
 
 

UPCommons 
Portal del coneixement obert de la UPC 

http://upcommons.upc.edu/e-prints 
 
 
 
 
 
 
 
 
Aquesta és una còpia de la versió author’s final draft d'un article 
publicat a la revista  Physical review A.  
 
http://hdl.handle.net/2117/330436 
 

 
 
 
 
 
 
 
 
 

 
Article publicat / Published paper:  
 
 
Wang, P. [et al.]. Translationally invariant metamirrors for spatial 
filtering of light beams. Physical review A, 1 Juliol 2020, vol. 102, núm. 
1, p. 013517/1-013517/7.  DOI: <10.1103/PhysRevA.102.013517>.  
 
 
 
 

 
 

http://upcommonsdev.upc.edu/
http://upcommonsdev.upc.edu/
http://upcommons.upc.edu/e-prints
http://hdl.handle.net/2117/330436
http://dx.doi.org/10.1103/PhysRevA.102.013517


Translationally invariant metamirrors for spatial filtering of light beams

P. Y. Wang,1,* R. Herrero,2 M. Botey ,2 Y. C. Cheng,1 and K. Staliunas2,3,4

1Department of Electro-Optical Engineering, National Taipei University of Technology (NTUT), No.1, Sec. 3,
Zhongxiao E. Rd., Da’an Dist., 10608, Taipei, Taiwan

2Departament de Fisica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa, Barcelona, Spain
3Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys, 23, 08010 Barcelona, Spain

4Vilnius University, Laser Research Center, Saulėtekio al. 10, Vilnius, Lithuania

We propose a translationally invariant metamirror for light filtering in reflection. The device consists of a
thin transverse grating in the micron scale positioned in front of a flat mirror. We analyze the performance of
such a photonic metamirror and find a modification of the angular spectrum of the reflected beams, leading to
a significant reduction of the beam divergence for particular configurations. This study points toward a type
of optical component, a flat metamirror with a filtering functionality and no alignment requirements, due to its
translational invariance.

I. INTRODUCTION

Efficient spatial (angular) filtering, among others, is a key
mechanism for the improvement of the spatial characteristics
of laser emission. Typically, conventional lasers (e.g., solid-
state lasers) contain intracavity spatial filters in the form of
confocal arrangements of lenses with a filtering diaphragm at
the focal plane to modify the far-field intensity profile. This
ensures the emission of the laser on the lowest transverse
(Gauss-Hermite, or Gauss-Laguerre) mode with maximum
brightness of emission, as most of the pump energy converts
into the lowest order mode.

Apart from the above described confocal lens spatial filter-
ing arrangement, other methods have been proposed, mostly
based on external gratings or external feedback schemes
[1–4]. These alternative methods, however, did not result in
broad practical applications, for their low efficiency, and for
inconveniences due to their relatively large size and precise
alignment requirements. An alternative method for spatial
filtering based on the photonic crystals (PhCs) was recently
proposed and developed [5–13]. The method was first demon-
strated in a single transmission scheme, later was applied
for intracavity filtering arrangements in microchip [14] and
semiconductor [15] microlasers, and increased the brightness
of the radiation increased several times. However, the efficient
fabrication of such PhCs spatial filters is technically challeng-
ing, due to requirement that the filtering PhCs must be at least
two-dimensional (2D): one periodic modulation component
along the light propagation (longitudinal) direction, and an-
other in a transverse direction. Therefore, at least 2D PhCs
are required to provide a 1D spatial filtering effect (cylindrical
filtering), and, respectively, 3D PhCs are necessary for 2D
filtering (axisymmetric filtering [16]). The fabrication of such
structures, with sufficient refractive index contrast, represents
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a real challenge for technology today. Up to now, experimental
demonstration of PhCs spatial filtering has only been achieved
with structures fabricated by direct laser writing technologies,
with perhaps a single exception, where layer by layer atomic
vaporization technique was applied [17].

