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Abstract

Feeder selection impacts the performance of bagging machinery throughout its
life cycle, and yet it is usually based on qualitative assessments of flowability.
We propose a data analysis methodology aimed at verifying the feeder-type clas-
sification of powders and grains by cluster analysis on their material properties.
Results for a first data set of conventional properties show the granular ma-
terials clustered into as many groups as main bulk feeding systems. Mismatch
between feeder classes and flowability-based clusters is explained by common in-
dustrial practice and incomplete material characterisation. For this reason, we
introduce a set of specialised properties measured with the granular flow tester
we have recently developed. Results for principal component analysis on a sec-
ond extended property data set show that similarly flowing granular materials
are better detected considering the specialised properties. This research con-
tributes to objectify the decision-making process of bulk feeder selection from
the quantitative description of granular flow.

Keywords: classification, cluster analysis, flowability, bulk feeding, granular
column collapse

1. Introduction

Selecting the most suitable bulk feeding technique for dosing powders and
grains is still a current design issue in the packaging industry. Reliability of
the dosing operation is crucial for bagging line manufacturers such as T\'ecnicas
Mec\'anicas Ilerdenses, S.L. (TMI) [1]. Bag-filling machines incorporate various\sansfive 

volumetric feeders that transport material batches in gain-in-weight systems [2]
downstream towards the filling station. A wide range of granular materials are
typically packaged in 5 kg to 50 kg bags and at competitive production rates
of the order of 102 kg h - 1 to 104 kg h - 1. Therefore, the chosen feeding system
has a direct influence on the finished package quality as well as the overall\sansone \sanszero 

\ast Corresponding author at: Department of Civil and Environmental Engineering, Univer-
sitat Polit\`ecnica de Catalunya, Campus Nord, c. Jordi Girona, 1-3, 08034 Barcelona, Spain.

Email addresses: \ttj \tto \tte \ttl .\ttt \tto \ttr \ttr \tte \tts @\ttu \ttp \ttc .\tte \ttd \ttu (J. Torres-Serra),
\tta \ttn \ttt \tto \ttn \tti \tto .\ttr \tto \ttd \ttr \tti \ttg \ttu \tte \ttz -\ttf \tte \ttr \ttr \tta \ttn @\ttu \ttp \ttc .\tte \ttd \ttu (A. Rodr\'{\i}guez-Ferran),
\tte \ttn \ttr \tti \ttq \ttu \tte .\ttr \tto \ttm \tte \ttr \tto -\ttm \tto \ttr \tta \ttl \tte \tts @\ttu \ttp \ttc .\tte \ttd \ttu (E. Romero)

© 2020. This manuscript version is made available under the CC-
BY-NC-ND 4.0 license \tth \ttt \ttt \ttp ://\ttc \ttr \tte \tta \ttt \tti \ttv \tte \ttc \tto \ttm \ttm \tto \ttn \tts .\tto \ttr \ttg /\ttl \tti \ttc \tte \ttn \tts \tte \tts /

\ttb \tty -\ttn \ttc -\ttn \ttd /\ttfour .\ttzero 

https://doi.org/10.1016/j.powtec.2020.09.022
http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0


performance of a bagging line. In industrial practice, the anticipation of the
handling performance and the particle size distribution of any given material,
together with the engineering know-how of the designer, constitute the empirical
basis for selecting one of the feeder types in Fig. 1:

� Fluidisation chamber (F) feeders are used for valve bag filling [3] by pneu-\sansone \sansfive 

matic transport of the batches with a pressure vessel.

� Gravity (G) feeders allow free discharge of the granular materials from the
supply hopper.

� Screw (S) feeders convey granular materials by positive displacement with
one or more augers. Many applications require coupling with vacuum\sanstwo \sanszero 

nozzles for deaeration (SD) of the already filled open-mouth bags [3] to
densify the granular mass and prepare the package to be closed.

� Belt (T) feeders perform material conveying by positive displacement
along a belt.

Fig. 2 shows typical ranges of the median particle size of the powders and bulk\sanstwo \sansfive 

solids handled by the main feeding techniques, obtained from available data on
the granular materials used in this study. Generally, F-type feeders are used for
handling fine-grained materials, as well as S- and SD-fed systems are designed to
handle fine-grained, cohesive materials. Moreover, G-type feeders are employed
with free-flowing, coarse-grained materials, and T-fed systems are selected for\sansthree \sanszero 

coarse-grained materials including materials prone to jamming or with irregular
particle shapes. Other feeding systems are less frequently adopted, including:
vibratory tray (V) feeders for positive displacement of fragile, coarse-grained
materials; rotary valve (R) feeders for free discharge free-flowing, fine-grained
materials; and combined feeding systems, such as GV- and GS-type feeders,\sansthree \sansfive 

especially adapted to handling broad product families. Nevertheless, such a
hands-on approach to the feeder selection process is potentially leading the
decision maker to ill-informed choices, overly relying on a subjective appreciation
of flowability, which is commonly estimated with qualitative quick tests [4].

Traditionally, a number of experimental methods using small-scale labora-\sansfour \sanszero 

tory tests have been proposed to quantitatively estimate granular flow, includ-
ing:

� Jenike's flow function, expressing a relationship between yield loci, i.e.
between the consolidation stress \sigma 1 and the unconfined yield strength \sigma \mathrm{c},
usually measured by means of translational and ring shear testers [5].\sansfour \sansfive 

Flowability according to Jenike is defined by constant values of the ratio
ff \mathrm{c} = \sigma 1/\sigma \mathrm{c}, with five flowability levels from not flowing (ff \mathrm{c} < 1) to
free-flowing (ff \mathrm{c} > 10).

