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This paper deals with IQ modulation using the nested Mach-Zehnder modulator, studying its
different parameters and the effect of their value in the resulting signal. The main goal is to obtain
the parameters for which a frequency shift is obtained, using different approaches. First, the Bessel
functions are used to study the transfer function analytically. Then, numerical representations
(both using the Bessel functions and Fourier coefficients) are plotted in order to further illustrate
the results obtained, adding up with the spectra of some cases obtained using VPIphotonics, creating
a full picture of the solution proposed.

I. INTRODUCTION

The photonic IQ modulator is a very versatile device
which has recently become popular for a variety of uses.
The activities within this project will aim at unveiling the
potential of this kind of devices for applications in the
radiofrequency domain such a wireless communications
and remote sensing. The main objective will be to study
the mathematical basis behind the nested Mach Zehnder
Modulator, and then be able to use this tool to create a
frequency shift to an input laser, observing its spectrum.

The frequency shifting is implemented applying optical
carrier suppression and single-sideband modulation using
a nested Mach-Zahnder interferometer.

II. DEVICE DESCRIPTION

A Mach-Zehnder IQ modulator (MZM) uses the Pock-
els effect to create a phase shift between the two branches
in which the light input beam has been split, and then
makes them interfere, modulating that way the ampli-
tude and the phase.

The Pockels effect consists in inducing a change in
the refractive index of each arm, which depends on the
electric voltage applied in each electrode. Changing the
refractive index, the propagation velocity of the light
changes. That way, the phase difference between the two
branches is created.

The transfer function of a single MZM is:
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Where V1 and V2 are the voltages applied to each
branch.Vπ1 and Vπ2 are specifications of the engine,
the voltage required to produce a phase shift of π. In
the following simulations this parameter is set as 1 for
simplicity.α is the interferometric splitting ratio, in the
ideal case it is 0.5.

One of the most used configurations for a MZM and
the one which will be used in this paper is the push-pull
configuration, where V1 = −V2. It increases the relative
phase shift in one path and decreases it in the other path,
with the same magnitude.

FIG. 1. Nested Mach Zehnder modulator

A nested Mach-Zehnder modulator consists in two
main branches, with a voltage difference between them,
and one MZM in each branch. The incoming beam is
split into the two main branches, where the first phase
change is done due to the difference of voltage applied.
After that, the each MZM modulates the beam in the
corresponding branch. Lastly, both outputs are joined,
interfering with each other and resulting in the modu-
lated signal.

The transfer function of the last apparatus is described
by:

EnMZM =
Ein
2

(
cos

π

2Vπ
U1 + eiθ3 cos

π

2Vπ
U2

)
(2)

Where θ3 is the voltage difference between the two
main branches, and U1 and U2 are the voltages applied
to the MZM in each branch. It should be noted that
each voltage has a bias component, and a small signal
component.

To simplify notation, the following parameters are de-
fined for i = 1, 2:

π

2Vπ
Ui =

π

2Vπ
Vbiasi + VRFi =

θi
2

+
mi

2
cos(ωRF t)

Therefore, equation (2) reads:
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III. FREQUENCY SHIFTING

Frequency shifting is achieved by modifying the signal
spectrum so that the band associated to the carrier fre-
quency and one of the first side bands are null and the
other first band has a magnitude different from zero.

The trivial values of the different parameters used to
achieve this are: θ1 = θ2 = π, θ3 = ϕ = π

2 . However,
when working on the laboratory the voltage can be set to
different values, which changes the phase difference ϕ and
thus, the configuration no longer shifts the frequency.

To achieve a frequency shifting for the different values
of ϕ different approaches have been used, all of them
taking as a variable the parameters θ3 and ϕ and setting
θ1 = θ2 = π.

It should be remarked that only the trivial values set
the carrier and one of the first bands to zero. However,
setting a relative magnitude between them could shift
the frequency under the desired accuracy. Illustrating
for which ϕ it will be possible to do a frequency shift for
different relative magnitudes is one of the go??

IV. ANALYTICAL APPROACH

In order to understand the effect of the nMZM, the
modulator’s transfer function has been developed to
obtain the amplitudes of the harmonics. Looking at
these amplitudes it can be seen which side bands, or
harmonics signals, are canceled when the laser passes
through the device, and what happens with the carrier
band.

