
1 
 

Probabilistic assessment of spatial heterogeneity of natural background concentrations in 1 

large-scale groundwater bodies through Functional Geostatistics 2 

 3 

L. Guadagninia,*, A. Menafogliob, X. Sanchez-Vilaa, A. Guadagninic 4 

 5 

aDepartment of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Jordi 6 

Girona 1-3, 08034 Barcelona, Spain 7 

bPolitecnico di Milano, MOX, Department of Mathematics, Piazza L. Da Vinci 32, 20133 Milano, 8 

Italy 9 

cPolitecnico di Milano, Dipartimento di Ingegneria Civile e Ambientale, Piazza L. Da Vinci 32, 10 

20133 Milano, Italy 11 

 12 

*Corresponding author: laura.guadagnini@polimi.it, laura.guadagnini@upc.edu 13 

  14 



2 
 

Abstract 15 

We propose and exemplify a framework to assess Natural Background Levels (NBLs) of 16 

target chemical species in large-scale groundwater bodies based on the context of Object Oriented 17 

Spatial Statistics. The approach enables one to fully exploit the richness of the information content 18 

embedded in the probability density function (PDF) of the variables of interest, as estimated from 19 

historical records of chemical observations. As such, the population of the entire distribution 20 

functions of NBL concentrations monitored across a network of monitoring boreholes across a 21 

given aquifer is considered as the object of the spatial analysis. Our approach starkly differs from 22 

previous studies which are mainly focused on the estimation of NBLs on the basis of the median or 23 

selected quantiles of chemical concentrations, thus resulting in information loss and limitations 24 

related to the need to invoke parametric assumptions to obtain further summary statistics in addition 25 

to those considered for the spatial analysis. Our work enables one to (i) assess spatial dependencies 26 

among observed PDFs of natural background concentrations, (ii) provide spatially distributed 27 

kriging predictions of NBLs, as well as (iii) yield a robust quantification of the ensuing uncertainty 28 

and probability of exceeding given threshold concentration values via stochastic simulation. We 29 

illustrate the approach by considering the (probabilistic) characterization of spatially variable NBLs 30 

of ammonium and arsenic detected at a monitoring network across a large scale confined 31 

groundwater body in Northern Italy. 32 

 33 
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1. Introduction 38 

Robust characterization of the natural chemical signature of a given groundwater system is a 39 

key component of modern environmental analysis. Critical aspects associated with this step include 40 

the identification of values of sampled concentrations of target chemicals that could be related to 41 

geogenic contributions. In this context, it is recognized that markedly high Natural Background 42 

levels (NBLs) of chemical species/compounds of interest can potentially be linked to petrographical 43 

(e.g., Hinsby and Condesso de Melo, 2006) or lithological and sedimentological site-specific 44 

characteristics (e.g., Redman et al., 2002; Molinari et al., 2013 and references therein) rather than 45 

being attributable to anthropogenic actions. Relating high values of sampled concentrations to an 46 

anthropogenic rather than a natural contribution may sometimes yield misleading assessments of 47 

environmental risks, improper classification of the chemical status (e.g., in terms of a good status, 48 

as defined by the European Water Framework Directive, WFD 2000/60/EC GWDD 2006/118/EC 49 

Directive 2014/80/EU) of aquifer bodies, as well as setting remediation goals which can be 50 

unattainable and/or unsustainable. In this context, modern regulatory frameworks at the European 51 

level highlight the need for an appropriate assessment of baseline concentrations, i.e. those that can 52 

be ascribed to geogenic effects and not caused by anthropogenic activities. 53 

Identification and implementation of a complete (generally multicomponent) geochemical 54 

model accounting for the complexity of processes driving flow and transport in porous media in the 55 

presence of the various sources of uncertainty associated with the ubiquitously heterogeneous 56 

subsurface is not always feasible. A series of investigations are then keyed to the development of 57 

procedures leading to embedding information within a management framework upon relying on a 58 

limited amount of data. The latter typically comprise monitored temporal series of concentration 59 

samples (Edmunds et al., 2003, Wendland et al., 2005, Panno et al., 2006, Walter, 2008, Urresti-60 

Estala et al., 2013, Kim et al., 2015; Liang et al., 2017, 2018, 2019). 61 

As an example, one of the main outcomes of the EU funded project BRIDGE (2007), 62 

Background cRiteria for the IDentification of Groundwater thrEsholds, is a guideline that allows 63 
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assessing the natural status of a groundwater body through a Pre-Selection methodology. The latter 64 

is based on the identification of pristine groundwater samples within an available collection of 65 

observations. This procedure typically yields the estimate of a unique (or bulk) NBL value, which is 66 

then assigned to the groundwater body under investigation. According to this approach, 67 

concentration values of a chemical species of interest exceeding such a threshold are then ascribed 68 

to anthropogenic activities. A notably weak point of such an approach is that it renders a unique 69 

NBL value, disregarding spatial variability, this aspect being critical when considering large scale 70 

heterogeneous (in terms of petrographic and hydrogeologic characteristics) aquifers. As a further 71 

evolution, some authors suggest that the NBL of a natural groundwater system should be expressed 72 

in terms of a range of values (e.g., Reimann and Garrett, 2005; Hinsby et al., 2008; Li et al., 2014) 73 

rather than being constrained to a single one.  74 

Studies related to characterizing the spatial variability of NBL concentrations include, e.g., 75 

the work of Ducci et al. (2016) and Dalla Libera et al. (2017). While the former relies on indicator 76 

kriging to demarcate regions associated with given probability of exceeding a target NBL value, the 77 

latter authors propose a zonation approach leading to piece-wise uniform NBL concentration maps. 78 

The analysis of Molinari et al. (2019) starts from values of the 90th percentile of concentration 79 

samples observed at a set of monitoring boreholes. These are then subject to standard variography 80 

upon considering alternative variogram models which are then employed in a multimodel context to 81 

provide kriging-based spatial distributions of estimates of NBL concentrations. The resulting kriged 82 

values are used jointly with the ensuing estimation variance to evaluate spatial distributions of the 83 

probability of exceeding predefined threshold values of NBL concentrations, the latter being 84 

assumed to be characterized by a log-normal distribution. We emphasize that all of these works rely 85 

on the representation of observed temporal series of natural background concentrations by way of 86 

through scalar summaries (e.g., the 90th percentile), which are then projected onto a set of locations 87 

of interest where data are not available. Doing so results in a loss of information and requires 88 

resorting to additional hypothesis, such as assuming a log-normal distribution for NBL values 89 
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which is parametrized according to the results of the kriging analysis (as in, e.g., Molinari et al., 90 