� Carr's flowability index, defined as a weighed sum of parameters: two
measures of the angle of repose, namely the angles of repose and of spatula;\sansfive \sanszero 

compressibility derived from the aerated and packed bulk densities; and
the cohesion and uniformity coefficients obtained by sieving analysis [6].
The resulting point score ranks flowability into seven levels from very, very
poor to excellent on a 0--100 scale.
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Fig. 1: Schematics of the main bulk feeding techniques: a) F-type feeder with lower inlet for
air fluidisation; b) G-type feeder with adjustable gate opening; c) S-type feeder with variable
screw rotation, and vacuum nozzle for bag deaeration in SD-fed systems; d) T-type feeder
with adjustable belt speed and gate opening.
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Fig. 2: Box plot of the median particle size of the granular materials studied, grouped by
feeder types selected from industrial know-how.
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� Geldart's powder classification diagram, described from observation of\sansfive \sansfive 

gas-fluidised beds, considering their mean particle size and particle-fluid
density difference for classification [7]. Four fluidisation groups of pow-
ders---namely Geldart A (aeratable), B (bubbling), C (cohesive), and D
(dense) powders---are identified by their behaviour at the minimum flu-
idisation and bubbling states.\sanssix \sanszero 

� More recently, Freeman's flow energies, obtained by dynamic testing of
powder samples with a powder rheometer [8]. Flow energy is determined
by the resistance to blade rotation coupled with axial motion during pow-
der displacement. Various flowability parameters are defined, such as the
basic flowability energy and the specific energy, serving to distinguish pow-\sanssix \sansfive 

ders with similar properties.

These methods offer a fundamental characterisation of powder flow, yet with
limited feasibility for coarser granular materials at the standardised lower scales
[9]. Alternatively, full-scale pilot plant testing can gauge flow behaviour in
actual conditions, although at high costs that make it impractical for routine use\sansseven \sanszero 

[10]. Consequently, we designed, manufactured, and tested an intermediate scale
apparatus to describe flow in a granular column collapse set-up [11], which we
refer to as the TMI granular flow tester (GFT). This newly patented technology
[12] is easily operated and applies to powders and bulk solids in the range of
particle sizes from µm to mm.\sansseven \sansfive 

Fig. 3 illustrates the wide range of granular materials studied in this pa-
per. We observe the variability in two representative material properties: at
the particle level, the median particle size in the range of 3.5\times 101 µm to
1.8\times 104 µm, and at the bulk level, the loose bulk density with values be-
tween 5.5\times 101 kgm - 3 and 1.7\times 103 kgm - 3. Comparing these two properties\sanseight \sanszero 

alone, the granular materials are not distinctively grouped by expected handling
performance, and the description of their complex mechanical behaviour is in-
complete. The aim of this study is to examine a systematic classification tool
to organise the variability in properties describing the flowability of granular
materials for practical application in industry.\sanseight \sansfive 

In recent years, there has been a growing interest in exploiting multivariate
analysis methods to predict flow behaviour from experimental measurements
[13]. The particle size and shape of pharmaceutical powders have been used to
estimate quasi-static flow descriptors, by partial least-squares [14], and using
multiple linear regression of relevant parameters selected by principal compo-\sansnine \sanszero 

nent analysis (PCA) [15]. Another PCA model has been applied to observe the
clustering tendencies and establish the dominant parameters in a pharmaceu-
tical powder database [16]. Moreover, these statistical tools have been used to
predict screw feeder performance at powder feeding rates between 0.1 kg h - 1

and 99.6 kg h - 1 [17--22]. Particularly, PCA has been reported to enhance the\sansnine \sansfive 

visualisation of pharmaceutical powder clusters with similar flowability [21].
Section 2 presents a data analysis methodology to evaluate the implemented

bulk feeding techniques by cluster analysis and to help select the best suited
feeder. The flowability of an extensive data set of powders and grains, pro-
duced in diverse industrial sectors, is described considering a few conventional\sansone \sanszero \sanszero 

material properties. Statistical pre-treatment of the data is based on outlier de-
tection and variable reduction by PCA. In Section 3, we aim at improving the
feeder selection associated with the flowability-based clustering. To this end,
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Fig. 3: Range of granular materials studied.

we complement the material characterisation using specialised material prop-
erties measured with the GFT, and discuss their contribution to a thorough\sansone \sanszero \sansfive 

description of flowability.

2. Data analysis methodology

We gather experimental results by conventional testing of an initial raw
data set of 174 granular materials stored in the first data set (DS1) in [23]. We
henceforth refer to the rows of DS1 as observations, i.e. the set of information\sansone \sansone \sanszero 

from every granular material, and to the columns of DS1 as variables, containing
the different material properties. Table 1 summarises the six available material
properties. We denote by \rho \mathrm{v}\mathrm{i}\mathrm{b} the bulk density after sample vibration, serving
as tapped density in the calculation of the Hausner ratio. We carry out a data
treatment scheme for all the granular materials in DS1 to verify their feeder-type\sansone \sansone \sansfive 

classification from industrial know-how against the flowability-based clustering
from our analysis of the flow descriptors. For any new material, the workflow
consists in updating the following scheme in three main steps, and checking
the actually applied technical solution for the closest neighbours. First, we
search the raw data set to discard outlying observations. Secondly, we obtain a\sansone \sanstwo \sanszero 

reduced set of variables via PCA, which explain granular flow in a space of lower
dimension. Thirdly, we apply cluster analysis to the low-dimensional space of
variables to visualise the clustering tendency in the data. Fig. 4 depicts the
data treatment before cluster analysis. We illustrate our methodology using
three reference materials, namely O1, O2, and O3, tested as part of the same\sansone \sanstwo \sansfive 
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Table 1: Conventional material properties in DS1.

