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Abstract: We define a formalism of equality constraints and use it to prove the complete-
ness of what we have called basic superposition: a restricted form of superposition in which
only the subterms not originated in previous inferences is superposed upon. We first apply
our results to the equational case and to unfailing Knuth-Bendix completion. Second,
we extend the techniques to the case of full first-order clauses with equality, proving the
refutational completeness of a new simple inference system. Finally, it is briefly outlined

how this method can be applied to further restrict inference systems by the use of ordering
constraints.

1. Introduction

Knuth-Bendix-like completion (KB 70, Rus 87, HR 89, BDP 89, BG 90, NO 91} can be
seen as a process that on one hand is refutationally complete and that on the other hand
transforms a set of axioms in such a way that, by using the final complete set of axioms,
efficient normal form proofs can be obtained (e.g. rewrite proofs or linear proofs). These
procedures are normally based on a form of ordered paramodulation called superposition.

In this paper we develop a notion of equality constraints that allows to prove the
completeness of basic superposition. Roughly speaking, the inference rule of basic super-
position is the restriction of normal superposition to those occurrences of subterms that
have not been originated in previous inferences. Consider for example the inference by
(equational) superposition

f(g9(a)) ~a  h(f(z)) ~ h(z)
h(a) ~ h(g(a))

obtained by unifying in h(f(z)) the subterm f(z) with f(g(a)). Its conclusion is an
instance with the unifier {z = g(a)} of the equation h(a) =~ h(z). Therefore, no further
basic superposition steps have to be applied to the subterm g(a) of this conclusion. In
this paper we will describe this situation by using the equation with equality constraint
h(a) = h(z) [z = g(a)]. An alternative notation would be a pair equation-substitution, but
we prefer to use constraints, as they allow a uniform treatment with ordering constraints
(cf. section 5), and we find them more intuitive.

We have called this restriction of superposition “basic” because of its similarity with
the one of basic narrowing [Hul 80]. Obviously, basic superposition is a considerable
improvement over normal superposition, allowing to importantly reduce the search space,
and to obtain complete systems in more cases.




In the third section of this paper, after the basic definitions of section 2, we apply
our techniques to the particular case of equational logic and to unfailing Knuth-Bendix
completion of equations. In section 4 we extend the results to the case of full first-order
clauses with equality. We prove the refutational completeness of a basic superposition-
based inference system, which moreover uses a simple new factoring rule. In section 5 we
very briefly outline how in a similar way our techniques can be applied to further restrict
inference systems by the use of ordering constraints.

Very recently, from L. Bachmair, we got to know that H. Ganzinger and himself
were also working on basic superposition, obtaining results similar to some of ours, but
apparently with completely different proof techniques.

2. Basic notions and terminology

We adopt the standard notations and definitions for term rewriting given in [DJ 90, 91].

Furthermore, by an equation we mean a multiset {s,t}, denoted by s ~ ¢ (or equiva-
lently by t > s), where s and ¢t are terms in 7(F, X). In this note, distinct equations are
supposed not to share variables.

By equality constraints we mean quantifier-free first-order formulae built over the
binary predicate symbol = which denotes syntactic equality of terms. An equation with
equality constraint is a pair (e,T), denoted e[T], where e is an equation, and T is an
equality constraint. Such a pair can be seen as a shorthand for the set of ground instances
of ¢ [T]: those ground equations ec such that T is true.

We consider interpretations that are congruences on ground terms. An interpretation
I satisfies e [T], denoted I |= e[T], if it satisfies every ground instance of e[T7, i.e.
equations with an unsatisfiable constraint are tautologies. It satisfies a set of equations E,
denoted by I |= E, if I satisfies every equation in E. An equation e can be deduced from
a set of equations E (denoted by E |= e), if e is satisfied by every model of E.

A first-order clause ' — A is a pair of (finite) multisets of equations I' and A,
called respectively the antecedent and the succedent of the clause. First-order clauses
with equality constraints and their ground instances, satisfiability, etc. are defined as done
for equations with equality constraints. For simplicity, we express atoms by equations
P(t1,...,tn) ~ true, where P is an n-ary predicate symbol, ¢; ...%, are terms, and true
is a special symbol, i.e. we treat atoms as terms. An interpretation I satisfies a ground
clause I' - A, denoted by I =T — A,if I 2 T orelse INA # 0. The empty clause is
therefore satisfied by no interpretation.

The symbol > denotes a simplification ordering on terms, total on ground terms,
where the special symbol true is the smallest symbol. We use >yt (>muin) to denote its
(n-fold) multiset extension.

