
Viscoelastic Fluid Simulation with OpenFOAM R©

Marc Arnau Roca and Alejandro Fernández Alburquerque
Universitat Politècnica de Catalunya. Enginyeria F́ısica.

(Advisor: Laureano Ramı́rez de la Piscina)
(Dated: June 18, 2020)

Since non-Newtonian fluids were discovered, their numerous interesting behaviours and potential
uses have been investigated. Particularly, the frequency-dependent properties of wormlike micellar
solutions have risen a good deal of interest among the scientific community. In this report, we have
attempted to simulate those properties using the Giesekus model for viscoelastic fluids and, more
precisely, we have tried to obtain a velocity profile with resonant behaviour inside a cylinder cavity.
The computational environment chosen to perform the simulations is OpenFOAM, an open-source
CFD program with great flexibility and capabilities. The results confirm a resonant response to
oscillating boundary conditions, although perfect stationary-like velocity profiles were not obtained.

I. INTRODUCTION

Fluid dynamics and rheology have become two of the
main areas of research of modern physics due to their
high complexity and wide array of possible applications.
Moreover, current computers are capable of perform-
ing high-demanding simulations, what has encouraged
the emergence of CFD (Computational Fluid Dynam-
ics) software. In this context, OpenFOAM has differen-
tiated itself as an open source alternative with a highly-
modifiable environment that allows the user to adapt the
program to its needs.

The first goal of our project was to recreate the exper-
iment performed by Casanellas Vilageliu [1] with Open-
FOAM, in order to observe how viscoelastic fluids have
a different behaviour than Newtonian ones when specific
conditions are imposed. The set-up of the experiment
was formed by a closed cylindrical pipe with two covers
with freedom of movement. One of them was attached
to a mechanical system which was able to provide an
oscillatory motion (see Fig. 1). When this cavity was
filled with fluid and the oscillatory movement was en-
abled, both covers moved jointly. In that experiment,
the velocity profile of a non-Newtonian viscoelastic fluid
inside the pipe became standing-wave shaped at certain
frequencies, what differs from the Poiseuille profile of a
Newtonian fluid like water. The simulations done in this
project are aimed to find this particular behaviour.

II. SOFTWARE INSTALLATION

OpenFOAM is an open source project and, as such,
it intends to be accessible for as many people as possi-
ble —therefore, its installation process is not specifically
tailored for any operating system (OS)—. This means
that the end user has to invest more time and effort into
the installation process. Additionally, ParaView R© (the
visualization tool used by OpenFOAM) and rheoToolTM

(a third-party toolbox that adds viscoelastic fluid flows
solvers) have their own installation requirements.

Figure 1: Front view of the experimental set-up (image
reproduced from [1]). The dimensions are in millimetres.

The first decision we had to make was on which OS the
software was going to be installed. The OS we chose was
Ubuntu R© (versions used were 18.04 and 19.10) running
on a virtual machine (VirtualBox R© and Parallels R©), as
it is one of the most popular distributions of Linux-based
operating systems and has a well established community.
Furthermore, there is an official installation package pre-
pared for this OS with a pre-compiled version of Open-
FOAM and ParaView [2], which eases the installation
process considerably.

The only downside of the aforementioned package is
that it doesn’t include the latest version of ParaView
and it is not immediately updated when a new Ubuntu
version is released. For that reason, we also attempted
to install OpenFOAM and ParaView from source code
on the latest release of Ubuntu (20.04), which did not



2

have a pre-compiled package available at that time. This
attempt was unsuccessful due to an incompatibility of
ParaView with the OpenGL R© version used in virtual
machines. The reason behind is that the current devel-
opment state of virtualization software doesn’t allow to
take full advantage of graphics hardware. Another al-
ternative was to install OpenFOAM using a Docker R©

environment (a virtualization tool that allows software
compiled in Linux to be run in other platforms), but
since we were already habituated to the aforementioned
virtual machines, we discarded the idea for simplicity.

Once OpenFOAM v7 was running correctly, the last
step was to install rheoTool. This time the only installa-
tion possible was from source code (the toolbox only pro-
vides a step-by-step guide for Debian-based systems [3]).
After some unsuccessful attempts and the corresponding
troubleshooting (the installPetsc installation file had to
be modified to download the latest release of PETScTM

instead of a legacy one), we were finally able to correctly
install it.

III. THEORETICAL OVERVIEW

The non-Newtonian fluid chosen consists of a solvent
and a polymer (solute). This polymer has hydrophobic
and hydrophylic parts which will lead to the formation of
micelles. The complex fluids that fulfill those conditions
are called wormlike micellar solutions. The constitutive
model used to approach their behaviour is the Giesekus
one, a variation of Oldroyd-B [4]. Whereas it is not the
objective of this study to deepen in the theoretical ba-
sis of the Giesekus model, it is convenient to review its
origins and equations.