Variable type Symbol Description Protocols

State \rho \mathrm{b} Loose bulk density (Mgm - 3) ASTM D7481 [24]

Mechanical
HR Hausner ratio (\rho \mathrm{b}/\rho \mathrm{v}\mathrm{i}\mathrm{b}) ASTM D4253 [25], USP \langle 1174\rangle [26]
\theta Angle of repose (°) Hollow cylinder method [27]

Geometrical
(size \& shape)

d50 Median particle size (µm)
ASTM C136 [28], ISO 3310-1 [29]

C\mathrm{u} Uniformity coefficient (d60/d10)

C\mathrm{c} Circularity coefficient (--) ISO 9276-6 [30]

DS1
174 × 6

O
bs

er
va

tio
ns

Variables

154 × 6a) 154 × 3b)
131 × 3

c)

Fig. 4: Data set preparation for cluster analysis, detailed for DS1: a) removal of outlying ob-
servations; b) dimensionality reduction via PCA; c) removal of undefined and underpopulated
class members.

project for packaging of feed additive powders and bulk solids, which correspond
respectively to observations 164, 165, and 166 in DS1.

2.1. Observation selection

Variables showing large dispersion are more likely to include outliers: mea-
surements much smaller or larger than the quantities of interest, which make\sansone \sansthree \sanszero 

effectively differentiating between similar observations difficult. We apply a gen-
eralised expectation-maximisation algorithm [31] to Gaussian mixture models
of the data to find distinct subpopulations in the variables and detect out-
lying observations. Fig. 5 shows the 174 values of the uniformity coefficient
C\mathrm{u}, ranging between 1.0 and 7.8, with C\mathrm{u} = 3.1, 3.3, and 3.9 respectively for\sansone \sansthree \sansfive 

the reference observations O1, O2, and O3. Applying a three-component mix-
ture model to the C\mathrm{u} data, we note that the values farther from the reference
observations are comprised by `Subpopulation 3', which we remove from fur-
ther analysis. Analogously, we discard all observations with median particle
sizes d50 > 8.1\times 103 µm, given that the values of interest are between d50 =\sansone \sansfour \sanszero 

1.9\times 102 µm and 1.9\times 103 µm. We find outliers within the geometrical vari-
ables describing the particle size distribution of the samples: outlying obser-
vations in d50 include coarse-grained materials such as cereal seeds and flakes,
hot melt adhesive pearls, and pet food pellets; C\mathrm{u} outliers correspond to well
graded mortars, and mixed granular materials forming feed and food additives\sansone \sansfour \sansfive 

or chemical compounds. The remaining variables do not present significant
outlier subpopulations and so, in total, we keep 154 observations.
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Fig. 5: Detected subpopulations in the C\mathrm{u} data in DS1.

2.2. Variable reduction

To compare the material property values in different scales, we first centre
and normalise the original variables. Then, we perform principal component\sansone \sansfive \sanszero 

analysis [32] on the standardised variables, to project them into the orthogonal
directions carrying the most relevant information from the variables. The pro-
jected principal components (PC) explain data variability in such a way that
the nth PC explains more data variability from the original data set than the
(n+1)th PC. We need the first five principal components to capture more than\sansone \sansfive \sansfive 

90\% of the information in the six original variables, as shown by the cumula-
tive explained variance plot in Fig. 6. For data visualisation purposes, we use
the reduced set consisting of the first three projected variables, capturing over
75\% of the information in DS1. Fig. 7 shows the coefficients of the principal
components, also known as PC loadings: the point areas are proportional to the\sansone \sanssix \sanszero 

relative weights of the variables, whereas the contrasting point colours represent
the sign patterns of the correlation between variables. The meanings of posi-
tive or negative correlation associated with the two colours are interchangeable,
since the sign of any given PC is arbitrary [32]. We discuss the data trends
in the elements, or PC scores, of the first three principal components, which\sansone \sanssix \sansfive 

describe flowability in terms of the conventional material properties:

PC1 Identifies a positive correlation between the mechanical variables, HR and
\theta , for observations with inversely proportional values of \rho \mathrm{b}, d50, and C\mathrm{c}.
Among the analysed materials, fine-grained materials with irregular par-
ticle shape show lower bulk density, related to higher compressibility, and\sansone \sansseven \sanszero 

steeper angle of repose values. Observation 148 shows the minimum PC1
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Fig. 6: Cumulative explained variance of the principal components in DS1.

score for a filter aid material, mixing cellulose and perlite powders. Con-
versely, as in the case of observation O3, lower HR and \theta values are shown
by denser packings of coarser, rounded particles. The maximum PC1 score
is attained by glass beads corresponding to observation 150.\sansone \sansseven \sansfive 

PC2 The geometrical variables describing particle size distribution, d50 and C\mathrm{u},
are negatively correlated. In turn, fine-grained, well-graded materials show
higher bulk density and lower angle of repose values, as we note for O1
and O2, and with minimum PC2 score for a feed powder (observation 51).
Oppositely, monodisperse, coarser granular materials present lower bulk\sansone \sanseight \sanszero 

density and higher angle of repose, as the pet food pellets (observation
122) having the maximum PC2 score.

