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ABSTRACT (2000 chars with spaces) 10 

The textile and fashion industry is amongst the most resource-intensive and polluting industries, 11 

thus impacting the natural environment. During the last decades, there has been an increase in the 12 

manufacturing of textiles. Europe consumes large amounts of textiles and clothing due to the 13 

current “buy-and-throw-away” culture, so it is crucial to minimize the environmental footprint of 14 

the textile and fashion industry. To this end, fashion and textiles should be part of a circular 15 

economy, thus extending the life of textiles and clothes, while retaining textile fibers within a closed 16 

circuit. There is a need of increasing textile recycling and reuse to minimize the production of virgin 17 

textile fibers. However, textiles are mostly sorted manually, thus to process huge volumes of 18 

materials and reduce the associated costs, automated sorting systems are required. This paper 19 

presents an approach for the sensing and classifying parts of an automatic waste-textile-sorting 20 

machine. To this end, the infrared spectra of the textile samples is analyzed and, by applying suitable 21 

statistical multivariate methods specially designed to solve classification problems, 100% 22 

classification accuracy of unknown fiber samples is reached. The results allow predicting that textile-23 
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fibers can be automatically classified with 100% accuracy at high speed, with no need to apply any 24 

prior analytical treatment to the textile samples. 25 

Keywords: textile fibers, textile sorting, multivariate analysis, Infrared spectroscopy, classification, 26 

pattern recognition 27 

 28 

NOMENCLATURE 29 

ATR Attenuated total reflection 

CV Canonical variate 

CVA Canonical variate analysis 

CNN Convolutional neural network 

ELM Extreme learning machine 

FT-IR  Fourier transform infrared 

IR Infrared 

k-NN  k nearest neighbors 

LDA  Linear discriminant analysis 

MLP Multi-layer perceptron 

NIR  Near infrared 

PC Principal component 

PCA 

PLS 

Principal component analysis 

Partial least squares 

SIMCA  Soft independent modeling of class 

SVM Support vector machines 

 30 
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1. INTRODUCTION 31 

Circular economy is a new concept to help the society’s change towards a more sustainable 32 

economy. This change needs to re-think and re-design production and consumption patterns to 33 

avoid environmental impacts and maintain natural resources as long as possible in the technosphere 34 

(Gaustad et al., 2018; Simon, 2019).  35 

The current linear model (extraction of resources, production, use and landfilling) is not sustainable, 36 

as the resources are limited and there is an ever growing demand (Suárez-Eiroa et al., 2019). 37 

Opposite to this linear system, the aim of the circular economy is to provide maximum utility and 38 

value of products, components, and materials (The Ellen MacArthur Foundation, 2012). 39 

Efforts on deeper implementation of circular economy are nowadays made in several industrial 40 

activities, such as packaging (Navarro et al., 2018; Civancik-uslu et al., 2019), agriculture and food 41 

(Principato et al., 2019; Teigiserova et al., 2019) or textile (Esteve-Turrillas and de la Guardia, 2017; 42 

Yousef et al., 2019). 43 

The textile and fashion industry is amongst the most polluting and resource-intensive industries due 44 

to the great consumption of water, energy and chemicals, thus affecting the natural environment. 45 

The growth of the global population has led to an overall increase in the manufacturing of textiles. 46 

European countries consume large amounts of clothes and textiles as a result of the current “buy-47 

and-throw-away” culture. Thus, clothing represents the fourth most environmentally harmful 48 

consumption area, after housing, transport and food (NCM, 2015). Therefore, this trend should be 49 

reversed for the sake of economy and environmental aspects. It is mandatory to minimize the 50 

environmental and social footprint related to Europe’s textile production and consumption while 51 

improving its sustainability (Roos et al., 2015). To achieve these objectives, much work is required 52 

at regional, national, and international levels so that textiles must be part of a circular economy, in 53 
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order to extend product life and preventing hazardous substances. This strategy should allow using 54 

textiles again and again as part of a toxic-free cycle (Reichel et al., 2014). 55 

