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This paper presents two different control strategies to regulate the output voltage of a magnetically
coupled multiport dc-dc converter aimed at automotive applications. The two models, a feedback
linearizing and an adaptive control-based, guarantee asymptotic stability in the face of resistive
load and constant power load variations and their performances are verified through numerical
simulations. The two controllers are compared, and an integral action is added to the adaptive
scheme and tested.

I. INTRODUCTION

Over the past few years, electrified systems have in-
creasingly been applied in the automotive sector since
they provide an improved driving experience. This elec-
trification does not only apply to electric power trains but
also to transmission and chassis electronics, driver assis-
tance, passive safety or comfort and entertainment sys-
tems. As a consequence, implementation of on-board dc
micro-grids is a matter of high interest, more precisely the
solution of issues regarding stability when facing CPL’s
efficiency and robustness.In this work the control design
of a dc multi-bus with three of the most used voltages in
automotive applications has been studied.

II. MATHEMATICAL MODEL

The three dc buses provide 400V for the power train
and 48V and 12V for other auxiliary uses. These volt-
ages are delivered to the different devices by a magneti-
cally coupled multiport dc-dc converter which consists of
a high frequency transformer with three ports connected
to a full-bridge converter in parallel with a capacitor in
the dc side each.

FIG. 1. Multiport dc-dc converter scheme, from [1]

The following equations describe the voltage dynamics

of the three ports:

Ckv̇k = ipk −
1

w1

3∑
l=1,l 6=k

vl
αklL′kl

δkl

(
1− |δkl|

π
)

)
, (1)

where for k = 1, 2, 3, vk, are the dc voltages, ipk the dc
currents, Ck are the capacitors, w1 = 2π

T is the funda-
mental frequency of the periodic voltages and currents
in the transformer, αkl is the transformer turn ratio of
the k-th port with respect to the l-th port, L′kl is the
meshed-transformed linking inductance between port k
and any l-th port, and δkl = θl − θk where the θi are the
phase shifts of the modulated voltages. Even though the
system consists of three different dc buses, the voltage at
the 400V bus is assumed to be constant(because of the
high capacity battery in this bus) while the two others
have several loads connected to them. Setting θ1 = 0 the
system dynamics (see Fig. 1) are described by:
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where v2 is the voltage of the 48 V bus, v3 is the voltage
of the 12 V bus, and the phase shifts in ports 2 and 3, θ2
θ3, respectively, are going to be used as control variables.
The control objective is to bring the v2 and v3 voltages
to their value of reference, v∗2 = 48V and v∗3 = 12V .

III. FEEDBACK LINEARIZING CONTROL

In this section an adequate change of variables will
be used to linearize and decouple the system with the
objective of designing a stable PI controller.

A. Control Algorithm

Some of the next algebraic manipulations will be
skipped for brevity. Let f2(θ2), f3(θ3), λ2, λ3 and
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g(θ2, θ3) be defined [1] such that (2) can be written as:

C2v̇2 = − v2
R2
− P2

v2
+ f2(θ2)− λ2v3g(θ2, θ3) (3a)

C3v̇3 = − v3
R3
− P3

v3
+ f3(θ3)− λ3v2g(θ2, θ3). (3b)

Then, the following change of state and control variables
is proposed:

ξ2 = v22 , ξ3 = v23 (4a)

u2 = f2(θ2)− λ2v2v3g(θ2, θ3) (4b)

u3 = f3(θ3) + λ3v2v3g(θ2, θ3). (4c)

The system dynamics results in a linear, decoupled sys-
tem with state variables ξ2, ξ3.

ξ̇i = − 2

RiCi
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2

Ci
ui. i = 2, 3. (5)

Considering the PI controller:

ui = −kpiξi + kzizi (6a)

żi = ξ∗i − ξi, (6b)

with ξ∗2 = 482 and ξ∗3 = 122 the closed loop system is
given by:
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The equilibrium point, (xi∗2, z
∗
2 , xi

∗
3, z
∗
3), and characteris-

tic polynomial can be straightforwardly calculated from
the error dynamics, and global asymptotic stability is
guaranteed for:

1

Ri
+ kpi > 0, kzi > 0, i = 2, 3, (8)

proving the system to be robust for uncertainties in the
values of Ri and Pi.
The main problem with this control law is the inversion
of the change of variables, which is analyzed in Section
IV of [1].

