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Abstract

The main purpose of this thesis is to �nd a method that allows to systematically adapt GSP
techniques so they can be used on most non-diagonalizable graph operators.

In Chapter 1 we begin by presenting the framework in which GSP is developed, giving
some basic de�nitions in the �eld of graph theory and in relation with graph signals. We also
present the concept of a Graph Fourier Tranform (GFT), which will be of great importance
in the proposed solution.

Chapter 2 presents the actual motivation of the research: Why the computation of the
GFT is problematic for some directed graphs, and the speci�c cases in which this happen. We
will see that the issue can not be assigned to a very speci�c graph topography, and therefore
it is important to develop solutions that can be applied to any directed graph.

In Chapter 3 we introduce our proposed new method, which can be used to form, based on
the spectral decomposition of a matrix obtained through its Schur decomposition, a complete
basis of vectors that can be used as a replacement of the previously mentioned Graph Fourier
Transform. The proposed method, the Graph Schur Transform (GST), aims to o�er a valid
operator to perform a spectral decomposition of a graph that can be used even in the case of
defective matrices.

Finally, in Chapter 4 we study the main properties of the proposed method and compare
them with the corresponding properties o�ered by the Di�usion Wavelets design. In the last
section we prove, for a large set of directed graphs, that the GST provides a valid solution for
the problem.
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Introduction

Data is constantly being collected around us. All this volume of information is stored by
researchers, governments and companies for many di�erent purposes. We not only refer to
massive amounts of data collected for applications on the well known Big Data area such as
bank, security and communications information, it is also being critical for medical solutions,
sensor control or the study of tra�c patterns. And something that all this applications have
in common is that the raw data needs to go through a speci�c processing in order to be useful
for its purpose. But the abundance and complexity of such amounts of data means that the
information now resides on irregular and complex structures that do not lend themselves to
standard tools [1].

To face this issue, graphs are being used to represent the geometric structure of data
domains in numerous applications, including social, energy, biology, transportation, sensor,
and neural networks. For example, in social networks individual users establish connections
with each other and interact generating large amounts of data. In this case graph nodes
represent users and graph edges correspond to possible connections between users. The data
on these graphs can be visualized as a �nite collection of samples with one sample at each node
in the graph. This setup could be used, for example, to infer the structure of a community by
its relations and friendships, perceive alliances between agents through game theoretic models
[2], quantify the connectedness of the world or study the relevance of particular users [3].

In order to process all the data generated and structured as a graph signal, it is necessary
to adapt basic methods used in signal processing to generalize fundamental operations such as
�ltering, translation, modulation or dilation. The emerging �eld of Graph Signal Processing
(GSP) merges algebraic and spectral graph concepts with computational harmonic analysis
in order to process signals on graph structures [4]. Doing so requires to extend classical signal
processing concepts such as Fourier transform and frequency response so they can be used on
data residing on graphs. With this purpose, the Graph Fourier Transform (GFT) has been
created [5], in order to develop the tools necessary to adapt the classical setting and extend it
to graphs. With this adapted tools we can �lter graph signals, and also sample and denoise
them.

A signi�cant problem that can be faced when using graph signal processing on real-world
graphs arises when the matrix corresponding to a graph operator cannot be diagonalized this
complicates the study of the graph in the spectral domain (Chapter 2). Finding the spec-
tral decomposition of the matrix representing one of the graph operators is essential to build
graph signal processing tools. This problem appears when dealing with defective directed
graphs, a case that authors tend to avoid assuming that the matrices they study are always
diagonalizable.
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The main purpose of this research has been to �rst identify the structure and properties
of the set of graphs causing this issue to then to develop a systematic tool that can be used
to obtain an alternative form to the GFT concept, valid for graphs where the graph operator
is not diagonalizable. This thesis studies the diagonalizability of directed graphs, describes
the proposed method and studies its main properties.

State of the art and related work

In recent years a lot of research has been developed around graphs. Some of the most studied
areas on this emerging �eld are 1) the discovery of e�cient models to represent large high-
dimensional data [6] [7], 2) the quanti�cation of network characteristics [8], 3) the labeling of
large amounts of data [9] 4) and, in the �eld of GSP, the development of transforms for data
indexed by graphs such as regression algorithms [10], wavelet decomposition [11] [12] [13] or
�lter banks [14] [15]. Speci�cally, the de�nition of a Fourier transform for use in uncertainty
analysis on graphs in the frequency domain has been deeply studied [16].

We next introduce recent relevant contributions before presenting the work developed in
this research.

GFT for irregular directed graphs: The di�culties to use the standard GFT [3] on some
directed graphs have been widely studied, with the purpose of �nding alternatives that allow
GSP tools to be used on these group of graphs. The problem, described in further detail in
Chapter 2, is based on the non-diagonalizability of the adjacency matrix of a graph. Many
studies use the Jordan matrix decomposition [17] to �nd an spectral decomposition of the
graph. For example, in [18] and [19] a graph Fourier transform for which the spectral compo-
nents are the Jordan subspaces of the adjacency matrix is presented. More recently, in [20] a
method to replace a given adjacency shift A by a diagonalizable shift AD is obtained via the
Jordan-Chevalley decomposition, while this method leads to a diagonalizable shift operator,
it starts by computing the Jordan form, which is well known to be numerically unstable.
And this is a common limitation for all solutions based on the Jordan decomposition. This
situation leads to investigate alternative approaches. For example, in [21] the graph Fourier
basis is built as the set of orthonormal vectors that minimize a continuous extension of the
graph cut size, known as the Lovasz extension. Other alternatives to the Jordan form are
presented in [22] and [23].

Modi�cations for irregular topologies: The solutions mentioned above face another prob-
lem, which is the lack of physical interpretation. For example, the idea presented in [20] o�ers
an alternative that modi�es the graph adjacency matrix (based on numerical approximation
criteria), obtaining results based on a graph with a di�erent topology from the original one,
since it only modi�es the algebraic representation of the graph adding or changing the el-
ements of the matrix, causing a modi�cation of the graph edges and weights. Therefore,
another approach taken to address defective directed graphs, where the GFT cannot be cal-
culated, is to �nd a slight topological modi�cation that results in a more feasible graph. The
clearest example of this methodology is implemented in the Pagerank algorithm [24], with the
so called Pagerank Teleportation [25].

Wavelet con�gurations: Finally, we want to mention another alternative, common also
in the �eld of classic signal processing, consisting on the grouping of frequencies by forming
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wavelets. An approach based on wavelets is proposed by [26] where they propose a novel
method for constructing wavelet transforms of functions de�ned on the vertices of arbitrary
�nite weighted graphs. Similar ideas are presented in [27] and [28]. Our proposed method
is inspired by the Di�usion Wavelets method [13] [29]. This model o�ers a tool to build a
spectral decomposition for di�usion operators, such as the adjacency matrix of a graph.

Outline and main contributions

The previously mentioned problems that GSP techniques face when it comes to defective
directed graphs led to the development of this thesis. Its main purpose its to �nd a method
that allows to systematically adapt those already known techniques so they can be used in
almost every graph, and especially on graphs with a non-diagonalizable graph operator.