The analytical equation of the amplitude of each band
is calculated using the Bessel functions and it is shown
below. The procedure to obtain them is explained in
Appendix 1.

This report is based in the small signal approximation
and thus, the third or larger side bands are despicable.
That is why their equation will not be used here. Due
to this approximation, the m parameter (amplitude of
the voltage signal) has to be a small number.
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J(m2 ) is the Bessel function of the amplitude of the

voltage signal applied to the small MZM’s.

As explained in the previous section, depending on the
configuration of the modulator, the bias voltage applied
to each of the small MZM (θ1, θ2), its phase difference
ϕ and the phase difference due to the voltage applied in
one of the branches θ3, different results are obtained.

If the bias voltage is set to the null point (θ1 = θ2 = π),
the even and the carrier bands cancel out. If it is set
to the quadrature point (θ1 = θ2 = π

2 ), the odd bands
cancel and just the carrier and the first bands remain.
This is due to the sinusoidal characteristics of the equa-
tions. This is the reason why, when the parameters for
frequency shifting are chosen, θ1 and θ2 are set to the
null point. Varying the θ3 parameter, the interference
between the waves coming from the two small MZM in-
terfere differently, and can cancel bands even when the
bias voltage θ1 and θ2 are not in the quadrature or null
points.

Finally, ϕ is the parameter that makes the spec-
trum asymmetric for positive and negative bands. As
it can be seen in the equations, for positive bands,
this value is added to θ3 inside the exponential and
for negative bands it is subtracted. Due to this prop-
erty of the nested MZM, frequency shift can be produced.

Despite of this, frequency shifting does not happen for
any value of θ3 and ϕ. The trivial configuration, the
most used in laboratories, is explained in the previous
section. Using the expressions of the complex amplitude
of the side bands, other possible values of θ3 and ϕ that
accomplish frequency shift have been found. In table I,
examples of these parameters are shown:

θ3 90o 92o 94o 99o 105o 110o

ϕ 90o 87o 85o 81o 74o 69o

TABLE I. Frequency shifting for θ1 = θ2 = π and diferents
θ3 and ϕ.

V. MATLAB SIMULATION

The main goal of this section is to illustrate how the
frequency bands change with the different parameters of
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the nMZM. In order to do this the codes in the Appendix
have been used. The Fourier coefficients are calculated
and represented to see at which values the frequency shift
is achieved and, moreover, to confirm the accuracy of the
analytical results found in the previous section.

Starting from equation (3), the complex Fourier coef-
ficients can be calculated.

Their amplitude describe the frequency bands, which
depend on the magnitude of the different parameters.
Throughout the following discussion, the values of θ1,
θ2, m1 and m2 are taken as constants of values π, π, 0.2
and 0.2. On the other hand, due to the reason stated on
the Frequency Shifting section, θ3 and ϕ are set to be the
variables.

Figure 2 includes three plots of the carrier band and
the first negative and positive bands for different values
of φ and θ3.

The black regions on the graph show those combina-
tions of the variables which fulfill the condition for the
frequency shift to be achieved: a difference of 20 dB be-
tween the carrier and the first positive band with respect
to the first positive side band.

As it can be seen the carrier band is almost null for all
the values, this is due to the fact that θ1 and θ2 are both
π.

Figure 3 is a representation of the amplitude of the
first bands for different values of θ3 for fixed values of ϕ.
It can be seen that, defining δθ = θ3 − π the magnitude
of the positive band for θ3 = π + δθ and the value of the
negative band for θ3 = π− δθ is the same. Furthermore,
for larger values of ϕ the value of θ3for which the negative
and positive first bands are null increases its distance
with respect to π.

It can be observed that the only value for which the
frequency shift is achieved with one of the bands set to
a null value is for φ = 90o, while for other values of this
parameter a relative magnitude criterion should be used.

Figure 4 represents the values of the variables which
can be used to obtain a frequency shift for different condi-
tions. The z axis represents the difference in dB between
the first negative band and the other ones. It can be
seen that when a higher precision is imposed, less com-
binations of variables fulfill it. It is important to take
this result into consideration when determined accuracy
is required.