PC3 Governed by the state variable \rho \mathrm{b}, it indicates a positive correlation be-
tween \rho \mathrm{b} and \theta , both negatively correlated with the C\mathrm{u} values. We detect
the extreme PC3 scores for observations 90, a high-density micronised\sansone \sanseight \sansfive 

zirconium silicate powder, and 139, a low-density sawdust sample.

2.3. Cluster analysis

Granular materials in DS1 are identified by the feeder systems utilised in
actual designs. We remove from the analysis those observations with an unde-
fined feeder type or pertaining to classes amounting to less than 5\% of the 154\sansone \sansnine \sanszero 

selected observations. The remaining 131 observations are classified into the
predominant bulk feeding techniques: fluidisation chamber (F), gravity (G),
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Fig. 7: PC loadings showing the correlation between the original variables and the principal
components in DS1.

screw (S) and screw with deaeration (SD), and belt (T). Fig. 8a illustrates the
clustering tendency in the labelled observations, as projected into the 3D space
maximising their granular flow description. We perform cluster analysis [33] on\sansone \sansnine \sansfive 

the reduced variable set to contrast the given feeder-type classification with the
resulting flowability-based clustering of the observations. We fix the number of
clusters a priori, equal to the five bulk feeding techniques the analysed materials
are classified into from industrial know-how. We use the spatial distribution of
the feeder-type centroids to initialise the K-means partitioning algorithm im-\sanstwo \sanszero \sanszero 

plemented in the MATLAB® Statistics and Machine Learning Toolbox�, with
the default square Euclidean distance metric. We validate the cluster analysis
a posteriori using various statistical criteria, see Appendix A. Fig. 8b shows the
grouping of the analysed granular materials into five clusters:

C1 The largest cluster consists of 49 granular materials with centroid near the\sanstwo \sanszero \sansfive 

origin of the PC1-PC2-PC3 space. It is mainly populated by powders,
ranging from dairy feed (with up to 13 observations) to polymers, among
others, including the feed additive sample O3. Few coarser-grained materials
are classified into this cluster, albeit with specific properties contributing to
a reduced flowability. Observations 21 and 134 are sepiolite and perlite\sanstwo \sansone \sanszero 

samples, with low and very low \rho \mathrm{b} respectively, and high C\mathrm{u} in the case of
perlite, whereas observation 153 is a rice sample with low C\mathrm{c}.

C2 Its 20 members have the centroid on positive PC2 and PC3, and PC1 values
closer to the origin. This cluster shows the minimum pairwise centroid
distance with respect to C1, and hence similar materials are expected in\sanstwo \sansone \sansfive 
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C2. Comparing the reference observations O1 and O2 in C2 with O3 in C1,
we find that the samples in C2 show higher \rho \mathrm{b} and lower \theta ---the negative
variable correlation captured by PC2. We note the same data trend between
the food additive samples in C2 (observations 101, 103, and 106) and the
remaining samples in C1. Moreover, the food additive samples in C2 show\sanstwo \sanstwo \sanszero 

higher C\mathrm{c}, a trend explained by PC3 that is also identified in the flour
samples distributed between C1 and C2.

C3 With centroid located on values of positive PC1 and PC2, and negative PC3,
this cluster comprises 19 granular materials. It includes samples with high
\rho \mathrm{b} and C\mathrm{c} values, as in the case of glass beads and crushed glass samples\sanstwo \sanstwo \sansfive 

(observations 44, 45, and 71 to 74) or granulated fertilisers (observations
60, 61, 63, 64, and 109 to 113).

C4 The most isolated and least populated cluster, with 15 observations, has its
centroid on positive PC1, negative PC2, and values near the origin of PC3.
It is composed of samples with large d50, and low C\mathrm{u} and \rho \mathrm{b}, such as plastic\sanstwo \sansthree \sanszero 

pellets, cereal flakes or pet food.

C5 It contains 28 observations with centroid on negative PC1 and PC2, and
PC3 values closer to the origin. It is populated by powders and bulk solids
mainly characterised by high HR and \theta values, as expected from the pos-
itive correlation of the mechanical variables revealed by PC1. This cluster\sanstwo \sansthree \sansfive 

includes the maximum observed values of HR and \theta , respectively for a filter
aid sample (observation 148) and a kaolin powder (observation 30).

Fig. 9 shows the goodness of match between the feeder-type classification and
the flowability-based clustering of the analysed granular materials, as typically
obtained from the contingency table . We find 59\% of pairs matching with the\sanstwo \sansfour \sanszero 

feeder type SD in cluster C1. This strong interrelation is indicative that SD-
fed systems are the most suitable bulk feeding technique for handling granular
materials within the C1 borders. However, we observe matching pairs below
50\% for the other clusters and the best-fitted feeder types. We attribute this
significant degree of independence between classes and clusters to several factors:\sanstwo \sansfour \sansfive 

� A single bagging machine is often employed by the end user to pack a
product range with distinct mechanical behaviours. This can lead the
designer to a suboptimal solution for bulk feeding of the different granular
materials. For instance, we consider the reference observations O1, O2,
and O3 highlighted in Fig. 8. The implemented screw feeder (S) solution\sanstwo \sansfive \sanszero 

is indeed appropriate for handling O1 and O2, whereas bag deaeration
(SD) is also necessary for adequate O3 feeding performance.