If E is a set of constrained equations, then a ground term t can be rewritten into
a ground term t[s'c], by one reductive rewrite step with an equation s ~ s’ [T] of E,
denoted ¢t — g t[s'o]y, if s 22 ' [T] has a ground instance so ~ s'o such that t|, = so and
so = s'c. We denote by —% the reflexive transitive closure of —»g. A term #' is a normal
formof t w.rt. E if t —»% t' and there is no term ¢’ s.t. t' —g t’. The set E is ground
confluent if every ground term has exactly one normal form w.r.t. E.
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3. Basic superposition in the equational case

We model basic superposition by using equations with equality constraints. The instantia-
tions caused by previous superpositions are kept in the constraints. Normal superposition
can then be used for the equation part:
Definition 1:  The inference rule of basic superposition is defined as follows:
s~ s [T'] t~t'[T]
ts'l 2t [TAT Aty =]

where t|, ¢ Vars(t)

if, for some ground substitution o, [T AT’ At|, = s]o is true, so = s'c and to = t'o.

In the following section we will also define the rule of (strict) basic superposition for
the case of full first order clauses. Note that constraint solving for equality constraints is
Just unification. In practice, every satisfiable constraint can be kept in a simplest form,
which is the corresponding most general unifier.

The difficulty with basic superposition lies in the fact that lifting lemmata like the
critical pair lemma do not hold:

Example 2:  No inference by basic superposition can be made between the two equations
a>b and f(z) ~ bz = a], where a > b, but there is no rewrite proof for f(b) =~ b.

Another conclusion that we can draw from this example is that basic superposition is
not complete when starting from an arbitrary set of equations with equality constraints.
Therefore, here we will suppose that the equations in the initial set have the trivial con-
straint [true]])*. From now on, equations having [[true] as constraint, will sometimes also
be called equations without constraint, or equations with trivial constraint.

For simplicity, we will first study basic superposition without simplification. It is
proved that the closure under basic superposition of an initial set of equations without
constraint is ground confluent. We do this by defining a (canonical) set of ground rewrite
rules R generated from a set E of equations, by selecting ground instances of equations in
E that fulfil certain properties. (this is similar to [BG 90], but adapted to equations with
equality constraints). Then we show that Rg |= E if E is closed under basic superposition,
and we prove that this implies that E is ground confluent.

In order to overcome the problems of the non-existence of a critical pair lemma, we
will sometimes consider only instances of equations with irreducible substitutions:

Definition 3: A substitution o is irreducible w.r.t. a set of rewrite rules R if zo is
irreducible w.r.t. R, for every variable z in the domain of o. A normal form of a substitution
o w.r.t. R is a substitution o’ with the same domain as o, and such that z¢' is a normal
form w.r.t. R of zo.

* In fact, this restriction can be slightly weakened
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Definition 4: Let so ~ to be a ground instance with s > to of an equation s ~ ¢ [T]in
a set of equations E. Then so ~ to generates the rule sc — to if so and o are irreducible
w.r.t. rules generated by ground instances ef of equations in E with so ~ to =, €.

The set of rules generated by all ground instances of equations in E is denoted by Rg.

Lemma 5: Let E be a set of equations with equality constraints that is closed under
basic superposition. Then R |= ec for every instance of an equation e [T] in E such that
o 1s irreducible w.r.t. Rg.

Proof.  Let to ~ t'o be a minimal (w.r.t. > ,,1) ground instance of a constrained equation
t ~t'[T] in E such that o is irreducible w.r.t. R and Rg [~ to ~ t'o. We will derive a
contradiction from the existence of such an equation.

We can suppose w.l.o.g. that t¢ > t'c. Since Rp £ to ~ t'o, the equation has not
generated any rule in Rg. Therefore to must be reducible by Rg, e.g. with a rule so’ — s'¢’
generated by an equation so =~ s'¢’ smaller than to ~ t'o. Now we have to|, = so’, where

t|, cannot be a variable, since ¢ is irreducible, and therefore the following inference can
be made:

s~ s [T'] t~t'[T]
ts' ]y 2 t'[TAT At]y = 5]

Since E is closed under basic superposition, its conclusion is in E. It has a ground instance
d of the form tos'o’], ~ t'o such that Rg |£ d (otherwise Rg |= to ~ t'c). Moreover, d is
an instance of this conclusion with a ground substitution 8 that is irreducible by Rg, and
to ~ t'c >y d, which contradicts the minimality of to ~ t'c. =

Lemma 6: Let Ey be a set of equations with trivial constraints, and let E be the closure
of E¢ under basic superposition. Then Rg |= E.

Proof. First note that Ey, |= E, by soundness of basic superposition. Therefore, it
suffices to show that Rg |= Ey, i.e. Rg |= eo for every instance of an equation e [true] in
Ey. Now let o' be the normal form of ¢ w.r.t. Rg. Since Ey C E, by the previous lemma
it holds that Rg |= ed’, because ¢ is irreducible w.r.t. R, and ec’ is an existing instance
of e[[true]. From Rg |= es’ and R U {ec'} |= eo it follows that Rg |=ec. =

Lemma 7: Let E be a set of constrained equations such that Rg |= E. Then E is
ground confluent.