2019). The general concept underlying these studies is also consistent with approaches treating the 91 

characterization of spatial heterogeneity of aquifer systems within a probabilistic context (e.g., 92 

Winter et al., 2003; Short et al., 2010; Perulero Serrano et al., 2014; Bianchi Janetti et al., 2019 and 93 

references therein). 94 

Our study rests on the concepts underpinning Object Oriented Data Analysis (Marron and 95 

Alonso, 2014). Doing so enables us to consider the information content included in the entire 96 

distribution function of NBL concentrations monitored at a given observation borehole as the object 97 

of the spatial analysis, instead of being limited to selected moments or quantiles. Such a framework 98 

renders (a) predictions of the complete distribution of NBL concentrations in a non-parametric 99 

setting together with the associated uncertainty, and (b) joint assessment of all summary quantities 100 

of interest of the distribution (including desired quantiles and probability values). Accordingly, the 101 

NBL distributions are embedded in a mathematical space whose elements are probability density 102 

functions (Egozcue et al., 2006, Van den Boogaart et al., 2014). Our distinctive objective is to 103 

leverage on key elements of Object Oriented Spatial Statistics (O2S2, Menafoglio and Secchi, 104 

2017) to (i) quantify spatial dependencies among observations, (ii) provide spatially distributed 105 

kriging predictions, and (iii) yield a robust quantification of the uncertainty associated with NBL 106 

spatial distributions through stochastic simulation. As detailed in the following, we first illustrate 107 

the theoretical framework, and then demonstrate it to characterize spatial variability of NBL 108 

distributions of target chemical species by relying on an extensive set of hydrochemical data 109 

collected across a large scale confined groundwater body in Northern Italy. 110 

2. Materials and methods 111 

2.1. Study area and data-set 112 

As a test bed to demonstrate the breadth and potential of our approach, we focus on a 113 

groundwater body located in the Emilia-Romagna Region (Northern Italy) and demarcated on the 114 

basis of both geological/sedimentological information and anthropogenic impact analyses (Regione 115 
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Emilia-Romagna, 2010). The area is a portion of the Po Basin fill, a syntectonic sedimentary wedge 116 

(Ricci Lucchi, 1984) forming the infill of the Pliocene-Pleistocene fore-deep. 117 

Sedimentological and hydrogeological studies are available in the region (Amorosi et al., 118 

1996; Regione Emilia-Romagna-ENI-AGIP, 1998, Regione Emilia-Romagna, 2010), identifying 119 

three main hydrogeological complexes: Apennines alluvial fans, Apennine alluvial plain, and 120 

alluvial and deltaic Po plain. The complete aquifer system is characterized by a multilayered 121 

confined or semiconfined configuration. The thickness of fine deposits increases towards the 122 

northern portion of the plain (Regione Emilia-Romagna, 2010; Farina et al., 2014), where 123 

conditions of increased confinement are documented. 124 

Additional information regarding the hydrogeological setting of the region are available in 125 

Molinari et al. (2012) and Farina et al. (2014). Our study is keyed to one of the large scale 126 

groundwater bodies located in the upper confined portion of the aquifer system, within the 127 

hydrogeological complex named as Appenine alluvial plain. Figure 1 depicts limits and planar 128 

extent of the groundwater body considered, denoted with the identifier 0610 and characterized by 129 

an average depth of 75 m, average thickness of 130 m and area of about 2930 km2. 130 

 131 
Figure 1. Planar extent of groundwater body 0610 within the Emilia-Romagna Region. Blue arrows 132 

correspond to the overall regional-scale groundwater flow direction. 133 
 134 
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The groundwater body under study is considered to be significantly vulnerable, given its 135 

stratigraphic location within the aquifer system and the anthropogenic stresses associated with 136 

intensive exploitation for agricultural and civil purposes (Regione Emilia-Romagna, 2010). Being 137 

located in the upper confined portion of the complex aquifer system described, its southern limit is 138 

in continuity with the recharging areas of alluvial fans. A relevant amount of monitoring boreholes 139 

is set within its considerable planar extent, thus yielding a remarkable amount of available chemical 140 

data. As evidenced in prior investigations (Molinari et al. 2012, 2019), data about groundwater 141 

quality suggest the need to considering regional-scale, spatially heterogeneous distributions of NBL 142 

values. 143 

The analyzed data set includes time series of concentrations recorded at several monitoring 144 

stations managed by the “Agenzia Regionale per la Prevenzione e l'Ambiente dell'Emilia-145 

Romagna” (ARPAE - Regional Agency for Environmental Protection, Emilia-Romagna). We select 146 

monitoring boreholes where 20-year historical records of observations (1987-2008, collected at a 147 

six-month interval, albeit not continuously for some wells) are available. We focus on ammonium 148 

(NH4) and arsenic (As), whose documented concentrations locally exceed the limit set by current 149 

Italian regulations (also corresponding to the European Drinking Water Standards) set at 0.5 mg/l 150 

and 10 µg/l, respectively, and are seen as critical elements for the achievement of a good chemical 151 

status according to Italian Regulation (D. Lgs. 30/09, i.e., Decreto Legislativo n. 30, 16 March 152 

2009) and GWDD 2006/118/EC. A total number of 90 monitoring stations was initially considered 153 

by ARPAE to characterize groundwater body 0610. Some of these were associated solely with 154 

quantitative measurements of piezometric level. On the basis of a subsequent detailed analysis, 155 

monitoring stations that could not be attributed with certainty to the target groundwater body 156 

(essentially on the basis of the screen depth) were excluded from the original collection of locations. 157 

This has reduced the initial number of monitoring stations attributed to groundwater body 0610 to 158 

62, with a total of 1428 observations. Exclusion of monitoring stations where observations are 159 

associated with a temporal window spanning less than 3 years leads to retain 57 monitoring stations 160 
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with a total of 1354 observations available (among these, ammonium and arsenic have been 161 

measured in 1343 and 1193 samples, respectively). Concentrations below detection limit were set 162 

equal to half the detection limit. After application of PS, monitoring stations where less than 10 data 163 

points are available are further excluded from our analyses. As such, we use 1234 (associated with 164 