The Oldroyd-B model is an extension of the Maxwell
model for viscoelasticity which includes two different vis-
cosities, one for the solute, typically a polymer, and the
other for the solvent. However, this model was not accu-
rate enough since it failed to predict nonlinear features
observed in wormlike micellar solutions. The addition of
a parameter α which regulates the first quadratic term
in shear stress allows to recreate a more exact drag con-
dition on the polymer molecules. The equations of the
Giesekus model are:

τ = τs + τp (1a)

τs = ηsγ(1) (1b)

τp + λτp(1) − α
λ

ηp
{τp · τp} = ηpγ(1) (1c)

The term τ refers to the stress tensor, which is com-
posed of a solvent and a polymeric contribution with an
associated viscosity (ηs and ηp, respectively). The rate-
of-strain tensor is represented by γ, while λ is the relax-
ation time of the fluid, the time needed by the polymeric
solution to re-assemble after a breakage.

IV. SIMULATION RESULTS AND DISCUSSION

In order to recreate the set-up conditions as similar to
those of Fig. 1 as possible, we designed a cylindrical mesh
—characterized in Table I— using the mesh generation
functionality of OpenFOAM.

Table I: Parameters of the cylinder. XY are the transver-
sal directions and Z is the longitudinal one.

Radius
(Cylinder)

Edge
(Inner Box)

Length
No. Voxels

(XY)
No. Voxels

(Z)
0.025 m 0.016 m 0.6 m 22 20

Figure 2: A: Generated mesh 3D overview. B: Section of
the cylindrical mesh.

The value of the Giesekus model parameters employed
are displayed in Table II. They were calculated experi-
mentally by Casanellas Vilageliu to correctly characterize
the wormlike solution used.

Table II: Parameters of the micellar solution.

ρ (kg/m3) λ (s) α ηs (kg/m · s) ηp (kg/m · s)
1050 1.9 0.85 0 64

The oscillating covers were recreated by applying a
sine function to the inlet/outlet velocity boundary con-
ditions of the top and bottom mesh faces. Therefore,
the fluid velocity at both ends of the cylinder had the
same time-varying module, direction and sense, emulat-
ing the jointly oscillating motion of the experimental set-
up. The frequencies and amplitudes chosen for the sinu-
soidal boundary conditions of the simulations were the
ones that showed resonant behaviour in the experiments
[1].

The rheoFoam solver module of rheoTool was used to
simulate the Giesekus fluid dynamics with two different
approaches. The results presented in this report were ob-
tained with a simulation time of 3.5 seconds and a time
step of 10−4 seconds (these numbers were tuned empiri-
cally until the expected resonant behaviour was obtained
with enough accuracy). The second approach was aimed
to obtain exactly 8 full periods of simulation time while
having the same amount of time steps as before (by ad-
justing the time step for each frequency). As no notice-
able difference between the results of both methods was
observed, only the first approach has been included here.



3

(a) f = 3.50 Hz, zo = 0.5 mm

(b) f = 5.90 Hz, zo = 0.2 mm

(c) f = 7.49 Hz, zo = 0.5 mm

Figure 3: Velocity profile of a Giesekus fluid flow for the
first 3 resonant frequencies.

(a) f = 2.26 Hz, zo = 1 mm

(b) f = 3.69 Hz, zo = 1 mm

(c) f = 6.44 Hz, zo = 1 mm

Figure 4: Velocity profile of a diluted Giesekus fluid
flow for its first 3 resonant frequencies.



4

Figure 5: Velocity profile of a Newtonian fluid flow for
f = 3.69 Hz and zo = 1 mm

The results obtained can be seen in Fig. 3 (only the
last period of the simulations is displayed). In Fig. 3a,
the velocity profile behaves more or less as the one of a
Newtonian fluid. In Fig. 3b and 3c, the velocity in the
Z direction has a different sense depending on the radial
coordinate, thus verifying the elastic behaviour nature of
the fluid. Although the results were really interesting, a
clear stationary-like velocity profile inside the pipe was
not found. According to Giesekus (the author of the arti-
cle in which the model that we are using was developed)
[5], the model should work fine for “moderately concen-
trated solutions” of polymer. Since in Ref [1] a more
dilute solution was characterized too, we performed an-
other simulation to see if a clearer stationary velocity
profile could be obtained. The new parameters used are
shown in Table III and the results of this simulation are
found in Fig. 4.