VI. VPIPHOTONICS SIMULATION

After all the analysis, optical spectrums of the main
cases can be found in this section. Spectrums have been
made using VPIphotonics, a simulation software for pho-
tonic design automation, using a program that resembled
a nMZM.

The optical spectrum corresponding to frequency shift-
ing can be seen in FIG 5. The values used to obtain it
are m1 = m2 = 0.2, θ1 = θ2 = π and θ3 = φ = π/2.
The exact same spectrum can be obtained without vary-

FIG. 2. Plot of the frequency bands with θ1 = π, θ2 = π,
m1 = 0.2, m2 = 0.2.

ing θ1, θ2,m1 or m2, using some determinate values of θ3
and φ (the ones seen in table 1).

The value of both m can variate and continue obtaining
the same peaks with different amplitude (higher values
of m increase the power of the peak). But, the problem
that must be taken into account that the increase of the
power also affects to other peaks (second, third harmon-
ics...) that for frequency shifting need to be irrelevant
with respect to the main one. To sum up, value of m has
to be chosen carefully so that the power of the main band
is good, but so that we can still despise other peaks.

Another interesting aspect to comment is the sign of
the frequency shift: by changing the sign of either φ or
θ3, instead of getting the peak at -1, it will be obtained
in +1.

Frequency multiplying is another possible application
of the nMZM: Obtaining a multiple harmonic from the
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FIG. 3. Plot of the amplitude of the first positive and negative
bands for φ = 30o, 90o, 150o and for θ3 from 0 to 2π

FIG. 4. Plot of the values of θ3 and ϕ which fulfill an ampli-
tude difference of different dB, written in the y axis

input one. In this case, using the parameters θ1 = θ2 = 0
(no bias component in the small MZM), θ3 = π, φ = 90
and m1 = m2 = 1.22. Notice that the values of m are
chosen to be, multiplied by two, the first zero of the
Bessel functions (2.44), to that way cancel the main car-
rier. The second band is also zero because of the electric
phase shift, which creates asymmetry. This leaves the
third band (at ±2).

As stated before, m can be modified in small quantities
to get approximately the same spectrum with different
amplitude.

The resulting spectrum can be seen in FIG 6, where
the third bands are the only significant ones.

FIG. 5. Frequency shifting simulation (VPI)

FIG. 6. Frequency multiplier simulation (VPI)

VII. CONCLUSIONS

In this paper, the properties and the operation of the
nested Mach-Zehnder modulator have been studied. It
has been done analytically, with Bessel functions, and
numerically analyzing the spectrum of the transfer func-
tion of the device for different parameters.

Also, another possible values for θ1,θ2,θ3 and ϕ that
accomplish the frequency shifting have been discovered.
This is an important application because its configura-
tion is not always possible to do. So, with these results,
it is expected to be able to reach the same objective with-
out being forced to make the same set-up settling always
the parameters to the trivial ones.
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APPENDIX

Appendix 1: Analytical development

The transfer function of the nMZM modulator is the next one:
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Finally, both terms are added:
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Appendix 2: Code to plot the frequency bands in 3D

1

2 %% Using Besse l f unc t i ons
3 clear a l l
4 clc
5

6 Nwt=1e7 ; wt=linspace(−pi , pi ,Nwt) ; dwt=2∗pi/Nwt ; t1=pi ; t2=pi ; m=0.2;
7 f s = [ ] ; pas =0.01; t33=0: pas : pi ; pee=0: pas : pi ;
8

9 M0=zeros ( length ( t33 ) , length ( pee ) ) ;
10 MA1=zeros ( length ( t33 ) , length ( pee ) ) ;
11 MB1=zeros ( length ( t33 ) , length ( pee ) ) ;
12

13 for pp=1: length ( pee )
14 phi=pee (pp) ;
15 for t t =1: length ( t33 )
16

17 t3=t33 ( t t ) ;
18

19 A0=abs ( b e s s e l j (0 ,m/2) ∗( cos ( t1 /2)+exp(1 i ∗ t3 ) ∗cos ( t2 /2) ) ) ;
20 A1=abs ( b e s s e l j (1 ,m/2) ∗( sin ( t1 /2)+exp(1 i ∗( t3+phi ) ) ∗ sin ( t2 /2) ) ) ;
21 B1=abs ( b e s s e l j (1 ,m/2) ∗( sin ( t1 /2)+exp(1 i ∗( t3−phi ) ) ∗ sin ( t2 /2) ) ) ;
22