44 monitoring stations) for ammonium (see Section 3.1) and 1096 data (related to 43 monitoring 165 

stations) for arsenic (see Section 3.2). 166 

2.3 Methodology for Data analysis 167 

2.3.1 NBL estimates 168 

Concentration records are subject to a Pre-Selection (PS) procedure (BRIDGE, 2007) to 169 

identify NBL values. This approach enables us to remove samples exceeding certain concentration 170 

values, considered indicative of anthropogenic contamination, from the original record of 171 

observations. Conditions for samples exclusion are: (a) chloride concentrations > 1000 mg/l, 172 

denoting salinity; and (b) nitrate (NO3) concentrations > 10 mg/l, as a signature of anthropogenic 173 

influence caused by e.g., fertilizers. Additional criteria (redox conditions, dissolved oxygen, sulfate 174 

concentration) can be considered for sample exclusion (e.g., Hinsby and Condesso de Melo, 2006; 175 

Hinsby et al., 2008). For the purpose of our analyses, we follow Molinari et al. (2019) and apply 176 

only the exclusion criteria listed above. 177 

Data resulting from filtering the raw dataset through PS are considered as observations of 178 

naturally occurring NBL concentrations at diverse observation times across the analyzed window. 179 

Our analysis rests on monitoring wells which exhibit a time series with more than ten records. We 180 

note that the procedure which is then employed for the evaluation of the NBL (e.g., Wendland et al., 181 

2005) relies on (a) estimating the median value for the concentrations of the target chemical species 182 

identified at each monitoring well via PS, and (b) assessing the unique value of NBL associated 183 

with the whole water body in terms of a selected percentile (typically the 90th, 95th, or 97.5th).  184 

As illustrated in details in Section 2.3.3, we adopt here a diverse perspective and fully 185 

account for the functional nature of the data. The latter are thus analyzed as functional random 186 
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fields. In this context, the subject of our analysis is the collection of probability functions of NBLs 187 

obtained by applying the PS procedure at each monitoring station. By doing so, we go beyond the 188 

limitation of relying solely on selected percentiles of such probability functions and take advantage 189 

of the complete information content embedded in the entire probability function of NBL 190 

reconstructed from the observations at each well. 191 

We structure our study through the following main steps: 192 

1. perform sample selection for historical records at each observation borehole following the 193 

adopted exclusion criteria, as indicated in the original BRIDGE (2007) methodology; 194 

2. evaluate the (empirical probability) distribution function of NBLs of (log-transformed) 195 

concentrations of the selected chemical species at each observation well; 196 

3. perform spatial prediction and uncertainty quantification of NBL probability density 197 

functions (PDFs) at unsampled locations using an object-oriented geostatistical approach 198 

(Menafoglio et al., 2014). 199 

We describe the main theoretical elements and the ensuing implementation workflow 200 

associated with these steps in the following sections. 201 

2.3.2 Data pre-processing 202 

Data pre-processing aims at extracting an estimate of the NBL PDFs from each temporal 203 

series of NBL observations. Each temporal series is considered separately (observations associated 204 

with the series being used to build a corresponding histogram) neglecting temporal autocorrelation 205 

(additional comments on this choice are given in Section 3). The resulting histogram is then 206 

smoothed to yield a continuous estimate of the underlying PDF, as advocated by Machalová et al. 207 

(2016) and consistent with the modeling framework employed for the following analysis steps 208 

(detailed in Sections 2.3.3-2.3.4). Note that the length of the time-series can have an effect on the 209 

accuracy of the PDF estimation, i.e., the longer the time series, the lower the uncertainty in the data-210 

preprocessing. Here, we include all monitoring stations where at least 10 records are available. This 211 

is seen as a minimum threshold value to maintain the ability of estimating a density function from 212 
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the sampled data with a non-parametric approach. In general, the choice of such a threshold should 213 

attain a balance between the ability of estimating the PDF with sufficient accuracy, and the need to 214 

retain as many measurement sites as possible. This choice is case-specific and depends on the 215 

stability of the time-series, the data quality, possible missing data, the density of the measurement 216 

locations and their spatial distribution. 217 

2.3.3 Notation and background: geostatistics for PDFs 218 

The smoothed PDF data are considered as the objects of the geostatistical analysis. In the 219 

following we denote by 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛 the 𝑛𝑛 locations in the spatial domain 𝐷𝐷 where the PDFs of NBL 220 

are observed, and by 𝑋𝑋𝑠𝑠1 , … ,𝑋𝑋𝑠𝑠𝑛𝑛 the 𝑛𝑛 smoothed PDFs available at the sampling locations. Here, 𝑋𝑋𝑠𝑠𝑖𝑖 221 

denotes the PDF at location 𝑠𝑠𝑖𝑖, which is a positive function defined on an interval of (log-222 

)concentrations 𝐼𝐼 = [𝑎𝑎, 𝑏𝑏], common to all data. We consider these PDFs as a partial observation of a 223 

functional random field {𝑋𝑋𝑠𝑠, 𝑠𝑠 ∈ 𝐷𝐷}, that is a collection of random functional elements (the PDFs of 224 

NBL) indexed by a spatial variable 𝑠𝑠 in 𝐷𝐷. The goal of the analysis is to provide a kriging 225 

prediction of the random field (i.e, the entire PDF, 𝑋𝑋𝑠𝑠0) at unsampled locations (𝑠𝑠0) in 𝐷𝐷, based on 226 

the observations available at the monitoring stations. Two key challenges need to be tackled to 227 

solve the kriging problem: (i) the curse of dimensionality (due to the virtually infinite 228 

dimensionality of PDF data, which would need an infinity of point evaluations to be fully 229 

characterized), and (ii) the data constraints (positivity and unit integral). 230 

To jointly face these challenges, we follow the approach of Menafoglio et al. (2014, 2016a, 231 

2016b), who provide a class of geostatistical methods to analyze datasets of geo-referenced PDFs. 232 