According to Shen et al. (Shen et al., 2010), 63% of textile fibers are derived from petrochemicals, 56 

thus giving rise to greenhouse gas emissions due to production and use. The remaining 37% includes 57 

cotton (24%), a plant requiring large amounts of water (Micklin, 2007) and pesticides (FAO-ICAC, 58 

2015), which contribute to toxic pollution (Bevilacqua et al., 2014). Thus, the recycling of cotton is 59 

also extremely important (Esteve-Turrillas and de la Guardia, 2017). 60 

Processes such as dyeing (Terinte et al., 2014), finishing or printing, produce toxic emissions as well 61 

(Swedish Chemicals Agency, 2014), and the manufacturing processes related to textiles usually rely 62 

on the use of fossil energy, thus generating greenhouse gas emissions (Roos et al., 2015). According 63 

to the Swedish Chemicals Agency, textile production includes around 2,450 different chemicals, 64 

1,150 of which being classified as hazardous, so they are of potential risk for the environment and 65 

consumers during the use of the textiles (Swedish Chemicals Agency, 2014). 66 

As said, water use, greenhouse-gases emissions, toxic chemicals and waste are the main 67 

environmental problems that the textile industry needs to face (Allwood, 2006). 68 

To significantly reduce the environmental and social footprint of the Europe’s textile industry, 69 

radical changes are required, especially in the way in which textiles and clothes are designed, 70 

produced, traded, used and recirculated (Sandin and Peters, 2018). Fashion and textiles should be 71 

part of a circular economy, thus allowing textiles and clothes life to be extended, to retain textile 72 

fibers within a closed circuit, so that they can be used again and again (Dahlbo et al., 2017). 73 

Research publications (Hole and Hole, 2019) support the fact that textile recycling and reuse in 74 

general reduce environmental impact compared to landfilling and incineration. Therefore, there is 75 

a growing regulatory interest to increase textile reuse and recycling, which is consistent with the 76 
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European Union directive on waste (DIRECTIVE 2008/98/EC, 2008). Better reuse and recycling of 77 

textiles can lessen virgin textile fibers production (Spathas, 2017).  78 

Textile reuse involves different strategies, including trading, swapping, borrowing, renting or 79 

inheriting. This can be facilitated by flea markets, second hand shops, garage sales, charities, online 80 

marketplaces or clothing libraries among others.  81 

Textile recycling usually involves a reprocessing stage of pre- or post-consumer textile waste for 82 

being used in new products, both textile or non-textile. Routes for textile recycling can be classified 83 

as chemical (depolymerization of polymeric fibers or dissolution of natural fibers), mechanical 84 

(pretreatment) or thermal (conversion of PET pellets, chips or flakes into fibers by melt extrusion) 85 

(Spathas, 2017).  86 

Nowadays low recycling rates are achieved from post-consumer textile waste (Sandin and Peters, 87 

2018). Large proportions of used natural or synthetic materials are often discarded as waste, going 88 

to landfills instead of processed for reuse or recycling. This is mainly due to lack of specific collection 89 

for post-consumer textile waste, the complexity to separate the different discarded textile materials 90 

and the costs associated to sorting important volumes (Dahlbo et al., 2017).  91 

Currently, textiles are sorted mostly manually. However, this has many drawbacks, including high 92 

cost, low speed operation and the impossibility of a full automation, which is required to process 93 

huge volumes of materials (Nørup et al., 2019). 94 

Although some sorting machines are found in the market, conventional methods and systems for 95 

sorting are usually incapable to classify different textile materials, or they require inputs from well-96 

trained operators, being time consuming to operate, or excessively expensive to maintain.  97 

There is one publication in the literature (Peets et al., 2017) stating that with the spectral data of 98 

ATR-FTIR jointly with the application of PCA it was not always possible to distinguish cellulose-based 99 
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fibers (cotton, linen and sometimes viscose) and it was only partly possible to distinguish silk and 100 

wool. In another publication (Xing et al., 2019), a system for classifying wool and cashmere fibers 101 

based on fractal, parallel-line algorithm, and K-mean clustering algorithms is proposed based on 102 

digital photographs of such fibers, obtaining identification rates between 85% and 97.5%.  A recent 103 

paper (Zhou et al., 2019) identified different types of fibers from the NIR spectrum by applying PCA, 104 