� Project requirements are decisive in the design phase of a bagging line.
Common industrial practices of the producers may nonetheless interfere
with performance-oriented solutions. For example, the usage of valve bags\sanstwo \sansfive \sansfive 

is requested by the producer of resin granules (observation 56), imposing
the F-type classification on the only material of this class in cluster C4,
see Fig. 8.

� The short number of conventional material properties provide insufficient
characterisation of granular flow. In fact, relevant state variables such as\sanstwo \sanssix \sanszero 

10



-6-4
-4-4

-2

-2

PC1

-2

P
C

3

PC2

0

0

0
2

2

2 4

O1
O2

O3

SD S G T F

-6-4
-4-4

-2

-2

PC1

-2

P
C

3

PC2

0

0

0
2

2

2 4

O1
O2

O3

C1 C2 C3 C4 C5

a)

b)

Fig. 8: Projections of DS1 into the first three principal directions. Labels: a) feeder-type clas-
sification from industrial know-how; b) flowability-based clustering. Please find the interactive
MATLAB® figure files in [23].

11



29

 (59%)

10

4

1

5

7

9

 (45%)

3

1

5

2

7

 (37%)

5

7

7

 (47%)

1

10

5

3

10

 (36%)

C1 C2 C3 C4 C5
0

5

10

15

20

25

30

35

40

45

50
N

u
m

b
e

r 
o

f 
o

b
s
e

rv
a

ti
o

n
s

SD

S

G

T

F

Fig. 9: Frequency distribution of the feeder type classes, and most frequent fractions for each
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the particle density and the water content are missing from DS1. Ad-
ditionally, the available mechanical variables are mostly related to the
quasi-static flow regime, typical of stored granular materials at rest.

3. Analysis of an extended property data set

As a strategy to refine the presented data analysis, we recognise the need\sanstwo \sanssix \sansfive 

for gaining insight into the dense and dilute flow regimes occurring in actual
handling conditions. Hence, we developed the GFT as an ad hoc experimental
set-up [11], composed of a rectangular channel with glass walls, and fully-ins-
trumented as depicted in Fig. 10, allowing us to obtain new material properties
from the direct observation of granular column collapse tests [34, 35]. The\sanstwo \sansseven \sanszero 

testing protocol starts by pouring a sample of known mass into the reservoir,
enclosed by the gate. Then, the packing state of the granular column is pre-
conditioned with imposed aeration or vacuum conditions. Time zero is set at
the beginning of gate lifting, which marks the onset of flow: initially dominated
by vertical collapse, and followed by horizontal propagation of the flow front,\sanstwo \sansseven \sansfive 

until the final deposit is formed at run-out.
Table 2 enumerates six test cases covering various initial configurations of the

granular column geometry and packing state, for an exhaustive characterisation
of any given material. For every test case, we consider at least two representative
repetitions to extract the average measurements of the up to 20 specialised\sanstwo \sanseight \sanszero 

material properties listed in Table 3:
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Fig. 10: Annotated diagram of the TMI granular flow tester (GFT) with numbered measuring
instruments: 1. reversible pneumatic circuit; 2. 3D laser line profile sensor; 3. membranes and
beam load cells; 4. high-speed video camera for particle image velocimetry (PIV) analysis.
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Table 2: GFT test case numbering: initial column aspect ratio a against packing state pre-
conditioning.

Poured Aeration Vacuum

a \leq 1 1 2 3
a > 1 4 5 6

� During the pre-conditioning step, the poured random packing state of
granular column can be aerated or deaerated with the reversible pneumatic
circuit (1). We impose a positive or negative air flow through a porous
plate at the reservoir base, reproducing actual bulk handling conditions in\sanstwo \sanseight \sansfive 

fluidisation chamber feeding or bag densification respectively. We estimate
the intrinsic air permeability K from the linearised relationship between
the air flow and pressure at the column base.

� Fig. 11a represents the variables acquired from the profile sensor (2) sur-
face scans of the initial granular column and the final deposit at rest. We\sanstwo \sansnine \sanszero 

determine the poured bulk density \rho \mathrm{p} using the prismatic volume of the
granular column of average poured height h\mathrm{p}. The ratio of the average
initial height h0 to the fixed reservoir length l0 = 150mm defines the ini-
tial column aspect ratio a \leq 2. We estimate the angle \alpha by fitting the
surface of the final deposit with a sigmoid function, as the arc tangent of\sanstwo \sansnine \sansfive 

the slope at its central point.

� A depositional process takes place during flow front advance, described
by a gradual increase of the loads accumulated on the channel surface,
until stabilisation. The force distribution is transmitted to a set of beam
load cells (LC) triggered at the onset of flow, through silicone membranes\sansthree \sanszero \sanszero 

embedded along the channel base (3). Granular flow propagation is mon-
itored by a set of transmitters and the basal load profiles are recorded.
For a > 1, the initial collapse involves a rapid change of momentum of
the mobilised mass, resulting in observed load peaks close to the reservoir
exit. Fig. 11b shows the fitting parameters for the basal load ramp and\sansthree \sanszero \sansfive 

peak profiles detected by the first load cell (LC1).

� Using a high-speed video camera (4), we visualise the evolution of the
height profiles closer to the glass walls. We derive the incremental kine-
matic fields from particle image velocimetry (PIV) analysis of the video
recordings using the open-source software PIVlab [36]. More details about\sansthree \sansone \sanszero 

our PIV approach to the analysis of granular flows can be found in Ap-
pendix B. We define the run-out time t\infty as the first instant at which
mobilisation is completed. The evolution of the dominant energy compo-
nents of the granular system can be seen in Fig. 11c. The total energy E\mathrm{t}\mathrm{o}\mathrm{t}

is preserved, and equal to the potential energy E\mathrm{p}\mathrm{o}\mathrm{t} at the onset of flow.\sansthree \sansone \sansfive 

The kinetic energy of the system is governed by its translational compo-
nent E\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}

\mathrm{k}\mathrm{i}\mathrm{n} , found from the combined contributions of the vertical and
horizontal components of velocity. A further description of the estimation
of kinetic energy from PIV analysis is available in [11].