B. Simulation Results

For the simulations the Matlab function ode45 with
a tolerance of 10−4 has been used to solve the differen-
tial equation. The following profiles have been defined,
respectively, for Ri and Pi:

R2 =

{
5Ω t ∈ [0, 0.03) ∪ [0.05, 0.1)s

3Ω t ∈ [0.03, 0.05)s
(9)

R3 =

{
10Ω t ∈ [0, 0.04) ∪ [0.06, 0.1)s

3Ω t ∈ [0.04, 0.06)s,
(10)

P2 =

{
0 t ∈ [0, 0.065)s

2kW t ∈ [0.065, 0.1)s
(11)

P3 =

{
0 t ∈ [0, 0.075)s

100W t ∈ [0.075, 0.1)s.
(12)

The controller gains kp2, kz2, kp3 and kz3 have been
iteratively adjusted seeking for a trade off between
relative error and computational time. Figures 1 and 2
depict the voltages tracking their respective references
for three sets of control gains. In Figure 2 the voltage of
the 12V bus for the two sets of gains has been omitted
since the tracking was almost perfect, with only a barely
noticeable ripple.
It has been observed that the larger the controller
gains, the larger the computational time but also the
smaller the error. However, one has to take into ac-
count that such gains are limited by the characteristics
of the controller when it is applied to a real-life scenario.

FIG. 2. Voltages of the 48V and 12V buses for kp2 = 0.8,
kz2 = 1640, kp3 = 6 and kz3 = 3033.

FIG. 3. Top: 48V bus for kp2 = 8, kz2 = 164e3, kp3 = 60 and
kz3 = 303300. Bottom: 48V bus for kp2 = 80, kz2 = 164e5,
kp3 = 60 and kz3 = 3033e4.
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IV. ADAPTIVE CONTROL

In this section, the strategy presented to regulate the
micro-grid output voltage is an observer-based adaptive
control law. For this purpose, we will use the same cou-
pled equations (3) as in the feedback linearizing. The
following change of control variables is proposed:

u2 = v2f2(θ2)− λ2v∗3g(θ2, θ3) (13a)

u3 = v3f3(θ3) + λ3v
∗
2g(θ2, θ3). (13b)

Then, observers regarding conductances and CPLs are
included to obtain asymptotic voltage regulation and ro-
bustness to the resistive load changes. Finally, stability
is proved using LaSalle’s invariance principle [2] and nu-
merical simulations are presented to validate the method.

A. Control Algorithm

As before, the control goal is to regulate the dc voltages
to the reference values, v∗2 = 48V , v∗3 = 12V , considering
variations in the conductance and CPL in the buses: Gk
and Pk. Let Ĝk and P̂k denote their estimation values
and ek = vk−v∗k denote the error variables. The adaptive
control law is defined as:

uk = Ĝk(ek + v∗k) +
P̂k

ek + v∗k
− γkek, (14a)

˙̂
Gk = −µk

λk
ek(ek + v∗k), (14b)

˙̂
Pk = − νkek

λk(ek + v∗k)
, (14c)

and the set of equations (3) boil down to:

C2ė2 = −∆G2(e2 + v∗2)− ∆P2

e2 + v∗2
− λ2e3H(u)− γ2e2,

(15a)

C3ė3 = −∆G3(e3 + v∗3)− ∆P3

e3 + v∗3
+ λ3e2H(u)− γ3e3,

(15b)

∆̇Gk =
µk
λk
ek(ek + v∗k), (15c)

∆̇Pk =
νkek

λk(ek + v∗k)
. (15d)

with ∆Gk = Gk − Ĝk, ∆Pk = Pk − P̂k and γk, µk, νk, ∈
R+, k = 2, 3, makes the closed-loop system locally stable
and ek → 0, when t→ +∞. The inversion of the control
law is performed from its linear approximation [2].

B. Simulation results

The previous equations and parameters have been
modeled using Matlab and the equations have been
solved with ode45, with a tolerance of 10−5. The sys-
tem has been put under the same resistance and constant

power load changes as the feedback linearizing. Resis-
tance load changes are seen in the following graphics as
the two first spikes in each voltage. Furthermore, CPL
changes are observed as the third spike in both voltage
graphics. The spikes represent the external variations of
the system, and it is seen that the response of the system
is the desired. Graphics representing the evolution of the
conductance and CPL observers and the control actions
are available in Figures 4, 5, 6.

