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Abstract. Amulti-objective simulation-based design optimization (SBDO) is presented for the
resistance reduction and displacement increase of a small water-plane area twin hull (SWATH).
The geometry is realized as a parametric model with the CAESES R© software, using 27 design
parameters. Sobol sampling is used to realize design variations of the original geometry and
provide data to the design-space dimensionality reduction method by Karhunen-Loève expan-
sion. The hydrodynamic performance is evaluated with the potential flow code WARP, which
is used to train a multi-fidelity metamodel through an adaptive sampling procedure based on
prediction uncertainty. Two fidelity levels are used varying the computational grid. Finally, the
SWATH is optimized by a multi-objective deterministic version of the particle swarm optimiza-
tion algorithm. The current SBDO procedure allows for the reduction of the design parameters
from 27 to 4, resolving more than the 95% of the original geometric variability. The metamodel
is trained by 117 coarse-grid and 27 fine-grid simulations. Finally, significant improvements are
identified by the multi-objective algorithm, for both the total resistance and the displacement.

1 INTRODUCTION

Simulation-based design optimization (SBDO) assists the designer in the design process of
complex engineering systems (such as aerial, ground, or maritime vehicles). In shape optimiza-
tion, SBDO combines shape modification methods, the assessment of the design performances,
and single or multi-objective optimization algorithms.

The shape modification can be performed by applying modification operators to the original
design or defining the geometry through a parametric model [1]. Each parameter may be consid-
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ered as a design variable for the optimization process, therefore the number of design variables
may easily be significantly large for complex models and geometries. Recent research has fo-
cused on research space variability and dimensionality reduction as an essential part of SBDO.
A quantitative approach based on the Karhunen-Loève expansion (KLE) has been formulated
for a pre-optimization assessment of the shape modification variability and the definition of a
reduced-dimensionality global model of the shape design [2].

The SBDO process often requires computationally expensive physics-based solvers to achieve
accurate solutions. In order to reduce the computational cost of the SBDO process, metamod-
els are often used. These have been successfully developed and applied in many engineering
fields [3]. Volpi et al. [4] presented a dynamic radial basis functions (RBF) metamodel for
ship hydrodynamics problems. Its extension to design optimization has been presented in [5].
Lately, Giselle et al. [6] presented a survey on parallel surrogate-assisted global optimization for
expensive functions.

Combining metamodelling methods with multi-fidelity approximations potentially leads to a
further reduction of the computational cost. Multi-fidelity approximation methods have been
developed with the aim of combining to some extent the accuracy of high-fidelity solvers with
the computational cost of low-fidelity solvers [7]. Correction methods, such as additive and/or
multiplicative approaches, are used to build multi-fidelity metamodels. High- and low-fidelity
models may be determined by the physical model [7], and/or the size of the computational grid
[8]. Multi-fidelity metamodels have been used for engineering applications including ships [9, 10].

For engineering applications, global derivative-free optimization algorithms represent an ad-
vantageous option for their (often common) ease of implementation and capability of providing
adequate solutions to the optimization problem. Among this kind of algorithms, particle swarm
optimization (PSO) was originally introduced [11] as a global derivative-free metaheuristics for
single-objective optimization. The algorithm makes use of cognitive and social attractors based
on individual and population optima, in order to steer the swarm dynamics. PSO has been
extended to multi-objective optimization (MOPSO) in [12]. Generally, MOPSO extends the
concept of cognitive and social attractors to the multi-objective context, using individual and
population Pareto fronts, sub-swarms, or aggregate objective functions. A comprehensive survey
on MOPSO variants has been provided in [13]. Most PSO (both single- and multi-objective)
formulations include stochastic methods and/or random coefficients. This implies that in or-
der to assess the algorithm performance, statistically significant results need to be produced,
through extensive numerical campaigns. Such an approach is often too expensive (from the com-
putational viewpoint) and therefore not practicable in SBDO (especially when computationally
expensive solvers are used directly). For this reason, efficient deterministic approaches, namely
deterministic PSO (DPSO) [14] and multi-objective deterministic PSO (MODPSO) [15] have
been developed and successfully applied in SBDO.

The objective of the present work is the application and preliminary assessment of a SBDO
methodology, based on design space dimensionality reduction, adaptive multi-fidelity metamodel
(AMFM), and multi-objective deterministic particle swarm optimization, to a 36.5 m small
water-plane area twin hull (SWATH) configuration.