These methods are based on the idea of defining an appropriate mathematical space where data are 233 

embedded, and use the geometry of the space to perform prediction and stochastic simulation. For 234 

instance, if the NBL data were represented through their median (i.e., a scalar summary statistics), 235 

the data could be embedded in the space 𝑅𝑅 of real numbers, and analyzed through a typical scalar 236 

geostatistics approach. If the NBL data were represented through a set of 𝑘𝑘 summary indices (e.g., 237 
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mean and standard deviation), a 𝑘𝑘-dimensional Euclidean space 𝑅𝑅𝑘𝑘 could be used to perform 238 

analyses through multivariate geostatistical methods (e.g., Chilès and Delfiner, 1999). Considering 239 

functional and constrained data, Menafoglio et al. (2014, 2016a, 2016b) propose to consider a 240 

Bayes space (Egozcue et al., 2006; Van den Boogaart et al., 2014), whose elements are PDFs, for 241 

embedding and analyzing the data. Bayes spaces provide the generalization to the functional 242 

framework of the so-called Aitchison simplex (Aitchison, 1986). In Bayes spaces, appropriate 243 

notions of operations between PDFs (e.g., sum (+), or product by a constant (⋅)) as well as of inner 244 

product (〈⋅,⋅〉) are defined, allowing for the development of a proper theory of kriging and stochastic 245 

simulation. For the purpose of this study, we do not present all details of these mathematical 246 

constructions and introduce only the key concepts and notation. We refer to Menafoglio et al. 247 

(2013, 2014, 2016a, 2016b) for an in-depth introduction to the mathematics underpinning the 248 

methods we employ. 249 

2.3.4 Modeling spatial dependence and kriging 250 

As a first step of the geostatistical analysis of the dataset 𝑋𝑋𝑠𝑠1 , … ,𝑋𝑋𝑠𝑠𝑛𝑛 of PDFs, we model the 251 

spatial dependence among data. We assume that (a) data are elements of the Bayes space 𝐵𝐵2, that is 252 

the space of positive functions, whose natural logarithm is square integrable, and (b) the field 253 

{𝑋𝑋𝑠𝑠, 𝑠𝑠 ∈ 𝐷𝐷} is stationary. This enables us to consider the generalization of the classical variogram to 254 

the functional context, which is termed trace-variogram. In 𝐵𝐵2, the trace-variogram is defined as 255 

the function 2𝛾𝛾(𝑠𝑠1, 𝑠𝑠2) that associates with a pair of locations 𝑠𝑠1, 𝑠𝑠2 (in 𝐷𝐷) the expected square 256 

distance (in 𝐵𝐵2) between the NBL PDFs (𝑋𝑋𝑠𝑠1, 𝑋𝑋𝑠𝑠2) at such locations, i.e., 257 

2𝛾𝛾(𝑠𝑠1, 𝑠𝑠2) =  𝔼𝔼�𝑑𝑑𝐵𝐵2
2 �𝑋𝑋𝑠𝑠1 ,𝑋𝑋𝑠𝑠2�� = 𝔼𝔼 � 1

2(𝑏𝑏−𝑎𝑎)∫ ∫ ln �𝑋𝑋𝑠𝑠1
(𝑡𝑡)𝑋𝑋𝑠𝑠2(𝑠𝑠)

𝑋𝑋𝑠𝑠1(𝑠𝑠)𝑋𝑋𝑠𝑠2(𝑡𝑡)
� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎
𝑏𝑏
𝑎𝑎 �. (1) 258 

Interpretation and properties of the trace-variogram for PDF data are very similar to their scalar 259 

counterpart. In particular, under stationarity, the trace-variogram depends only on the increment 260 

among locations (𝑠𝑠1 − 𝑠𝑠2), stabilizes at a horizontal asymptote (sill), and the distance at which the 261 

variogram attains the sill determines the range of association among elements of the field (range). 262 
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Variogram modeling can be performed in two steps: (i) estimating a binned trace-variogram 263 

2𝛾𝛾(ℎ) = 1
|𝑁𝑁(ℎ)|

∑ 𝑑𝑑𝐵𝐵2
2 �𝑋𝑋𝑠𝑠𝑖𝑖 ,𝑋𝑋𝑠𝑠𝑗𝑗�𝑠𝑠𝑖𝑖,𝑠𝑠𝑗𝑗∈𝑁𝑁(ℎ) , (2) 264 

|𝑁𝑁(ℎ)| being the number of pairs of sampled sites (approximately) separated by ℎ; and (ii) fitting a 265 

valid model (e.g., spherical, exponential, matérn) to the empirical estimate (1). 266 

Once the variogram model is estimated, the functional kriging prediction for a PDF of NBL at 267 

a target location 𝑠𝑠0 is based on the best linear unbiased (functional) predictor in the Bayes space 𝐵𝐵2. 268 

This is defined as the predictor 𝑋𝑋𝑠𝑠0
∗ = ∑ 𝜆𝜆𝑖𝑖∗ ⋅ 𝑋𝑋𝑠𝑠𝑖𝑖

𝑛𝑛
𝑖𝑖=1 , where symbols denote the linear combination in 269 

the Bayes space, and are explicitly written as 270 

𝑋𝑋𝑠𝑠0
∗ (𝑡𝑡) =

∏ 𝑋𝑋𝑠𝑠𝑖𝑖
𝜆𝜆𝑖𝑖
∗

(𝑡𝑡)𝑛𝑛
𝑖𝑖=1

∫ ∏ 𝑋𝑋𝑠𝑠𝑖𝑖
𝜆𝜆𝑖𝑖
∗

𝑛𝑛
𝑖𝑖=1 (𝑠𝑠)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎

, (3) 271 

𝜆𝜆1∗ , … , 𝜆𝜆𝑛𝑛∗  being scalar weights to be optimized through minimization of the variance of prediction 272 

error under unbiasedness. From a practical viewpoint, having estimated the trace-variogram model 273 

2𝛾𝛾, finding the kriging weights reduces to the solution of the very same kriging system associated 274 

with scalar geostatistics (see, e.g., Menafoglio and Secchi, 2017, for details). 275 

2.3.5 Stochastic Simulation 276 

Uncertainty quantification for functional kriging can be performed by using conditional 277 

stochastic simulation, as originally proposed in Menafoglio et al. (2016b). For this purpose, one 278 

necessarily needs to reduce the dimensionality of the data, as it is hardly possible to produce 279 

realizations of an infinity of point evaluations of the PDF. Dimensionality reduction can be 280 

performed through functional principal component analysis in the Bayes space 𝐵𝐵2 (SFPCA, Hron et 281 

al., 2016). The SFPCA analysis allows identifying the main directions of variability (𝑒𝑒1, 𝑒𝑒2, …) of 282 

the dataset 𝑋𝑋𝑠𝑠1 , … ,𝑋𝑋𝑠𝑠𝑛𝑛. The elements 𝑒𝑒1, 𝑒𝑒2, … are the analogue of the eigenvectors in multivariate 283 

principal component analysis. In particular, 𝑒𝑒1, 𝑒𝑒2, …  form an orthonormal functional basis of space 284 