Proof. Let s, s’ and t be ground terms and let s and s’ be normal forms of ¢ w.r.t. E.
We prove that s and s’ must be syntactically equal. We have E |= s ~ s/, and Rg |= E,
which implies Rg |= s >~ s'. If s and s’ are normal forms w.r.t. E, then they are also
normal forms w.r.t. R, because Rg is a set of instances of equations of E. Moreover, by
construction of Rg, Rg is a canonical set of ground rewrite rules, because there are no

overlappings between left hand sides. This implies that s and s’ are equal. =

Theorem 8: Let E; be a set of equations with trivial constraints, and let E be the
closure of Ey under basic superposition. Then E is ground confluent.



3.1. Completion by basic superposition: the equational case

Now we know that if F is the closure under basic superposition of a set of equations without
constraints, then F is ground confluent. In this section we show that basic superposition is
also the appropriate inference rule for unfailing Knuth-Bendix completion, i.e. for comput-
ing such sets F in practice, even when applying the existing powerful simplification and
deletion methods that can be used in normal superposition-based completion. .However,
at first sight there seems to be a problem with simplification:

Example 9:  Consider the ordering f = g = a > b and three initial equations:
1) a~b
2) flg(2)) ~ g(=)
3) flg(a)) ~b

Furthermore, we obtain:

4) g(z) ~ bz = 4] (by basic superposition of 2 and 3)
5) f(b) ~b (simplifying 3 by 4)
6) f(b) ~g(z)[z = q] (by basic superposition of 2 and 4)

Now the set {1,2,4,5,6} is closed under basic superposition, but there is no rewrite proof
for g(b) ~ b using instances of this set.

From the previous example we may conclude that, even when starting with equations
without constraints, it is incorrect to apply unrestricted simplification. However, as we
will see, this problem appears only in (quite special) concrete situations, and can be solved
in such a way that basic superposition only in the very worst case may degenerate into
normal superposition.

Our notions of completion and redundancy are based on the ones defined by Bachmair
and Ganzinger [BG 90,91], where an axiom is redundant if all its ground instances can be
deduced from smaller instances of other axioms. Analogously, an inference is redundant
if, for all its instances, the conclusion can be deduced from instances smaller than the
maximal premise. These redundancy notions include, as far as we know, all correct methods
that make completion procedures more efficient and terminate in more cases. Here we
extend these notions by considering only instances with substitutions that are, in some

sense, irreducible. As usual, a completion procedure will be any algorithm computing fair
derivations:

Definition 10: Let Eq, Ey,... be a sequence of sets of constrained equations.
a) The set E., of persistent equations in Ey, Ey, ... is defined as U;i(Nk>; Ek).

b) We denote by I(e[T]) (resp. I(E)) the set of instances of e [T (resp. equations e [T
in E) such that ¢ is irreducible w.r.t. Rg_.

¢) An equation e[T] is redundant in E; if for every eo in I(e[T]) there exist instances d;
in I(E;), for i = 1...m, such that ec >, d; and Re, U {dy,...,dn} |= eo.
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Definition 11: A completion derivation is a sequence of sets of constrained equations
Ey, E,,... such that Ty is true for every equation eg [Tg] in Ey and

Ei=Ei_1U{e[T]} where E;_; |=¢[T], or
E;=E;.1\{e[T]} ife[T]is redundantin E;_,.

Definition 12:  Let Eg, E;,... be a completion derivation, and let w be an inference
with premises e, [T1] and e, [T3], and with conclusion e [T].

Then every inference by basic superposition with premises e;o and e20, and conclusion es
with T'o = true, is a ground instance no of .

The inference 7 is redundant in E; if for every ground instance 7o of m with ¢ irreducible
w.r.t. Rg_, there exist instances d; in I(E;), fori =1...m, such that maz(e10,€20) > mu

d;and Rp_ U{d,...dn} = eo.

Definition 13: A completion derivation Ey, Ey,... is fair if every inference by basic
superposition with premises in E is redundant in some E;.

In practice, during the computation of a fair completion derivation, one cannot prove
the redundancy of equations or inferences in a set E;, since at that point Rg_ is unknown.
Therefore, sufficient conditions for redundancy have to be used. We will define them in

detail at the end of this section, and we suppose for the moment that we can indeed
compute fair completion derivations.

Definition 14:  Let Eq, E,, ... be a completion derivation. Then E,, is complete if every
inference by basic superposition with premises in E., is redundant in Ey.

Lemma 15: Let Ey, Ey,... be a completion derivation. Then for every set F; and
instance ec in I(Ej), there are instances d; for i = 1...m in I(E), such that Rg_ U
{d1,...,dn} = ec and e >, d;.

Proof. ~ We derive a contradiction from the existence of an instance eo that is minimal
(w.r.t. >my) in all sets I(E;) such that there are no such instances d; in I(Ew).

The corresponding equation e [T] in E; is not persistent, because otherwise es is in I(Ey).
This means that e[T] is redundant in some Ej, with k& > J, 1.e. there exist instances
{d},...,dn} in I(E:) such that Rg_ U {d.,...,d.} |= eo, with eo > nu d;. However,
if the result holds for the instances di,...,d, (which must be the case, because ec is
minimal), then it also holds for ec. =

Lemma 16: Let Ey, Ey,... be a completion derivation. If an inference is redundant in
some Ej, then it also is in E.

