
Flexible Process Model Mapping using
Relaxation Labeling

Luis Delicado, Josep Carmona, and Llúıs Padró

Computer Science Department
Universitat Politècnica de Catalunya

Barcelona, Spain
{ldelicado,jcarmona,padro}@cs.upc.edu

Abstract. Computing a mapping between two process models is a cru-
cial technique, since it enables reasoning and operating across processes,
like providing a similarity score between two processes, or merging dif-
ferent process variants to generate a consolidated process model. In this
paper we present a new flexible technique for process model mapping,
based on the relaxation labeling constraint satisfaction algorithm. The
technique can be instantiated so that different modes are devised, de-
pending on the context. For instance, it can be adapted to the case
where one of the mapped process models is incomplete, or it can be used
to ground an adaptable similarity measure between process models. The
approach has been implemented inside the open platform NLP4BPM, pro-
viding a visualization of the performed mappings and computed similar-
ity scores. The experimental results witness the flexibility and usefulness
of the technique proposed.

1 Introduction

Process models are crucial elements for representing in a precise way the real
processes of an organization. Their use goes beyond the mere modeling purpose:
on the one hand, BPMS platforms, which allow designing, deploying and man-
aging the processes in organizations, are based on process models. On the other
hand, evidence-based process models (i.e., process models with a high alignment
with respect to the underlying real process) can be used to analyze the process
formally, e.g., detecting inconsistencies or performance problems that may ham-
per the correct and optimal execution of the process. Furthermore, the existence
of environments for creating, managing and querying process model collections
enable a high-level analysis of process models.

Hence it is of paramount importance to automate the comparison of process
models. Due to its importance, this problem has received significant attention
in the BPM field; contributions can be split into structural techniques based on
graph-edit distance [1–4], and behavioural techniques that focus on the execution
semantics or behavioural relations of the corresponding models [5–9]. One key
enabler of process model comparison is the generation of a mapping between the
elements of the two process models [10]. The available techniques for automated

The final publication is available at IOS Press through http://dx.doi.org/10.3233/FI-2020-1950

Fig. 1. Visualization of the technique of this paper in the platform NLP4BPM.

process model mapping are sometimes unable to capture different context of
application, like for instance when process models are incomplete, or when the
emphasis in the mapping needs to change depending on the application scenario.

As reported in a recent survey on process model similarity [10], there is a
need for an analysis of different usage scenarios of similarity metrics:

[10] ”... it is necessary to analyze in how far particular similarity mea-
sures match the requirements of specific usage scenarios and whether it is
meaningful to apply different similarity measures to different scenarios.”

In this paper we propose a novel method to compare process models in a
flexible way, so that the context of application can be taken into account by se-
lecting a particular mode when mapping the elements of the two processes. The

intuitive idea is to encode the problem as a Relaxation Labeling (RL) optimiza-
tion problem, so that an optimal assignment between the elements of the two
process models is computed, according to a configurable set of constraints. The
used constraints can focus on structure, labels, semantics, etc., and be adapted
to each particular problem. Thus, semantics of the model are also taken into
account by (i) performing a full linguistic analysis of the text associated to the
different process model elements, (ii) considering also the mapping of the rout-
ing elements such as gateways and its connections, and (iii) consider the process
model lanes. Several examples of operation modes are envisioned:

– A general mode, where both the structure and the text are considered.
– A structural mode, where the structure is dominant in the comparison.
– A text-based mode, where the linguistic analysis is dominant in the compar-

ison.
– A partial mode, where one of the process models may be incomplete.

In particular, the case where one of the two process models is incomplete
can be used in e-learning context, by providing students continuous feedback on
their progress in a process modeling course. At the end of the paper, we will
report preliminary experiments in this context.

The approach has been incorporated in the NLP4BPM open platform 1, which
provides a friendly visualization of the optimal mapping found. Figure 1 shows
an example of a mapping found.

2 General Approach: From Mapping to Similarity Score

To contextualize the different contributions of this paper, in this section we pro-
vide a general perspective on the necessary steps followed to assess the similarity
of two process models.

We assume process models to be specified in BPMN 2.0 notation, which is a
widespread notation for modeling processes in organizations. Section 3.1 provides
the main constructs considered in this paper.

The first step is to perform a complete linguistic analysis of the text in the two
process models. This is of paramount importance, since it enables a comparison
that goes significantly beyond a mere string distance of the set of original labels.
Section 3.2 provides a detailed description of this step.