SIMCA and LDA with only two classifiers, although it was  difficult to distinguish between wool and 105 

cashmere fibers.  In (Chen et al., 2019) NIR spectroscopy is applied to perform a quantitative 106 

determination of fiber components by applying PLS and ELM algorithms, showing that ELM can 107 

generate better predictive models than PLS, with a similar computational cost. In (Liu et al., 2019) 108 

waste textile fibers are classified from the NIR spectrum by applying SVM, MLP and CNN algorithms, 109 

showing that CNN performs better than the others with classification rates between 92% and 98%. 110 

The aim of the present work is to contribute in the sensing and classifying parts of an automatic 111 

textile-sorting machine. It is done by using a more accurate mathematical modeling based on the 112 

data from the IR spectrum, by applying state-of-the-art multivariate methods well suited for this 113 

purpose, while improving the robustness of the model by analyzing a large number of textile 114 

samples from different origins. The novelty of the method proposed here is the use of ATR-FTIR 115 

spectra of the samples for textile recycling purposes (only one previous paper is found in the 116 

literature) and the combined statistical multivariate algorithms, which are very powerful supervised 117 

models not yet applied to this type of samples. 118 

This paper is focused to develop a fast and accurate method for a direct and non-invasive sorting 119 

and classification of different textile fibers used for clothing, which include natural, artificial and 120 

synthetic fibers, from the spectral data obtained from the FTIR spectra of such samples, with no 121 

need of any prior analytical treatment. The results of this paper are focused towards the automation 122 

of textile-waste-materials sorting process. For this purpose, textile samples are analyzed by using 123 



7 
 

an ATR-FTIR spectrometer, with no previous sample pretreatment, and thus, this system does not 124 

need the addition of any chemical or reagent. Therefore, the proposed system is simple and fast to 125 

apply. It is known that FTIR spectral data typically includes thousands of data points, one per 126 

wavenumber analyzed, and thus, multivariate mathematical methods are required to operate with 127 

this large number of points. Such methods include feature reduction algorithms and classifiers, the 128 

first ones designed to concentrate the relevant analytical information of the whole data set in a few 129 

latent variables, which also let partially removing most of the noise included in the original spectral 130 

data (Riba et al., 2020). To calculate the reduced set of latent variables, the principal component 131 

analysis (PCA) algorithm is applied followed by the canonical variate analysis (CVA) algorithm. Next, 132 

the  nearest neighbor (kNN) classifier is applied, this algorithm providing as many output normalized 133 

variables within the range 0 - 1 as types of textile fibers or classes defined in the problem, thus 134 

assigning an incoming textile sample to the class having the highest output value. 135 

This combined methodology (ATR-FTIR spectra and PCA+CVA+kNN mathematical treatment) 136 

applied to sorting post-consumer textile-waste is described for the first time in the literature.  137 

2. METHODOLOGY 138 

This section describes the experimental details and methodology used to prove the accuracy and 139 

usefulness of the approach proposed in this paper. 140 

2.1. Samples collection and identification 141 

This paper deals with 350 textile samples coming from different companies’ catalogs and supplied 142 

by Fitex technology center. The whole set of samples includes 200 samples from natural fibers (50 143 

cotton, 50 linen, 50 wool and 50 silk samples) and 150 samples from artificial and synthetic fibers 144 

(50 viscose, 50 polyamide and 50 polyester samples). Artificial fibers are the ones obtained by 145 

transformation of natural products (i.e., viscose comes from cellulose), while synthetic fibers are 146 

obtained from oil derivatives. 147 
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With the aim of including the maximum variability in the group of samples studied, different colors 148 

(light and dark) and presentations (yarn or fabric) are included. For a quick identification, each 149 

sample is coded including catalog origin, color and presentation form (yarn or fabric). 150 

To check the performance of the mathematical methods, the whole set of samples was split into 151 

two subsets, i.e., the calibration and prediction subsets in the proportion 50%-50%, as shown in 152 

Figure 1. 153 

Artificial and synthetic fibers (150)
   - Polyamide (25 calibration + 25 test)
   - Polyester (25 calibration + 25 test)
   - Viscose (25 calibration + 25 test)