Proof.  Let m be an inference with premises e; [T1] and ez [T3], and with conclusion
e [T], such that 7 is redundant in E;. This means that for every ground instance wo of 7
with o irreducible w.r.t. Rg_, there exist instances d; in I(E;), for : = 1...m, such that
maz(e10,€20) >mui d; and Rp U{d1,...,dn} = es. By the previous lemma, each of the
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instances d; can be deduced from Rg, and other instances {d},...,d"} in I(Eo) such
that d; ™ mul d;-. This implies that = is also redundant in E.,. =

Lemma 17: If Ey, Ey,... is a fair completion derivation, then E is complete.

Proof. By fairness, every inference m with premises in E, is redundant in some E;. By
the previous lemma, then = is also redundant in E,, that is, Eo, is complete. =

We now apply the same method as in the previous section to prove that E, is ground
confluent. The following lemma states that in fair completion derivations Rg_ = I(Ex).
After this, in lemma 19, we show that Rg_ |= E, which, as we know by lemma 7, implies
that F is ground confluent.

Lemma 18: Let Eo, Ey,... be a fair completion derivation. Then Rg_ = I(Ew).

Proof.  This proof is an easy extension of that of lemma 5, where the same result is
proved for sets E that are closed under basic superposition, instead of what we need here:
proving it for Eo, which we only know to be complete, i.e. closed up to redundant inferences.
Let to ~ t'o be a minimal (w.r.t. =.,,1) instance in I(Ew) such that Rg_ [~ to ~ t'o.
We will derive a contradiction from the existence of such an equation.
We can suppose w.l.o.g. that tc > t'o. Since Rg_ |£ to ~ t'o, the equation has not
generated any rule in Rg_. Therefore to must be reducible by Rg_, e.g. with a rule
s’ — s'o’ generated by an equation so ~ s'¢' smaller than t¢ ~ t'¢. Now we have

to|y = so’, where t|, cannot be a variable, since o is irreducible, and therefore the following
inference can be made:

s~s'[T] t~t[T]
ts'ly ' [TAT Aty = 5]

This inference has a ground instance d of the form to(s's’], ~ t'o such that Rg_ |~ d
(otherwise Rg,, |=to =~ t'o). Moreover, d is an instance of this conclusion with a ground
substitution # that is irreducible by Rg_, and to ~ t'0 >y d.

Since E is complete, the inference must be redundant in Ey, i.e. there exist instances d;
in I(Ex), for i = 1...m, such that to ~ t'0c >, d; and Rg_ U{ds,...,dn} = d. But if
RE,, [~ d then also Rg_ [~ d; for some d;, contradicting the minimality of tc ~ t'c. =

Lemma 19: Let Ey, Ej,... be a fair completion derivation. Then Rg_ = E.

Proof. ~ We have Rg_ |= I(E.) by the previous lemma. Moreover, Rg, U I(Ey) |=
I(E,) is a direct consequence of lemma 15. Now, since Rg_ U I(E,) |= E; holds as in
lemma 6 (equations in Ey have no constraints), and Ey |= Eo holds by soundness of basic
superposition, together we have Rg_ |= Foo. =

Theorem 20: Let Ey, E,,... be a fair completion derivation. Then E., is ground
confluent.



3.2. Redundancy notions for basic superposition

In this section we study in which concrete situations the usual notions of redundancy are
incorrect when dealing with basic superposition. It is shown that these situations can be
avoided by sometimes slightly weakening constraints, in such a way that basic superposition
only in the very worst case may degenerate into normal superposition.

The usual notions of redundant axioms and inferences for normal superposition of
[BG 91] include most simplification techniques and critical pair criteria for proving the
redundancy of superpositions. For example, the simplification of an equation e into e
can be modelled in a completion derivation by first adding the consequence €', and then
deleting e, which has become redundant, since every instance of e can be deduced from
smaller instances of other equations (in this case, of e’ and the equation applied in the
simplification step).

However, our notion of redundant equation requires every instance with an irreducible
substitution to be deducible from other smaller instances with irreducible substitutions, and
also Rg_ may be used.

Example 21: In example 9, the equation f(g(a)) ~ b is simplified into f(b) ~ b using
g(z) ~ bz = a]] with the substitution o, which is = a.
However, f(g(a)) ~ b does not become redundant by adding f(b) ~ b, because we need

g(z) ~ bz = a] instantiated with o, but o is not irreducible, since Rg_ contains an
equation a >~ b, with a > b.

Definition 22: Let e [T] be an equation, and let § be the most general solution of the
equality constraint T (i.e. its m.g.u.). Then T binds each variable z in Vars(e) to z4.

Now let us study when it is correct in our framework to use the normal redundancy
notions of (BG 91], i.e. an equation is redundant if all its ground instances can be deduced
from smaller instances of other equations, and an inference is redundant if, for all its
instances, the conclusion can be deduced from instances smaller than the maximal premise.