Once the linguistic analysis is performed, the mapping between the elements
of the two process models is computed. The computation of this mapping is
carried out using a RL algorithm, a technique that is introduced in Section 3.3.
The encoding of the mapping problem as a relaxation labeling instance is the
main contribution of this paper, and is described in Section 4. In Section 4.4
it is shown how to adapt the encoding so that incomplete process models are
considered in the mapping, an scenario that can be found in the educational
context.

1 http://nlp4bpm.cs.upc.edu

When a mapping is obtained, a similarity measure can be computed. The
metric proposed in this paper relies in mapping one model to the other in both
directions, and then taking into account the number of bidirectional matches, the
total number of matches, and the matches of the neighbors of the bidirectional
matches. See details in Section 5.

3 Preliminaries

3.1 Process Models

There are a large variety of graphical notations to represent model processes. In
this paper we focus on BPMN 2.0, notation created as a standard for business
process modeling. However, the techniques explained in this paper can be used
with other notations like EPCs, Petri Nets or others.

BPMN has three different kinds of elements. First, the main elements are the
nodes in the diagram, which may belong to three different types: Events, which
represent that something happens; Activities, which represents some task that is
performed; and Gateways, which split or join flow control. Second, the notation
has different edges to connect nodes. A solid line indicates the process workflow,
while dashed lines represent messages sent between process participants. Finally,
there are organization elements such as lanes that contain activities performed
by the same participant, and pools, that group several related lanes. Figure 1
shows an example of a BPMN model.

3.2 Linguistic Analysis of the Textual Information

In order to better align tasks, we do not rely just on the words occurring in the
task labels, but also on their semantics. For that we perform a full NLP analysis
on the tasks labels, obtaining a semantic representation of them. Particularly,
we focus on the action being performed, the agent who performs the action and
the patient upon which the action is performed. Additionally, we also extract
per-word information such as the part of speech (PoS) tag and its ontological
sense in WordNet [11]. By collecting this lower-level information, we allow our
technique to fall back to the word level whenever the predicate level description
is ambiguous or incomplete.

Thus, we process the natural language bits contained on the model labels
(from activities, events, gateways, arcs, lanes and pools). However, these frag-
ments are not whole sentences but isolated phrases or chunks, which causes
the standard NLP tools to suffer a loss in performance. Moreover, the model
structure itself provides some clues about the information to extract from each
element (e.g. lane labels are typically noun phrases describing the agent of the
tasks in the lane, while task labels describe the action and the patient in usually
simple patterns).

In order to properly extract the required information, we followed the idea of
[12, 13] and devised an ad-hoc NLP analysis pipeline, based on the customizable
FreeLing NLP library2 [14].

– General purpose tokenization, morphological analysis, and word sense dis-
ambiguation modules are used.

– The general purpose PoS tagger is used, but configured to provide the k-best
solutions instead of just the most likely one. This will compensate for some
errors due to analyzing chunks and not whole sentences. For instance, for
the task label “mail response”, the word “mail” is wrongly tagged as a noun
by the generic tagger, because complete English sentences seldom start with
a verb. If we get more than one solution from the tagger, we will find that
the second-best answer tags “mail” as a verb.

– We use a rule-based parser with an ad-hoc CFG grammar to detect patterns
and phrases inside the text fragments. All k-best tag sequences produced
by the tagger are fed to the grammar, and the first one matching one valid
pattern is used.

Patterns covered so far by this grammar are: verb actions (e.g. send report),
noun actions (e.g. data transmission), and conjunctions of them (e.g. send
report and notify user). Verb actions can have the following patterns, where
the verb is extracted as the action, the noun phrase as the patient, and the
prepositional phrase as complement :

• verb (e.g. request, check, reject)

• verb + noun-phrase (e.g. store physical file, Create job description)

• verb + prep-phrase (e.g. Ask for details, Inform about the procedure)

• verb + noun-phrase + prep-phrase (e.g. Ask user for details, Inform
patient about the risk of the procedure)

Noun actions can have the following patterns:

• noun-phrase (e.g. receipt payment, master data transmission)

• noun-phrase + prep-phrase (e.g. reception of packaged goods, data col-
lection for billing adjustment)

Additionally, the grammar detects the head word of each component, so we
can extract that file is the main word in the noun phrase store physical file,
risk is the head of the risk of the procedure, and transmission is the head of
master data transmission.