𝐵𝐵2. Projecting the data along the first 𝐾𝐾 principal components enables one to represent the PDF 𝑋𝑋𝑠𝑠𝑖𝑖 285 

through a vector of 𝐾𝐾 coordinates 𝒙𝒙𝑠𝑠𝑖𝑖 = (𝑥𝑥𝑠𝑠𝑖𝑖,1, … , 𝑥𝑥𝑠𝑠𝑖𝑖,𝐾𝐾), thus reducing to 𝐾𝐾 the formerly infinite 286 
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dimensionality of the PDF. Stochastic simulation of the PDF can be then performed by simulation 287 

of the vector of coordinates along the truncated basis 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝐾𝐾 at the target location 𝒙𝒙𝑠𝑠0 =288 

(𝑥𝑥𝑠𝑠0,1, … , 𝑥𝑥𝑠𝑠0,𝐾𝐾), based on the coordinate vector available at the sampled sites. Such simulation can 289 

be performed through the aid of well-known multivariate methods, such as those based on 290 

sequential Gaussian co-simulation (e.g., Chilès and Delfiner, 1999; Kim et al., 2019). 291 

3. Results and discussion 292 

3.1. Ammonium 293 

As stated in Section 2.1, a total of 1234 historical records collected at 44 monitoring stations 294 

were available for ammonium concentration after PS, characterized by a number of 12 to 42 295 

observations per monitoring well (with an average of about 28). A preliminary analysis of the data 296 

reveals that most locations (41 out of 44) do not display any autocorrelation in the time series of 297 

NBL concentrations (level 1%, as obtained through a Durbin-Watson test on each time series, the p-298 

value of single tests being corrected via Holm’s method). Autocorrelation within the temporal series 299 

was thus neglected in the data preprocessing. The PDF of NBL log-concentrations (hereafter termed 300 

NBL densities or NBL PDFs for ease of illustration) were then estimated at each borehole upon 301 

neglecting temporal autocorrelations. The ensuing results are depicted in Figure 2 in terms of 302 

smoothed data. 303 

 304 

Figure 2. Smoothed data for ammonium log-concentration values and corresponding spatial 305 
locations in the investigated aquifer system. Colors are assigned according to the value of the mean 306 

related to the corresponding smoothed density. Spatial coordinates are in meters. 307 
 308 
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Visual inspection of Figure 2 suggests that the highest mean values are associated with the 309 

distal portion of the domain, mainly close to the coastal area where water is characterized by high 310 

chloride concentrations. A global stationarity assumption of the functional data appears to be 311 

supported by the sample trace-semivariogram depicted in Figure 3, which is characterized by a clear 312 

asymptote for increasing spatial distances. 313 

 314 

Figure 3. Sample trace-variogram estimated from the smoothed functional data for ammonium log-315 
concentrations and interpreted model with estimated parameters. 316 

 317 

An exponential model with nugget was fitted to the empirical variogram, estimated values of 318 

its parameters being included in Figure 3. One may notice the presence of a relevant nugget effect 319 

in the structure of spatial dependence, which provides an indication of possible spatial 320 

discontinuities in the field of NBL densities. Point Kriging was then performed across a regular grid 321 

of 2824 points (of side 983 m and 1048 m along the horizontal -West-East- and vertical -South-322 

North- directions). Such a grid encompasses the full aquifer body domain, grid spacing being 323 

consistent with the spatial density of the available monitoring network and corresponding to a 324 

discretization of the variogram range (Figure 3) with about 50 points. Figure 4a depicts the resulting 325 

kriging-based predictions of PDFs of NBL of (log-transformed) ammonium concentrations. We 326 

note that, while point Kriging results do not depend on the cell size, the latter can be otherwise 327 

influential to the graphical representation associated with the color scale in Figure 4, which can 328 

nevertheless capture the overall spatial pattern of the quantities of interest. Cross-validation results 329 

(Appendix A) fully support the satisfactory performance of the prediction method. 330 
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Figures 4b and 4c illustrate the mean and standard deviation of the predicted NBL densities, 331 

respectively. The highest mean values are mostly located in the eastern portion of the domain, close 332 

to the coastal groundwater body, with moderate values of standard deviation. These results are 333 

consistent with the observation that raw concentration data collected from this area tend to exhibit 334 

large NH4 values that persist over time (see also Figure 2), a finding which is possibly linked to 335 

ammonium being more soluble in saline environments as compared to freshwater bodies. 336 

 337 

Figure 4. Kriging prediction of NBL densities for ammonium log-concentrations: (a) 338 
kriged/predicted densities; (b) mean values, and (c) standard deviation estimated from the kriged 339 

densities. 340 
 341 

A sector characterized by low mean and high standard deviation values is visible in the 342 

south of this area. This result is consistent with the documented pattern associated with 343 

experimental data in this region, which are characterized by a temporal evolution displaying high 344 

concentration values within a collection of otherwise low values. The central portion of the domain 345 

is characterized by modest mean concentration values with high standard deviations. Low mean 346 

values and low to moderate values of standard deviation are found within the western area. It is 347 

noted that demarcation of zones linked to differing behaviors of the target chemical species is one 348 
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of the key advantages of the functional analysis approach we employ. Local high values of 349 

ammonium are consistent with the documented natural occurrence of paleo-peats (Amorosi et al., 350 

1996; Cremonini et al., 2008) in sample cores collected at other locations across the area of interest, 351 

with an overall tendency of ammonium concentrations to increase with depth and with increasing 352 

thickness of the fine deposits that confine the aquifer. Further large scale sampling campaigns 353 

would be required for a detailed assessment of correspondences with specific local conditions. 354 

Figure 5a depicts the predicted spatial variability of the 90% quantile of the NBL 355 

concentration. These results are complemented by Figure 5b, where we depict the spatial 356 

distribution of the probability of exceeding the reference NBL value of 4.6 mg/l, which was 357 

suggested by Molinari et al. (2012) as representative of the global chemical status of the system 358 

upon relying on the classical PS procedure, as proposed by Wendland et al. (2005) and described in 359 