The lemma below states, roughly speaking, that one can simplify applying an equation
e[T] (or use it in a redundancy proof with the normal notions), if, for every variable z in
Vars(e), z is not bound by T, or else the corresponding position in the equation simplified
(or proved) is also a variable.

Example 23: The equation f(y) ~ g(y)[y = h(a)] can be simplified by the equation
f(z) ~ bz = h(z)] into g(y) ~ b[y = h(a)], because, although the variable z is bound to
h(z), its corresponding position in f(y) is the variable y.

Lemma 24: Let Ey, Eq,... be a completion derivation. The equation e [T'] is redundant
in a set Ej if

(i) it is redundant in the sense of [BG 91], that is, for every ground instance ec of
it, there are ground instances d;o; for i = 1...m of equations d; [T;] in E; such that
{dyo1,...,dmom} |= ec and ec >,,41 do;, and moreover
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(ii) for everyiinl...m, and for every z in Vars(d;), T; does not bind z, or else zo; = yo,
for some variable y in e.

Proof.  Wehave to prove that the conditions imply that for every eo in I(e [T]) there exist
instances d} in I(E;), for k = 1...n, such that eoc >, d, and Rg_ U{dy,...,d}} = eo.

If every substitution o; is irreducible w.r.t. Rg_, then the result holds. This is cer-
tainly the case if for every variable z in every d; we have zo; = yo, for some variable ¥ in
e, since o is irreducible.

Otherwise, if zo; is reducible by REg_, we can replace d;o; by d;8, where 8 is like o;
except that 28 is the normal form w.r.t. Rg_ of zo. d; is an existing instance of d;, since
z is not bound by the corresponding constraint T;. Moreover, we have Rg_ U{d;0} = d;o;.
By doing so for all these variables ¢, we obtain the instances d} in I(E;), for k = 1...n,
such that eo >y d), and Rg, U {d},... ydi} =eo. m

The equivalent lemma for proving the redundancy of inferences also holds: it is ob-
tained by using the instance of the maximal premise as upper bound for the instances
di,...,dm, instead of ec, i.e. by replacing in the previous lemma and its proof ec >my; ...
by maz(e,0,e20) = mui - ...

Might all the conditions of the previous lemma fail, for some variable z, then we can
always weaken T for z:

Lemma 25: Let ¢[T] be an equation, and let § be the most general solution of T,
with 8 of the form {z; = ¢1,...,2, = t,}. Now let o be {z; = t;}. Then the equation

eoza = ta A...,2n = t,], obtained by weakening e [T] for z, is logically equivalent to
e [T].

Weakening the constraint of an equation is equivalent to turning basic superposition
into normal superposition for the given subterm in the equation (¢; in the previous lemma),
since it becomes again necessary to apply superposition on it, while it was not before
weakening.

For simplicity, we have not considered here redundancy of equations by subsumption.
However, subsumption can easily be included by using a slightly more complicated or-
dering on instances of equations than the ordering > 41, comparing pairs (e [T],o) by a
combination of >,,,; and the subsumption ordering.

Practical implementations, such as the one we are working on based on the Trip-system
[Nie 90, NOR 90], will show whether it pays off to weaken constraints for simplification
steps, or whether it is always more efficient to use basic superposition in its full power.
For the moment, it seems to us that some mixed strategy has to be used.



4. Completion of first-order clauses by basic superposition

In this section we extend the techniques defined above to the case of full first-order
clauses with equality. As done by Bachmair and Ganzinger in [BG 90,91], we obtain
an unfailing completion procedure for first order clauses with equality, including powerful
notions of redundancy for clauses and inferences. This procedure is refutationally complete
and, moreover, very efficient complete strategies can be used for refutational theorem
proving with complete sets of clauses.

The main new result given here is that our completion procedure, while conserving
these properties, uses an inference system that has as main inference rule the one of
strict basic superposition, instead of normal strict superposition, with the corresponding
advantages of a more reduced search space and higher termination probabilities.

Moreover, apart from using basic superposition, the new inference system we define
below is also interesting because there is only one inference rule for equality factoring,
instead of including, apart from “normal” factoring, inference rules for merging paramod-
ulation [BG 90,91] or equality factoring left and equality factoring right (BG 90]. The fact
that we define here this new inference system does not mean that our techniques depend

on this specific inference system: all the proofs can be easily adapted for each one of these
other systems.

In the following ordering >¢ on ground clauses, the terms appearing in antecedents
of clauses are slightly more complex than the ones in succedents:

Definition 26: The multiset ezpression of an equation ¢t ~ ¢’ in a clause I' — A is
(i) {{t,¢},{t',¢'}} ift~¢ belongstoT
(i)  {{t},{t'}} if t ~ t' belongs to A

The ordering >, on ground equations is defined as the ordering >,z on their multiset
expressions.

