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Abstract. In this note, we show the existence of sets of real numbers that
can be decided in polynomial time for the Blum, Shub and Smale model of
computation but cannot be decided in polylogarithmic parallel time using a
polynomial number of processors.

Introduction

In a recent paper ((2]) a theory of computation over an arbitrary ring was devised that
introduced ideas and methods from classical Complexity and Computability theories into
the area of Algebraic Complexity (see [6] for a survey of this latter subject). A special
emphasis was placed on the case in which the ring is IR the field of real numbers. The theory
then reflects the kind of computations made in Numerical Analysis or Computational
Geometry. For that special case, many basic results have been shown such as the existence
of natural NP-complete problems or universal machines.

In a subsequent work ([3]), the existence of natural P-complete problems was also
proved but, just as the existence of NP-complete problems left open the question of whether
P=NP, the existence of the P-complete ones focuses interest on the question of whether
polynomial time equals parallel polylogarithmic time (with a polynomial number of pro-
cessors). We will prove in this paper that the answer to that last question is NO.

1. Parallel models

There is no unified theory of parallel machines for the real numbers. However, research
done in algebraic complexity extensively used circuits as models of computations either
as a non—uniform model for getting lower bounds, either combined with some uniformity
condition when possible. A recent survey of that subject can be found in [5].

We introduce now a class of circuits togheter with a class of sets defined through them.
They are equivalent to the arithmetical networks of [5].

1' Partially supported by the ESPRIT BRA Program of the EC under contract no. 3075, project ALCOMI,
DGICyT PB 89/0379 and UPC PR9014.

TR A
¥ JLLY

S——_



Definition. An algebraic circuit over the reals with inputs in R" is a finite directed
graph C, whose nodes have labels from IN x IN — {0}, that satisfies the following conditions:

¢ there are exactly n nodes vo;,...,vn with first index 0, and they have no incoming
edges
¢ all the other nodes v;; are of one of the following types
1) arithmetic nodes: they have an associated arithmetic operation {+,—,*,/} and
there exist [, k,7,m with [,k < i such that their incoming edges are (v;,,v;;) and
(Vkm ,vij)-

2) constant nodes: they have an associated real number v and no incoming edges.

3) sign nodes: they have a unique incoming edge (vVim,vij) with k < 1.
To each node we inductively associate a function of the input variables in the usual way.
We only note that a sign node with input ¢ returns 1 if z > 0 and 0 otherwise. Also, we
shall call depth of the circuit the largest n such that we have nodes v,;, and size of the
circuit the total number of nodes.

Also, a circuit of depth d is decisional if there is only one node vq; at level d, and it is

a sign node. We finally define the accepted set of a decisional circuit to be the set § C R"
of the points whose image by the associated function is 1.

In order to get a uniform model of parallel computation we should endow families of
circuits with some uniformity condition, but the one used in the Boolean case to define
the class NC —the generation of the circuits by a machine working in logarithmic space—
is meaningless now. One of the remarkable features of the theory of computation over
the reals is given by the fact that to obtain complexity classes bounding the used space is
irrelevant. Thus, in [7] it is shown that any recursive subset of R® can be decided by a
real Turing machine within linear space.

One possible way, then, of defining uniformity is given by imposing the existence of
a real Turing machine which, given input n, generates the n‘® circuit in time which is
polynomic in n. The complexity class defined by such families of circuits having polyloga-
rithmic depth and polynomial size is an analog of the class PUNC defined in the boolean
case, which contains NC (see [1]). Another possibility is to require both polynomial time
and logarithmic space to the above mentioned real Turing machine. The later requirement
allows to define a class more similar to NC.

One can also define models like PRAM’s or PRTM’s with a polynomial number of
processors (real RAM’s (see [8]) or real Turing machines) that work within polylogarithmic
time and that communicate directly between them or via a shared memory. In the Boolean
case, there is a large amount of work done showing the equivalence of those models and
the cost of the simulations among them. For computations with real numbers, this is
something waiting to be done.

Concerning the result we want to prove, there is no need, however, of using a particular
model. The only feature we shall use is that, for all inputs of a given size n and at each
moment of the computation, the actual configuration consists of a finite number of non-
zero coordinates in the space state, and that at each computing step a new configuration
is obtained from the present one modifying some of the coordinates of the space state (at
must as many as the number of processors) replacing them by the result of operating (via
one of (+,—,%,/)) on two other coordinates. These modifications may depend on a set
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of Boolean conditions (again at must as many as the number of processors) of the form
z > 0, where  is the value of one of these coordinates. We observe that this is exactly what
happens with the circuits above introduced (independently of any uniformity condition)
or with any PRAM or PBSS.

2. The theorem

We briefly recall some basic notions in algebraic geometry that will be useful to us in the
sequel.