The parametric geometry of the SWATH is produced with the computer-aided design (CAD)
environment integrated in CAESES R©, developed by FRIENDSHIP SYSTEMS. Subsequently,
the design-space dimensionality reduction of the parametric model is performed by KLE [2].
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The hydrodynamic performance is assessed by the potential flow solver WARP, developed at
CNR-INSEAN [16]. The evaluations provided by WARP are used to build the AMFM of the
total resistance and the displacement with a coarse and a fine panel grid. Finally, the MODPSO
formulation presented in [17] is used for the multi-objective optimization with the aim of reducing
the resistance in calm water at 18 kn and increasing the displacement.

2 PROBLEM STATEMENT AND SBDO METHODS

2.1 Model geometry and optimization problem

The SWATH is designed as two torpedoes connected to the upper platform by a couple of
twin symmetric narrow struts for each hull (for a total of four struts). The main geometric
particulars are: overall length LOA = 36.50 m (without propeller/rudder); torpedo maximum
diameter D = 4.50 m; inter-axis distance DH = 20.00 m; first strut leading edge position
L1 = 6.00 m, struts length SL = 12.00 m, and struts clearance SC = 5.15 m; drought T = 6.31
m; wet surface SW = 1064 m2 and water-plane area AWP = 38.88 m2; displacement ∇ = 982.23
m3.

A multi-objective optimization for calm water performances at 18 kn is sought after, as a
significant test case for the SBDO methodology. The optimization problem reads

minimize f(x) = {RT (x),−∇(x)}T , with x ∈ D ⊂ RNdv

subject to l ≤ x ≤ u
(1)

where x is the design variable vector, RT is the total resistance, ∇ is the ship displacement, Ndv

is the number of design variables, and finally l and u are the lower and upper bounds for x.
The geometry is realized as a parametric model in CAESES R©, using a set x of 27 parameters.

These parameters define, among other design features, the overall length, the struts clearance,
the curvature of the torpedo nose, and the torpedo diameter. The inter-axis distance is held
constant. Figure 1 shows the complete SWATH model as produced by CAESES R© (a) and a
simplified version used for the numerical simulations (b).

Critical design requirements and constraints associated to the modification of the displace-
ment, water-plane area, and geometry of the struts (such as intact pitch and roll stability,
seakeeping, and structural analysis) are beyond the scope of the present demonstration and will
be addressed in future research.

2.2 Production of design variants through the CAESES R© system

CAESES R© (CAE System Empowering Simulation) by FRIENDSHIP SYSTEMS AG pro-
vides simulation-ready parametric CAD for complex shapes. The embedded CAD environment
provides, beside all the most used features for modelling, specific tools for the ship hull and
blade (for both propellers and turbo-machinery) design. Other features are provided for help-
ing the designer to assess the quality of the parametric model (such as parameter sensitivity
analysis). Furthermore, design modifications are allowed both with pseudo-random variation of
design parameters or the free-form deformation techniques.

In the present work, the Sobol engine available in CAESES R© is used for producing pseudo-
random variations of the 27 geometric parameters. The Sobol method [18] provides a uniform
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(a) CAESES R© model (b) Simplified model for numerical simu-
lations

Figure 1: SWATH model

distribution of the parameters of the design space under investigation, which is used as the input
of the design-space dimensionality reduction procedure.

2.3 Design-space dimensionality reduction by KLE

The Karhunen-Loève expansion of the shape modification vector produced by the Sobol
method provides a pre-optimization (offline) assessment of the shape modification variability
and the definition of a reduced-dimensionality global model of the shape modification vector
[2]. Similar formulations have been developed and applied to elastic deformation of structures,
including modal identification studies [19, 20].

A brief description of the method is recalled in the following. This can be applied with any
shape modification method. Consider a geometric domain of interest G, which identifies the
initial shape, and a set of coordinates ξ ∈ G. Assume that the design variables x defines a shape
modification vector δ(ξ,x). Consider the design variables x as belonging to a stochastic domain
D with associated probability density function p(x). The associated mean shape modification
is evaluated as

〈δ〉 =
∫

D
δ(ξ,x)p(x)dx (2)

If one defines the internal product in G as

(f ,g) =

∫

G
f(ξ) · g(ξ) dξ (3)

with associated norm ‖f‖ = (f , f)1/2, the variance associated to the shape modification vector
(geometric variance) may be defined as