An ideal filtering optical component would thereby be a
thin and flat spatial filter: Not only for its use (the thickness
is crucial for an intracavity use in microlasers), but also for
fabrication convenience. Usually, the fabrication of 2D flat
structures is less challenging than of 3D volumetric struc-
tures: several efficient technologies were developed for the
manufacturing of flat structures (lithographic or vaporization
techniques [18–21]). However, from a conventional under-
standing of the physics of PhCs spatial filtering, the longi-
tudinal modulation is necessary for spatial filtering as well.
Therefore, a compromise situation, combining the advantages
of the flat optics and 2D/3D PhCs filtering, would be a thin
grating positioned parallel and close to the surface of a mirror.
Such an arrangement is equivalent to two gratings, the real one
and the mirror-image one, separated by twice the distance to
the mirror surface [see Fig. 1(a)]. When the grating is mainly
supposed to transmit (if reflection is not relevant) the theo-
retical treatment is extremely simple, as it considers double
forward diffraction from such gratings. This is the case for
low-contrast gratings, relatively smooth photonic structures.
However, when back-reflections are relevant, for gratings with
larger index contrast, the flat metamirror arrangement must
be treated as a Fabry-Perot (FP) resonator. In this latter case,
the structured metamirror induces various intertwined optical
effects, as scattering from the grating, interferences from the
FP cavity, and Mie resonances from the individual elements
composing the grating, and the analytical treatment becomes
complicated.

The above considerations bring us to an intuitive idea, that,
if the grating is positioned close and parallel to the mirror
surface, it can hold some of the features of a 3D PhC spatial
filter. In fact, the application of compact gratings with spatial
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FIG. 1. Scheme and the filtering maps. A diffraction grating
positioned in front- and parallel to a mirror at a distance dz (a),
is equivalent to two gratings, the real- and the mirror-image one,
separated by distance 2dz, as shown in (b). (c) Zero-diffraction-order
transmission coefficient (corresponding to zero-order reflection in
the original metamirror configuration) in (kx , dz) parameter space,
for s = 0.5. Cross sections show the angular transmission lines for
multiples of 1/4 of the Talbot distance, dT = 4πk0/q2

x (d) FDTD
calculated transmission map (supercell FDTD-2D calculation), in the
parameter space of (α , dz), for comparison, for a structure made of an
array of circles of diameter equals to 0.8 μm and a refractive index of
1.2 embedded in air, dx = 2 μm, λ = 1 μm, and with corresponding
Talbot distance of 8 μm.

filtering performance have been proposed for microlasers [22]
or as a spatial filter in telecom wavelength range [23]. How-
ever, a comprehensive theoretical model for the explanation
of the filtering properties—the depth and the width of the
angular filtering dips, the efficiency of filtering—remains an
open question. The present work explores the proposed idea
by modeling the described photonic structure under different
approximations. We start from a simplified paraxial model,
valid for low refraction index contrast structures, which allows
explicit analytical estimations, as presented in Sec. II. This ap-
proach accounts for only forward-diffraction from the grating.
We continue with more precise semianalytical model, valid
for high contrast structures, analogous to transversally struc-
tured FP resonators, in Sec. III. The analysis also provides
quasianalytical estimations that uncover additional effects,
such as FP effects and Mie resonances of the scatterers. Both
analytical and quasianalytical models are verified by the finite

difference time domain (FDTD) simulations performed in
RSoft commercial software, using supercell techniques also
a direct FDTD calculations in a large transverse domain.
The main result of the present article is a demonstration that
the proposed planar and translationally invariant metamirrors
show spatial filtering effects and offer a technologically rele-
vant platform to improve the performance of microlasers.

II. LOW INDEX CONTRAST MODEL (FORWARD
DIFFRACTION MODEL)

First, we consider a structured layer with a low refraction
index contrast as sketched in Fig. 1: a grating at a distance
dz from a 100% reflecting mirror [Fig. 1(a)], which is equiv-
alent to the unfolded structure consisting of two identical
gratings (real and mirror-image) separated by a distance of
2dz [Fig. 1(b)]. We assume a simplification of the scheme
by neglecting the back-diffraction from the gratings. Indeed,
when the scattering by gratings is weak, s � 1 (scattering in
terms of intensity is s2), the back-reflections contribution is
negligible. This also occurs when the gratings is smooth along
the propagation direction, which is the case for instance, in
laser-writing fabrication [19], where the index modifications
are elongated voxels. Besides, we only take into account the
first diffraction orders, as the higher diffraction orders may
also be neglected for small scattering efficiency as well as for
submicrometer transverse periods.