Section 2.3.1. The stark variability displayed by the 90th percentile across the domain documents the 360 

presence of sectors within which the target chemical species shows differing behavior and suggests 361 

the need for considering spatially variable local NBL values. Our results indicate that the 362 

probability of exceeding the reference NBL value of 4.6 mg/l is very low across most of the 363 

domain, high probability of exceedance being confined within a limited portion of the system. 364 

We note that our results are in general agreement with the findings of Molinari et al. (2019), 365 

where areas where such probability was evaluated above 80% are slightly wider than in our 366 

findings, while being located in the same sector. We remark that the approach employed by these 367 

authors (i) is based solely on summary statistics and not on the entire PDFs and (ii) relies on a 368 

Gaussian assumption to represent (log-transformed) NBL concentrations. Additionally, it is noted 369 

that data associated with boreholes with less than 10 records (after PS) were excluded from our 370 

analysis to allow for PDF reconstruction and interpretation, while some of these were retained by 371 

Molinari et al. (2019). Finally, we highlight that our approach is fully compatible with the 372 

possibility of resorting to a multimodel analysis to comprise uncertainty about the choice of the 373 

functional format for the variogram model (see e.g., Molinari et al. (2019)). While this element can 374 
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be of interest, we focus here on the main innovative aspect of our study, which is related to the 375 

treatment of the data within the context of a functional geostatistical approach. 376 

 377 

Figure 5. Spatial distributions of predicted (a) quantile of order 90% and (b) probability of 378 
exceedance of an ammonium concentration threshold of 4.6 mg/l.  379 

 380 

The approach illustrated in Section 2.3.5 was then applied to the smoothed density data 381 

projected on the basis generated by the first k = 8 principal components (explaining 99.99% of the 382 

total variability) to generate a collection of random realizations of spatial distributions of NBL log-383 

concentration values. The scores 𝑥𝑥𝑠𝑠1,𝑘𝑘1 ,𝑥𝑥𝑠𝑠2,𝑘𝑘2 were modeled as uncorrelated for 𝑘𝑘1 ≠ 𝑘𝑘2 and 𝑠𝑠1 ≠384 

𝑠𝑠2 in the domain, as supported by visual inspection of cross-variograms (not shown). An 385 

exponential model was calibrated to the empirical variogram for each spatial field of scores. 386 

Conditional Gaussian simulations were performed to yield a Monte Carlo (MC) collection of 100 387 

realizations. The practical implementation relies on the adoption of sequential Gaussian simulation 388 

(Abrahamsen and Benth, 2001) as implemented within the R package gstat (Pebesma, 2004), and 389 

setting a local neighborhood of 60 km to reduce computational burden. The collection of NBL 390 

distributions was then built from the MC ensemble of scores. 391 

Figure 6 depicts a realization of the spatial field of NBL densities (Figure 6a), the spatial 392 

distributions of the 90% quantile (Figure 6b) and the probability of exceeding the threshold value of 393 

4.6 mg/l (Figure 6c). Similar to what we observed in Figure 5, the overall spatial pattern in Figures 394 

6b, c is generally consistent with the results presented by Molinari et al. (2019) (see their Figure 2) 395 

and reinforces the concept that assigning a unique NBL value for a given chemical species to a 396 
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large scale groundwater body can conceal the possibility of identifying regions with high (or low) 397 

geogenic contribution. These could in turn be ascribed to low (or high) anthropogenic activity, thus 398 

potentially biasing expectations about results of groundwater protection measures. We recall that 399 

Molinari et al. (2019) (a) rely on the stringent assumption that (log)concentrations can be described 400 

as a Gaussian model, and (b) parametrize the latter on the basis of kriging results relying solely on 401 

summary statistics evaluated from the available data. Rather, we are not limited by any assumption 402 

about the specific functional format of probability densities, which are entirely data-driven and are 403 

the object of the geostatistical analysis. As such, the tools and implementation workflow we 404 

propose is conducive to evaluations of the spatially heterogeneous field of NBL values in a 405 

probabilistic context upon maximizing the use of the amount of information embedded in the 406 

available data. This is seen as a critical element of a modern decision-making approach grounded on 407 

a firm environmental risk assessment practice. Future integration of these findings with other types 408 

of (hydro)geological and geochemical information can then yield a complete picture of the natural 409 

signature of the system analyzed. 410 

 411 

Figure 6. Example of a realization obtained from the (conditional) stochastic simulation of NBL 412 
distributions of ammonium log-concentrations. (a) Simulated NBL densities and corresponding 413 

spatial distributions, (b) 90% quantiles, (c) probability of exceeding a threshold value of 4.6 mg/l. 414 
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 415 

3.2. Arsenic 416 

A total of 1096 data collected at 43 monitoring station were available for arsenic after PS 417 

(see Section 2.1), with a number of observations per sampling point ranging between 11 to 38 (with 418 

an average of about 25). Estimation of the PDF of the NBL concentrations is performed at each 419 

borehole location consistently with the approach exemplified in Section 3.1. The resulting smoothed 420 

data are depicted in Figure 7. 421 

 422 

Figure 7. Smoothed data for arsenic log-concentrations (a), and corresponding spatial locations in 423 
the investigated aquifer system (b). Colors are assigned according to the value of the mean related 424 

to the corresponding smoothed density. 425 
 426 

Figure 7 suggests a significant spatially heterogeneous behavior. The highest mean values 427 

are scattered across the whole domain, suggesting that these could be associated with local 428 

conditions. These types of results are consistent with the behavior of arsenic, that is typically 429 

documented to display a remarkably high degree of spatial variability within a given groundwater 430 

body (e.g., Duan et al., 2017; Pi et al., 2018; Smith et al., 2003; Liang et al., 2017, 2018, 2019). 431 

The sample trace-variogram associated with the available densities is depicted in Figure 8, 432 

its pattern supporting a global stationarity assumption. An exponential model with nugget was 433 

calibrated to the empirical variogram, its estimated parameters being listed in Figure 8. The 434 

contribution of the nugget to the total variance is equal to 15%, suggesting the occurrence of 435 

variability between sample pairs separated by short distance. 436 
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The available smoothed densities were then estimated through Kriging at the same set of 437 

unsampled locations considered in the ammonium case, grid spacing corresponding to a 438 

discretization of the variogram range (Figure 8) with about 10 points. Cross-validation results 439 