This thesis has been structured in four parts. In Chapter 1 we begin by presenting the
framework in which GSP is developed, giving some basic de�nitions in the �eld of graph
theory and its algebraic and polynomial representation. Then, we introduce how concepts
from classical signal processing are approached in the graph environment, describing how
graph �lters are created and presenting the concept of a Graph Fourier Tranform (GFT),
which will be of great importance in the proposed solution.

Chapter 2 presents the actual motivation of the research: Why the computation of the
GFT is problematic for some directed graphs, and the speci�c cases in which this happen.
This allows us to understand the problem in order to �nd a solution. We will see that the
problem of a defective adjacency matrix cannot be associated to a speci�c topology, and
therefore the developed solution should be applicable to any directed graph.

In Chapter 3 we introduce our proposed new method. We start by briey describing
the ideas that inspired it: The Schur decomposition, which is an algebraic method used to
obtain the spectral decomposition of a matrix (valid for defective matrices), and the Di�usion
Wavelets formulation, which shows a possible spectral decomposition of a di�usion operator.

We built a method that can be used to form, based on the spectral decomposition of a
matrix obtained through its Schur decomposition, a complete basis of vectors presented as
an invertible matrix that can be used as a replacement of the previously mentioned Graph
Fourier Transform. The proposed method, the Graph Schur Transform (GST), aims to o�er
a valid operator to perform a spectral decomposition of a graph that can be used even in the
case of defective matrices.

Finally, in Chapter 4 we study the main properties of the proposed method. We describe,
in particular, its properties regarding subspace invariance, orthogonality and spectral localiza-
tion, and compare them with the corresponding properties o�ered by the Di�usion Wavelets.
In the last section we prove, with a large set of directed graphs, that the GST provides a valid
solution for the problem.
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Chapter 1

Fundamentals of Graph Signal Processing

1.1 Graphs

We start this section by introducing basic de�nitions related to graphs and their algebraic
representation. Next, we describe the main graph operators and present the role of invariant
subspaces and polynomials in graph signal processing.

1.1.1 Basic definitions

De�nition 1.1. A graph G(V;E) is a discrete structure de�ned as a set of nodes V and
edges E, where an edge eij represents a link between node i and node j.

De�nition 1.2. A graph can be weighted, if any edge eij can take a real positive weight
!ij , or unweighted, if the weight for all its edges is 1. An inexistent edge will be represented
by a weigth zero, both in weighted and unweighted graphs.

De�nition 1.3. A graph is undirected if the edge eji exists whenever eij exists and !ji = !ij .
A graph where eji or eij may not exist and in general !ji 6= !ij is a directed graph. Edges
on directed graphs are represented by arrows from node i to node j.

De�nition 1.4. A subgraph is de�ned as a subset of nodes and edges from a larger graph.
Given a graph G(V;E), a subgraph Gs(Vs; Es) is such that Vs � V and Es � E.

A possible characterization of graphs comes from the number of neightbors linked to each
node, de�ned as the node degree [5].

De�nition 1.5. The node degree is de�ned for undirected graphs as the total sum of the
weights of its edges:

di =
X

j

!ij (1.1)

For directed graphs the in-degree and the out-degree are de�ned:

din
i =

X
j

!ij ; dout
i =

X
j

!ji (1.2)

From the de�nition of node degree we can de�ne a notion of regularity depending on the
variation of degree leading to the de�nition of regular graph.
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De�nition 1.6. A regular graph is an unweighted graph where all the nodes have the same
number of neighbours [30]. A cycle graph (De�nition 1.9) would be an example of a regular
graph.

In most cases, real graphs will not be exactly regular. However, the node degree will
provide a measure to de�ne the regularity of a graph, which will be highly regular when the
degree is similar for all nodes, and irregular when we can �nd very di�erent values for di�erent
nodes. This work will focus on simple graphs, generally but not always unweighted, and in
particular directed graphs. Hypergraphs, which are de�ned as graphs where there can be
multiple edges between any two nodes [5], will not be considered, and even if self-loops may
appear (edges eii), their presence will not a�ect the purpose of the research.

The following concepts, speci�c for directed graphs, will appear regularly throughout the
work and will be helpful for a better understanding.

De�nition 1.7. For directed graphs, we de�ne a sink as a node with dout
i = 0 and a source

as a node with din
i = 0.

De�nition 1.8. A path is a set of nodes such that two nodes are connected if and only if
they are consecutive in a list. In directed graphs, all nodes except the ones in the extremes
have din = dout = 0 while in the case of undirected graphs, they have d = 2.

We de�ne a sink-path as a directed set of nodes where the �rst one can have multiple
outgoing and incoming edges and the last one has dout = 0. In the same vein, a source-path
is a directed path where the �rst node has din = 0 and the last one can have multiple edges.

De�nition 1.9. A cycle graph can be de�ned as a path graph where an additional edge is
added from the sink node to the source node, having the same number of nodes and edges.
For an undirected cycle the degree will be d = 2 for all nodes, while for a directed cycle all
nodes will have degree din = dout = 1.

De�nition 1.10. We refer to a directed set of nodes as a strongly connected component if
there exists a directed path, in both directions, between any two nodes. Conversely, a weakly
connected component exists when the corresponding undirected graph is connected.

Whenever a graph can be divided into two connected components where there are no edges
connecting nodes belonging to two di�erent components, each subgraph can be treated as an
independent graph. Therefore, signals on these graphs can be processed separately for each
of the subgraphs, since there isn’t any inuence between them.

1.1.2 Algebraic representation of graphs

Graph operators can be de�ned by representing graph connections in a matrix form. These
matrix representations will allow us to de�ne frequencies for graph signals in Section 1.2 [5].

De�nition 1.11. Given a graph G with N nodes, the adjacency matrix A is an N � N
square matrix where the entry aij will correspond to the weight wij . This is, the weight of
the edge from node i to node j.

From this de�nition, we can derive that for all graphs, aii = 0 for all i if there are no self-
loops, and that for undirected graphs aij = aji so that the adjacency matrix is symmetric.
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(a) Path graph (b) Sink-path (c) Source-path (d) Cycle

Figure 1.1: Examples of a directed path graph, directed graphs with a sink-path and a source-
path, and a cycle of 8 nodes, which can be an example of a regular graph.

Therefore, in the general case of an unweighted directed graph, A will have 1’s in the
positions where an edge exists, and 0’s in the rest.

This is the most basic matrix representation of a graph and will be the one used on the
proposed method in Chapter 3. As an example, the adjacency matrix of the directed path
shown in Fig. 1.1a can be written as:

A =

0BB@
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA
It is important to remark that the node indexing order is not important, since it will not

a�ect the result of matrix operations. A di�erent labeling of nodes in a graph would only
result on a di�erent permutation of the graph representing the same connections, only with
di�erent node labels. Therefore, if a simple indexing exists, it can be used without loss of
generality [5].

When the adjacency matrix A is de�ned, we can build the degree matrix of a graph.

De�nition 1.12. The degree matrix D of a graph is a diagonal matrix where each term
of the diagonal corresponds to the total degree of the corresponding node. For an undirected
graph dii =

P
j aij , adding together all the terms in the corresponding row of the adjacency

matrix. For directed graphs we can separate the in-degree matrix and the out-degree matrix,
adding together, respectively, the rows and the columns of the adjacency matrix.

We can represent the node degree of an undirected graph in a matrix form as:

D = diag(A1); (1.3)

where diag(v) builds a square matrix with the elements of v along its diagonal and the symbol
1 corresponds to the vector [1 1 ::: 1]T.

