.001 to 0.005
s. Fig.3(a) shows the final position of the tracked particle at time 0.5 s for
different time steps. We note that the spatial discretization error remains
constant, which explains why the solution converges to a value slightly dif-
ferent from the analytic one. Therefore, to estimate the time accuracy the
solution obtained using a very small time step was taken as the reference
instead of the analytic one.

Error in the final position versus time step size is presented in the Fig.3(b)
in a logarithmic scale. Figure shows nearly second-order time accuracy in
terms of the particle position.
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Figure 3: Flow in cavity. Final position at 0.5s using different time step sizes.

Next, error in terms of velocity in the considered particle was measured.
We compare the obtained results with those of [29], where the method of [30]
was implemented. The method of [30, 29] is a semi-explicit PFEM that uses
sub-stepping-based streamline integration of the particle positions in a single
explicit advection step. Comparison is shown in Fig. 4.

One can see that while [29] is first order accurate, present approach results
in a second order accuracy. This indicates that the methodology proposed
here based on the application of Strang splitting improves the time accuracy
of the semi-explicit PFEM. Fig. 4 shows also that for achieving an error
of e.g. 10−4 in terms of velocity, the approach of [29] would require using
the time step approximately 3 times smaller in comparison with that of the
present method.

Additionally, we compared our results with the ones obtained using a
semi-explicit PFEM strategy with no advection-diffusion decoupling [53].
The strategy used in the reference provides similar rate of convergence as
our method, but exhibits a slightly smaller error for a given time step size.
We note, however, that the approach of the reference [53] relies on apply-
ing Runge-Kutta scheme to the entire momentum equation and thus involves
evaluation of the momentum equation residual 4 times, making it much more
computationally expensive.
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Figure 4: Flow in cavity. Convergence data (error in velocity at t=0.5 s vs time step).
Comparison of the present approach with the semi-explicit PFEM based on streamline
integration of particle positions [29].
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Figure 5: Flow in cavity. Convergence data (error in velocity at t=0.5 s vs time step).
Comparison of the present approach with the semi-explicit approach based on applying
Runge-Kutta integration to the entire momentum equation [53]

3.2. Second test with an analytic solution. Flow between parallel plates

To further test the accuracy of the approach, an example modeling a
steady laminar flow between two parallel plates was solved. The settings
used here are taken from [61]. The fluid is moving in horizontal direction
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between two parallel plates due to external uniform pressure of 160000 Pa
prescribed at the inlet of the horizontal channel. The channel length is
L=10 m and its horizontal walls (plates) are separated by D=1 m. No-slip
boundary condition is prescribed at both plates. The fluid properties are:
density ρ=1000 kg/m3, dynamic viscosity µ=104 Pa · s.

The exact solution for the horizontal velocity component along y-axis is:

vx(y) =
1

2µ

∂p

∂x

(
y2 − D2

4

)
(47)

The pressure gradient in our example is ∂p
∂x

= P
L

= 16000 Pa/m.
The problem is discretized with an unstructured and nearly uniform mesh

of size h=0.05 m. Total simulation time is set to 1 s.
Fig. 6(a) shows velocity distribution along the vertical cut at x=5 m.

Numerical simulation result obtained using dt=0.001 s is compared with the
exact solution. The solutions show excellent agreement.
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Figure 6: Flow between parallel plates. Velocity profile along the vertical coordinate at x
= 5 m.

Next, results obtained using different time steps are displayed (see Fig.
6(b)). In order to estimate the time accuracy, the area between the curves
corresponding to the solution obtained for the given time step and the refer-
ence solution was used as an error measure. In order to exclude the influence
of the spatial discretization error, the solution obtained using dt=0.00001 s
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was taken as a reference solution. The convergence data (error versus time
step size in logarithmic scale) is shown in Fig.7. One can observe that the
convergence line slope corresponds to second order accuracy in time.
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Figure 7: Flow between parallel plates. Error in horizontal velocity along the vertical cut
at x=5 m vs time step size.