A plane wave with wave vector �k0 incident at angle α

onto the grating is �k0 = (kx, kz ), where kx = |�k0| sin(α) and
kz = |�k0| cos(α), respectively. The forward scattering from
the grating with transverse period dx results in three rele-
vant diffracted beam components with respective transverse
wave vectors: kx − qx, kx, kx + qx being qx = 2π/dx the
wave number of the modulation along the x axis. These
field amplitude components may be written in the form of
a column vector �A = (A−1, A0, A+1)T (T means transpose),
which is transformed by the grating transmission matrix (see
Appendix A):

Ŝ =

⎡
⎢⎢⎣

cos(
√

2s)+1
2

i sin(
√

2s)√
2

cos(
√

2s)−1
2

i sin(
√

2s)√
2

cos(
√

2s) i sin(
√

2s)√
2

cos(
√

2s)−1
2

i sin(
√

2s)√
2

cos(
√

2s)+1
2

⎤
⎥⎥⎦. (1)

The matrix (1) is unitary, to ensure the energy conservation,
and that s stands for the scattering of the grating in terms of
the amplitude. The full amplitude of the transmitted field is

A(�r) = A0ei�k0·�r + A−1ei(�k0−�q)·�r + A+1ei(�k0+�q)·�r (2)

under the first diffraction order approximation. The free prop-
agation in space between the gratings is described by the
diagonal propagation matrix, P̂:

P̂ = Diag
(
e

−i(kx−qx )2dz
k0 , e

−ik2
x dz

k0 , e
−i(kx+qx )2dz

k0
)
, (3)

as follows from the paraxial propagation model (see
Appendix A).

The total transmission matrix through the double-grating
arrangement is T̂ = ŜP̂Ŝ. The element of the transmis-
sion matrix T22, determines the transmission of the cen-
tral, k0 component (corresponds to reflection in the original
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arrangement):

T22 =
(

cos2(
√

2s) − e
−idzq2

x
k0 sin2(

√
2s) cos

(
2kxqxdz

k0

))
e

−idzk2
x

k0 .

(4)
Figure 1(d) presents the FDTD calculations results from

the Eq. (4) of zero-order transmission. Note that Eq. (4) allows
simple, analytically tractable estimations of the characteristic
of angular filtering performance of the proposed metamirror.

The result is that the transmission coefficient is periodic
with respect to the incidence angle, whereas the dependence
on the distance between the grating and mirror is more com-
plicated. For instance, the amplitude of the transmission of the
on-axis plane wave component is periodic with the distance:

|T22| = (
cos2(

√
2s) − e

−idzq2
x

k0 sin2(
√

2s)
)
, (5)

as follows from Eq. (4). The periodicity, however, does not
hold for every angle. At normal incidence, the structure is
transparent |T22| = 1 for grating-mirror distances: dzq2

x/k0 =
π (1 + 2m), (where m is an integer), while the attenuation is
maximal for dzq2

x/k0 = 2πm, down to the value |T22|min:

|T22| = cos(2
√

2s) ≈ 1 − 4s2 + .... (6)

In other words, the zero-order diffraction component is
maximally filtered out (low-angle-pass filtering) for dis-
tances between the grating and mirrors equal to dz =
(2m + 1)πk0/q2

x . We can rewrite dz = (2m + 1)dT /4 denoting
dT = 4πk0/q2

x = 2d2
x /λ, thus we identify dT as the Talbot

length. It is well known that the Talbot length is the field pe-
riodicity in the field propagation direction behind a transverse
periodic mask (amplitude or phase grating). The amplitude
and the phase modulations in the transverse direction period-
ically interchange along the wave propagation. The optimum
low-angle-pass filtering occurs at grating-mirror distances of
odd multiples of 1/4 of the Talbot length dz = (2m + 1)dT /4.
On the contrary, the optimum high-angle-pass filtering is
obtained at a distance of even multiples of 1/4 the Talbot
length dz = 2mdT /4.