In the case of directed graphs, the following equations represent, respectively, the in-degree
and out-degree matrices for directed graphs:

Dout = diag(A1); (1.4)

Din = diag(1TA) (1.5)

7



Normalization

For undirected graphs, it is possible, and recommended, to normalize the adjacency matrix
[31] and [32]. This normalization is performed, respectively, by the following operations:

~A = D�1A (1.6)

or

~A = D�1=2AD�1=2 (1.7)

However, it is not possible to use this normalization on directed graphs, since two di�er-
ent degree matrices exist and it is not always possible to compute the inverse of any of them.
Therefore, a di�erent normalization method is needed for directed graph, and an example will
be introduced in Chapter 3.

1.2 Signals on Graphs

A graph signal is de�ned as a vector x containing scalars corresponding to the values of the
signal at each node on the graph. More precisely:

De�nition 1.13. A graph signal is a real vector x 2 RN , where the entry x(i) is the real
scalar corresponding to the signal associated to node i.

1.2.1 Graph filters and operators

A linear graph �lter is represented as a linear operator that gives an output signal y when
applied to a graph signal x. The most basic example of a linear �lter is the adjacency matrix,
which gives

y = Ax (1.8)

where the i-th element of the output y corresponds to the sum of the values of all its neighbors.
More speci�cally, in the case of a directed graph the result of applying this linear �lter to a
graph signal x would be, for each node, the sum of all the signals connected to it by directed
edges in an incoming direction.

Graph operators

There are other graph operators represented by matrices that, when multiplied by a graph
signal, give a new graph signal (the output). Therefore, the adjacency matrix performs a
1-hop di�usion through the graph edges when applied to a graph signal.

Other graph operators can be de�ned on graph signal processing to carry out di�erent
operations to work with graphs. The Graph Laplacian (L), and the Random Walk Laplacian
(T ) are examples of popular graph operators used in GSP [32]. Both of these common
operators are de�ned from A and D. However, these operators cannot be used for directed
graphs. Even though adapted versions of these operators have been developed in [33], they
are not used in this thesis and we focus on the adjacency matrix s the main operator.
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All the graph operators mentioned in the previous section are de�ned as 1-hop operators,
which means they can be used as 1-hop �lters. From now on we will de�ne Z as a generic
1-hop operator. It is also important to remark that if Z is a 1-hop operator, then Z2 is a
2-hop operator, so Zk is a k-hop operator. Therefore, arbitrary polynomials P (Z) of degree
k will be localized to the k�neighborhood of a node.

De�nition 1.14. For a given graph operator Z, a polynomial graph �lter P (Z) is an N�N
matrix of the form

P (Z) =

kX
i=0

aiZ
i (1.9)

where the terms ai correspond to the coe�cients of the polynomial, and Z0 = I

1.2.2 Polynomials and invariant subspaces

Minimal polynomial of a vector

We start by considering x 2 RN , and apply the operator Z successively to this vector. This
operator could be any of the operators introduced in the previous section. For a given x, we
can �nd a certain p such that

[x;Zx;Z2x; :::;Zpx] (1.10)

are linearly dependent [5]. For this p, we can express

Zpx =

p�1X
k=0

akZkx (1.11)

and therefore there is a polynomial, named the minimal polynomial, such that

Px(Z)x = (�
p�1X
k=0

akZk + Zp)x = 0 (1.12)

According to (1.11), Zp can be expressed in terms of lower powers of p. This means that a
graph �lter P (Z), of degree higher than p, provides the same output for x as a polynomial of
degree p or lower. From this, we can express P (Z) as

P (Z) = Q(Z)Px(Z) +R(Z) (1.13)

where the degree of Q(Z) and R(Z) is less than that of Px(Z). Therefore, by de�nition of
Px(Z),

P (Z)x = R(Z)x (1.14)

Eigenvalues and eigenvectors

Given (1.11), if u is a vector x such that p = 1, then

Zu = �u (1.15)
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for some scalar �. Then u and Zu are linearly dependent and u is de�ned as an eigenvector
of Z, where � is the corresponding eigenvalue. In this case, the minimal polynomial of Z for
the vector u is

Pu(Z) = Z� �I (1.16)

and from this we can de�ne the eigensubspace Eu = span(u), which is invariant to Z.

It is possible for a speci�c eigenvalue � to be repeated in the set of eigenvalues of the
matrix, and therefore be associated to more than one eigenvector. In this case, we de�ne:

De�nition 1.15. The algebraic multiplicity ma of an eigenvalue � is the number of times
it appears in the spectral decomposition of a matrix.

De�nition 1.16. The geometric multiplicity mg (� ma) of an eigenvalue � is the number
of linearly independent eigenvectors associated to it.

Invariant subspaces

More generally, for a vector u so that the minimal polynomial Pu(Z) has degree p, we can
rede�ne Eu as the span of

u;Zu;Z2u; :::;Zp�1u

which represent p linearly independent vectors. Since Zpu can be rewritten in terms of Eu

(according to (1.11)), we have that Eu is invariant to Z or any polynomial P (Z), and we know
that all polynomials applied to signals in Eu can have degree no greater than p� 1 [5].

1.3 Frequency representation of graph signals

The main idea of this section is that any graph signal can be represented as a weighted sum of
elementary signals, each corresponding to a graph frequency, which together form the Graph
Fourier Transform (GFT).

1.3.1 Graph Fourier Transform (GFT)

If the matrix Z of a graph operator is diagonalizable we can �nd N linearly independent
eigenvectors and we can form a basis for RN using these eigenvectors. In the case of non-
diagonalizable, or defective, matrices it is not possible to obtain N linearly independent
eigenvectors, and thus we cannot construct a basis for RN with eigenvectors of Z. The main
purpose of this research, is to construct a basis for these cases, and will be explained in
Chapter 3. Therefore, the following de�nitions will only apply to diagonalizable matrices Z,
but will be valid for both directed and undirected graphs.

For diagonalizable N � N matrices, N linearly independent eigenvectors exist, each cor-
responding to a certain eigenvalue �i, which can be interpreted as the frequency associated
to that vector. More speci�cally, since it is possible for an eigenvalue to have algebraic mul-
tiplicity greater than 1, we say that �i is the frequency associated to the subspace Ei, which
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is de�ned as the span of the linearly independent eigenvectors of eigenvalue �i. For a diago-
nalizable matrix Z we can construct U, an invertible matrix where each column is one of the
eigenvectors of Z, and write

Z = U�U�1 (1.17)

where � is the diagonal matrix with the eigenvalues of Z, and U a matrix containing its
eigenvectors.

De�nition 1.17. Now we can write any graph signal x in terms of its graph frequencies:

x = U~x (1.18)

where
~x = U�1x (1.19)

is de�ned as the Graph Fourier Transform (GFT) of the graph signal x [3].

Note that for undirected graphs, Z is a symmetric matrix and therefore has a full set of
orthogonal vectors, and it holds that

U�1 = UT

so that we can de�ne the GFT for undirected graphs as

~x = UTx (1.20)

A possible interpretation of the GFT can be seen in Fig. 1.2. The eigenvectors of U
corresponding to the graph frequencies can be visually shown in a graph by assigning to each
node the value of the corresponding element of the eigenvectors. Plotting this representation
in a color map shows a sense of the variation on the graph of eigenvectors corresponding
to each frequency. Variation will usually be lower for the lowest frequencies and higher for
increasing values of �i.