σ2 =
〈
‖δ̂‖2

〉
=

∫

D

∫

G
δ̂(ξ,x) · δ̂(ξ,x)p(x)dξdx (4)

where δ̂ = δ − 〈δ〉 and 〈·〉 denotes the ensemble average over x ∈ D.
In this context, the aim of the KLE is to find an optimal basis of orthonormal functions, for

the linear representation of δ̂, expressed by

δ̂(ξ) ≈
N∑
k=1

αkφk(ξ) (5)
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where αk are the basis-function components, used hereafter as new design variables, and {φk}∞k=1

(called KL modes) are the solutions of the eigenproblem

Lφ(ξ) =
∫

G

〈
δ̂(ξ,x)⊗ δ̂(ξ′,x)

〉
φ(ξ′)dξ′ = λφ(ξ) (6)

The reduced dimension N is selected in order to retain a prescribed level l (with 0 ≤ l ≤ 1)
of the original geometric variance. Using the property of the KLE eigenvalues (also called KL
values), N in Eq. 5 is selected such as

N∑
k=1

λk ≥ l
∞∑
k=1

λk = lσ2 (7)

with λk ≥ λk+1. Details of equations and numerical implementations are given in [2].

2.4 Adaptive multi-fidelity metamodel

If one considers M functions of interest (relevant outputs), the multi-fidelity metamodel
(MFM) is defined as

f̂i(x) = f̃i,L(x) + ε̃i(x), with i = 1, . . . ,M

εi(x) = fi,H(x)− fi,L(x), with i = 1, . . . ,M
(8)

where superscript “∼” denotes the metamodel prediction, and εi is the difference (error) between
high- and low-fidelity simulations (fi,H and fi,L, respectively).

The uncertainty associated with the prediction provided by the MFM of the i-th function is
defined as Uf̂i

(x) =
√
U2
f̃i,L

(x) + U2
ε̃i
(x), where Uf̃i,L

and Uε̃i are the uncertainties associated to

the prediction of the i-th function, provided by the low-fidelity and error metamodels (f̃i,L and
ε̃i), respectively [10].

Figure 2: Multi-fidelity metamodel, adaptive sampling procedure

The MFM is trained using the adaptive procedure shown in Fig. 2, resulting in an adaptive
MFM (AMFM). After initialization, a new sample is added to the training set at each iteration,
solving (x∗, i∗) = argmax

x,i
[Uf̂i

(x)]. Once x∗ and i∗ are evaluated, the training sets H and/or L

(high- and low-fidelity, respectively) are updated as




If U2
f̃i∗,L

(x∗) ≥ βU2
ε̃i∗

(x∗), then add x∗ to L

If U2
f̃i∗,L

(x∗) < βU2
ε̃i∗

(x∗), then add x∗ to H and L
(9)
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where β ∈[0, 1] is an arbitrary tuning parameter, related to the ratio of the computational cost
of low- and high-fidelity simulations.

In the present work, the prediction f̃ is evaluated as the expected value (EV) of a set of
stochastic RBF predictions [4], which depend on the stochastic parameter τ ∼ unif[1, 3]:

f̃(x) = EV [g(x, τ)] with g(x, τ) =
J∑

j=1

wj ||(x− xj)||τ (10)

where J is the size of the training set, xj are the training points, and ‖·‖ is the Euclidean norm.
The coefficients wj are obtained by the linear system Aw = y with w = {wj}. The elements of
the matrix A are ajk = ||xj − xk||τ and the vector y = {yj} collects the function evaluations at
the training points, yj = f(xj).

The uncertainty U(x) associated to the metamodel prediction is quantified at each x as the
95%-confidence interval of g(x, τ). This is evaluated using a Monte Carlo sampling over τ , as
shown in [4].

2.5 Potential flow solver WARP

The WAve Resistance Program (WARP) code, developed by the CNR-INSEAN [16], is used
for the numerical solution of the potential flow equations. For the current application, wave
resistance computations are based on the linear potential flow theory, with Dawson (or double-
model) linearization. The wave resistance is evaluated using a pressure integral over the body
surface, whereas the frictional resistance is estimated using a flat-plate approximation based on
the local Reynolds number. Sinkage and trim are fixed (even keel).