Natural fibers (200)
   - Cotton (25 calibration + 25 test)
   - Linen (25 calibration + 25 test)
   - Wool (25 calibration + 25 test)
   - Silk (25 calibration + 25 test)

 154 
 155 

Figure 1. Summary of the 350 textile samples used in this work. 156 

 157 

2.2. ATR-FTIR methodology 158 

Middle infrared electromagnetic radiation, within the wavenumber range 4000 - 400 cm-1, is 159 

energetic enough to cause transitions between rotational and vibrational levels of the molecular 160 

bonds. Due to the high selectivity of the radiation absorption in the middle infrared because of the 161 

molecular bonds, this region of the spectrum is widely used in both qualitative and quantitative 162 

analysis. 163 

ATR measurements take advantage of the behavior of the IR radiation beam, by passing through 164 

two media with different refractive indices. In such systems, the IR beam passes through a crystal, 165 

which is transparent to the IR radiation and has a high refractive index, at an angle of incidence 166 
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greater than the critical angle. When the beam reaches the crystal-sample interface, it is almost 167 

completely reflected, and only a small fraction of the beam crosses the interface and penetrates the 168 

sample slightly. The beam is attenuated in the regions of the infrared spectrum in which the sample 169 

absorbs energy. The beam returns to the crystal and leaves at the opposite end of the crystal, and 170 

then focus to the detector (McGill et al., 2014). The use of this technique will allow a rapid scanning 171 

or acquisition of textile samples without any pretreatment. 172 

The FTIR spectra of the textile samples analyzed in this work, were acquired by means of a 173 

PerkinElmer Spectrum One (S/N 57458, Beaconsfield, UK) spectrometer equipped with an ATR 174 

module. The spectra are recorded in the wavenumber range 4000–650 cm-1, with a resolution of 1 175 

cm-1 by averaging four scans to minimize noise effects. Therefore, each original spectral signal 176 

includes 3351 spectral points. Subsequently, the spectra are converted to the first and second 177 

derivative modes, in order to improve the classification performance of multivariate classification 178 

models applied to identify the different textile samples. 179 

 180 

2.3. Mathematical classification approach 181 

To solve classification or identification problems from complex datasets, different mathematical and 182 

statistical algorithms are available. In such problems, the whole sample set is commonly split into 183 

two subsets, i.e., the subsets including the calibration and prediction samples. This approach allows 184 

both, calibrating or training the models and to evaluate the behavior and accuracy of the 185 

classification model from different samples than those used during the calibration stage (see Figure 186 

2). Due to the 3551 wavenumbers constituting the variables measured for each ATR-FTIR spectrum 187 

of the textile samples requires to apply appropriate feature extraction/reduction methods. Such 188 

algorithms are designed to compress the essential discriminating information included in the raw 189 
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spectra in a reduced number of latent variables, while removing most of the noise incorporated in 190 

raw spectra to optimize the discriminating power.  191 

Among the feature extraction algorithms, PCA, CVA (Riba et al., 2020), ECVA (Riba et al., 2013) or 192 

SVM highlight (Riba et al., 2012). However, supervised feature extraction methods, i.e. those 193 

requiring an expert to choose the class tags of the calibration samples, which allocate each sample 194 

to its pertinence class, are always preferred due to their superior discriminating power.  195 

This work applies the supervised CVA algorithm in the feature extraction and reduction step because 196 

it is among the most widely applied algorithms for this purpose. However, due to the large number 197 

of measured wavenumbers in each spectrum, this algorithm requires a previous dimensionality 198 

reduction, which is achieved by means of the PCA algorithm. CVA provides a limited number of 199 

latent variables, known as canonical variates or CVs, i.e., the number of CVs equals the number of 200 

classes (types of fibers) minus one. However, CVA requires input data containing more samples than 201 

the number of measured variables. Since the input spectral data includes 3351 wavenumbers per 202 

sample, and the number of samples dealt with is 350, this requirement is not fulfilled, thus requiring 203 

a previous dimensionality reduction by means of the PCA algorithm.  204 

Finally, once the latent variables are calculated, the next step consists in applying a suitable 205 