3.3. Sloshing

The last test aims at assessing the ability of the method to preserve mass
in the simulation of flows with large free surface motions. The domain is
essential a square of 0.1 m x 0.1 m, however its upper horizontal boundary
is perturbed, being given a sinusoidal shape: yup = 0.1 + 0.01cos( πx

0.1
)

The free surface shape has a sinusoidal [2] form. The properties of the
fluid are: viscosity µ=0.1 kg/ms, density ρ=1000 kg/m3 and gravity gy=-10
m/s2. For the prediction of the pressure the bulk modulus was set to be
κ=10 kg/ms2. The test was simulated for 5 s with dt=0.005 s. The domain
was discretized using a triangular mesh with a 0.002 m mesh size.

Fig.8(a) shows the evolution of the free surface at the left wall of the con-
tainer with and without the pressure estimation algorithm. Both methodolo-
gies present a good agreement until 2 s, where from that time on the version
without pressure estimation starts to have a change at the amplitude and
the frequency of oscillation of the free surface. This is due to the significant
mass loss that sets on in the formulation without the pressure prediction(see
Fig.8(b)). One can see that at the end of the simulation (t=5 s), the non-
improved version of the model led to a loss of nearly thirty percent of its
overall mass while the version with the prediction leads to a loss of about
one percent only.
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Fig.9 compares the results obtained using the pressure prediction algo-
rithm with ones from [53]. A quick inspection of the figure reveals a good
agreement with [53].
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Figure 8: Fluid sloshing. Comparison between of the results obtained with and without
pressure prediction.
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Figure 9: Fluid sloshing. Comparison with reference [53].
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4. SUMMARY AND CONCLUSIONS

In this paper, a new version of the explicit-implicit particle finite ele-
ment method was introduced. The model was developed aiming at achieving
second-order accuracy in time, an attractive feature distinguishing it from
the former versions of the explicit-implicit PFEM. This was achieved by em-
ploying Strang operator splitting to Navier-Stokes equations, dividing them
into two parts, namely the convective and the diffusive ones. While the dif-
fusive part was solved on a ”frozen” mesh using the Crank-Nicolson scheme,
the convective part (coinciding in PFEM with the nodal movement) was in-
tegrated using the Runge-Kutta scheme. To solve the Stokes equation, the
fractional step technique was employed. In addition, a completely explicit
pressure prediction procedure was introduced in the first fractional step to
improve mass conservation features of the method.

The results of numerical tests confirmed that, the developed strategy
offers a second-order time accuracy and provides control over mass losses.
In addition, a possible element inversion has been prevented due to the fact
that the advective and the diffusive parts were treated separately.

Even though the proposed method constitutes an attractive version of
the PFEM, it should be considered that it still relies on re-construction of
the entire mesh. This step is generally non-parallelizable and remains the
efficiency bottleneck of the model. Developing a method that optimizes the
mesh re-construction (for example, by considering local re-meshing or re-
connection, rather than re-constructing the entire mesh) defines the next
step that must be considered when establishing a new generation of efficient
Lagrangian fluid solvers.

The results of this work also reveal that when devising methods that
include advection step solved in a Lagrangian fashion, applying high order
operator splitting is essential for ensuring overall accuracy of the method.
This may be also useful for those hybrid Lagrangian-Eulerian methods that
resolve diffusion part of the problem on a fixed-grid or for other classes of
Lagrangian numerical methods.
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lithic lagrangian approach for fluid–structure interaction problems.
Computational mechanics, 46(6):883–899, 2010.

[13] M. Cremonesi, A. Frangi, and U. Perego. A Lagrangian finite ele-
ment approach for the analysis of fluid–structure interaction problems.
International Journal for Numerical Methods in Engineering, 84(5):610–
630, 2010.

[14] M. Cremonesi, S. Meduri, U. Perego, and A. Frangi. An explicit La-
grangian finite element method for free-surface weakly compressible
flows. Computational Particle Mechanics, 4(3):357–369, Jul 2017.
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[22] E Oñate, J Rojek, M Chiumenti, SR Idelsohn, F Del Pin, and R Aubry.
Advances in stabilized finite element and particle methods for bulk form-
ing processes. Computer methods in applied mechanics and engineering,
195(48-49):6750–6777, 2006.

[23] P. Ryzhakov. An axisymmetric PFEM formulation for bottle forming
simulation. Computational Particle Mechanics, 4(1):3–12, 2017.

[24] P. Ryzhakov, J. Garcia, and E. Oñate. Lagrangian finite element
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