The spatial filtering angle sin(α) = kx/|�k0|, follows from
the condition,cos(2kxqxdz/k0) = −1, and results in kx =
qxdT /8dz, i.e., it decreases with the distance between grating
and mirror. Full 2D FDTD calculations show good correspon-
dence with this analytical expression, see Fig. 1(d). FDTD
simulations consider a grating build from identical circular
elements. The FDTD 2D calculations are based on the su-
percell technique with Bloch-periodic transverse boundary
conditions. We assume a rectangular unit cell, 2-μm wide,
containing the mirror and one circle-shaped dielectric object.

Inspecting Figs. 1(c) and 1(d), we find that while the
agreement is good on a large scale in parameter space, the
FDTD calculations show additional reflectance modulations
(horizontal fringes on a small scale). This fringing is due to
the resonance effects, when the back scattering from each
grating (the real one and the mirror-image one) are relevant.
The simple forward transmission scheme cannot unveil these
FP fringes. However, the comparison shows that the real map
is soundly described by the low contrast transmission scheme,
overlaid by the FP fringes.
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FIG. 2. FP and Mie resonances. Reflectance map calculated by
the high index contrast analytical model as a function of the inci-
dence angle and the mirror-grating distance, for rectangular shape
scattering objects of different thickness: 0.7 μm (a), and 0.6 μm
(b). Width of rectangular scatterers is 1 μm, a transverse period
is dx = 2 μm, a refractive index of scatterers is n2 = 1.68 and a
distance is dz = 9.3 mm. Reflectance maps for high index contrast
from analytical model (c) and numerical FDTD simulation (d).
Thickness of the scattering objects 0.3 μm and other parameters the
same as in (a).

III. GENERAL MODEL FOR HIGH INDEX CONTRAST

Next, the analytical treatment, including back-diffraction,
the FP-cavity effects, and the structure of the grating elements
is considered. The grating is now modeled as a layer of
equispaced objects, of a given shape and size, in front of high
reflection mirror, generating a set of two nested cavities with
transverse structure. The reflection matrix of the structured
mirror as a function of the incidence angle is

R̂ref (kx ) = [R̂ + T̂ P̂R̂M (Î − R̂P̂R̂M )−1T̂ ], (7)

where R̂ and T̂ correspond to the reflection and transmission
matrices of the structured layer, respectively, Î is the identity
matrix, R̂M is the reflection of the mirror, and P̂ represents the
double propagation between the mirror and grating.

In particular, we consider rectangular scatters and a
metallic a 100% reflecting mirror. We use the same field
expansion into the zero- and first-diffraction orders, �A =
(A−1, A0, A+1)T , the amplitudes of which are coupled through
the diffraction of the structured layer. The derivation of R̂ and
T̂ matrices are provided in Appendix B.

We numerically calculate reflectance maps using this more
accurate model as depicted in Fig. 2. The fringed structure
of the reflectance maps is associated with the FP resonances
due to the cavity between the mirror and the grating, and it is
also in good correspondence with the FDTD calculations. The
large-scale reflectance modulations of the grating (due to the
Talbot effect discussed in the previous section) is now overlaid
by the FP resonances. As expected, fringes corresponding to
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the FP-like resonances become more pronounced for high
index contrasts, compare Figs. 1(d) and 2(a).

On the other hand, the cavity finesse is reduced due to
Mie resonances in the individual elements of the grating.
The Mie resonances in the individual objects result in the
enhancement of the forward scattering and reduction of back
scattering, reducing the FP resonances, see Fig. 2(b). The Mie
resonances are especially visible when reflectance is scanned
as a function of wavelength. In particular, in Fig. 2(c), the
cavity fringes disappear for k0 = 6 μm−1, in agreement with
FDTD calculations, see Fig. 2(d).