Figure 1.2: Representation of the eigenvectors corresponding to some of the frequencies of an
undirected graph. In a color scale from blue to red, blue showing low values and red being
a value of � 0:6 The �rst two images show the result for low frequencies while the last two
images correspond to the highest frequencies of the graph.

As described in the introduction, many forms to construct the GFT of an speci�c graph
exist. Firstly, a di�erent version can be created depending on the election of the operator Z.
Also, in cases where the operator cannot be diagonalized, or when it can be diagonalized but
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some eigenvalues have multiplicity greater than one, we have multiple choices to construct
basis.

The most important factor when choosing which operator to use should be the properties
of signals to be processed: it will be highly desirable for the elementary bases, or at least
some of them, to have a meaningful interpretation.

As we previously mentioned, the presented formulation of a Graph Fourier Transform
cannot be used on defective matrices, even though they may appear in many directed graphs
as we will see in Chapter 2. For these cases, di�erent methods have been proposed, using
mathematical tools such as the Jordan form [17], and ideas from classical signal processing
such as wavelet packets [13] [29] (as mentioned in the introduction). Thus, a new method to
obtain a spectral decomposition usable on directed graphs is presented in the next chapter.
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Chapter 2

The problem: Non-diagonalizable graphs

The �rst step to obtain the GFT of a signal on a graph is to diagonalize the matrix represen-
tation of the corresponding graph operator. Focusing our operations on the adjacency matrix
A, we de�ne that:

De�nition 2.1. A matrix A is diagonalizable if it is similar to a diagonal matrix. That
is, if there exists an invertible matrix U and a diagonal matrix � such that A = U�U�1.
The matrix � contains the eigenvalues of A in its diagonal, and U is a matrix whose columns
correspond to the eigenvectors of A.

Since U must be an invertible matrix to compute the GFT of a signal, N linearly inde-
pendent eigenvectors are needed, so that rank(U) = N . Therefore, to have a GFT basis for
a graph we need the adjacency matrix A to be diagonalizable.

For a non-diagonalizable graph (also called defective), a complete set of linearly indepen-
dent eigenvectors does not exist, so a complete basis for RN cannot be formed. This means
that, even though the U matrix can be computed, its rank will be rank(U) < N and this
would make the matrix U not invertible (or singular). Therefore, the matrix U can not be
used to form the GFT of a signal in graphs with a defective A matrix.

Many techniques have been used to obtain a decomposition of these graphs in the frequency
domain, such as the Jordan canonical form [34], but the main problem for this approach is its
numerical instability. To develop a solution to address this diagonalization problem (as the
one proposed in chapter 3), it is important to �rst identify and characterize the properties of
graphs having this problem. By de�nition, it is straightforward that the adjacency matrix A
for an undirected graph is always symmetric, since when an edge exists between nodes i and
j we have that aij = aji.

Theorem 2.1. (Spectral theorem) Every symmetric matrix with real coe�cients is orthogo-
nally diagonalizable as A = U�U�1 [35].

This means that undirected graphs are, by de�nition, always diagonalizable. In addition,
the corresponding U matrix will be formed by N orthonormal vectors and the eigenvalues
of the matrix will be real [35]. Since it is trivial that every undirected graph will have a
GFT matrix they will not be considered in the coming sections. But this property does not
always hold for directed graphs. The adjacency matrix of a directed graph is, by de�nition,
asymmetric.
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2.1 Diagonalization of directed graphs

Directed graphs, also called digraphs, are present in a wide range of science and technology
�elds. The topology and edge density of these graphs can vary widely having, for example,
graphs with many sinks and sources (the World Wide Web) or extremely irregular graphs
(social networks) where node degree may vary from hundreds to millions.

2.1.1 Generating synthetic digraphs

From this point on, random synthetic digraphs will often be generated in order to test various
digraph properties. The method used to generate these graphs, called Erd~os-R�enyi graphs
[36], consists on, for a given number of nodes N , assigning to each pair of nodes an edge
with probability p. For simplicity, the resulting graphs will be unweighted and will not have
self-loops. Even though this model may not correspond to real world graphs, it is very useful
to study connectedness and degree distribution [5]. For this types of graphs we will obtain
strongly and weakly connected graphs and, for the second case, graphs with sinks, sources
and cycles. This variety will be enough to qualitatively determine the main properties of this
types of graphs and especially the one we want to focus on: matrix diagonalization. To give a
sense on how likely it is for the adjacency matrix of a directed graph not to be diagonalizable,
some statistical results on Erd~os-R�enyi graphs, for a variety of sizes (N) and probabilities (p),
are presented.

Edge probability (p)
2/N 4/N 6/N 8/N 10/N

N=100 100 79.7 3.7 0 0

N=200 100 98.3 19 0.3 0

N=300 100 99.6 34 5 0

N=400 100 100 41.2 9.7 0

Table 2.1: Percentage of defective adjacency
matrices in a set of random graphs of di�er-
ent graph sizes N (1000 graphs for each N)
and varying the edge probability p. Note that
the edge probability is de�ned as a function
of the number of nodes, in the form p = k=N .

Figure 2.1: Graphic representation of
Table 2.1

It can be observed in Fig. 2.1.1 that it is highly probable for a graph adjacency matrix to
be defective when the edge density is relatively low, since the percentage of defective graphs
obtained is high for small edge probabilities. Considering that Erd~os-R�enyi graphs are likely
to be regular, this suggests that for real-world graphs it is even more probable to have a
defective adjacency matrix.

2.1.2 Strongly and weakly connected graphs

In Chapter 1 the di�erence between strongly connected graphs (SCG) and weakly connected
graphs (WCG) was de�ned. The �rst group is formed by directed graphs where at least one
path exists, in both directions, between any two nodes of the graph. The most basic example
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of a SCG could be a directed cycle, were all nodes can be reached from any other node. On
the other hand, the only necessary condition for a graph to be to be weakly connected is
that the corresponding undirected graph is connected. This leads to the possibility to have a
node with in-degree or out-degree zero leading to the existence of sinks and sources, which,
by de�nition, cannot exist in SCG. However, sources and sinks are not the only elements that
prevent graphs from being strongly connected. A graph containing unidirectional connections
between two connected components will always be a WCG, since there will not exist any path
from the target group to the source one. Algebraically, the clearest way to identify a graph
as strongly or weakly connected graph is the (ir)reducibility of its adjacency matrix.

De�nition 2.2. We call an N �N complex square matrix A reducible if N � 1 and there
exists a permutation matrix P such that

PTAP =

�
B C
0 D

�
(2.1)

where B and D are non-empty square matrices. Thus, we call a square matrix A irreducible
when it does not exist such permutation matrix P that can put A in the form of (2.1)

The adjacency matrix A is always de�ned as irreducible for SCG and reducible for WCG
[37]. By inspection, it can easily be seen that a reducible A matrix leads to a WCG, if we
notice that any connection exists from a node in the lower-left block to a node in the upper-left
block (submatrix C) and, consequently, no paths can exist in that direction. However from
the experiments shown in if Fig. 2.2 we can state that some irreducible matrices may not be
diagonalizable.