The ordering >~¢ on ground clauses is defined as the ordering >,,,;2 on the multisets
containing the multiset expressions of their equations.

Definition 27: A ground equation e is called mazimal (resp. strictly mazimal) in a
ground clause C if e =, ¢’ (resp. e =, ¢'), for every other equation e’ in C.

In the following inference system B, inferences take place only in equations of succe-
dents that are strictly maximal and in equations of antecedents that are maximal, for some
ground instance. Moreover, only the maximal terms in each equation are used. These con-
ditions imply that, for each ground inference, the conclusion is strictly smaller (w.r.t. >¢)
than the maximal premise.
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Definition 28:  The inference rules of B are the following (we always consider maximality
of equations in clauses w.r.t. >e):

1) strict basic superposition right:
I > Als~ ' [T'] I' - At~ t'[T]
T — AL A s |y @' [TAT Aty = 5]

where t|, ¢ Vars(t)

if [TAT' At|y, = s]o is true for some ground substitution o such that
a)to > t'o, soc > s'c,and to ~t'e =, so~s'c
b) s0 ~ s'g is strictly maximal in Vo — A'c, 80 ~ s'c
c) to > t'o is strictly maximal in T'e — Ag,to ~ t'c.

2) strict basic superposition left:
F’—»A',s’:s’[[T']] P,t’:t'—»AﬂT]}
Tts'lu t' > AA[TAT Aty = ]

where t|, ¢ Vars(t)

if [TAT' Atly =s]ois true for some ground substitution ¢ such that
a) to > t'c and so > s'o
b) so o~ s'o is strictly maximal in IVo — Alo, 50 ~ s'a
¢) to ~ t'c is maximal in ['o,to =~ t'c — Ag.

3) equality resolution:
Mitx~t - A[T]
> A[TAt=1]

if [T At=1t]o is true for some ground substitution o such that

a) to =~ t'o is maximal in I'o,to ~ t'c — Ao.

4) factoring:

- At~s,t' ~§'[T]

F,s’:s'—»A,t’:s[[T/\tzt'ﬂ

if [TAt=1t]o is true for some ground substitution o such that

a) to > so and t'e = s'o

b) to >~ so is maximal in ['c — Ac,to ~ so,t'c ~ s'o.

Note that our inference rule for factoring is a generalization to the equality case of “normal”
factoring. For instance, if t and t' are atoms, then both s and s’ are the symbol true and
the equation frue ~ true can be omitted in the antecedent.
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In order to prove the correctness of completion procedures based on this inference
system B, we will proceed in a similar way as done in the previous section for the equational
case. In fact, we will extend almost all the definitions and results to the case of first-order
clauses with equality, of which equations are a proper subset. For instance, definitions
29 - 34 are extensions of the equivalent ones in the previous section, and the same thing
happens with the lemmata 35 - 37 and 39. Those proofs equal to the corresponding ones
in the previous section are omitted.

Now first we associate to a set of constrained clauses S a canonical set of ground
rewrite rules Rs. This is done in a little more complicated way that it was done for the
equational case (here we use the arrow => for rewrite rules instead of —, to avoid confusion
with the arrow of clauses in sequent notion).

After this, it will be shown that, in a fair completion derivation for first order clauses
S0, 851,..., 1t holds that Rs_ |= S if the empty clause is not in So. This implies (just as
RE,, |= Ex implied the confluence of E), that the completion procedure is refutationally
complete. This is true because if the empty clause is not in S, then S, is consistent,
since it has a model: the congruence generated by Rs_ .

Definition 29: Let Co be a ground instance I' —» A,¢ ~ s of a clause C [T] in a set S.
Then Co generates a rule t = s if the following conditions hold:

(1) Rc = Co

(2) t ~ s is maximal (w.r.t. >,) in Co with ¢ > s
(3) Re [ s~ s', forevery t ~ s’ in A

(4) t is irreducible by R¢

(5) o is irreducible by R¢

where Rc is the set of rules generated by ground instances smaller than C (w.r.t. »=¢) of
clauses in §.

The set of rules generated by all ground instances of clauses in S is denoted by Rs.

Definition 30: Let Sy, S1,... be a sequence of sets of constrained clauses.
a) The set S of persistent clauses in Sy, S1,... is defined as U;(Nk>;Sk)-

b) We denote by I(C [T]) (resp. I(S)) the set of instances of C [T] (resp. clauses C [T]
in §) such that o is irreducible w.r.t. Rs_.

c) A clause C [T] is redundant in S; if for every Co in I(C [T]) there exist instances D;
in I(S;), fort =1...m, such that Co >, D; and Rs_ U{D1,...,Dn} = Co.

Definition 31: A completion derivation is a sequence of sets of constrained clauses
Su,S1,... such that Ty is true for every clause Cy [Ty] in Sy and

Si=S8Si1U{C[T]} where S;_;|=C][T], or

Si=Si-1\{C[T]} if C[T]is redundantin S;_,.