classification algorithm such as the k-NN, which is evaluated in this work due to its simplicity and 206 

accuracy. The k-NN calculates as many outputs, which are within the [0,1] interval, as classes (types 207 

of textile fibers) defined in the problem. The normalized outputs specify the degree of membership 208 

of the sample evaluated to each class. Therefore, the sample evaluated is identified as belonging to 209 

the class with higher output value, when such value is greater than 0.5. k-NN is grounded on the 210 

weighted vote of the k samples of the calibration set (nearest neighbors whose class is already 211 

known) which are closest to the analyzed sample. The k-NN algorithm classifies the incoming sample 212 

within the class with the highest score. It assigns k votes to the nearest neighbor’s class, k-1 votes 213 
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to the second nearest neighbor’s class, and so on until assigning 1 vote to the farthest neighbor’s 214 

class. Finally, it sums up and normalizes the votes of all classes, thus assigning the analyzed sample 215 

to the class with highest score. 216 

To obtain a robust classification model, the calibration set must include all the variability inherent 217 

in the textile samples. To this end, it is required to have an extensive dataset of known fibers, whose 218 

origin must be known, since a supervised approach is carried out.  219 

Figure 2 shows the supervised classification process carried out in this work. 220 
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 221 
Figure 2. Summary of the classification approach proposed in this work. a) Calibration stage. b) 222 

Prediction stage 223 

3. EXPERIMENTAL RESULTS AND DISCUSSION 224 

The recycling of natural fibers differs from that of the artificial or synthetic ones. Whereas the first 225 

ones are mainly recycled based on mechanical treatments, the recycling of synthetic fibers is based 226 

on chemical treatments. Thus, the first step should separate between natural and artificial or 227 

synthetic fibers, while in the following step, the different types of natural fibers should be separated 228 

among them and the same for the synthetic ones. This approach is followed in this section. 229 
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3.1.  ATR-FTIR spectra of the analyzed textile fibers 230 

IR spectra show characteristic absorption bands according to the functional groups in the molecules 231 

of the different types of fibers. The most characteristic bands of the different types of fibers studied 232 

are presented in Table 1. 233 

 234 
Table 1. Most characteristic infrared bands for the studied fibers. Produced from (Peets et al., 235 

2017) and (Vigo, 1994). 236 
 237 

Band frequency (cm-1) Type of bond-vibration Type of fiber 
3500-3000 O-H stretching Cellulosic fibers (N and A) 

3500-3000 N-H stretching Polyamide(S), wool(N), silk(N) 

1750-1715 C=O stretching (ester) Polyester(S) 

1680-1630 C=O stretching (amide) Polyamide(S), wool(N), silk(N) 

1570-1515 N-H bending (amide) Polyamide(S), wool(N), silk(N) 

1250-1150 C-O stretching (ester) Polyester(S) 

1100-1000 C-O stretching Cellulosic fibers (N and A) 

730-700 C-H aromatic ring wagging Polyester(S) 

 (N) natural fibers; (A) artificial; (S) synthetic 238 

 239 

Textile fibers, such as cotton, linen and viscose, show characteristic bands between 3500-3000 cm-240 

1, which are attributed to OH stretching and between 1100 -1000 cm-1, which are assigned to CO 241 

stretching (see Figure 3 and 4). The presence of the amide group in fibers such as wool, silk and 242 

polyamide generates bending and stretching bands due to NH, as shown in Table 1 and Figures 3 243 

and 4. Regarding polyester fibers, it is worth noting that the characteristic band between 1750-1715 244 

cm-1 is assigned to C = O stretching (ester). Although these are the characteristic bands in the IR 245 

spectra for such type of functional groups, it has to be said that the IR spectrum is very specific for 246 

each molecule because all the surrounding bonds nearby the functional group have their own 247 

wavelength-absorption value, which also slightly affect the exact position of the characteristic band. 248 
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Thus, the IR spectrum of a molecule is considered to be like its fingerprint, slightly different from 249 

the one of another molecule, although it may be difficult to distinguish by simple visual inspection. 250 