Statistical results

Repeating the statistical study performed in Table 2.1 for both SCG and WCG gives some
clear results. Creating in each case 1000 Erd~os-R�enyi graphs of random sizes between N = 10
and N = 550 and with random probability p 2 [0:001; 0:2], 24% of WCG were not diagonaliz-
able, while only a 3:80% of SCG were non-diagonalizable. This result is enough to state that
while SCGs are less likely to be defective, some may be defective.

(a) Strongly connected graphs (b) Weakly connected graphs

Figure 2.2: Relation between edge probability and graph size for diagonalizable and defective
graphs for SCG in a) and WCG in b).
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2.2 Properties of directed graphs

Certain graph characteristics can guarantee that a graph is diagonalizable or be defective.
These graph properties and characteristics will be described in this section to help building a
better classi�cation. It is interesting to identify, for example, which graph elements will result
in the existence of a defective matrix, since a possible solution to obtain a diagonalizable
equivalent without losing essential graph properties could be to modify the graph avoiding
those speci�c characteristics.

2.2.1 Diagonalizable directed graphs

Remark 2.1. A digraph, either strongly or weakly connected, whose eigenvalues are all
di�erent is, by de�nition, always diagonalizable. However, this property does not imply that
graphs where a certain eigenvalue � has algebraic multiplicity ma > 1 is necessarily defective,
sincema linearly independent eigenvectors can exist and correspond to � (whenevermg = ma).

Remark 2.2. Strongly regular digraphs are always diagonalizable (as developed by Godsil,
Hobart and Martin in [38]). Recalling the de�nition of regular graph in Section 1.1.1, a node
in a regular graph must satisfy the degree condition: din = dout. This is a very restrictive
condition that will not generally be satis�ed by real-world graphs.

Remark 2.3. Cyclic graphs are always diagonalizable. In addition in the case of unweighted
graphs the set of eigenvalues of the adjacency matrix of a cycle will be the N complex solutions
to N
p

1.

2.2.2 Defective directed graphs

Remark 2.4. The existence of a source or a sink in a graph is not a reason for it to be defective
(as can be seen in Fig. 2.2b, many diagonalizable WCG exist). However, the existence of
path-sources or path-sinks (de�ned in Section 1.1.1), is a su�cient condition for a directed
graph to be defective.

Remark 2.5. In fact, adding a source/sink to a diagonalizable graph gives a resulting di-
agonalizable A matrix, and adds an eigenvalue zero to the spectrum, but adding a path-
source/sink automatically makes it defective, since it adds two zero eigenvalues with linearly
dependent eigenvectors.

Directed acyclic graphs

We de�ne a directed acyclic graph as a �nite digraph with no directed cycles (Fig. 2.3a).
That is, it is not possible from any node of the graph, to �nd a directed path that leads back
to itself. In addition, the adjacency matrix of a DAG will always be nilpotent [39].

De�nition 2.3. An N �N matrix A is nilpotent if and only if Ak = 0 for k � N [40].

Note that taking the parameter k in the previous expression, we can state that the length
of the longest path of a DAG will be k � 1. Its acyclic nature gives DAGs a linear structure
where, ultimately, paths only exist in one direction. To build this structure it is necessary for
at least one source and one sink to exist in a DAG.
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In addition, any nilpotent matrix can be transformed into an upper triangular matrix with
zeros along its diagonal. And, by de�nition, the diagonal parameters of an upper triangular
matrix are its eigenvalues. Thus, all the eigenvalues of a DAG’s adjacency matrix are zero.

Remark 2.6. The adjacency matrix A for a DAG is always defective [41]. The eigenvalues
of A are N zeros and there only exist as linearly independent eigenvectors as the number of
sources in the graph.

A speci�c case of a directed acyclic graph are the directed trees, de�ned as digraphs with
only one source and at least one sink, from where all the nodes in the graph can be reached,
but where one node can not be reached through two di�erent paths (Fig. 2.3b). From Remark
2.6, we can state that for directed trees all the eigenvalues of the adjacency matrix will be
zero and, by de�nition, only one linearly independent eigenvector will exist. Therefore, they
will always be defective.

Remark 2.7. We can derive from the previous statements that path graphs are always
defective, since we can think of them as DAGs and, more precisely, as directed trees with one
source, one sink and only one path of length N .

Remark 2.8. Weakly connected graphs formed by the unidirectional connection of two (or
more) connected components, can be interpreted as groups of nodes connected in one single
direction, therefore behaving as DAGs (Fig. 2.3c). Thus, even this group of graphs do not
present N zeros as eigenvalues, they are also always defective.

(a) Directed acyclic graph (b) Directed tree (c) Unidirectional connection

Figure 2.3: Examples of some directed graphs mentioned in section 2.2.2.
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Chapter 3

Proposed solution: Graph Schur Transform
(GST)

In this chapter we present our method to �nd a spectral decomposition for defective directed
graphs. The �nal result of the proposed algorithm could be an equivalent to the previously
mentioned Graph Fourier Transform, for signal processing on the spectral domain. The basis
obtained by using our method, where frequencies are grouped into subspaces, shows relevant
properties such as invariance, subspace orthogonality and spectral localization.

3.1 Main concepts behind the GST

Before presenting the proposed method, we will briey introduce the two concepts in which it
has been inspired. Firstly, we present the Schur decomposition (Section 3.1.1), an algebraic
method to write a complex matrix as unitarily equivalent to an upper triangular matrix
whose diagonal elements are the eigenvalues of the original matrix [42]. The second concept is
the Di�usion Wavelets formulation (Section 3.1.2), presented in [13], which shows a possible
spectral decomposition of a di�usion operator, such as the adjacency matrix of a graph.

3.1.1 Schur Decomposition

Denoting Z a fundamental graph operator, such as the adjacency matrix, the Schur decom-
position of Z can be obtained even if Z is not diagonalizable:

Z = UTUH (3.1)

where U is unitary, UH is the Hermitian transpose of U and T is an upper triangular matrix
with the eigenvalues of Z along its diagonal.

The Schur decomposition is not unique, a di�erent one is obtained for any given ordering
of eigenvalues. In addition, the representation may not be unique if there are eigenvalues with
algebraic multiplicity ma greater than one [5]. We can interpret the U matrix obtained in a
Schur decomposition as follows:

Denote ui the i-th column of U and let Ei = span(ui). Then, because U is unitary, we
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have that CN =
LN

i=1Ei, i.e., CN is the direct sum of the Ei subspaces and it holds that:

Fk =

kM
i=1

Ei; k = 1 : : : N (3.2)

are subspaces of RN invariant under Z, as will be shown next. That is, if x 2 Fk then Zx 2 Fk.