We build a second data set (DS2) [23] with 11 selected granular materials\sansthree \sanstwo \sanszero 

covering particle sizes of the order of 101 µm to 104 µm in the range of the
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Fig. 11: Graphs of the specialised material properties in Table 3: a) geometry of the granular
sample at the poured, initial and final states; b) fitting parameters of the basal load profiles;
c) evolution of the system energy components.

15



Table 3: Specialised material properties in DS2, obtained with the numbered measuring in-
struments in Fig. 10.

Feature Phenomenon Symbol Description

1 Bed expansion K Intrinsic air permeability (m2)

2 Surface morphology

\rho \mathrm{p} Poured granular column bulk density (kgm - 3)
h\mathrm{p} Poured granular column height (mm)
h0 Initial column height after pre-conditioning (mm)
h\infty Maximum height of the final deposit (mm)
l\infty Run-out length (mm)
\alpha Angle of the final deposit (°)

3 Basal load propagation

f\mathrm{r} Equilibrium load (mN)
t\mathrm{r} Ramp time (ms)
t\prime \mathrm{r} Ramp shape (ms)
f\mathrm{p} Peak load (mN)
t\mathrm{p} Peak time (ms)
t\prime \mathrm{p} Peak shape (ms)

4 Near-wall kinematics

t\infty Run-out time (s)
E\mathrm{t}\mathrm{o}\mathrm{t} Total energy of the granular system (J)
E\mathrm{m}\mathrm{i}\mathrm{n}

\mathrm{p}\mathrm{o}\mathrm{t} Minimum potential energy (J)
E\mathrm{m}\mathrm{a}\mathrm{x}

\mathrm{k}\mathrm{i}\mathrm{n},\mathrm{x} Maximum horizontal kinetic energy (J)

t\mathrm{x} Time of E\mathrm{m}\mathrm{a}\mathrm{x}
\mathrm{k}\mathrm{i}\mathrm{n},\mathrm{x} (s)

E\mathrm{m}\mathrm{a}\mathrm{x}
\mathrm{k}\mathrm{i}\mathrm{n},\mathrm{z} Maximum vertical kinetic energy (J)

t\mathrm{z} Time of E\mathrm{m}\mathrm{a}\mathrm{x}
\mathrm{k}\mathrm{i}\mathrm{n},\mathrm{z} (s)

Table 4: Conventional material properties in DS2.

Material \rho \mathrm{b} (kgm - 3) HR (--) d50 (µm) C\mathrm{u} (--) C\mathrm{c} (--) w (\%) \rho \mathrm{s} (kgm
 - 3) \mu \mathrm{s} (--)

Talc 354 1.76 56 1.76 0.35 0.38 2750 [39] 0.4--0.8 [40]
Fertiliser 957 1.08 185 2.01 0.76 1.18 2284 [39] 0.08--0.15 [41]
Feed flour 633 1.21 361 3.78 0.58 9.73 582--739 [42] 0.49--0.69 [42]
Quartz sand 1388 1.10 366 1.67 0.71 0.09 2650 0.58 [43]
Silica 1603 1.25 380 13.1 0.30 0.08 2160--2200 0.49--0.50 [44]
Sugar 833 1.16 514 1.80 0.70 0.28 1576 [45] 0.60--0.71 [46]
Oats 414 1.12 2.66\times 103 2.00 0.63 12.3 950--1397 [47] 0.53--0.62 [47]
LLDPE pellets 1 456 1.05 4.53\times 103 1.19 0.66 0.20

922 [48] 0.28--0.47 [49]
LLDPE pellets 2 585 1.04 4.65\times 103 1.04 0.84 0.09
Wood pellets 660 1.16 8.02\times 103 1.78 0.60 8.76 1236 0.70--0.84 [9]
Pet food 466 1.10 1.78\times 104 1.12 0.76 9.46 924 0.21--0.47 [50]

granular materials in DS1, as shown in the sieving analysis results in Fig. 12.
DS2 includes polydisperse materials, such as the well-graded silica, the study of
which is still an open topic in granular mechanics [37]. We take into account 118
specialised variables characterising each observation in DS2, in addition to the 8\sansthree \sanstwo \sansfive 

conventional material properties presented in Table 4. Compared to the variable
set in DS1, the conventional variables in DS2 incorporate the gravimetric water
content w, measured according to the standardised procedures in [38], as well
as values found in the literature of the particle density \rho \mathrm{s}---otherwise measured
by fluid displacement---and the friction coefficient \mu \mathrm{s}.\sansthree \sansthree \sanszero 

We investigate the variable reduction of DS2, dealing with the data gaps by
means of the procedure detailed in [51], which allows us to recover the PCA
decomposition of the full data set from the already known material properties.
Fig. 13 shows the cumulative explained variance of the projected data set, which
carries in the first six principal components over 90\% of the information in\sansthree \sansthree \sansfive 

DS2. In contrast with the decomposition of DS1, a smaller fraction of the total
number of PC is required to capture the same amounts of data variability in
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Fig. 12: Particle size distribution curves of the granular materials in DS2.