3.3 Relaxation Labeling

Relaxation labeling (RL) is a family of iterative algorithms that perform cost
function optimization over a set of variables that must be assigned appropriate
discrete values (or labels). The algorithm requires a set of soft constraints that
state the (in)compatibility of certain variable-value combinations, and computes
a consistent labeling, i.e. a set of assignments that best satisfies the constraints.

2 http://nlp.cs.upc.edu/freeling

RL algorithms are approximate optimizers that find local optima and are
closely related to gradient step, simulated annealing, and neural network opti-
mization [15]. They were originally devised in computer vision field, but have
been applied to several other AI tasks, graph matching among them ([16]).

Interesting properties of the algorithm are that each variable can have a
different set of possible labels, and that any kind of constraint relating combina-
tions of any number of pairs (variable,label) can be used, thus providing a very
flexible setting that can be used to heuristically solve many combinatorial-space
search problems.

Advantages of RL for graph matching over other approaches –such as graph
edit distance– include: the generality of the approach (any problem stated in
terms of variables, labels, and constraints can be solved by the same algorithm)
and the problem description flexibility (constraints can encode many kinds of
restrictions and take into account different types of information).

4 Flexible Mapping Through Relaxation Labeling

In this section we describe the relaxation labeling algorithm and how we apply
it to the graph matching problem at hand.

4.1 Modeling Graph Mapping as a Relaxation Labeling Problem

To model a task into a RL problem, we must establish which components are
variables, which are the possible labels for each variable, and which are the con-
straints favoring or penalizing certain variable-label assignment combinations. In
our case, we want to map one graph into another. Using RL for graph matching
has been proven successful in the past [16], and we follow a similar approach.

We will consider one of the process models to map as the source model and
the other as the target model. Each model element (task, gateway, event, ...) in
the source model will correspond to a RL variable. The possible values (or labels)
for this variable will be each element in the target model. Given this construction,
each source model element will be assigned exactly one target model element.

The problem representation also requires constraints that penalize wrong
assignments, and favor appropriate pairings. For instance, we can add constraints
to penalize assignments violating flow control order, or to reward assignments
that respect it. E.g. if source model element s1 precedes source model element s2
and target element t1 precedes target element t2, then a solution containing both
pairs (s1, t1) and (s2, t2) must be rewarded, but if t1 follows t2, the combination
must be penalized.

4.2 Assignment Initialization

Relaxation labelling performs continuous optimization on a probabilistic rep-
resentation (i.e. each variable has a probability distribution over the set of its
possible values) that is updated iteratively until convergence. Since it performs

a local search, choosing a good starting point reduces the number of required
iterations, and may help to find better solutions if the cost function is not convex.

We implemented three different initialization strategies: random, uniform,
and informed. Informed initialization uses source and target tasks features, such
as their text labels, number of connections, etc. to establish the initial assignment
values. For this, we use FreeLing NLP tools to extract linguistic information
from the task labels, such as the lemmas, parts-of-speech, or WordNet synsets,
as described in section 3.2.

4.3 Constraints

The Relaxation Labeling algorithm uses a set of constrains that determine a
weight for all matches between elements of the two models. Our model uses
8 constraint patterns that are instantiated for each variable. Constraints state
(in)compatibility of a label assignation for one variable with the assignation of
its neighbors (e.g. the combination of source element s1 being assigned to target
t1 and source s2 being assigned to target t2, is compatible if t1 and t2 have the
same neighboring relation than s1 and s2).

Constraints are not binary, but they express a degree of compatibility (which
may be negative to express incompatibility). The algorithm will favor combina-
tions with highest total compatibility and penalize those with lower scores.

We use four constraint templates that use only information on the source
and target elements, but not on their neighbors:

– Type: The assignment of value ti to variable si is compatible if both elements
have the same type (e.g. manual task, service, gateway, event, etc.).

– Name: The assignment of value ti to variable si is compatible if both ele-
ments share linguistic features (e.g. same verbs/actions, same objects, same
concepts, ...). FreeLing NLP analyzers are used to extract linguistic features
from the element description texts. Obtained feature sets are compared us-
ing a similarity function [17] that will determine the degree of compatibility
of the two elements.

– Lane: The assignment of value ti to variable si is compatible if the names
of their lanes are equal.