(Appendix A) fully support the satisfactory performance of the approach. 440 

 441 

Figure 8. Sample trace-variogram estimated from the smoothed functional data for arsenic log-442 
concentrations and interpreted model with estimated parameters. 443 

 444 

 445 

Figure 9. Kriging prediction of NBL densities for arsenic log-concentrations: (a) kriged/predicted 446 
density functions; (b) spatial distribution of mean values, and (c) standard deviation estimated from 447 

the kriged densities. 448 
 449 
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Figure 9a depicts the predicted (i.e., based on functional Kriging results) PDFs of NBL log-450 

concentrations of arsenic. Figures 9b and 9c depict the estimates of mean value and standard 451 

deviation of NBL densities, respectively. Moderate to high mean values are mostly located in the 452 

north-western and central portions of the domain. The associated standard deviation varies from 453 

moderate to high values. Areas characterized by high values of the mean value of predicted PDFs 454 

appear to be localized around some measurement stations, rather than being spread across extended 455 

sectors of the domain. This finding is also consistent with possible occurrences of lateral variations 456 

of arsenic concentrations, similar to other documented studies across several regions worldwide. 457 

Figure 10a depicts the spatially heterogeneous distribution of the predicted 90% quantile of 458 

the NBL As log-concentrations. To complement these results, Figure 10b shows the probability of 459 

exceeding the reference NBL value of 33 µg/l, evaluated by Molinari et al. (2012) as representative 460 

of the global chemical status of the system through the classical PS procedure (Wendland et al., 461 

2005). We found that the probability of exceeding such a threshold value is very modest throughout 462 

the system, with the exception of some localized spots where it attains moderate values. This has a 463 

clear consequence on the assessment of the chemical status of the system, which would have been 464 

(deterministically) classified as requiring attention on the basis of such a performance metric. 465 

 466 

Figure 10. Spatial distribution of predicted (a) 90% quantile and (b) probability of exceedance of 467 
an arsenic concentration threshold of 33 µg/l. 468 

 469 
We note that Molinari et al. (2019) could not provide spatial maps of exceedance 470 

probabilities, because their analysis, grounded solely on summary quantities, resulted in a pure 471 
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enable one to observe the emergence of some degree of spatial correlation when the complete 473 

density associated with observations is embedded in the methodology. 474 

Similar to the case of ammonium, we applied the stochastic simulation approach described in 475 

Section 2.3.5 to the smoothed density data projected on the basis generated by the first k = 8 476 

principal components (explaning 99.99% of the total variability). MC realizations employed a local 477 

neighborhood of 60 km being set to alleviate computational time. Figure 11 depicts a selected 478 

realization of the spatial field of NBL densities (Figure 11a), the corresponding spatial distributions 479 

of 90% quantiles (Figure 11b), and the probability of exceeding the threshold value of 33 µg/l 480 

(Figure 11c). The occurrence of localized spots associated with significant probability of high 481 

natural arsenic concentrations are consistent with the documented presence at some depths in the 482 

aquifer system of sediments whose composition includes a vegetal-rich fraction (see, e.g., Molinari 483 

et al., 2013, 2014). These types of solid matrices are prone to potentially adsorb significant arsenic 484 

amounts that can then be mobilized by variations of redox conditions (see, e.g., Molinari et al., 485 

2013, 2014, 2015). A detailed analysis to evaluate possible relationships and consistency with local 486 

conditions would require additional large scale sampling campaigns which can be subject of future 487 

studies. 488 

 489 
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Figure 11. Example of a realization obtained from the (conditional) stochastic simulation of NBL 490 
distributions of arsenic. (a) Simulated NBL densities and corresponding spatial distributions of (b) 491 

90% quantiles, and (c) probability of exceeding the threshold value of 33 µg/l.  492 
 493 

4. Conclusions 494 

We propose and apply a theoretical framework and the ensuing operational workflow to 495 

obtain a rigorous (probabilistic) assessment of Natural Background Levels (NBL) of concentrations 496 

of target chemical species in large-scale groundwater bodies, which are usually characterized by a 497 

high degree of heterogeneity of sedimentological and hydrogeochemical conditions. Our approach 498 

enables one to fully consider the richness of information embedded in the available historical 499 

records of routinely monitored concentrations which are then typically employed (e.g., by 500 

Environmental Agencies) to assess the chemical status of a groundwater body. On these bases, we 501 

suggest a change of perspective in the way one should consider evaluating NBL concentrations in a 502 

modern probabilistic risk assessment context. Rather than focusing on selected (statistical) moments 503 

or percentiles (i.e., summary statistics) evaluated on the basis of sample probability distributions of 504 

concentrations at individual boreholes, we associate with each monitoring station the entire 505 

distribution of NBL concentrations. The latter is represented through its (estimated) density 506 

function, which we model as a random point in a Bayesian Hilbert space and then analyze in the 507 

context of Object Oriented Data Analysis. The merits of the approach are exemplified through an 508 

application targeting the evaluation of the main characteristics of the spatial variability of the NBLs 509 

of two selected chemical species (ammonium and arsenic) within a large scale groundwater body in 510 

Northern Italy. 511 

Our study leads to the following major conclusions. 512 

1. The approach enables one to identify local trends within a given groundwater body, as 513 

quantified in terms of spatial heterogeneity of NBL concentrations, in a probabilistic 514 

context, without being limited to relying solely on selected quantiles of the distribution of 515 

concentrations extracted from historical records. As such, it is possible to demarcate sectors 516 
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where distinct NBL spatial patterns emerge from an average system behavior, to be then 517 

integrated within a decision-making activity. 518 

2. The approach is fully consistent with modern requirements of tailoring the objective of 519 

environmental actions to spatially varying conditions. This forms the platform to set 520 

appropriate and cost-effective remediation goals and actions for deteriorated groundwater 521 

bodies which account for the complete set of information embedded in the historical records. 522 