Note that since U is unitary, we have that UH = U�1 so that ZU = UT. Thus, de�ning
the upper triangular matrix T as the sum of a diagonal matrix of eigenvalues D and a nilpotent
matrix N we have that:

Z[u1u2 � � uN ] = [u1u2 � � uN ](D + N) = [u1u2 � � uN ]

0BB@
�1 n12 n13 � �
0 �2 n23 � �
0 0 �3 � �
: : : �

1CCA (3.3)

where �1; ::: ; �N represent the eigenvalues of the Z operator and nij the corresponding element
of the N matrix. Now the multiplication of each of the ui by the operator Z can be expressed
as

Zu1 = �1u1 2 F1

Zu2 = n12u1 + �2u2 2 F2

and in general

Zui =
i�1X
j=1

njiuj + �iui 2 Fi (3.4)

Therefore, subspaces Fi are invariant but there is an overlap, since Fi�1 � Fi.
Denote vi = Zui and PEivi the projection of vi into the subspace Ei, which can be

described as the vector in the subspace Fi that is closest to ui (the vector representing a basis
for Ei). We de�ne the approximation error for each Fi as the norm of the di�erence between
the projection of vi into the subspace Ei and v. Thus, the error �i is

�i = jjPEivi � vijj2 =
������ i�1X

j=1

njiuj

������
2

=
q
n2

1i + n2
2i + n2

3i + ::: (3.5)

Polynomials of S

Assuming that Z is a 1-hop localized graph operator, such as an adjacency matrix, a poly-
nomial of degree k, P (Z) of Z would be localized (Section 1.2.1). We now discuss how this
operation can be interpreted in terms of the Schur decomposition.

First, note that we only need to study the behavior of T, since

Zk = UTkUH: (3.6)

Rewriting again T = D + N, we have that N is a nilpotent matrix so that Nm = 0 for
some integer m � N where N is the size of the Z operator[40]. Next, we de�ne P (T), a
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polynomial of T in terms of D and N where P (�) has degree k. Then, we can use the Taylor
series expansion to write:

P (D + N) = P (D) + P (1)(D)N +
1

2!
P (2)(D)N2 +

1

3!
P (3)(D)N3 + : : : (3.7)

where P (i)(D) denotes the i-th derivative of P . This allows us to represent P (Z) in the
spectral domain:

P (Z) = UP (D + N)UH = UP (D)UH + UP (1)(D)NUH +
1

2!
UP (2)(D)N2UH + : : : (3.8)

Note that N is strictly upper triangular so that the �rst column of N is 0, the �rst two
columns of N2 are 0 and N is nilpotent, so that for some m we will have that Nm = 0. This
allows us to express the output of P (Z) for each of the orthogonal basis vectors in U.

Note that UHui = ei, the i-th canonical basis vector, which produces the i � th column
of a matrix that multiplies it. Thus, based on properties of N we have that:

Nme1 = 0; 8m � 1

and in general
Nmei = 0; 8m � i (3.9)

Based on this expression, the output when u1 is the input depends only on P (�1) that is:

P (Z)u1 = P (�1)u1:

Similarly multiplication by u2 can be written as:

P (Z)u2 = P (�2)u2 + P (1)(�1)n12u1;

where n12 is the entry at the �rst row, second column of N. And following a similar argument
we can write:

P (Z)u3 = P (�3)u3 + P (1)(�2)n23u2 + P (1)(�1)n13u1 + P (2)(�1)n
(2)
13 u1;

where n13 and n23 are non zero values on the 3rd column of N while n
(2)
13 in the third col-

umn of N2. Therefore, for ui all the terms including powers of N greater than i � 1 will be
zero. From this we can see that, for any column vector ui of the matrix U obtained in the
Schur decomposition of Z the multiplication of any vector ui by any polynomial P (Z) is also
invariant, with resepect to Z to the subspace Fi, since the result will be a linear combination
of the vectors that form the basis for Fi.

3.1.2 Diffusion Wavelets

The di�usion wavelets (DW) design [13] uses an approach that combines both spectral and
vertex domain characteristics, but without providing exact localization in either of these
domains [5]. The key observation in the DW design is that successive powers of the di�usion
operator Z will have increasingly lower numerical rank. This is because when an operator Z
is normalized so that the magnitude of the eigenvalues ranges from 0 to 1, the eigenvalues of
Zk are �k

i and these can become arbitrarily small as k increases. This leads to the de�nition
of �-span of a set of vectors.
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De�nition 3.1. Consider a set of vectors

�v = fv1;v2; : : : ;vNg

which could be for example the columns of Zk. Then, de�ne a set of vectors

�u = fu1;u2; : : : ;ujg

with j � N . Then �u �-spans �v if for all i = 1; : : : ; N :

jjP�uvi � vijj2 � � (3.10)

where P�u computes the projection of a vector onto the span of �u.

Intuitively if �u �-span �v with j < N this means that not much of an error is made by
approximating the span with a smaller set of vectors. In the design of di�usion wavelets, this
idea is used by selecting sets:

�
Z2i = f�2i

s;1v1; : : : �
2i

s;bvNg (3.11)

where fv1; : : :vNg are the eigenvectors of Z. Each of these sets corresponds to the eigenvalues
of the matrices obtained from consecutive dyadic powers of the operator Z such that � < �.
Then V0 = RN and Vi = span(�i), where �i �-spans �

Z2i . At any stage we then �nd a
subspace Wi such that

Vi �Wi = Vi�1: (3.12)

Then choosing a speci�c i we write

V0 = Vi �Wi �Wi�1 � : : :�W1 (3.13)

so that the basis for the Wi spaces form the orthogonal wavelets and the basis for Vi correspond
to the scaling function.

From this design we can �nally obtain M + 1 orthogonal subspaces formed by orthogonal
vectors and corresponding to the eigenvalues of Z in a increasing order:

fW1; W2; ::: ;WM ; VMg (3.14)

Figure 3.1: Diagram of how subspaces are created by applying dyadic powers of Z
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The procedure followed is shown in Algorithm 1.

Algorithm 1 Di�usion Wavelets

Input:
A: Adjacency matrix
M : Expected number of subspaces
�: precision of the algorithm
Ouput:
V0: Matrix with the complete basis
W : Cell of arrays storing the basis for the subspaces, in the order W1;W2; :::; V1

E: Cell of M vectors storing the eigenvalues corresponding to each subspace

1: D Spectral decomposition of A
2: ~A; ~D Divide A and D by max(D)) to rescale the range of eigenvalues to be [0,1]
3: Order eigenvalues increasingly
4: Tree (struct)  DWPTree( ~A;M; �)1

5: for each tree-level j do
6: Wj  Store the set of vectors forming the basis of subspace Wj obtained in step 4
7: Ej  Store the range of eigenvalues corresponding to the subspace j
8: V0  Update the �nal basis
9: end for

10: Wj+1  Store the basis corresponding to the subspace Vk(= Wk + 1)
11: V0  Add Vk(= Wk + 1) to the �nal basis

This approach can be very useful in several applications, as proposed in [13] and [29].
However, this design is not very exible (due to its dyadic structure), and thereforer not so
adaptative to actual eigenvalues. This is why in the next section we propose a new method,
with the intention to o�er a slightly di�erent outcome, speci�cally in relation to the invariance
of its subspaces or the regularity on the de�ned distribution (properties developed in further
detail in chapter 4).

3.2 Wavelets derived from the Schur Decomposition

Both, Di�usion Wavelets and Schur Decomposition decompose the space V0 = CN into the
direct sum of orthogonal subspaces. To understand better the connection let us consider them
again:

{ For the Schur Decomposition CN =
LN

i=1Ei = E1�E2� :::�EN , where the subspaces
Ei = span(ui) are orthogonal, but they are not invariant. Instead, we have that Fk =Lk

i=1Ei is invariant, but clearly the Fk spaces have overlaps and are not orthogonal.