– Number of input (output) edges: The assignment of value ti to variable
si is compatible if they have the same number of input (output) edges.

– Number of input (output) messages: The assignment of value ti to
variable si is compatible if they receive (send) messages and have the same
number of input (output) messages.

A second group of constraints takes into account the assignments of neigh-
boring elements3:

3 Note that in the constraints we talk about elements (tasks, gates, events), not only
BPMN tasks. For the sake of understandability, in the figures we illustrate the neigh-
boring constraints over tasks.

– Neighbor 1: (Figure 2) The assignment of value ti to variable si is com-
patible if the element si has an immediately following (preceding) element
sj that is assigned a value tj that also immediately follows (precedes) ti.
The degree of compatibility is a fixed value, given as a parameter to the
algorithm.

Fig. 2. Following (left) and preceding (right) neighbour 1 constraint

– Neighbor 2: (Figure 3) The assignment of value ti to variable si is compat-
ible if the element si has two immediately following (preceding) consecutive
element sj , sk that are respectively assigned values tj , tk which are consec-
utive and also immediately follow (precede) tj . The degree of compatibility
is a fixed value, given as a parameter to the algorithm.

Fig. 3. Following (left) and preceding (right) neighbour 2 constraint

– Neighbor skip: (Figure 4) The assignment of value ti to variable si is com-
patible if the element si has an immediately following (preceding) element
sj that is assigned a value tk that follows (precedes) the element immedi-
ately following (preceding) ti. This constraint also applies if value ti has
an immediately following (preceding) element tj that is assigned to element
sk that follows (precedes) the element immediately following (preceding) si.

The degree of compatibility is a fixed value, given as a parameter to the
algorithm. This constraint is intended to capture cases where some of the
tasks have been fused together in one of the models, and will usually have a
lower compatibility score than the constraints presented above.

Fig. 4. Both versions of following neighbour-skip constraint. Preceding constraints are
symmetrical to these.

– Inverted neighbor: (Figure 5) The assignment of value tj to variable sj
is incompatible if the element ss has an immediately following (preceding)
element sk that is assigned a value ti that also immediately follows (precedes)
tj . The degree of compatibility is a negative fixed value, given as a parameter
to the algorithm.

Fig. 5. Following (left) and preceding (right) inverted neighbour constraint

– Neighbor messages: This constraint is similar to Neighbor 1 but using
message connections. The assignment of value ti to variable si is compat-
ible if the element si sends (receives) a message from element sj that is
assigned a value tj that also sends (receives) a message from ti. The degree
of compatibility is a fixed value, given as a parameter to the algorithm.

When the algorithm converges, each variable will –typically– have all its
probability mass in a single label, thus establishing a unique-label-per-variable

mapping. However, in some cases (e.g. if constraints are too vague or contradict
each other) some variables can end with their probability mass evenly distributed
among more than one value. For these cases, a threshold is used to determine
whether the mapping is included in the final solution.

4.4 Mapping Incomplete Process Models

The presented method can be adapted to map the elements of an incomplete
model to a complete model. One possible scenario for this task is the an educa-
tional setting, where a process modeling student is incrementally completing a
model (see Section 6.3). Computing a mapping between this partial model and
a gold solution (provided by the teacher) can provide valuable feedback to the
student, not only when the modeling task is finished and delivered, but also dur-
ing the different steps followed to accomplish the modeling task. This feedback
can be integrated into a model editor that guides the student through the task.

Mapping a partial model poses some challenges to the approach presented
above: In an incomplete model, there will be missing tasks and edges, and their
absence should not be penalized, since we want to assess the correctness of the
model built so far, not of the parts not addressed by the student yet.

The algorithm described in previous sections tries to match every source
model task to a target model task, in both directions. When mapping from a
partial (thus smaller) model to a gold complete model, presumably all tasks will
find a correspondence. But when performing the reverse mapping, there will be
tasks in the gold model that do not exist in the partial model yet. Thus, we
add a dummy task in the partial model without any label nor any connection.
We also add a very low-weight constraint that allows any gold model task to
be mapped to the dummy task. This will result in any gold model task being
mapped to the dummy task only if there is not any other constraint with a
higher weight directing it somewhere else. This idea is illustrated in Figure 6,
where the student modeled the initial and final steps of the process, but has
not finished the intermediate parts yet. The gold model elements missing in
the partial model are matched with the dummy task because there is not any
evidence for an alternative decision.