FDTD 2D supercell simulations consider a plane wave
incident at some angle from the normal and a detector placed
at the same distance from a totally reflecting mirror. The
differences between Figs. 2(c) and 2(d) may be attributed to
the fact that transverse resonances are not included in the
high index model while they are evidently present in the
full FDTD simulations. Anyway, the differences occur far
from the interesting filtering regimes. Besides, we have also
numerically evaluated (by FDTD) the effect of the scatterer
shape (considering circles, ellipses, squares, and rectangles)
and found that although unessential differences arise, the main
features persist and mainly depend on the refractive index of
the scatterers, and on their dimensions.

IV. SPATIAL FILTERING

The analytically calculated angular reflection function,
Eq. (3), allows to estimate the spatial filtering efficiency.
Starting from a Gaussian initial distribution in the far field,
A0(kx ), the shape of the filtered distribution is calculated
by multiplying it by the transmission function as: A(kx ) =
T22(kx )A0(kx ). We calculate the angular beam width of the
filtered distribution as

�k2 =
∫ ∣∣∣∣A(kx )2k2

x dkx

/∫
|A(kx )|2dkx

∣∣∣∣, (8)

which gives the improvement (reduction) of the beam quality
factor, M2. Calculations do not lead to analytically tractable
results, however the numerical study with respect to param-
eters s and q, uncovers a maximum reduction of the beam
quality factor, M2 by a factor of 2, in an ideal case.

The same analysis was performed numerically. The high
index contrast model provides the angular reflection function
of the central mode, as shown in Fig. 3(a). The full reflection
function multiplied by the angular distribution of the incident
Gaussian beam of a given width, is shown in Fig. 3(b). The
angular divergence of filtered radiation versus that of the
initial radiation, noted as BW ratio, is depicted in Fig. 3(e).
The incident beam divergences are calculated as full width
at half maximum in the far field domain. As expected, the
filtering performance depends on the distance between the
diffraction grating and metamirror as well as on the initial
beam. The numerical calculations show the maximal spectrum
narrowing close to the ideal value of 0.5, i.e., the improvement
of the beam quality factor M2, by factor of 2.

Finally, full FDTD numeric simulations lead to analytically
predicted results. In this case, we do not use the supercell
approach but consider a broad integration area and simulate
the reflection of an incident Gaussian beam of several different
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FIG. 3. Filtering performance. (a) Central mode reflectance map
for a grating of rectangles with thickness of 0.7 μm, refractive
index n2 = 1.68, transverse period of dx = 2 μm and 1 μm distance
between rectangles. The dashed white line indicates the transverse
cross-section at dz = 0.6dT depicted in (c). (b) Three mode re-
flectance for the same structured-mirror for a Gaussian excitation
at normal incidence, the inset shows a zoom-out. (c) Initial Gaus-
sian 6-μm-wide beam profile (in red), reflectance profile (in black)
and filtered beam profile (in blue) zoomed out in (d). (e) Map of
divergence reduction. Ratio between reflected and incident angular
widths, noted as BW ratio, as a function of the incident angular beam
width (vertical axis) and grating-mirror separation (horizontal axis).
(f) BW ratio as a function of mirror distance for three different values
of the incident beam width: 4 μm (19° in blue), 6 μm (7.1° in red)
and 10 μm (4.4°, in orange), highlighted in (e) by dashed horizontal
lines.

divergence. We assume a structured metamirror composed
from 61 elements, see Fig. 4(a). Figure 4(c) visualizes the
angular narrowing effect of the spatial filtering. The angular
cross section of the reflection of 10-μm-wide Gaussian beam
exhibits a minimum for a metamirror configuration, corre-
sponding to dz/dT = 1.125, as indicated by the white arrows
in Fig. 4(c). A transverse cross section comparing both the
incident and spatially filtered beam after reflection indicates a
reduction of the beam quality factor M2 down to 53%, see
Fig. 4(d) in accordance with the analytical estimation. We
finally analyze the angular divergence reduction as a function
of the distance between the grating and the mirror, for three
different incident beam widths, see Fig. 4(e). We find that the
optimum filtering for broader spectra beams occurs at shorter
distances between the grating and the mirror dz as predicted
by the general model [Figs. 3(e) and 3(f)].
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FIG. 4. Filtering performance. (a) Scheme of the full FDTD
beam propagation simulations. A Gaussian beam is incident onto
a grating of rectangular-shaped scattering objects (separated by
b = 1 μm, with thickness g = 0.55 μm, refractive index, n2 = 1.68)
embedded in air (n1 = 1) at a distance dz from mirror. (b) 2D
map of the zero-order plane wave reflection efficiency for different
angles of incidence α, and the distance between the grating and the
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supercell FDTD scheme. (c) 2D map of the far-field distribution for
an incident Gaussian beam of 10-μm width. (d) Cross section of the
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red) and reflected beam (in blue), for dz/dT = 1.125. (e) BW ratio
when the width of the Gaussian beams is 4 μm (in blue), 6 μm (in
red) and 10 μm (in orange), respectively.