The computational grids are defined using a refinement ratio of
√
2. The high- and low-

fidelity grids (G1 and G2, respectively) have 5.2k and 2.6k panels for the body and 6k and
3k panels for the free-surface, respectively. Half domain is modelled, using problem symmetry.
The computational domain dimensions are 1.5LOA upstream, 3.5LOA downstream, and 1.5LOA

sideways. Figure 3 shows the computational grids for the free surface and hull for both G1
(Fig. 3a,b) and G2 (Fig. 3c,d). For the current problem, each high-fidelity simulation requires
an average wall-clock time of 4 minutes on an Intel Xeon E5-1620 v2 @3.70GHz, whereas each
low-fidelity simulation requires 1 minute. The resulting computational-time ratio is β = 0.25.

(a) G1, free surface (b) G1, body (c) G2, free surface (d) G2, body
Figure 3: High- and low-fidelity computational grids

2.6 Multi-objective deterministic PSO

PSO algorithm [11] is based on the social-behaviour metaphor of a flock of birds or a swarm of
bees searching for food and belongs to the class of metaheuristic algorithms for single-objective
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derivative-free global optimization. Pinto et al. [15] proposed a multi-objective deterministic
version of PSO (MODPSO) as


vk+1
i = χ

[
vk
i + c1

(
pi − xk

i

)
+ c2

(
gi − xk

i

)]

xk+1
i = xk

i + vk+1
i

(11)

where vk
i and xk

i are the velocity and the position of the i-th particle at the k-th iteration, χ is
a constriction factor, c1 and c2 are the cognitive and social learning rate, and pi and gi are the
cognitive and social attractor.

The algorithm formulation and setup is defined as suggested in [17]: the cognitive attractor pi

is the personal minimizer of the aggregate function F (xi) =
∑M

m=1wmfm(xi), where wm = 1/M
(∀m) is the weight associated to the m-th objective function with M the number of objective
functions; the social attractor gi is the closest point to the i-th particle of the Pareto front; the
number of particles is set equal to 64 (8MNdv), initialized over domain and boundary with a
Hammersley distribution and non-null velocity [21]; the coefficients correspond to χ = 0.721,
c1 = c2 = 1.655 [22]; a semi-elastic wall-type approach [14] is used to keep the particles inside
the feasible domain. The budget of problem evaluations is set equal to 16,000 (2000MNdv).

3 NUMERICAL RESULTS
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A preliminary assessment of the computational grids
(G1 and G2) is performed. Figure 4 shows the total
resistance evaluated using G1 and G2, along with the
error ε = RT |G1 −RT |G2 versus the advancing speed.

A number of S = 11, 500 random designs are pro-
duced assuming a uniform distribution p(x). Figure 5
shows the KLE results in terms of design variability as-
sociated to a reduced-dimensionality space of dimension
N for S = 3, 000, 6,000, and 11,500 samples. The re-
sults are found convergent versus S. The number of de-
sign variables is reduced to N = 4, retaining the 95% of
the original variability. The corresponding KL modes
are shown in Fig. 6. For the reduced-dimensionality
representation of Eq. 5, modes are normalized such as
(φk,φk) = 3λk, ∀k, assuming a uniform distribution for
αk. Accordingly, the new design variable range is set to
−1 < αk < 1, ∀k. A preliminary sensitivity analysis is
performed along the KL modes for RT (Fig. 7a) and ∇
(Fig. 7b), respectively. It is worth noting that both RT

and ∇ are mainly influenced by the first two KL modes.
Sensitivity analysis values are used as initial training

set for the AMFM, resulting in 17 high- and low-fidelity analysis. A convergence value for the
maximum prediction uncertainty (UMax) of the AMFM is set equal to 5% of the initial RT and
∇ values. A maximum budget of 100 iterations is used for the adaptive sampling procedure.
Unfeasible configurations are penalized.
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(a) k = 1

(b) k = 2

(c) k = 3

(d) k = 4

Figure 6: KL modes (k = 1, . . . , 4), represented on the original (unmodified) grid
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Figure 8 shows the convergence of UMax for the pre-
diction of RT and ∇ during the adaptive training pro-
cess. Square marks indicate where high-fidelity eval-
uations are performed, whereas arrows indicate where
the penalization is used. The displacement maximum
uncertainty decreases more rapidly and with less oscil-
lations than that for the total resistance. The whole
budget (100 iterations) is used for training the AMFM,
achieving a UMax is equal to 9.1% and 5.6% for RT and
∇, respectively. A total of 117 low-fidelity and 27 high-
fidelity evaluations are performed, including the initial
training set, resulting in a total wall-clock time equal to
225 minutes on an Intel Xeon E5-1620 v2 @3.70GHz.