5 Using the Mapping to Compute Similarity Metrics

The mapping between processes built using the algorithm described above can
be used to compute similarity measure between both input models.

For this, we apply the mapping process twice, one in each direction (i.e. use
tasks in model 1 as variables and tasks in model 2 as values, and viceversa), and
then we compute

sim = λ
2 ∗ |A ∩B|
|A|+ |B|

+ (1− λ)
Ceq

Ceq + Cneq

Where,

Fig. 6. Dummy element to match a non-connected partial model

– A and B are the sets of task pairings produced by each run of the algorithm,
and A ∩B is the set of task pairings present in both mappings.

– Ceq is the number of pairs {(ti, si), (tj , sj)} ∈ (A ∩ B) × (A ∩ B) such that
ti follows (precedes) tj and si follows (precedes) sj

– Cneq is the number of pairs {(ti, si), (tj , sj)} ∈ (A ∩B)× (A ∩B) such that
ti follows (precedes) tj but si does not follow (precede) sj , or viceversa.

Thus, the similarity measure is a weighted average between Sorensen-Dice
similarity between the sets A and B and the percentage of connections that
are coincident in both mappings. The first term evaluates the coincidence of
task mappings in each direction, and is intended to capture the similarity of the
tasks in both models. The second term tries to measure to which extent their
connections are alike.

5.1 Similarity of Partial Models

Computing the similarity of a partial model with a complete model (e.g. for the
educational scenario described above) requires some adaptation of the similarity
measure, in order to avoid penalizing the partial model for the missing elements.

Thus, for the case of partial model matching, we add the dummy task as
described in Section 4.4, and do not count (neither as errors nor hits) the pairings
of any gold task with the dummy. In consequence, the similarity metric used for
partial model mapping is the same than in the general case, though it is applied
to different pairing sets:

sim = λ
2 ∗ |A ∩B|
|A|+ |B|

+ (1− λ)
Ceq

Ceq + Cneq

Where,

– A and B are the sets of task pairings produced by each run of the algorithm
without pairings with dummy elements, and A∩B is the set of task pairings
present in both mappings.

– Ceq and Ceq are the same as before, though computed on the A and B sets
without pairs involving dummy elements.

However, it might be that the student simply forgot or skipped the middle
tasks and thus, deserves a lower score. So, we need to take into account whether
the student actually missed a model element, or there is still chance he/she is
going to add it. This can be detected checking the edges between the mapped
elements:

If two gold model elements g1 and g2 are mapped to partial model elements
p1 and p2 respectively, and there is no edge between g1 and g2, we check for
edges between p1 and p2:

– If there is no edge connecting p1 and p2, then we assume that there is still a
chance that the student will add the missing elements in the gap. Thus, we
add the dummy as a possible option for any element between g1 and g2, so
they are excluded from sets A and B and do not penalize the score.

– If there is an edge directly connecting p1 and p2, then we assume that the
student missed some intermediate elements. Thus, the dummy element is
not added as a possible option for the elements between g1 and g2, so the
missing matches will lower the score.

6 Experiments and Results

In this section we present experiments on both complete and partial model
matching scenarios.

6.1 Comparative With Other Metrics

Our first experiment consists of comparing our proposed metric –for complete
models– to other metrics in the literature. For that, we rely on the thorough
analysis performed in [18] where a gold model (named V0) is compared with
seven variants with increasing divergences (V1, ... V7) using a wide range of
existing metrics.

Our metric depends on the results of the RL mapping, which has different
parameters. The metric itself also has the parameter λ that balances the weight
of element matching and connection matching.

We tested our metric under different parameterizations. On the one hand,
we tested different values of λ (low lambda values give more weight to model
structure and edges, while high values rely more on label similarities) applied
on two different settings for the mapping RL algorithm: (a) a setting where
structural constraints have higher weight, and thus the mapping is mostly driven
by connections and control flow (CF), and (b) a setting where mapping is more
influenced by label similarity constraints (LS) –which are trivial in this case since
labels are numeric.

The combination of these parameters produce a variety of mappings, and
consequently, of similarity scores. We tested both RL settings (CF and LS)

combined with three values of λ (0.2, 0.5, 0.8). To compare our metric with the
state of the art metrics reviewed in [18], we took the vector (V1, ... V7) produced
by each metric as a description of its behavior (in the scenario proposed in that
survey). Then, we computed the vector for each configuration of our measure,
obtaining a cloud of points in a 7-dimension space, each point representing a
different metric.