12



Definition 32:  Let Sy, S5),... be a theorem proving derivation, and let = be an inference
with premises C; [T1],...,Cxr [Tn], and with conclusion C [TT].

Then every existing inference with premises Co,...,C, o, and conclusion Co with To =
true, is a ground instance wo of .

The inference 7 is redundant in S; if for every ground instance wo of © with ¢ ir-
reducible w.r.t. Rs,, there exist instances D; in I(S;), for ¢ = 1...m, such that

maz(Cyo,...,Cn0) >mu D; and Rs_ U {D;,... y D} l=Co.

Definition 33: A theorem proving derivation Sy, S1,... is fair if every inference of the
inference system B with premises in S, is redundant in some S;.

Definition 34: Let Sy, S5:,... be a theorem proving derivation. Then S, is complete if
every inference of the inference system B with premises in S is redundant in S.

The following three lemmata are the extensions to the case of first-order clauses of the
ones given in the previous section for the equational case, lemmata 15, 16 and 17. Also
their proofs are trivial extensions.

Lemma 385:  Let 5y,S5:,... be a theorem proving derivation. Then for every set S;
and instance Co in I(S;), there are instances D; for i = 1...m in I(S.), such that

Rs U {Dl,...,Dm} I= Co and C >4 D;.

Lemma 36: Let Sy, 5;,... be a theorem proving derivation. If an inference is redundant
in some S, then it also is in So.

Lemma 37: If 5, 51,... is a fair theorem proving derivation, then S, is complete.

The only lemma of this section that is significantly different to the equational case is
the following one. The reason is that it depends on the inference system used.

Lemma 38: Let Sy, S1,... be a fair theorem proving derivation, such that S, does not
contain the empty clause. Then Rs_ |= I(Sx).

Proof. Let Co be a minimal (w.r.t. >¢) instance I(S.) of a clause C [T] in S0, such
that Rs_ £ Co. We will derive a contradiction from the existence of such a clause. There
are several cases to be analyzed, depending on which one is the maximal equation in Co:

a) Let Co be a clause 'c — Ao, to ~ t'o, with a maximal equation to ~ t'o, and to > t'o.
Since Rs_ [~ Co, the clause Co has not generated the rule to = t'¢. This must be because
one of the conditions 3) or 4) of definition 29 do not hold.

al) If condition 3) does not hold, then Ao must be of the form A’g,so ~ s'o, where to
is the same term as so and R¢ |= t'c ~ s'o. In this case, consider the following inference

13



7 by factoring
> A t~ts~s[T]

Dt s’ 5 At~ t!' [TAt =]

Its conclusion has a ground instance D of the form I'o,t'c ~ s'c — Aoc,tc ~ t'c that
is not deducible from Rs_. Moreover, D is an instance of this conclusion with a ground
substitution that is irreducible by Rs_ .

Since S is complete, m must be redundant in S.,. But then there exist instances
D1,...,;Dm in I(Sw) such that Rs U {Ds,...,Dn} = D, Co =c D;. The fact that D
is not deducible from Rg_ implies that at least one of the D; is not deducible from Rs_
either, which contradicts the minimality of Co.

a2) If condition 4) does not hold, then to is reducible by R, e.g. with a rule so’ = s'o”
generated by a clause C'¢’ smaller than Co. Let C' be a clause I' — A’,s ~ s' in S, and
to|, = so’. Now the following inference 7 by strict superposition right

I" - Aljs ~ s' [T'] I — At ~¢[T]
I',T - A" At 2 ' [TAT Aty = 5]

can be made. Its conclusion has a ground instance D of the form I'¢',Toc —
A'd', Ao, to[s'c']y ~ t'o, that is not deducible from Rs_. Moreover, D is an instance
of this conclusion with a ground substitution that is irreducible by Rs_. Since S is

complete, 7 must again be redundant in S, which, as above, leads to a contradiction
with the minimality of Co.

b) If Co is a clause to ~ t'o, Ac — ['c, where to ~ t'¢ is maximal in Co, and to is ',
then consider the following equality resolution inference:

It ~t' - A[T]
I > A[TAt=1t]

The conclusion of this inference has a ground instance I'c — Ao, that is not deducible
from Rs_ . Since the inference is redundant, as above, a contradiction is obtained.

c¢) The only remaining case is that C'o is a clause ['o,to =~ t'c — Ao, where to ~ t'c is
maximal in Co and to > t'c. In this case Rs_ |= to ~ t'o, because Rs_ [~ Co. Then
to must be reducible by a rule so’ = s'¢’ in Rs_ generated by a clause in S, of the

form I — A',s >~ s'[T'], where to|, = so’. The following inference m by strict basic
superposition left can then be made:

I' 5 Als~s'[T'] T,t~t — A[T]
' Tt[s' ]yt - AA[TAT Atly =5

For the instance mo of the inference, Co is the maximal premise, and, as in case a2), its
conclusion is not deducible from Rs_. This implies as before that, since 7 is redundant,
a contradiction is obtained. w
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Lemma 39: Let Sy, 5;,... be a fair theorem proving derivation. Then Rs_ }= Se.