1The DWTree function used has been obtained from the Di�usion Wavelets Toolbox presented in [13] and
can be found in https://github.com/aweinstein/dw. From the many outputs of the Di�usion Wavelets Tree,
we will use the basis of vectors formed in each case, the ExtBasis variable assigned to each subspace Wk.
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{ In the Di�usion Wavelets approximation, for a su�ciently large i, Vi contains only signals
that are in the subspace corresponding to the largest eigenvalue, while W1 corresponds
to the smaller eigenvalues, and for increasing levels the subspace Wi corresponds to
higher eigenvalues. Then we can de�ne the ambient space V0 as:

V0 = Vi �Wi �Wi�1 �Wi�2 � : : :�W1 (3.15)

Also for this method subspaces have orthogonal basis of vectors, and are always orthog-
onal to each other, but they are not exactly invariant to multiplication by the graph
operator.

The initial connection between the two is that, if the eigenvalues are ordered in decreasing
order and i is su�ciently large, then F1 = E1 = Vi.

Therefore, a strong relation between both methods may be possible, and a decomposition
of A into subspaces can be constructed based on the Schur Decomposition. This new approach
can have the following advantages compared with the DW method:

1. Instead of an approximate invariance (as the one that gives the Di�usion Wavelets
approximation for vectors in the W1 subspaces), the proposed method ensures that
vectors within the computed basis are exactly invariant to the subspace they belong to.

2. Invariant subspaces can be built in a more regular and exible way depending on the
purpose of the study, in contrast to the arbitrary grouping of eigenvalues that is ob-
tained with the Di�usion Wavelets method.

3.2.1 Graph Schur Transform (GST)

Our proposed method consists on the generation of a set of subspaces based on the iterative
use of the Schur Decomposition. The output of this method is a group of M subspaces
U1; U2; ::: with respective basis that are orthonormal, and such that subspaces are invariant.

Proposed idea

For a given graph, we start by normalizing its adjacency matrix A. Since the conventional
normalization described in Section 1.1.2 is not possible for all kinds of adjacency matrices,
and our main purpose is to have a normalized set of eigenvalues with magnitudes limited in
the range [0; 1], we proceed by dividing the matrix by its largest eigenvalue obtaining the
normalized (or scaled) matrix ~A.

Using the notation from Section 3.1.1, we denote a series of spaces Fk, such that F1 �
F2 � : : : � Fk where F1 contains the basis from Schur decomposition associated to eigenvalues
�1 to �i1 , F2 contains the basis �1 to �i1+i2 and Fk contains �1 to �i1+:::+ik

, where i1; i2; :::
represent the dimension of the subspace formed by the vectors added in the last iteration.
Thus, we can see the spaces are embedded in each other.

At the same time, we will introduce a series of subspaces G1; :::; Gk, such that

G1 = F1 and G1 �G2 = F2: (3.16)
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so that, in general,

Gi�1 �Gi = Fi: (3.17)

The spaces Gi are de�ned as follows. G1 contains the basis in Schur associated to eigen-
values �1 to �i1 , but G2 contains a basis corresponding to the eigenvalues from �i1+1 to �i1+i2

(that will be renamed �
(2)
1 to �

(2)
i2

). Then to form a complete basis for RN we can represent
this space as:

G1 �G2 : : :�Gk = Fk = RN (3.18)

where Fk corresponds to the last subspace of dimension N .

To �nd the most appropiate criteria to apply to separate the graph frequencies into sub-
spaces, many options have been considered, looking for the one whose output o�ers better
properties on subspace invariance and orthogonality. The reason why the procedure shown
below has been chosen will be developed in further detail in the next chapter.

Building the subspaces

The next step is to de�ne the subspace G1. To start we �nd the Schur decomposition of
the adjacency matrix A by ordering the eigenvalues from smallest (in magnitude) to largest.
This will give us the Schur matrix T and the transformation matrix U. This subspace will
correspond to the lowest energies of the graph, so we can de�ne it as:

G1 = span(u1; :::; ui1); (3.19)

where u1;u2; ::: correspond to the �rst columns of the matrix U and ui1 the column corre-
sponding to the last eigenvalue included in the �rst subspace. Therefore, the basis for this
subspace will be

U1 = [u1 u2 ::: ui1 ] (3.20)

Due to the orthogonal nature of the matrix U obtained in the Schur decomposition, we have
obtained an orthogonal invariant basis for the vectors in G1.

To build the next subspace, we start by reordering the eigenvalues as

f�i1+1; �i1+2; ::: ; �1; �2; ::: ; �i1g

and renaming the eigenvalues as following:

�i1+1 = �
(2)
1 ,

�1 = �
(2)
N�i1+1 ,

�i1 = �
(2)
N :

Now we can rebuild the Schur matrix in the new order:

T(2) =

0BBB@
�

(2)
1 n

(2)
12 � n

(2)
1N

0 �
(2)
2 � n

(2)
2N

� � � �
0 0 � �

(2)
N

1CCCA = U(2)TZU(2) (3.21)
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and repeating the procedure used for G1, we can build a basis for the space G2 taking the

�rst i2 columns of the matrix U(2). The �rst column will be an eigenvector for �
(2)
1 and the

other i2 � 1 vectors will be invariant to the subspace they form. With these vectors we will
have an orthogonal invariant basis, G2, which will form the orthogonal matrix U2:

U2 = [u
(2)
1 u

(2)
2 ::: u

(2)
i2

]

At this point we have built 2 di�erent orthogonal and invariant basis for two sets of

energies of the graph: �1; :::; �i and �
(2)
1 ; :::; �

(2)
i2

. Repeating this procedure as many times as
necessary will result in a set of k invariant subspaces G1; :::; Gk corresponding to the k groups
of energies of the graph, where

G1 � :::�Gi = Fi, (3.22)

Fi �Gi+1 = Fi+1 and Fk = RN (3.23)

Finally, we can de�ne the Graph Schur Transform U as the following squared NxN matrix:

U = [U1 U2 U3 ::: Uk] (3.24)

In order to decide how we will group the normalized eigenvalues, we start by ordering them
increasingly, from zero to one. In the case of complex eigenvalues, we will order by their
magnitude (j�j). The criteria followed to �nd the eigenvalues �i1 ; �i2 ; ::: which will represent
the higher limit for each subspace is to, given the desired number of subspaces k, �nd the
k�1 points where the distance between consecutive eigenvalues is greater. This con�guration
computes a set of subspaces Gi invariant to ~A build with unitary and orthogoanl vectors.
Therefore, all the basis for G1; :::; Gk are orthonormal and invariant. However, vectors from
di�erent subspaces may not be orthogonal to each other, so the �nal basis U, which will
represent the GST of the graph, is not an orthogonal basis. This property will be further
explained in Section 4.1.2.

Figure 3.2: Diagram showing how subspaces are created in the GST method for an example
with N=10 where �1; �2; etc represent the normalized eigenvalues.
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As we already mentioned, this approach o�ers an output that can be preferable for some
applications. Its main properties and bene�ts are presented in the next chapter, and compared
with the results obtained on the Di�usion Wavelets approach to observe the strengths of each
method.