To visualize the relative position of our metric with respect to the metrics
reported in [18], we performed a PCA projection to 2D of the points, shown
in Figure 7. PCA projects the 7-dimension vectors to the 2D plane that best
preserves the distances between the points. Red squares correspond to metrics
in the original survey (numbered in the order they appear in the table). Blue
triangles correspond to different configurations of our metric.

Fig. 7. PCA projection to 2D of the vectors for metrics in [18] (red squares) and dif-
ferent configurations of our metric (blue triangles). The figure shows the 2D projection
of the 7-dimension vectors that best preserves the distances between the points.

We can observe how our metric can be tuned to capture different aspects
of the compared models. Parameter λ can be used to tune the distance to the
center of the cloud (the higher λ is, the closer to the center) while changing the
underlying mapping shifts the metric to different regions of the space. Although
the interpretation of the effect of this parameters is not obvious and requires
further analysis, our approach is promising with regard to offering a general
model to approximate a variety of existing metrics.

6.2 Process Model Matching Contest 2015

As a second experiment, we executed our algorithms on some models used in
the Process Model Matching Contest 2015 [19]. This dataset consists of 36 pair-
wise mappings on 9 German universities Master student application process.
For each pair, the dataset provides a gold match (sometimes partial). Table 1
is extracted from [19] and presents the results of participating systems. The

highlighted row shows the results of our approach, after optimizing the param-
eters for this dataset. Parameter optimization was performed using a genetic
algorithm to find a good local optima in the parameter space.

Table 1. Process Model Matching Contest 2015 results.

Precision Recall F-Measure
Approach ∅-mic ∅-mac SD ∅-mic ∅-mac SD ∅-mic ∅-mac SD

RMM/NHCM .686 .597 .248 .651 .610 .277 .668 .566 .224
RMM/NLM .768 .673 .261 .543 .466 .279 .636 .509 .236
MSSS .807 .855 .232 .487 .343 .353 .608 .378 .343
OPBOT .598 .636 .335 .603 .623 .312 .601 .603 .300
RL .523 .450 .318 .577 .495 .309 .550 .472 .285
KMSSS .513 .386 .320 .578 .402 .357 .544 .374 .305
RMM/SMSL .511 .445 .239 .578 .578 .336 .543 .477 .253
TripleS .487 .685 .329 .483 .297 .361 .485 .249 .278
BPLangMatch .365 .291 .229 .435 .314 .265 .397 .295 .236
KnoMa-Proc .337 .223 .282 .474 .292 .329 .394 .243 .285
AML-PM .269 .250 .205 .672 .626 .319 .385 .341 .236
RMM/VM2 .214 .186 .227 .466 .332 .283 .293 .227 .246
pPalm-DS .162 .125 .157 .578 .381 .38 .253 .180 .209

Results show that our metric ranks is in the top 5 of the participants, despite
the fact that this particular contest scenario characteristics make it harder for a
complete mapping approach like ours: Our method matches two task if they are
similar enough in description and control flow, but the contest gold standard is
very restrictive and some tasks pairs are not annotated despite having the same
behavior in the process. For example, in some cases the gold standard matches
two task but not the tasks preceeding each of them, even they describe a similar
action. Since our algorithm will match the preceeding tasks too, this will be
scored as a false positive.

6.3 Experiments on Partial Models

To evaluate the performance of the similarity metric when applied to partial
models, we used a dataset coming from a process modeling course in TU/e (Eind-
hoven), that captures the evolution of a process model while it is being created
by different process modeling students. We computed the similarity metric at
each intermediate step for a sample of 6 different students. The evolution of the
metric while the students refine their models is shown in Figure 8.

It is interesting to note that there are different behavioral patterns that
correspond to different student strategies to build the model: Some lines are
clearly ascending, indicating that the student does not commit much errors, and
steadily completes his model, while others are more erratic, probably due to
changes of mind or corrections by the modeler. The study of this dataset and

Fig. 8. Similarity metric evolution during the modeling process by different students.

the derived behavior patterns opens a promising line of research to be pursued
in the future.