This is why a supervised mathematic model applied to the spectra is of great help. It is able to 251 

highlight the differences between very similar molecules (i.e., cotton, linen and viscose), which need 252 

to be separated and, on the other hand, to conceal the differences between molecules which need 253 

to be classified in the same group (i.e., different polyester-type of molecules). Supervised 254 

mathematic algorithms use the whole IR spectrum, not only the characteristic bands of the 255 

functional groups in the molecule. 256 

In Figure 3, it can be seen that cotton and linen natural fibers have very similar spectra (they both 257 

are cellulose based). Their differences are difficult to perceive by visual inspection. Something 258 

similar happens when comparing the spectra of natural wool and silk fibers. 259 

On the other hand, spectra of artificial or synthetic fibers (Figure 4) have much different shapes, as 260 

they correspond to families with a different chemical nature. When comparing, however, cotton 261 

and linen spectra (Figure 3) with that of viscose (Figure 4), the similarity between them is clearly 262 

observed, as viscose is an artificial fiber derived from cellulose. In addition, wool and silk spectra 263 

(Figure 3) have features in common with those of polyamide (Figure 4), due to the presence of the 264 

amide group in their molecules. Those similarities between the different families of fibers make it 265 

difficult to classify them without treatment through mathematical algorithms, which make use of 266 

the complete IR spectra.  267 

A robust enough mathematical model has to be chosen, to take advantage of all the information 268 

provided by the spectra of the samples and to accentuate as much as possible small differences 269 

between groups of fibers, thus allowing the classification of different textiles.  270 
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Figure 3. ATR-FTIR spectra of representative natural fibers. 272 
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 273 
Figure 4. ATR-FTIR spectra of representative artificial or synthetic fibers. 274 

 275 

3.2. First study. Classification of natural versus artificial and synthetic fibers 276 

In this first study, the dataset is divided into two subsets, i.e., the calibration and prediction sets. In 277 

this study both sets include 50% of the total data, i.e., both the calibration and prediction sets 278 

contain half of the data. The calibration set is used to calibrate or train the mathematical methods 279 
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to solve the classification problem, whereas the remaining data constitute the prediction set, which 280 

is used to validate the identification procedure, by using different data than that used during the 281 

calibration stage. 282 

A total of 350 samples are analyzed, 200 corresponding to natural fibers (50 cotton, 50 linen, 50 283 

wool and 50 silk samples) and 150 corresponding to synthetic fibers (50 polyamide, 50 polyester 284 

and 50 viscose samples). Although viscose is an artificial fiber, for simplification purposes, in this 285 

work it is included in the group named synthetic fibers. Therefore, the calibration set includes 175 286 

samples (25 cotton, 25 linen, 25 wool, 25 silk, 25 polyamide, 25 polyester and 25 viscose samples), 287 

whereas the prediction set includes the remaining 175 samples. The samples are classified by 288 

applying the PCA + CVA + k-NN algorithms in this order, obtaining 100% success rate in the 289 

classification results provided by the k-NN algorithm, whose results summarized in Table 2 are based 290 

on the data shown in Figure 5. 291 

CV1
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Natural, cal
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a) 292 
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b) 293 
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CV1

-1.0 -0.5 0.0 0.5 1.0

Synthetic, cal
Natural, cal
Synthetic, pre.
Natural, pre.

c) 294 
Figure 5. a) Classification of natural versus synthetic fibers from the raw FTIR spectral data by 295 

applying the PCA (40 PCs, 99.0% variance) + CVA with 175 calibration and 175 validation samples.  296 

b) Classification of natural versus synthetic fibers from the first derivative of the FTIR spectral data 297 

by applying the PCA (66 PCs, 99.0% variance) + CVA with 175 calibration and 175 validation samples. 298 

c) Classification of natural versus synthetic fibers from the second derivative of the FTIR spectral 299 

data by applying the PCA (81 PCs, 99.0% variance) + CVA with 175 calibration and 175 validation 300 

samples. 301 

 302 

Table 2. Classification success rate of natural versus synthetic fibers following the PCA + CVA + k-303 