The procedure followed to computationally build the basis of the GST method is described
in Algorithm 2. We include, in the computation of the GST, the creation of a polynomial
�lter for each subspace. The expression of this polynomial for the k-th group of eigenvalues
�k;1; �k;2; ::: (subspace k) we de�ne:

Pk(A) = (A� �k;1I)(A� �k;2I):::

where we have that Pk(A)x = 0 for those x such that x 2 span(vk;1;vk;2; :::), so that x is
invariant to multiplication by its corresponding polynomial Pk(A) (We will study this property
in further detail in section 4.1.1).

Algorithm 2 Graph Schur Transform

Input:
A: Adjacency matrix
M : Expected number of subspaces
Ouput:
Uf : Matrix with the complete basis
U : Cell of M arrays storing the basis for the M subspaces
E: Cell of M vectors storing the eigenvalues corresponding to each subspace
P : Cell of M arrays storing the polynomials corresponding to each subspace

1: D Absolute value of the eigenvalues of A
2: ~A; ~D  Divide A and D by max(D) to rescale the range of eigenvalues of A so that
j�ij 2 [0; 1] 8 �i.

3: Order eigenvalues increasingly
4: B, K Calculate the distance between consecutive eigenvalues and �nd the M-1 greater

separation points and their position.
5: Uc;Tc  Ordered Schur Decomposition of ~A
6: for each subspace j do
7: k  Find the corresponding range of eigenvalues
8: Uj  [u1;u2; :::;uk] Create the basis for subspace j with the �rst k columns of Uc

9: Ej  Store the range of eigenvalues corresponding to the subspace j
10: Uf  Update the �nal basis.
11: Pj(A) Build the polynomial Pj(A)
12: Uc;Tc  Rebuild the Schur Decomposition of ~A, reordering the eigenvalues
13: end for
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Chapter 4

Properties of the Graph Schur Transform

4.1 Comparing the GST method with Diffusion Wavelets

Basis built both with the Graph Schur Transform (GST) method and the Di�usion Wavelets
(DW) have invariance and orthogonality properties. For example, in both methods subspaces
are formed by orthonormal vectors. In this section we are going to go over the most interesting
properties of the developed method (GST), and compare it with the DW idea.

4.1.1 Invariance

While the basis built in DW present an approximated invariance, the proposed method shows
that subspaces are exactly invariant. A detailed explanation of the property that holds in
each case is given below.

Invariant subspaces for dyadic powers of A in DW

De�ne x as a vector from the subspace W1, the orthogonal complement of the �rst scaling
function, built in the �rst iteration and corresponding to eigenvalues of A such that � < �.
Then it holds that

~Ax � 0

For a vector x 2W2, we have that ~A2x � 0, for x 2W3, ~A4x � 0, etc. An in general,

For x 2Wi; ~A2i�1
x � 0

So subspaces in this method are approximately invariant.

Polynomials and invariant subspaces from the GST

Consider an eigenvalue �i such that Avi = �ivi where vi is the corresponding eigenvector.
Then de�ne Pi(A) = (A � �iI), so that Pi(A)vi = 0. Let P (A) be a �lter such that, as
introduced in Chapter 1,

P (A) = Qi(A)Pi(A) +Ri(A)

where the residue Ri(A) = 0 if P (A) can be divided by Pi(A).
Then

P (A)vi = Ri(A)vi:
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Let us consider the case where we have several eigenvalues grouped together. In this case for
the k-th group of eigenvalues �k;1; �k;2; ::: we de�ne a polynomial

Pk(A) = (A� �k;1I)(A� �k;2I):::

In this case, we have that Pk(A)x = 0 for those x such that x 2 span(vk;1;vk;2; :::).
Another way to see the invariance of the vectors of the k�th basis is as following. As ex-

plained in Section 3.1.1 we have, by de�nition of the construction of the Schur decomposition,
that for x 2 Fk, Ax 2 Fk, where Fk would correspond to the subspace formed by the k �rst
columns of the transformation matrix build with the Schur decomposition. Therefore, using
the notation presented in Section 3.1.1,

A(�1vk;1 + �2vk;2 + :::) = �1�1vk;1 + �2�2vk;2 + �2n1vk;1 + ::: = �1vk;1 + �2vk;2 + :::

so we have invariance for Fk.

Design of �lters using the GST basis

For the k�th subspace we can design a �lter of the form

P (A) = Qk(A)Pk(A) +Rk(A)

and for any vector x 2 span(vk;1;vk;2; :::) we have that

P (A)x = Rk(A)x

By designing �lters that assign the same gain (a scalar value k) to all points in the
span(vk;1;vk;2; :::) we have that the �lters we design have the form:

P (A) = Qk(A)Pk(A) + kI 8k

Therefore, for any x 2 span(vk;1;vk;2; :::),

P (A)x = kx

4.1.2 Orthogonality

As already mentioned, in both methods subspaces are built with orthonormal basis of vectors,
so that for the GST we have that UT

i Ui = I, and for DW it holds that WT
i Wi = I.

Another important aspect of the method is the orthogonality between di�erent subspaces.
For this property, while DW shows exact orthogonality, the DW method does not present ex-
actly orthogonal basis. Below are detailed the main orthogonality properties for each method.

Orthogonality for basis in DW

In this construction subspaces are orthogonal to each other by de�nition. We have that
V0 = V1 �W1 and, decomposing V1, V0 = V2 �W2 �W1. Since W2 2 V1, and W1 is the
orthogonal complement of V1, W2 is necessarily orthogonal to W1. The same idea applies for
the rest of subspaces, so we �nally get

V0 = Vk �Wk �Wi�1 �Wi�2 � : : :�W1

where all the subspaces Wi are orthogonal to each other, and all of them are also orthogonal
to the subspace Vk. Therefore, it holds that WT

i Wj = 0, and also that V T
k Wi = 0
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Approximate orthogonality for basis in the GST

In this case, we chose invariance over orthogonality, so that UT
i Uj = 0 does not necessarily

hold. However, we can obtain basis close to satisfy this orthogonality.
To measure the orthogonality between two basis obtained with the GST, the procedure

will be to calculate both the mean value (�) of the scalar product between any two vectors
from di�erent basis, and calculate also the maximum value (m) that can be obtained from
this scalar product for a certain graph. To mathematically de�ne this parameters we start by
de�ning the matrix of inner products B:

B = UTU (4.1)

More precisely, since all the elements of the diagonal of B correspond to the product of
uT

i ui = 1, we adjust B so that ~B = B� I.
Each element bij of ~B corresponds to the inner product between vectors ui and uj . To

calculate the mean � of the values of this matrix that correspond to the inner product of
vectors from di�erent basis, we de�ne n as the di�erence between the total number of products
and the number corresponding to the product between vectors in the same subspace, so that
n = N2 �

P
k k, where k is the dimension of subspace k. Now we can de�ne the mean of the

inner product as:

� =

P
i

P
j jbij j
n

(4.2)

We calculate the maximum value m that the inner product can take, as following:

m = max
i;j2[1;N ]

jbij j (4.3)

From the calculation of these parameters for di�erent types of graphs, the following results
were obtained:

� The m value generally corresponds to the scalar product of two vectors in consecutive
subspaces, usually in a range of eigenvalues close to zero. This property can be observed
in Fig. 4.1.

Figure 4.1: Scatter plots representing the relation between the result of the inner product
between any two vectors from the �nal basis Uf of the GST, and the distance between the
corresponding eigenvalues. The test has been performed on 15 random synthetic graphs of
50, 200 and 500 nodes respectively, with a number of subspaces of N/10.
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