A set V C CF is called an algebraic set when V is the set of all points in C* satisfying
a system of polynomial equations

(X1, Xk)

0
f2(X1,...,Xk)=0

f,-(Xl,...,Xk) == 0

Of course, all the polynomials belonging to the ideal generated by fi,..., fr also vanish
on V. On the other hand, this ideal is called definition ideal of V when all the poly-
nomials vanishing on V belong to it. Hilbert’s Nullstellensatz' characterizes the ideals of
C[X:,...,X,] that are definition ideals of some algebraic set, which turn out to be the
radical ones (see [4]).

Also, an algebraic set V is said to be reducible when there exist two algebraic sets
V1 and V,, both different from V, such that V = V; U V5. It is a basic fact that a set is
irreducible iff its definition ideal is prime.

In the sequel we shall be concerned with plane algebraic curves, i.e. curves in C?
given by a single polynomial in C[X,Y]. More concretely, we shall deal with some Fermat
curves which are given by polynomials of the form X¢ + Y4 — 1, and we shall denote by
F4 the set of its complex points and by F} its intersection with IR2. We recall that such
polynomials are irreducible (since they define non-singular curves in the projective plane)
and thus generate prime ideals in C[X,Y].

Let us now introduce the problem
FER = {¢ € R® | |z| = n then (z1,z,) € Fix}

whose first property is given in the next result.



Proposition 2.1. The problem FER belongs to P.
Proof: The following algorithm

begin

n = |z|;

a:=z;

b:= z,;

fori=1to ndo
a:=ax*a;
b:=bxb

od

ifa+b=1 then ACCEPT
else REJECT
fi

end

recognizes FER in linear time. "
We can now show our main result.

Theorem 2.2. For all k € IN and all function f : N — IN there is no parallel
machine accepting FER within time log® n using f(n) processors.

Proof: Let us assume that there is a parallel machine M, as in the statement that
solves FER. For any n and any input (z1,...,Z,) of size n we shall consider the tree of all
possible configurations of the machine. For the sake of simplicity, we shall suppose that
T3 = .- = &, = 1 without loss of generality. Each configuration can be described by a
point in the state space R? where now N is a fixed bound that only depends on n.

At each step of the computation we modify some of the coordinates replacing them
by the result of operating (via one of (+,—,*,/)) on two other coordinates. Those modi-
fications can depend on Boolean conditions of the form

Qi(z17z2) > 0

—where Q;(ml,zz) is the content of cell 7 and is a rational function in z; and z3. Those
Boolean conditions will produce a branching in our tree of configurations. Moreover, since
the number of processors is bounded by f(n), the fan-out in our branchings is bounded
by 2f(™). After log® n steps, we shall have a large (but finite) number of leaves that are
accepting or rejecting leaves, and FER is the union of the sets of inputs for which the
computation leads to an accepting leaf.

For each one of those accepting leaves, the final configuration will consist of at most
N rational functions in ¢; and z; whose numerator and denominator have a degree which
is bounded by glog" ™ since the depth of the tree is logk n. Thus, all the rational functions
Qi(z1,z2) appearing in the Boolean conditions above mentioned have the same bounds
for the degrees. We conclude that the set of inputs that are led to a given leaf can be
characterized by a finite system of inequalities of the form

t
Qi(X1,X2) S0A A\ Rj(X1,X2) <0

F]
=1 i=1
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where s and ¢t are bounded by f(n) log* n. By clearing denominators we can replace the
rational functions by polynomials with the same (actually twice the) bound for the degrees
that one had for the rational functions. Also, expressing an inequality like

F(X;,X2)>0

as the disjunction

F(XI,Xz) = OVF(Xl,Xz) >0

and then distributing, we can describe FER as a union of sets given by systems of poly-
nomial inequalities of the form

8 t
A\ Fi(X1,X2) =0A \ Gj(X1,X2) > 0

i=1 i=1

Now, since the curve FX is infinite, one of those sets must contain an infinite number
of points of the curve. Since the set described by the G;’s is open, it must be non—empty,
and then it defines an open subset of R%. But FL is a curve, and therefore we must have
s> 0.

Finally, all the polynomials F;, i = 1,...,s, vanish on that infinite subset of the curve
and, thus, in a 1-dimensional component of the curve. But, since the curveis an irreducible
one, this implies that every F; must vanish on the whole curve. Using the fact that the
ideal (X?" + X2" — 1) is prime (and, a fortiori, radical), we conclude that all the F; are
multiples of X?" + X3" — 1 which is impossible since their degree is bounded by 9log" "
which is strictly smaller than 2". F

Remarks 2.3.

i) As one can expect, the preceding argument cannot be applied as it stands in the
discrete case. The main obstruction, if we work in (Z/p)? is the lack of infinite points in
the algebraic curves in that plane.

ii) On the other hand, the same proof applies for machines over C or over Q.

iii) We finally remark that one can prove in the same way, for any function bound B,
that sequential time 27 is different to polylogarithmic time B using 22 processors.
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