Table III: Parameters of the dilute micellar solution, ob-
tained experimentally.

ρ (kg/m3) λ (s) α ηs (kg/m · s) ηp (kg/m · s)
1050 0.3 0.85 0 3

For the lowest frequency (Fig. 4a), a Newtonian-like
velocity profile is observed again, although the elastic
response is already evident. However, in Fig. 4b the
results are more interesting than the ones obtained for the
non-dilute solution, since an almost stationary velocity
profile was attained. It can be clearly seen that, when
the center has a positive velocity sense, the peripheral
sections have a negative sense and vice versa, depending
on time. Even though the velocity profile of Fig. 4c is
remarkable too, the actual dynamical evolution of it [6]
does not have a stationary behaviour as well defined as
the former case.

To further understand the importance of the result ob-
tained in Fig. 4b, a Newtonian fluid resembling water

was simulated with the same frequency and amplitude
conditions. As it is seen in Fig. 5, the behaviour differs
completely from the result of the non-Newtonian fluid.

The cross section velocity profiles inside the cylinder
were also obtained when performing the simulations. The
mesh generated had an inner rectangular prism as it can
be seen in Fig. 2B, so this led to a slight symmetry break-
ing (spikes) along the edges of such prism (Fig. 6A). An-
other cylindrical mesh was designed with a true cylindri-
cal symmetry (Fig. 6B), however, when the simulations
were performed, the much smaller size of the inner cen-
ter cells caused a numerical discontinuity and instability.
Consequently, the algorithms of the solvers crashed and
were not able to finish the simulations.

Figure 6: A: Cross section of the dilute solution at
f = 6.44 Hz, zo = 1 mm. B: Section of the alternate
cylindrical mesh that did not work.

V. CONCLUSIONS

The outcome of this project is quite satisfactory, as the
simulations performed for a dilute solution show a very
similar pattern compared to the experimental results of
Casanellas Vilageliu. Furthermore, the comparison with
the behaviour of a Newtonian fluid helps to better under-
stand the frequency-related properties of Giesekus fluids.

Even so, we expected to obtain better-defined sta-
tionary waves corresponding to a truly resonating phe-
nomenon. The reason behind such results might be three-
fold. On one hand, the cylindrical mesh used in our sim-
ulations does not have azimuthal symmetry in the center,
which may cause enough distortion to prevent the visu-
alization of perfect standing waves. On the other hand,
the parameters used to characterize a Giesekus fluid are
experimental and prone to errors. And, finally, the equa-
tions used by rheoTool to model Giesekus fluids might
not be fully accurate, though this topic has not been
thoroughly analyzed.

An extra amount of work has been put into sharing all
the progress achieved to facilitate further research around
this subject. To that end, a GitHub R© repository has
been created where complementary material such as all
OpenFOAM code files used can be found [6], as well as
additional graphs and animations of all the cases men-
tioned along this report.



5

[1] Laura Casanellas Vilageliu. Oscillatory pipe flow of
wormlike micellar solutions. PhD Thesis, Universitat de
Barcelona, 2013.

[2] The OpenFOAM Foundation. OpenFOAM v7: Patch
Releases. https://openfoam.org/news/v7-patch/ [Ac-
cessed: May 2020].

[3] Francisco Pimenta. Toolbox to simulate GNF and vis-
coelastic fluid flows in OpenFOAM. https://github.

com/fppimenta/rheoTool [Accessed: May 2020].
[4] Alexander N Morozov and Wim van Saarloos. An intro-

ductory essay on subcritical instabilities and the transition
to turbulence in visco-elastic parallel shear flows. Physics

Reports, 447(3-6):112–143, 2007.
[5] H. Giesekus. A simple constitutive equations for poly-

mer fluids based on the concept of deformation-dependent
tensorial mobility. Journal of Non-Newtonian Fluid Me-
chanics, 11:69–109, 1982.

[6] Alejandro Fernández and Marc Arnau. Viscoelastic
(Giesekus) and Newtonian fluid simulation with Open-
FOAM and rheoTool. Resolution for a cylindrical mesh
with inlet/outlet boundary conditions and no gravity.
2020. https://github.com/Alejandro-FA/pipeFlow.

https://openfoam.org/news/v7-patch/
https://github.com/fppimenta/rheoTool
https://github.com/fppimenta/rheoTool
https://github.com/Alejandro-FA/pipeFlow

	Viscoelastic Fluid Simulation with OpenFOAM®
	Abstract
	INTRODUCTION
	SOFTWARE INSTALLATION
	THEORETICAL OVERVIEW
	SIMULATION RESULTS AND DISCUSSION
	CONCLUSIONS
	References