7 Conclusions and Future Work

In this paper we have proposed a new flexible approach for aligning BPMN
models. The technique can be instantiated towards very different usage scenarios,
and can even deal with partial process models. We also proposed a similarity
metric based on these alignments, also adapted to the case of partial models.

We foresee many directions to follow as future work. First, we will consider
solving the two mappings as a single RL problem, so that the exploration for
solutions can consider jointly the decisions of each direction in order to find
better solutions. Also, the derivation of a set of modes that can cover different
usage scenarios may be studied, with special interest in partial model mapping
for educational applications. Finally, exploring different strategies to compute
threshold values so that a better characterization of unmapped tasks will be
considered in the near future.

Acknowledgements

We are grateful to Andrea Burattin, Barbara Weber and Hajo Reijers for sharing
with us part of the datasets used in this paper. This work has been supported
by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.

References

1. Dijkman, R.M., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for
business process model similarity search. In: BPM 2009, Ulm, Germany, September
8-10. (2009) 48–63

2. Dijkman, R.M., Dumas, M., Garćıa-Bañuelos, L., Käärik, R.: Aligning business
process models. In: EDOC 2009, 1-4 September 2009, Auckland, New Zealand.
(2009) 45–53

3. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity
of business process models: Metrics and evaluation. Inf. Syst. 36(2) (2011) 498–516

4. Yan, Z., Dijkman, R.M., Grefen, P.W.P.J.: Fast business process similarity search.
Distributed and Parallel Databases 30(2) (2012) 105–144

5. Armas-Cervantes, A., Baldan, P., Marlon, D., Garćıa-Bañuelos, L.: Behavioral
comparison of process models based on canonically reduced event structures. Busi-
ness Process Management: 12th International Conference, BPM 2014, Haifa, Israel,
September 7-11, 2014. Proceedings (2014) 267–282

6. Dijkman, R.M.: Diagnosing differences between business process models. In: BPM
2008, Milan, Italy, September 2-4. (2008) 261–277

7. Polyvyanyy, A., Weidlich, M., Conforti, R., Rosa, M.L., ter Hofstede, A.H.M.:
The 4c spectrum of fundamental behavioral relations for concurrent systems. In:
PETRI NETS 2014, Tunis, Tunisia, June 23-27. (2014) 210–232

8. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based
on behavioral profiles of process models. IEEE Tr. Soft. Eng. 37(3) (2011) 410–429

9. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles
- efficient computation, applications, and evaluation. Fundam. Inform. 113(3-4)
(2011) 399–435

10. Schoknecht, A., Thaler, T., Fettke, P., Oberweis, A., Laue, R.: Similarity of busi-
ness process models: A state-of-the-art analysis. ACM Comput. Surv. 50(4) (Au-
gust 2017) 52:1–52:33

11. Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM
38(11) (1998) 39–41

12. Leopold, H., Smirnov, S., Mendling, J.: Refactoring of process model activity
labels. In: Natural Language Processing and Information Systems. Springer (2010)
268–276

13. Van der Aa, H., Leopold, H., del Rio-Ortega, A., Resinas M., Reijers, H.A.: Trans-
forming unstructured natural language descriptions into measurable process per-
formance indicators using hidden markov models. Information Systems (2017)

14. Padró, L., Stanilovsky, E.: Freeling 3.0: Towards wider multilinguality. In: Proceed-
ings of the Language Resources and Evaluation Conference (LREC 2012), Istanbul,
Turkey, ELRA (May 2012)

15. Torras, C.: Relaxation and neural learning: Points of convergence and divergence.
Journal of Parallel and Distributed Computing 6 (1989) 217–244

16. Daudé, J., Padró, L., Rigau, G.: Mapping wordnets using structural informa-
tion. In: 38th Annual Meeting of the Association for Computational Linguistics
(ACL’2000)., Hong Kong (2000)

17. Sànchez-Ferreres, J., Carmona, J., Padró, L.: Aligning textual and graphical de-
scriptions of processes through ILP techniques. In: Advanced Information Systems
Engineering - 29th International Conference,CAiSE 2017, Essen, Germany, June
12-16, 2017, Proceedings. (2017) 413–427

18. Becker, M., Laue, R.: A comparative survey of business process similarity measures.
63 (02 2012) 148–167

19. : Process model matching contest 2015. https://ai.wu.ac.at/emisa2015/contest.php
Accessed: 2017-11-13.