23 M0( tt , pp )=A0 ; MA1( tt , pp )=A1 ; MB1( tt , pp )=B1 ;
24

25 i f 20<20∗ log10 (B1/A0) && 20<20∗ log10 (B1/A1)
26 f s =[ f s ; t3 phi M0( tt , pp ) MA1( tt , pp ) MB1( tt , pp ) ] ;
27 end
28 end
29 end
30

31 subplot ( 3 , 1 , 1 ) , mesh( t33 , pee ,MB1) , t i t l e ( ’ F i r s t Negative Band ’ ) , hold on
32 for i i =1: length ( f s )
33 plot3 ( f s ( i i , 2 ) , f s ( i i , 1 ) , f s ( i i , 5 ) , ’ k . ’ )
34 end
35 xlabel ( ’ \ the ta 3 ’ ) , ylabel ( ’ \phi ’ ) , l 1 = l i g h t ; l 1 . Po s i t i on = [160 400 8 0 ] ;
36 l 1 . S ty l e = ’ l o c a l ’ ; l 1 . Color = [ 0 0 .8 0 . 8 ] ; l 2 = l i g h t ;
37 l 2 . Po s i t i on = [ . 5 −1 . 4 ] ; l 2 . Color = [ 0 . 8 0 .8 0 ] ;
38

39 subplot ( 3 , 1 , 2 ) , mesh( t33 , pee ,M0) , hold on
40 for i i =1: length ( f s )
41 plot3 ( f s ( i i , 2 ) , f s ( i i , 1 ) , f s ( i i , 3 ) , ’ k . ’ )
42 end
43 l 1 = l i g h t ; l 1 . Po s i t i on = [160 400 8 0 ] ; l 1 . S ty l e = ’ l o c a l ’ ;
44 l 1 . Color = [0 0 .8 0 . 8 ] ; l 2 = l i g h t ; l 2 . Po s i t i on = [ . 5 −1 . 4 ] ;
45 l 2 . Color = [ 0 . 8 0 .8 0 ] ; s . FaceColor = [ 0 . 9 0 .2 0 . 2 ] ;
46 t i t l e ( ’ Car r i e r Band ’ ) , xlabel ( ’ \ the ta 3 ’ ) , ylabel ( ’ \phi ’ )
47

48 subplot ( 3 , 1 , 3 ) , mesh( t33 , pee ,MA1) , hold on
49 for i i =1: length ( f s )
50 plot3 ( f s ( i i , 2 ) , f s ( i i , 1 ) , f s ( i i , 4 ) , ’ k . ’ )
51 end
52 l 1 = l i g h t ; l 1 . Po s i t i on = [160 400 8 0 ] ; l 1 . S ty l e = ’ l o c a l ’ ;
53 l 1 . Color = [0 0 .8 0 . 8 ] ; l 2 = l i g h t ; l 2 . Po s i t i on = [ . 5 −1 . 4 ] ;
54 l 2 . Color = [ 0 . 8 0 .8 0 ] ; s . FaceColor = [ 0 . 9 0 .2 0 . 2 ] ;
55 t i t l e ( ’ F i r s t Po s i t i v e Band ’ ) , xlabel ( ’ \ the ta 3 ’ ) , ylabel ( ’ \phi ’ )
56

57 %% Using the f o u r i e r c o e f f i c i e n t s
58

59 clear a l l
60 clc
61

62 Nwt=1e5 ; wt=linspace(−pi , pi ,Nwt) ; dwt=2∗pi/Nwt ; t1=pi ; t2=pi ;
63 m1=0.2; m2=0.2; f s = [ ] ; pas =0.05;

3



64

65 t33=0: pas : pi ; pee=0: pas : pi ; M0=zeros ( length ( t33 ) , length ( pee ) ) ;
66 MP1=zeros ( length ( t33 ) , length ( pee ) ) ; MN1=zeros ( length ( t33 ) , length ( pee ) ) ;
67