Figure 9a shows the Pareto front provided by the AMFM based MODPSO and three selected
optimal designs: (A) maximum total resistance reduction, (B) maximum displacement increase,
and (C) minimum aggregate objective function (with equal weights). The corresponding optimal
design variables values are shown in Fig. 9b. Figure 9c shows the total resistance versus the
speed for the original and the three optimal designs. All the selected designs perform better
than the original SWATH at 18 kn, whereas the original design shows better performances at
lower and higher speeds. Table 1 summarizes the main geometric changes (LOA, SW, and AWP)
associated to the optimized configurations along with AMFM predictions and actual fine-grid
evaluations by WARP.
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Figure 9: Optimization results and comparison between original and selected optimal designs perfor-
mance

Table 1: Optimal designs geometry and performance, comparison of AMFM predictions to WARP

∆RT% ∆∇%
Design ∆LOA% ∆SW% ∆AWP% AMFM WARP AMFM WARP

A 20.55 19.60 -5.65 -28.3 -24.3 22.7 22.8
B 22.19 24.33 1.27 -19.2 -19.2 28.1 28.2
C 21.64 20.10 -11.42 -26.7 -25.7 25.2 25.1

Finally, Fig. 10a compares the wave elevation of optimal (C) and original designs. The
optimized configuration produces a diverging Kelvin wave that is significantly reduced. Figure
10b shows the pressure distribution on the optimal (C) and original hulls. The optimized hull
shows lower pressure gradients and a better pressure recovery towards the stern. Figure 10c
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shows comparison between the optimized and original hulls. The optimized SWATH is more
than 20% longer (LOA = 44.4 m) than the original, whereas the strut length is about 8.4%
smaller (SL = 11.0 m).

(a) Wave elevation (b) Pressure (c) Geometry top view

Figure 10: Detailed comparison of optimized (C) and original designs

4 CONCLUSIONS

A multi-objective SBDO of a 36.5 m SWATH has been assessed for the reduction of the total
resistance at 18 kn and the increase of the displacement.

The geometry has been realized as a parametric model within CAESES R© using 27 design
parameters. The Sobol engine available in CAESES R© has been used to modify the original
geometry and provide data to the design-space dimensionality reduction method by KLE. The
original design space has been reduced in dimensionality to 4 variables, while resolving more
than the 95% of the original geometric variability associated to the shape modification. The KL
modes have been used as a basis to built the new reduced-dimensionality design space.

An adaptive multi-fidelity metamodel has been trained by the potential flow solver WARP
using two grids, namely defining the high- and low-fidelity evaluations. The adaptive sampling
procedure has required the whole budget of 100 iterations, achieving a prediction uncertainty
equal to 9.1% and 5.6% for total resistance and displacement, respectively. Specifically, 27 high-
and 117 low-fidelity evaluations have been used. A comparison of metamodel predictions and
high-fidelity evaluations has been carried out for selected designs, showing a close agreement.

The optimization has been carried out on the metamodel using a MODPSO algorithm, ob-
taining a discontinuous and convex/concave Pareto front. The topology of the front is likely
due to the metamodel, which may not have achieved full training convergence. Optimization
achievements have been found significant for both RT (−19÷ 18%) and ∇ (+23÷ 28%). Three
optimal designs have been identified for (A) maximum total resistance reduction, (B) maximum
displacement increase, and (C) minimum aggregate objective (with equal weights).

These designs perform better than the original at 18 kn, whereas the original design shows
better performances in lower and higher speed ranges. This difference is mainly due to a signifi-
cant change in length of the optimized designs, which reflects in a reduced Froude number at 18
kn. This motivates further investigations via robust design optimization for a stochastic speed
ranges. Wave elevation and pressure distribution has been shown for design C, emphasizing the
beneficial effects of the shape optimization.

The optimized designs finally show a significant increase of the wet surface (+20% or more)
and variation of the water-plane area (from –11 to +1%). This motivates future extensions
to Reynolds-averaged Navier-Stokes solvers (to address viscous effects), along with the proper

10

104



R. Pellegrini, A. Serani, S. Harries and M. Diez

inclusion in the optimization of critical design constraints associated to the intact pitch and roll
stability, seakeeping, and structural analysis, not considered at the current stage of the work.
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