Theorem 40: Let So,S5,,... be a fair theorem proving derivation. Then S, is inconsis-
tent if, and only if, the empty clause belongs to some S;.

Proof. If the empty clause belongs to some S;, then, by soundness of the inference
system, S is inconsistent. For the reverse implication, suppose the empty clause belongs
to no §;. Then it is not in S, and by the previous lemma, Rs_ = Se. But then S,
must be consistent, since it has as model the congruence generated by Rs_. =

With respect to the redundancy notions, again the same discussion as in the previous
section applies. Completion based on the inference rule of basic superposition strictly
improves normal superposition-based completion. The following lemma, equivalent to
lemma 24 and with the same proof, tells us when constraint weakening has to be applied
in redundancy proofs for first-order clauses:

Lemma 41: Let 5o, 51,... be a theorem proving derivation. The clause C [T] is redun-
dant in a set S; if

(i) it is redundant in the sense of [BG 91], that is, for every ground instance Co of
it, there are ground instances D;o; for ¢ = 1...m of clauses D;[T;] in S; such that
{D1o1,...,Dpnom} = Co and Co >¢ Do;, and moreover

(ii) for everyiin1...m, and for every z in Vars(D;), T; does not bind z, or else zo; = yo,
for some variable y in C.

The interest of applying basic superposition to completion of first-order clauses with
equality lies not only in the gain of efficiency as a consequence of the more reduced search
space, but also in the higher probability of obtaining complete systems. By using such
complete systems 5, i.e. sets of clauses in which no more non-redundant inferences can
be computed, very efficient complete strategies can be applied for refutational theorem
proving, since no new inferences between clauses in S have to be computed. Deducibility
from complete systems of some classes of ground clauses can even be shown to be decidable.

5. Further work

Some of the techniques of this paper can be applied to other kinds of constraints. Here
we briefly outline some results of our forthcoming paper [NR 91] on the combination of
basic superposition modelled by the use of equality constraints, and the notion of ordering
constraints. The interest of similar ordering constraints has been pointed out earlier, e.g.
in [KKR 90], but, as far as we know, no proofs had been found up to now. Below we
explain the basic idea.

The inference rule of strict superposition has the advantage that the search space
is reduced by selecting only the maximal terms in the maximal literals to paramodulate
upon. Therefore, if a clause is obtained in an inference, we are in fact only interested in
those ground instances of it for which the literal (and term) selected is really the biggest
one. This information can be kept in its constraint. Future choices of maximal literals that
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are incompatible with this constraint can then be shown to be unnecessary. The inference
rule for (equational) superposition with ordering constraints is the following:

s~ s [T'] t~t' [T]
(sl 2t [TAT As=s' At=1t] o

where t[, ¢ Vars(t) and o = m.g.u.(t|,,s)

The inference rules for general clauses with equality are defined analogously. The satisfia-
bility problem for this kind of constraints, i.e. knowing whether a term ¢ can be made bigger
than a term s by appropriately instantiating its variables, has recently been shown to be
decidable for the lexicographic path ordering by Comon [Com 90] and for the recursive
path ordering with status by Jouannoud and Okada [JO 91].

Surprisingly, the known results on completeness of deduction methods with ordering
constraints are incorrect. Peterson (in [Pet 90|, thm. 4.1), claims that every constrained
critical pair between equations in R is joinable iff R is a complete set of reductions. How-

ever, the same problem with the critical pair lemma as in the equality constraint case
appears here:

Example 42:  No inference by superposition can be made between the two equations
a~b and f(z) =~ bz a], where a > b, but there is no rewrite proof for f(b) =~ b.

In fact, methods similar to the ones explained in this paper can be applied to comple-
tion with ordering constraints. Also in this case, the initial sets cannot be arbitrary sets
of constrained axioms, as the previous example shows. Even the restrictions on simplifi-
catlon are similar in some sense. Therefore, we think that the appropriate inference rule
for dealing with general first-order clauses with equality will be based on a combination
of both kinds of constraints. The search space for such theorem proving methods is then
much smaller than with normal superposition and it will be possible to obtain complete
systems in more cases. The equational version of such a rule would be:

s>~ s [T'] t~t[T]

ts'ly 2t [TAT As=s' Attt At],=3]

where t|, ¢ Vars(t)
which, as we can see, also provides a very compact representation for inference rules.

The additional problems that appear in this new combined ordering-equality con-
strained framework are solved in [NR 91]. For example, important differences appear in
the notion of weakening this kind of constraints, necessary in order to be able to use the
strong redundancy notions. Other problems are related with constraint solving. Since
the satisfiability of this kind of constraints depends on the signature, adding new function
symbols may cause complete systems to become incomplete. For example, suppose that we
want to refute a clause containing new Skolem constants, using a complete system. Now
we do not want to compute additional inferences between clauses of the complete system,
which may be necessary due to these problems. Of course, similar problems appear when
combining complete systems.
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