68 for pp=1: length ( pee )
69 pe=pee (pp) ;
70 for t t =1: length ( t33 )
71

72 t3=t33 ( t t ) ;
73

74 Eout=cos ( t1/2+m1/2∗cos (wt ) )+exp( j ∗ t3 ) ∗cos ( t2/2+m2/2∗cos (wt+pe ) ) ;
75

76 c0=1/(2∗pi ) ∗sum( Eout ) ∗dwt ;
77 c p1=1/(2∗pi ) ∗sum( Eout .∗exp(− j ∗wt) ) ∗dwt ;
78 c n1=1/(2∗pi ) ∗sum( Eout .∗exp( j ∗wt) ) ∗dwt ;
79

80 m0=abs ( c0 ) ; m p1=abs ( c p1 ) ; m n1=abs ( c n1 ) ;
81 M0( tt , pp )=m0; MP1( tt , pp )=m p1 ; MN1( tt , pp )=m n1 ;
82

83 i f 20<20∗ log10 (m n1/m0) & 20<20∗ log10 (m n1/m p1)
84 f s =[ f s ; pe t3 M0( tt , pp ) MP1( tt , pp ) MN1( tt , pp ) ] ;
85 end
86 end
87 end
88

89 figure (1 )
90 subplot ( 1 , 3 , 1 ) , mesh( t33 , pee ,MN1) , hold on
91 for i i =1: length ( f s )
92 plot3 ( f s ( i i , 2 ) , f s ( i i , 1 ) , f s ( i i , 5 ) , ’ k . ’ )
93 end
94 l 1 = l i g h t ; l 1 . Po s i t i on = [160 400 8 0 ] ; l 1 . S ty l e = ’ l o c a l ’ ;
95 l 1 . Color = [0 0 .8 0 . 8 ] ; l 2 = l i g h t ; l 2 . Po s i t i on = [ . 5 −1 . 4 ] ;
96 l 2 . Color = [ 0 . 8 0 .8 0 ] ; t i t l e ( ’ 1 s t Negative Band ’ ) ,
97 xlabel ( ’ \ the ta 3 ’ ) , ylabel ( ’ \phi ’ )
98

99 subplot ( 1 , 3 , 2 ) , mesh( t33 , pee ,M0) , hold on
100 for i i =1: length ( f s )
101 plot3 ( f s ( i i , 2 ) , f s ( i i , 1 ) , f s ( i i , 3 ) , ’ k . ’ )
102 end
103 l 1 = l i g h t ; l 1 . Po s i t i on = [160 400 8 0 ] ; l 1 . S ty l e = ’ l o c a l ’ ;
104 l 1 . Color = [0 0 .8 0 . 8 ] ; l 2 = l i g h t ; l 2 . Po s i t i on = [ . 5 −1 . 4 ] ;
105 l 2 . Color = [ 0 . 8 0 .8 0 ] ; t i t l e ( ’ Car r i e r Band ’ ) ,
106 xlabel ( ’ \ the ta 3 ’ ) , ylabel ( ’ \phi ’ )
107

108 subplot ( 1 , 3 , 3 ) , mesh( t33 , pee ,MP1) , hold on
109 for i i =1: length ( f s )
110 plot3 ( f s ( i i , 2 ) , f s ( i i , 1 ) , f s ( i i , 4 ) , ’ k . ’ )
111 end
112 l 1 = l i g h t ; l 1 . Po s i t i on = [160 400 8 0 ] ; l 1 . S ty l e = ’ l o c a l ’ ;
113 l 1 . Color = [0 0 .8 0 . 8 ] ; l 2 = l i g h t ; l 2 . Po s i t i on = [ . 5 −1 . 4 ] ;
114 l 2 . Color = [ 0 . 8 0 .8 0 ] ; t i t l e ( ’ 1 s t Po s i t i v e Band ’ ) ,
115 xlabel ( ’ \ the ta 3 ’ ) , ylabel ( ’ \phi ’ )
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Appendix 3: Spectrum representation function

1 function i q ou t s = iqou t s ( pe , t1 , t2 , t3 ,m1,m2)
2

3 Nwt=1e7 ; wt=linspace(−pi , pi ,Nwt) ; dwt=2∗pi/Nwt ;
4

5 Eout=cos ( t1/2+m1/2∗cos (wt ) )+exp( j ∗ t3 ) ∗cos ( t2/2+m2/2∗cos (wt+pe ) ) ;
6

7 c0=2/pi∗sum( Eout ) ∗dwt ;
8

9 c p1=1/(2∗pi ) ∗sum( Eout .∗exp(− j ∗wt) ) ∗dwt ;
10 c n1=1/(2∗pi ) ∗sum( Eout .∗exp( j ∗wt) ) ∗dwt ;
11