NN approach over the 175 prediction samples 304 

Preprocessing type k = 3 k = 4 k = 5 k = 6 
Raw spectral data 175/175 175/175 175/175 175/175 

First derivative of spectral data 175/175 175/175 175/175 175/175 
Second derivative of spectral data 175/175 175/175 175/175 175/175 

 305 

Results summarized in Figure 5 and Table 2 show that the PCA + CVA + k-NN approach allow 306 

classifying between synthetic and natural fiber samples with 100% accuracy. 307 

3.3. Second study. Identification of the different natural fibers 308 

Once the unknown incoming samples have been classified successfully as synthetic or natural, this 309 

section classifies the unknown natural fibers into four groups, i.e., cotton, linen, wool and silk. As 310 
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explained, both the calibration and prediction set consist of 25 samples of each types, that is, 100 311 

samples in total each. 312 

The classification results of the natural fibers (cotton, linen, wool and silk) are summarized in Figure 313 

6 and Table 3. 314 
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Figure 6. a) Classification of the different natural fibers from the raw FTIR spectral data by applying 320 

the PCA (31 PCs, 99.0% variance) + CVA with 100 calibration and 100 validation samples.  b) 321 

Classification of the different natural fibers from the first derivative of the FTIR spectral data by 322 

applying the PCA (63 PCs, 99.0% variance) + CVA with 100 calibration and 100 validation samples. c) 323 

Classification of the different natural fibers from the second derivative of the FTIR spectral data by 324 

applying the PCA (70 PCs, 99.0% variance) + CVA with 100 calibration and 100 validation samples. 325 

 326 

Table 3. Classification success rate of natural fibers (cotton, linen, wool and silk) following the PCA 327 

+ CVA + k-NN approach over the 100 prediction samples 328 

Preprocessing type k = 3 k = 4 k = 5 k = 6 
Raw spectral data 100/100 100/100 100/100 100/100 

First derivative of spectral data 100/100 100/100 100/100 100/100 
Second derivative of spectral data 100/100 100/100 100/100 100/100 

 329 

Results summarized in Figure 6 and Table 3 show that the PCA + CVA + k-NN approach allow 330 

classifying between cotton, linen, wool and silk fiber samples with 100% accuracy. 331 

 332 

 333 
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3.4. Third study. Identification of the different synthetic fibers 334 

Once the unknown incoming samples have been classified successfully as synthetic or natural, this 335 

section classifies the unknown synthetic fibers into three groups, i.e., polyamide, polyester and 336 

viscose. Both the calibration and prediction set consist of 25 samples of each types, that is, 75 337 

samples in total each. 338 

The classification results of the synthetic fibers (polyamide, polyester and viscose) are summarized 339 

in Figure 7 and Table 4. 340 
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c) 345 
Figure 7. a) Classification of the different synthetic fibers from the raw FTIR spectral data by applying 346 

the PCA (6 PCs, 99.0% variance) + CVA with 75 calibration and 75 validation samples.  b) 347 

Classification of the different natural fibers from the first derivative of the FTIR spectral data by 348 

applying the PCA (29 PCs, 99.0% variance) + CVA with 75 calibration and 75 validation samples. c) 349 

Classification of the different natural fibers from the second derivative of the FTIR spectral data by 350 

applying the PCA (39 PCs, 99.0% variance) + CVA with 75 calibration and 75 validation samples. 351 

 352 

Table 4. Classification success rate of synthetic fibers (polyamide, polyester and viscose) following 353 

the PCA + CVA + k-NN approach over the 75 prediction samples 354 

Preprocessing type k = 3 k = 4 k = 5 k = 6 
Raw spectral data 75/75 75/75 75/75 75/75 

First derivative of spectral data 75/75 75/75 75/75 75/75 
Second derivative of spectral data 75/75 75/75 75/75 75/75 

 355 

Results summarized in Figure 7 and Table 4 show that the PCA + CVA + k-NN approach allow 356 

classifying between polyamide, polyester and viscose fiber samples with 100% accuracy. 357 

 358 

3.5. Challenges of this new technique and comparison with the literature 359 

  360 
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As shown in Table 5, there is only one author (Peets et al.,2017; Peets et al., 2019) using FTIR textile-361 

spectra (like in the present study) for identification of different textile fibers and mixtures. 362 