DS2. We interpret the relative increase of the explained variance as an effect
of the comprehensive material characterisation with the GFT. Furthermore, we
examine the independence between the conventional and specialised variables in\sansthree \sansfour \sanszero 

DS2. Fig. 14 shows the poor correlation between the respective PC1-PC2-PC3
of the two variable subsets, thereby confirming that the conventional variables
alone cannot explain the new data trends captured by the specialised variables.

We project the observations in DS2 into their first two principal directions,\sansthree \sansfour \sansfive 

from analysis of the 8 conventional variables in Fig. 15a, and in comparison with
the total of 126 conventional and specialised variables in Fig. 15b. For the sake
of visualisation, we perform isometric scalings of the observations in Fig. 15 to a
unitary average distance. We observe close flowability in both 2D spaces for the
two linear low-density polyethylene (LLDPE) pellet samples (labelled P1 and\sansthree \sansfive \sanszero 

P2), supporting the idea that these materials can be handled by the same bulk
feeding technique. Moreover, the detection of similar flow behaviour is enhanced
in Fig. 15b for the oats (Q1) and pet food (Q2), which we attribute to an
avalanching mechanism noticed during flow propagation in the GFT [11]. This
phenomenon is identified by the material properties describing the near-wall\sansthree \sansfive \sansfive 

kinematics, see Table 3, and related to particle interlocking of irregular-shaped
materials---oat flakes and flat ellipsoidal pellets, in this case. Additionally, we
consider the silica (R1) and quartz sand (R2), showing similar conventional
material properties apart from a much wider particle size distribution in the
case of R1, with larger C\mathrm{u} though around similar d50, and less rounded particles,\sansthree \sanssix \sanszero 

with lower C\mathrm{c}. The estimated flowability of R1 in Fig. 15a is approximately as
close to that of R2 as to that of talc (R3). Despite the disparity in conventional
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Fig. 13: Cumulative explained variance of the principal components in DS2.
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properties, we estimate analogous specialised properties of R1 and R2 by GFT
testing, especially the large l\infty , f\mathrm{p}, and E\mathrm{m}\mathrm{a}\mathrm{x}

\mathrm{k}\mathrm{i}\mathrm{n},\mathrm{x} and E\mathrm{m}\mathrm{a}\mathrm{x}
\mathrm{k}\mathrm{i}\mathrm{n},\mathrm{z}, which we relate with

free-flowing materials. As a result, R1 and R2 are relatively closer in Fig. 15a,\sansthree \sanssix \sansfive 

and their expected flow behaviour is very distant from that of the poorly flowing
R3.

These findings indicate that the extended property data set helps in refining
the feeder selection by reducing the uncertainty in grouping similar granular
materials based on a thorough flowability characterisation. Flowability is a\sansthree \sansseven \sanszero 

multiphysical, multiscale, coupled phenomenon that has traditionally been ap-
proached by selecting a reduced set of material properties partially capturing
granular flow behaviour. We discuss variable selection for DS2 in Appendix C,
as a trade-off between the interpretability of the data---providing us with a fun-
damental understanding of the underlying flow mechanisms---and the accuracy\sansthree \sansseven \sansfive 

of the estimation of flowability---improving the performance of our data analysis
methodology for industrial application.

4. Conclusions

We have investigated feeder selection among five bulk feeding techniques used
in the packaging industry to handle a wide range of powders and bulk solids\sansthree \sanseight \sanszero 

from 101 µm to 104 µm. We have devised a data analysis methodology, applied
to the study of DS1, a large data set of 174 granular materials characterised by
6 conventional material properties. We have found that:

� The reduced number of conventional tests, apt for day-to-day industrial
practice, allows seeing relevant clustering tendencies in the data. Cluster\sansthree \sanseight \sansfive 

analysis by K-means partitioning groups similarly flowing materials into an
optimum number of clusters equal to the five main bulk feeding techniques.

� As expected, qualitative feeder-type classification based on industrial know-
how shows a noticeable disagreement with quantitative flowability-based
predictions. The best match, between the SD feeder class and cluster C1,\sansthree \sansnine \sanszero 

has a 59\% of matching pairs.

New decision-making strategies can be put forward to select the most suitable
feeding systems, from the evidence offered by the mismatched materials, as
discussed for the reference observation O3. In this way, the end user can be
advised about alternative bulk feeding solutions, concerning the recommended\sansthree \sansnine \sansfive 

type of bag or the number of feeding systems needed to deal with a product
range.

We have refined our analysis on the extended property data set DS2, of 11
representative materials characterised by 8 conventional, plus 118 specialised
material properties obtained from different test cases with the GFT. Our PCA\sansfour \sanszero \sanszero 

results show that more data variability in DS2 is explained by fewer principal
components with respect to DS1, as well as that there is a lack of correlation
between the decomposition of the conventional versus specialised variables in
DS2. In sum, the new specialised variables provide a complementary description
of granular flow that enhances the detection of similarly flowing materials, such\sansfour \sanszero \sansfive 

as in the case of observation R1. The GFT is also validated as a powerful tool
for the investigation of the flowability of powders and grains.
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In this paper, we have approached flowability as a complex phenomenon
through proper statistical treatment of experimental data, in contrast with ex-
isting qualitative empirical methods and quantitative testing techniques with\sansfour \sansone \sanszero 

limited application. Our findings have implications for improving feeder selec-
tion towards an actual flowability-based process, by building robust data sets
with a representative variety of granular materials, and fully-characterised with
conventional and specialised material properties. Visualisation of the clustering
tendencies in the data, by principal component and cluster analysis techniques,\sansfour \sansone \sansfive 

groups powders and grains with similar estimated granular flow behaviour. And
then, the observed groupings can be verified against uncertain classifications of
the adequate bulk feeding techniques, obtained from industrial know-how, for
both the analysed granular materials and any new materials being incorporated
for classification.\sansfour \sanstwo \sanszero 

We suggest that further research should address the following topics:

� Verifying the data analysis methodology for larger data sets with extended
material properties.