12 c p2=1/(2∗pi ) ∗sum( Eout .∗exp(−2∗ j ∗wt) ) ∗dwt ;
13 c n2=1/(2∗pi ) ∗sum( Eout .∗exp(2∗ j ∗wt) ) ∗dwt ;
14

15 c p3=1/(2∗pi ) ∗sum( Eout .∗exp(−3∗ j ∗wt) ) ∗dwt ;
16 c n3=1/(2∗pi ) ∗sum( Eout .∗exp(3∗ j ∗wt) ) ∗dwt ;
17

18 c p4=1/(2∗pi ) ∗sum( Eout .∗exp(−4∗ j ∗wt) ) ∗dwt ;
19 c n4=1/(2∗pi ) ∗sum( Eout .∗exp(4∗ j ∗wt) ) ∗dwt ;
20

21 c p5=1/(2∗pi ) ∗sum( Eout .∗exp(−5∗ j ∗wt) ) ∗dwt ;
22 c n5=1/(2∗pi ) ∗sum( Eout .∗exp(5∗ j ∗wt) ) ∗dwt ;
23

24 m0=abs ( c0 ) ;
25

26 m p1=abs ( c p1 ) ; m n1=abs ( c n1 ) ;
27

28 m p2=abs ( c p2 ) ; m n2=abs ( c n2 ) ;
29

30 m p3=abs ( c p3 ) ; m n3=abs ( c n3 ) ;
31

32 m p4=abs ( c p4 ) ; m n4=abs ( c n4 ) ;
33

34 m p5=abs ( c p5 ) ; m n5=abs ( c n5 ) ;
35

36 pn = [−5 −4 −3 −2 −1 0 1 2 3 4 5 ] ;
37 m pn = [m n5 m n4 m n3 m n2 m n1 m0 m p1 m p2 m p3 m p4 m p5 ] ;
38

39 pee=[ ’ \phi=’ , num2str( pe ) ] ;
40 t11=[ ’ \ the ta 1=’ , num2str( t1 ) ] ;
41 t22=[ ’ \ the ta 2=’ , num2str( t2 ) ] ;
42 t33=[ ’ \ the ta 3=’ , num2str( t3 ) ] ;
43 m11=[ ’ m 1=’ , num2str(m1) ] ;
44 m22=[ ’ m 2=’ , num2str(m2) ] ;
45 info=[pee t11 t22 t33 m11 m22 ] ;
46

47 i q ou t s = stem(pn , m pn)
48 xlabel ( info )
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Appendix 4: Frequency shifting plot for different conditions

1 clear a l l
2 clc
3

4 Nwt=1e7 ; wt=linspace(−pi , pi ,Nwt) ; dwt=2∗pi/Nwt ; t1=pi ; t2=pi ; m=0.2;
5 f s = [ ] ; pas =0.01; t33=0: pas : pi ; pee=0: pas : pi ; db= [ ] ;
6 MK=zeros (315 ,315) ;
7

8 M0=zeros ( length ( t33 ) , length ( pee ) ) ;
9 MA1=zeros ( length ( t33 ) , length ( pee ) ) ;

10 MB1=zeros ( length ( t33 ) , length ( pee ) ) ;
11

12 for dbb=10:10:80
13 for pp=1: length ( pee )
14 phi=pee (pp) ;
15 for t t =1: length ( t33 )
16

17 t3=t33 ( t t ) ;
18

19 A0=abs ( b e s s e l j (0 ,m/2) ∗( cos ( t1 /2)+exp(1 i ∗ t3 ) ∗cos ( t2 /2) ) ) ;
20 A1=abs ( b e s s e l j (1 ,m/2) ∗( sin ( t1 /2)+exp(1 i ∗( t3+phi ) ) ∗ sin ( t2 /2) ) ) ;
21 B1=abs ( b e s s e l j (1 ,m/2) ∗( sin ( t1 /2)+exp(1 i ∗( t3−phi ) ) ∗ sin ( t2 /2) ) ) ;
22