Relying on rigorously assessed spatial distributions of probabilities of exceeding given NBL 523 

concentration thresholds hampers the risk of assigning exceedingly high values of natural 524 

background concentrations to areas subject to anthropogenic activities or otherwise setting 525 

very low background levels within regions where the geogenic contribution can be 526 

significant. Lack of consideration of these elements could lead to setting unrealistic 527 

remediation goals. 528 

3. Having the ability to generate multiple conditional spatial realizations of NBL densities 529 

enables a complete uncertainty quantification (see our exemplary results in Section 3) which 530 

would be otherwise impossible with standard methods of analysis currently adopted in 531 

practical applications targeting large scale groundwater bodies. These elements are markedly 532 

relevant in such systems, whose hydrogeologic, lithologic, and geochemical characteristics 533 

can be associated with large spatial heterogeneity. 534 

Key values of the study are methodological as well as operational. From a methodological 535 

standpoint, the workflow we propose includes elements of innovation which go beyond limitations 536 

of other typically used approaches, including the possibility of effectively using the full information 537 

content embedded in data which are routinely monitored by local authorities and public 538 

environmental agencies. From an operational standpoint, it provides an appraisal of the probability 539 

that a given threshold value of concentration of geogenic origin can be exceeded in the exemplary 540 

areas considered. The ability to provide a robust and data-driven quantification of probability of 541 

exceedance provides an important element of flexibility in decision-making under uncertainty. The 542 
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nature of the approach allows accounting for specific local needs, as viewed in the broad regional 543 

context, as well as the possibility of updating the results of the analysis as data become available. 544 

As such, it enables one to structure corrective actions according to levels of priorities related to 545 

target concentration thresholds and associated probability distributions linked to specific areas, 546 

which might be characterized by distinct local requirements. In this sense, our results can provide a 547 

support to identify localized areas where detailed hydrogeological studies can be promoted with the 548 

aim, e.g., to constrain uncertainty associated with predicted NBL values and associated probability 549 

of exceedance. 550 

  551 
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Appendix A 552 

The performance of the proposed approach is assessed through a leave-one-out cross-553 

validation (LOO CV) analysis. Here, for each site si in D, the PDF of the NBL PDF Xsi is left out of 554 

the sample and a training set built upon all of the other NBL PDFs, �Xsj , j ≠ i�, is considered for 555 

calibration of the geostatistical model, following the same steps and parameter settings as in Section 556 

3. Kriging is then used to predict the left-out NBL PDF Xsi, yielding a prediction Xsi
∗(−i). The 557 

prediction error for each site is evaluated through the sum of squared errors (SSE) as 558 

SSE(Xsi) =  dB2
2 �Xsi , Xsi

∗(−i)� = 1
2(b−a)∫ ∫ ln�

Xsi(t)Xsi
∗(−i)(s)

Xsi(s)Xsi
∗(−i)(t)

�dtds.b
a

b
a  (A1) 559 

Table A1 lists the summary statistics of SSE, as assessed via LOO CV for ammonium (first 560 

row) and arsenic (second row). It is noted that the LOO CV analyses for these chemical species are 561 

performed separately. Overall, the order of magnitude of the errors is fully consistent with the 562 

estimated sills of the trace-variograms (estimated sills: 36.35 and 33.00 for ammonium and arsenic, 563 

respectively). 564 

Chemical Species Min Q1 Median Mean Q3 Max 

Ammonium 8.81 18.16 26.58 29.97 40.01 109.08 

Arsenic 9.84 19.91 26.96 35.43 36.32 134.37 

Table A1: Summary statistics for SSE (A1). 565 

The LOO CV analysis is additionally used to evaluate the ability of our conditional simulation 566 

theoretical approach and operational workflow to represent prediction uncertainty. As an example, 567 

Figure A1 depicts the results obtained at two locations (denoted as FC17−01 and RE17−03) for 568 

ammonium (top panels) and arsenic (bottom panels). Predicted NBL PDFs at these locations are 569 

depicted with dashed black curves, whereas grey curves correspond to the B = 100 conditional 570 

simulations at the site. The observed PDFs are represented as thick black curves. Visual inspection 571 

of Figure A1 suggests that conditional simulations well represent the uncertainty associated with the 572 
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predictions for both chemical species. For instance, one can observe that, even as the kriging error 573 

for arsenic at location RE17-03 appears to be quite high, the conditional simulations at the site 574 

suggest that a high uncertainty is associated with the prediction. Note that here, the test NBL PDF is 575 

well captured by the simulated collection of realizations. 576 

To quantitatively assess the performance in terms of uncertainty quantification, we then 577 

compute the distance between the test curve and the ensemble of Monte Carlo simulations as 578 

SSEsim�Xsi� = min �dB2
2 �Xsi , Xsi

b(−i)�, b = 1, … B� (A2) 579 

where Xsi
b(−i) denotes the b-th conditional simulation when the i-th observation is left out of the 580 

sample. In practice, the smaller SSEsim�Xsi�, the closer the ensemble is to the test observation Xsi. 581 

For instance, values of SSEsim�Xsi� for ammonium at locations FC17-01 and RE17-03 are 5.96 and 582 

7.56, respectively, their counterparts corresponding to arsenic being 16.46 and 10.28, respectively. 583 

Table 2 lists the summary statistics associated with SSEsim for both chemical species. One can note 584 

that the ensemble is typically quite close to the test observation, with an average SSEsim of 10.67 585 

and 9.02 for ammonium and arsenic, respectively. 586 

 587 

−4 −2 0 2 4
0.0

0.5

1.0

1.5

D
en

si
ty

ln(Concentration)
−4 −2 0 2 4

ln(Concentration)

0.0

0.5

1.0

1.5

D
en

si
ty

2.0

(c) Site FC17-01
arsenic

−2 0 2 4 6

D
en

si
ty

ln(Concentration)
−2 0 2 4 6

ln(Concentration)

0.0

0.5

1.0

1.5

D
en

si
ty

2.0

0.0

0.5

1.0

1.5

2.0
(d) Site RE17-03

arsenic

(a) Site FC17-01
ammonium

(b) Site RE17-03
ammonium



28 
 

Figure A1. Leave-one-out cross-validation results at sites FC17-01 and RE17-03. Dashed black 588 

curves correspond to predicted NBL PDFs, whereas grey curves correspond to the 𝐵𝐵 = 100 589 

conditional simulations at the site; observed PDFs are represented as thick black curves. 590 

 591 

Chemical Species Min Q1 Median Mean Q3 Max 

Ammonium 2.30 5.70 7.88 10.67 13.15 41.92 

Arsenic 1.05 5.31 7.14 9.023 10.56 30.38 

Table A2: Summary statistics for SSEsim (A2). 592 
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