V. CONCLUSIONS

In summary, we have proposed a 2D flat translationally-
invariant, modulated mirror, and demonstrated its spatial fil-
tering functionality. The arrangement consists of a periodic
array of identical dielectric scattering objects in front of a
highly reflecting mirror. The basic features of the proposed
flat metamirror can be analytically described by a low contrast
index model considering the grating and its mirror image
(considering no back scattering). It is proven that transmission
or reflection angular spectra depend on the periodical varia-
tion of the distance of the gratings to the mirror. The filter is
also modeled by a high index scattering model that reveals the
additional effects stemming from Mie and FP resonances. We
have finally checked the results by precise FDTD numerical
simulations. The filtering performance of the structured mirror

shows a significant reduction of the beam quality parameter
M2 by a factor of 2 after reflection. The efficiency of the
design could be increased by placing the structured mirror
within a resonator, for example, a microlaser cavity.
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APPENDIX A: FORWARD DIFFRACTION
PARAXIAL MODEL

Here we discuss the derivation of the forward-diffraction
paraxial model for a simple analytical study of the metamirror.

1. Scattering on a single diffraction grating

We expand the forward propagating field into three main
components:A(�r) = A0ei�k0·�r + A−1ei(�k0−�q)·�r + A+1ei(�k0+�q)·�r for
zero order �k0 and first order �k0 ± �q diffraction components.
For convenience we write the field components in the form
of a column-vector �A = (A−1, A0, A+1)T (T means transpose).
The diffractive coupling among the components in propaga-
tion along z (cross the harmonic grating, with the diffractive
spreading neglected) is given by

�Az = M̂ �A, (A1)

with the coupling matrix:

M̂ =
⎡
⎣ 0 im 0

im 0 im
0 im 0

⎤
⎦, (A2)

where m = k�n0/(4n0), and k = n0ω/c. The index modula-
tion along the grating (transversally to the light propagation
direction z) is assumed to be n(x) = n0 + (�n0/2) cos(qx ).

The formal solution of the propagation equation is �A(z) as
shown in

�A(z) = �A(0)exp(M̂z). (A3)

The calculation of the matrix (A2) exponent leads to Ŝ =
exp(M̂dz ), denoted as

Ŝ = exp(M̂dz ) =

⎡
⎢⎢⎣

cos(
√

2s)+1
2

i sin(
√

2s)√
2

cos(
√

2s)−1
2

i sin(
√

2s)√
2

cos(
√

2s) i sin(
√

2s)√
2

cos(
√

2s)−1
2

i sin(
√

2s)√
2

cos(
√

2s)+1
2

⎤
⎥⎥⎦.

(A4)

Here, s = mdz = dz�n0k/(4n0) in the limit of s � 1
(weak diffraction) has a meaning of linear scattering into
diffraction modes, in terms of the field amplitude. This is easy
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FIG. 5. Structured translationally-invariant metamirror com-
posed by a grating of period dx , consisting of rectangle elements
with refractive index n2 and thickness g, embedded in a medium
with refractive index n1, and separated at a distance dz from a totally
reflecting mirror.

to see from the series expansion of (A4), and noted as

Ŝ =

⎡
⎢⎣

1 − s2/2 + ... is − is3/3 + ... −s2/2 + ...

is − is3/3 + ... 1 − s2 is − is3/3 + ...