23 M0( tt , pp )=A0 ; MA1( tt , pp )=A1 ; MB1( tt , pp )=B1 ;
24 MK( tt , pp )=dbb ;
25

26 i f dbb<20∗log10 (B1/A0) && dbb<20∗log10 (B1/A1)
27

28 f s =[ f s ; t3 phi M0( tt , pp ) MA1( tt , pp ) MB1( tt , pp ) ] ;
29 end
30 end
31 end
32

33 C = { ’ k . ’ , ’ b . ’ , ’ g . ’ , ’ y . ’ , ’ r . ’ , ’ k . ’ , ’ b . ’ , ’ y . ’ , ’ r . ’ , ’ k . ’ } ;
34

35 figure (1 )
36 for i i =1: length ( f s )
37 plot3 ( f s ( i i , 2 ) , f s ( i i , 1 ) , dbb , C{(dbb−10)/10+1})
38 end
39 grid on
40 xlabel ( ’ \ the ta 3 ’ ) , ylabel ( ’ \phi ’ ) , zlabel ( ’dB ’ )
41 l 1 = l i g h t ; l 1 . Po s i t i on = [160 400 8 0 ] ;
42 l 1 . S ty l e = ’ l o c a l ’ ; l 1 . Color = [ 0 0 .8 0 . 8 ] ; l 2 = l i g h t ;
43 l 2 . Po s i t i on = [ . 5 −1 . 4 ] ; l 2 . Color = [ 0 . 8 0 .8 0 ] ;
44 set (gca , ’ x t i c k ’ , [ 0 : pi /4 : pi ] )
45 set (gca , ’ y t i c k ’ , [ 0 : pi /4 : pi ] )
46 set (gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;
47 set (gca , ’ XTickLabel ’ ,{ ’ 0 ’ , ’ $$\ f r a c {\ pi }{4}$$ ’ , ’ $$\ f r a c {\ pi }{2}$$ ’ , ’ $$\ f r a c {3\ pi }{4}$$ ’ , ’ $$\

pi$$ ’ , ’ $$\ f r a c {3\ pi }{2}$$ ’ , ’ $$2\pi$$ ’ })
48 set (gca , ’ YTickLabel ’ ,{ ’ 0 ’ , ’ $$\ f r a c {\ pi }{4}$$ ’ , ’ $$\ f r a c {\ pi }{2}$$ ’ , ’ $$\ f r a c {3\ pi }{4}$$ ’ , ’ $$\

pi$$ ’ , ’ $$\ f r a c {3\ pi }{2}$$ ’ , ’ $$2\pi$$ ’ })
49 hold on
50 f s = [ ] ;
51 end
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Appendix 5: Plot of the bands changing θ3

1

2 clear a l l
3 clc
4

5 Nwt=1e7 ;
6 wt=linspace(−pi , pi ,Nwt) ;
7 dwt=2∗pi/Nwt ;
8 t1=pi ; t2=pi ; m1=0.1; m=0.1; phi=20∗2∗pi /360 ;
9

10 banda0 = [ ] ; banda1neg = [ ] ; banda1pos = [ ] ;
11 pt0banda0 = [ ] ; pt0banda1neg = [ ] ; pt1banda1pos = [ ] ;
12 f s = [ ] ;
13 pas =0.01;
14

15 for phi=30∗2∗pi /360:60∗2∗pi /360:150∗2∗pi /360
16 for t3=0: pas : 2∗ pi
17

18 A0=abs ( b e s s e l j (0 ,m/2) ∗( cos ( t1 /2)+exp(1 i ∗ t3 ) ∗cos ( t2 /2) ) ) ;
19 A1=abs ( b e s s e l j (1 ,m/2) ∗( sin ( t1 /2)+exp(1 i ∗( t3+phi ) ) ∗ sin ( t2 /2) ) ) ;
20 B1=abs ( b e s s e l j (1 ,m/2) ∗( sin ( t1 /2)+exp(1 i ∗( t3−phi ) ) ∗ sin ( t2 /2) ) ) ;
21 banda0=[banda0 A0 ] ;
22 banda1pos=[banda1pos A1 ] ;
23 banda1neg=[banda1neg B1 ] ;
24