FIG. 4. Voltages of the 48V and 12V buses.

FIG. 5. Conductance and CPL observers.

FIG. 6. Control actions θ1 and θ2.
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V. ADAPTIVE CONTROL WITH INTEGRAL
ACTION

Finally, the objective is to improve the adaptive con-
troller described in the last section by including and inte-
gral action ρkzk in the control law. All the nomenclature
related to this case is exactly the same as in the simple
adaptive. The control law is described as:

uk = Ĝk(ek + v∗k) +
P̂k

ek + v∗k
− γkek − ρkzk, (16a)

˙̂
Gk = −µk

λk
ek(ek + v∗k), (16b)

˙̂
Pk = − νkek

λk(ek + v∗k)
, (16c)

żk = ek, (16d)

and the set of equations in (3) now yields:

C2ė2 = −∆G2(e2 + v∗2)− ∆P2

e2 + v∗2
− λ2e3H(u)+

−γ2e2 − k2z2
(17a)

C3ė3 = −∆G3(e3 + v∗3)− ∆P3

e3 + v∗3
+ λ3e2H(u)+

−γ3e3 − k3z3,
(17b)

∆̇Gk =
µk
λk
ek(ek + v∗k), (17c)

∆̇Pk =
νkek

λk(ek + v∗k)
. (17d)

with ∆Gk = Gk − Ĝk, ∆Pk = Pk − P̂k and γk, µk, νk, ∈
R+, k = 2, 3, makes the closed-loop system locally stable
and ek → 0, when t → +∞. To prove the stability of
this controller, we introduce the auxiliary function V:

V =
1

2

3∑
k=2

(
Ck
λk
e2k +

1

µk
∆G2

k +
1

νk
∆P 2

k +
ρk
λk
z2k), (18)

which, with ρk
λk

> 0 is positive definite. Its derivative:

V̇ =

3∑
k=2

(
Ck
λk
ekėk +

1

µk
∆Gk∆Ġk +

1

νk
∆Pk∆Ṗk

+
ρk
λk
zkżk) =

3∑
k=2

−γk
λk
e2k,

(19)

is ≤ 0. Moreover, the subset of R8 where V̇=0 is

ΩR = {(0, 0,∆G2,∆G3,∆P2,∆P3, z2, z3)}

while the largest invariant set within ΩR is

ΩR = {(0, 0,∆G∗2,∆G∗3,∆P ∗2 ,∆P ∗3 , z∗2 , z∗3),

∆P ∗k = −∆G∗kv
∗2
k − kkz∗kv∗k}

Then, La Salle’s invariance principle ensures that,
locally, the trajectories of (17) tend to Ω when t→ +∞.

A. Simulation results

As in the other controllers, simulations using Matlab
and ode45 with a tolerance of 10−5 have been performed.
The system has been put under the same resistance and
constant power load changes as the other two. For val-
ues of k2 = [50,100] and k3 = [0.5,2], the results were the
same as for the simple adaptive.
The system analyzed until now is a simplification of a
real system. This way, the effects that appear in a real-
life scenario which would alter the steady state are not
present so the integrator has no effect.
A more realistic model of the system has been analyzed
with SimuLink which includes non-ideal effects such as
losses in the power switches or reactive components.

FIG. 7. Bus voltages (blue) and voltage references (red) for
48V and 12V buses.

However, once again, no significant improvement has
been observed when using the integral action with re-
spect to the basic adaptive control (refer to the plots in
Section IV of [2]).
From the set of equations 16, the adaptive control vari-
able uk with integral action can be written as:

uk = −γkek −
µk
λk

(ek + v∗k)

∫ t

0

ek(ek + v∗k)+

− vk
λk(ek + v∗k)

∫ t

0

ek
(ek + v∗k)

− ρk
∫ t

0

ek.

(21)

One can see that even without the effect of the integral
action (ρk = 0), the adaptive control law behaves simi-
larly to what could be described as a non-linear PI con-
troller, it already takes into account the amount of error
accumulated over time, which would make sure that ek
approaches zero when time increases. For this reason, the
effect of the integral action does not improve significantly
the already small steady state error.
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