−s2/2 + ... is − is3/3 + ... 1 − s2/2 + ...

⎤
⎥⎦,

(A5)

where increasing orders of scattering appear consecutively in
the expansion. The scattering between modes first increase
linearly with increasing s, however saturate and lead to pe-
riodic revivals for larger s (Rabi-Laue oscillations).

The matrix Ŝ is unitary: ŜŜ
T ∗ = Î where it means trans-

posed and complex conjugated, and Î is the identity matrix,
which means that the field transformation conserves the en-
ergy E = �AT ∗ · �A.

2. Free propagation between two gratings

The free propagation directly follows from the solution of
the paraxial propagation equation:

Az(x, z) = i

2k
∇2A(x, z). (A6)

The expansion of the field into harmonic components lead
straightforwardly to the transformation after propagation over
the distance z through diagonal propagation matrix:

P̂ = diag
(
e

−i(kx−qx )2dz
k0 , e

−ik2
x dz

k0 , e
−i(kx+qx )2dz

k0
)
, (A7)

where �kx and �kx ± �qx are the transverse components of the
zero and first diffraction order harmonics.

APPENDIX B: SEMIANALYTIC MODEL
OF THE METAMIRROR

We model the structured metamirror as an array of rect-
angular elements in front of a flat, totally reflecting mirror,
forming a FP cavity of thickness dz, see Fig. 5.

The grating composed by rectangles of thickness g and
refractive index n2 embedded in a medium with refractive

index n1, can be considered as a pair of shifted diffraction
gratings with period dx. One grating consists of the rect-
angular elements of width dx − b, each one considered as
a Fabry-Perot cavity with refractive index n2, thickness g
and reflectivity in interfaces given by Fresnel equations. The
second grating consists of the slits of width b between the
rectangular elements.

The model considers the same three principal diffraction
components of Appendix A written in vector form as �A =
(A−1, A0, A+1)T for an incident wave vector �k0 = (kx, kz ). The
field reflected from the grating mirror composite is

�Aref (kx ) = [R̂ + T̂ P̂R̂M (Î − R̂P̂R̂M )
−1

T̂ ] �Ain, (B1)

where Î is the identity matrix, The reflection matrix R̂ and
transmission matrix T̂ of the grating are

Rl j = (−1) j−l (dx − b)

× sinc(( j − l )(dx − b)π/dx ) rrec(kx + jqx ) (B2)

and

Tl j = be−iψ (kx+ jqx )sinc(( j − l )bπ/dx )

+ (−1) j−l (dx − b)sinc(( j − l )(dx − b)π/dx )

× trec(kx + jqx ) (B3)

with subindexes j, l = −1, 0, 1, respectively.
The phase-shift in propagation through the slits between

rectangles ψ (kx ) is given as

ψ (kx ) = k0gn1

√
1 − (kx/k0)2. (B4)

The reflection and transmission coefficients rrec and trec of
the rectangular elements given by the Fabry-Perot cavity are

rrec(kx )= r(kx )(1 − e−iϕ(kx ) )

(1 − r2(kx )e−iϕ(kx ) )
(B5)

and

trec(kx )= (1 − r2(kx ))

(1 − r2(kx )e−iϕ(kx ) )
, (B6)

where the cavity phase-shift is ϕ(kx )

ϕ(kx ) = 2gk0

√
n2

2 − n2
1(kx/k0)2, (B7)

and the interface reflection for perpendicularly polarized light
is given by the Fresnel equations

r(kx ) =
n1

√
k2

0 − k2
x − n2

√
k2

0 − (n1kx/n2)2

n1

√
k2

0 − k2
x + n2

√
k2

0 − (n1kx/n2)2
. (B8)

The totally reflecting mirror is modeled by the matrix
R̂M = −Î for a metallic mirror, and R̂M = Î for a dielectric
mirror.

Finally, the light propagation between the structured layer
and mirror is modeled by the propagation P̂ matrix with
elements:Pl j = exp(i2dzn1

√
k2

0 − (kx + jq)2) for l = j and
Pl j = 0 for l �= j.
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