25 end
26 pee=[ ’ \phi=’ , num2str( phi ) ] ; t11=[ ’ \ the ta 1=’ , num2str( t1 ) ] ;
27 t22=[ ’ \ the ta 2=’ , num2str( t2 ) ] ; t33=[ ’ \ the ta 3 =0:2 p i ’ ] ;
28 m11=[ ’ m 1=’ , num2str(m) ] ;
29 info=[pee t11 t22 t33 m11 ] ;
30

31 hold on
32

33

34 subplot ( 2 , 1 , 2 )
35 plot ( [ 0 : pas : 2∗ pi ] , banda1pos )
36 t i t l e ( ’ Po s i t i v e F i r s t Band ’ )
37 xlabel ( info )
38 ylabel ( ’ Amplitude [V] ’ )
39 xlim ( [ 0 2∗pi ] )
40 grid on
41 grid minor
42 set (gca , ’ x t i c k ’ , [ 0 : pi /2 :2∗ pi ] )
43 set (gca , ’ y t i c k ’ , [ 0 : 0 . 0 1 : 1 0 ] )
44 set (gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;
45 set (gca , ’ XTickLabel ’ ,{ ’ 0 ’ , ’ $$\ f r a c {\ pi }{2}$$ ’ , ’ $$\pi$$ ’ , ’ $$\ f r a c {3\ pi }{2}$$ ’ , ’ $$2\pi$$ ’ })
46 Legend=c e l l ( 3 , 1 ) ;
47 Legend{1}= ’ \phi=30 ’ ;
48 Legend{2}= ’ \phi=90 ’ ;
49 Legend{3}= ’ \phi=150 ’ ;
50 legend ( Legend )
51

52 hold on
53

54 subplot ( 2 , 1 , 1 )
55 plot ( [ 0 : pas : 2∗ pi ] , banda1neg )
56 t i t l e ( ’ Negative F i r s t Band ’ )
57 xlabel ( ’ \ the ta 3 ’ )
58 ylabel ( ’ Amplitude [V] ’ )
59 xlim ( [ 0 2∗pi ] )
60 grid on
61 grid minor
62 set (gca , ’ x t i c k ’ , [ 0 : pi / 2 : 1 0 0 ] )
63 set (gca , ’ y t i c k ’ , [ 0 : 0 . 0 1 : 1 0 0 ] )
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64 set (gca , ’ T i ckLabe l In t e rp r e t e r ’ , ’ l a t e x ’ ) ;
65 set (gca , ’ XTickLabel ’ ,{ ’ 0 ’ , ’ $$\ f r a c {\ pi }{2}$$ ’ , ’ $$\pi$$ ’ , ’ $$\ f r a c {3\ pi }{2}$$ ’ , ’ $$2\pi$$ ’ })
66 Legend=c e l l ( 3 , 1 ) ;
67 Legend{1}= ’ \phi=30 ’ ;
68 Legend{2}= ’ \phi=90 ’ ;
69 Legend{3}= ’ \phi=150 ’ ;
70 legend ( Legend )
71

72 hold on
73

74 banda1neg = [ ] ; banda1pos = [ ] ; banda0 = [ ] ;
75 end
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Appendix 6: VPIphotonics Design Suite

As it has already been stated in the paper, the software used for the simulations is VPIphotonics.

Figura 1: Screenshot of the program used

As seen in the above picture, in each MZM there is a source of Vbias and a source of small signal. Also, the
input light beam coming from the diode and the signal analyser in the end (the signal analyser connected to
the diode o the right obtains the electrical spectrum). The variables that have been changed for the different
cases are the amplitudes of both the small and bias signal in the two small MZM, the phase in the second
one (φ), and the phase difference between the two branches (θ3).

Other parameters that are constant in all the simulations are:

• RF FREQUENCY: Set to 1 GHz.

• TIME WINDOW: Interval of time where the samples will be considered. TW = nr/fRF , where nr is
a power of two.

• SAMPLE RATIO: Number of samples taken per second. SR = nhfRF , where nh is the number of
harmonics, a power of two.

• EXTINTION RATIO: This parameter is fixed because variating the ER of one of the branches would
be easy, but doing it with both of them would be too complex. Since variating only one doesn’t make
sense, it has been set to the average value of 30.
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