Nevertheless, these papers use a very simple mathematical treatment (PCA), thus not being able to 363 

differentiate among very similar textile fibers (i.e., cotton/linen/viscose). 364 

On the other hand, there are 4 papers in the literature using NIR spectra to classify textile samples, 365 

three of them for recycling purposes (Liu et al., 2019; Zhou et al., 2018; Zhou et al, 2019). 366 

Nevertheless, only Zhou et al., 2019 are using advanced mathematical algorithms being able to 367 

achieve 100% recognition rate (same as the present described technique), but they do not include 368 

cotton/linen/viscose (which are the most difficult to distinguish). 369 

Table 5. Comparison of results with the previously published in the literature. 370 

Reference Types of textile 
fibers 

Aim Type of 
spectrum 

Mathematic 
algorithms 

Recognition rate (%) 

(Peets et al., 
2017) 

11 + mixtures Quality control ATR-FTIR PCA No distinction among: 
cotton/linen/viscose 

Nor wool/silk 
(Peets et al., 

2019) 
16 + mixtures Quality control FTIR PCA No distinction among: 

cotton/linen/viscose 
(Chen et al., 

2019) 
4 + mixtures 

(wool, polyester, 
nylon, 

polyacrilonitrile) 

Quality control NIR PLS or ELM ELM better predictions 

(Liu et al., 
2019) 

2 + mixtures 
(polyester, wool) 

Textile 
recycling 

NIR SVM, MLP + 
CNN 

92-98% 

(Zhou et al., 
2018) 

6 
no linen, nor 

viscose 

Textile 
recycling 

NIR SIMCA 97% 
(cotton/polyester 90%) 

(Zhou et al., 
2019) 

7 
no linen, nor 

viscose 

Textile 
recycling 

NIR PCA, SIMCA, LDA 100% 

Present paper 7 Textile 
recycling 

ATR-FTIR PCA, CVA + k-NN 100% 

 371 

The present technique has shown better results than the described up to now in the literature, thus 372 

being a promising option.  373 

Nevertheless, further work must be performed before implementation in real sorting machinery, 374 

like producing the specific software to be implemented and to make the IR-spectra-database robust 375 
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enough to be able to correctly classify dirty-wet textile-waste entering the recycling system. In 376 

addition, after sorting the textile by type of fiber a second sorting by color will be needed (i.e. black-377 

colored cotton-fibers all together), thus reducing additional dyeing. 378 

One possible drawback of the present FTIR technique, for its automation at industrial scale, is the 379 

contact needed between the sensor and the textile, to register its IR spectrum and compare with 380 

the database for classification. A strict maintenance protocol of the sensor would be advisable. 381 

4. CONCLUSIONS 382 

Today, only a small portion of the textiles is reused or recycled and they are mostly sorted manually. 383 

This paper has proposed an automatic sensing and sorting approach focused to increase textile 384 

recycling and reuse for minimizing the production and trade of virgin textile fibers which tries to 385 

contribute to minimize the environmental problems that the textile and fashion industry is facing. 386 

The sorting approach proposed in this work is based on the ATR-FTIR spectrum of the textile 387 

samples, which once acquired is processed by means of several algorithms, including the PCA, CVA 388 

and k-NN mathematical methods. 389 

Experimental results presented in this paper, which are based on 350 textile samples (from 390 

companies’ catalogs), have shown that the incoming unknown fiber samples can be automatically 391 

classified with 100% accuracy and high speed, with no need to apply any prior analytical treatment 392 

to the textile samples. These excellent results prove that the methodology suggested in this work 393 

can be a valuable tool for sorting textile fibers for further reuse and recycling. 394 

The present promising technique needs further development before its implementation to actual 395 

sorting machinery (i.e., software developing, sorting fiber blends, additional sorting by color and a 396 

more robust IR database including dirty-wet textiles from postconsumer waste). 397 
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The sorting approach proposed in this paper can be fully automatized for future industrial 398 

application, thus allowing to process large volumes of materials and reduce the costs associated to 399 

the sorting processes.  400 

 401 
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