� Validating the clustering through feeder performance assessment by full-
scale pilot plant testing.\sansfour \sanstwo \sansfive 

� Adapting the proposed methodology to selection processes for other bag-
ging machine appliances, such as weighing systems and bag sealing tech-
niques.

� Analysing the influence of the conventional material properties on the
specialised flow descriptors, such as the maximum kinetic energy of the\sansfour \sansthree \sanszero 

granular systems tested with the GFT.

� Extending the specialised characterisation with reverse-calibrated material
properties, for instance by discrete element modelling of the GFT set-up
to find the mechanical contact parameters.
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Appendix A. Cluster analysis validation

We estimate the randomness in DS1 throughout the three analysis steps
in Section 2 with the Hopkins statistic [52], averaged over 1000 trials and a
sampling window of 10\% of the remaining observations in the data set. Typical\sansfour \sansfour \sansfive 

values of the Hopkins statistic H range between 0.5 for random data and 1
for well clustered data. The original DS1 has H = 0.59, justifying for the
data treatment steps before cluster analysis. We calculate H = 0.90 after the
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Table A.1: Internal validation indices, as summarised in [53], with criteria to determine the
optimum number of clusters k\ast in each case.

Index Criterion for k\ast 

Calinski-Harabasz Maximum
Davies-Bouldin Minimum
Silhouette Maximum
Gap' Maximum
Hartigan Smallest k at or below \eta 
Krzanowski-Lai Maximum

observation selection step, reaching up to H = 0.98 after variable reduction, as
evidence for the clustering tendency in the projected space. We perform cluster\sansfour \sansfive \sanszero 

analysis on the first three principal components of the reduced DS1, which retain
most of the clusterness of the full decomposition, with an average value of the
Hopkins statistic of 0.94.

We evaluate the dispersion of the clustering structure, focusing on the prob-
able number of clusters k in the reduced data set. To this end, we assess the six\sansfour \sansfive \sansfive 

internal validation indices summarised in [53], each using different criteria to
find the optimum number of clusters k\ast , see Table A.1. The variety of indices
show a discrepancy in k\ast found in PC1-PC2-PC3. The number of clusters fixed
a priori is only validated by the Hartigan index, defined as the smallest number
scoring below the threshold value \eta = 10, and which is especially intended to be\sansfour \sanssix \sanszero 

applied in the K-means algorithm. However, as can be seen in Fig. A.1, all the
indices determine the same k\ast = 5, having discarded as outliers those granular
materials with a median particle size d50 > 3mm. Therefore, we confirm that
the most probable number of clusters in the flowability data coincides with the
five bulk feeding techniques of interest. Having a different optimum number of\sansfour \sanssix \sansfive 

clusters k\ast \not = 5 would not allow us to establish a direct correspondence between
classes and clusters. If k\ast < 5, several feeding techniques might be interchange-
able to handle granular materials in the same flowability cluster. Otherwise, if
k\ast > 5, the flowability of different clusters of granular materials within the same
feeder-type class might be best fitted by feeding techniques other than the five\sansfour \sansseven \sanszero 

main ones.
Finally, we assess the similarity between the feeder-type classification and

the flowability-based clustering of the reduced DS1 from the observed frequen-
cies of the two groupings, i.e. the contingency table, as depicted in Fig. 9.
The Pearson's \chi 2 test measures the deviation of the observed frequencies form\sansfour \sansseven \sansfive 

expectation, with a probability P (\chi 2 \geq 84) = 1.4\times 10 - 11 on 16 degrees of free-
dom, a highly significant p-value indicative of the association between the two
partitions. We study the goodness of match with different external validation
indices [54], also obtained from calculations on the values of the contingency
table. From the pairwise comparison of the observations, the Rand index RI\sansfour \sanseight \sanszero 

is defined between 0 for completely mismatching and 1 for identical cluster-
ings. We find RI = 0.69 for the reduced data set, showing a fair agreement
between the external classification and the internal clustering. Alternatively,
we measure cluster similarity using the amounts of intra- and inter-cluster in-
formation, defining the normalised mutual information index NMI \in [0, 1], with\sansfour \sanseight \sansfive 

lower values for independent clustering scenarios. We compute NMI = 0.22,
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Fig. A.1: Internal validation indices for the reduced DS1, having removed 17 observations with
d50 > 3mm. The Calinski-Harabasz, Davies-Bouldin, and silhouette indices are evaluated
with the MATLAB® Statistics and Machine Learning Toolbox�.
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which tells us that the feeder-type classification has limited knowledge about
the flowability-based clustering. A reasoning for the clustering disagreement is
given at the end of Subsection 2.3.

Appendix B. Granular PIV approach\sansfour \sansnine \sanszero 

Granular PIV (g-PIV) refers to the application of the PIV technique to
the visualisation of granular flows. In the g-PIV, the velocity of particles is
measured at a flow boundary illuminated by a lighting system [55], and is mainly
used for quasi-two-dimensional set-ups [56], such as unsteady granular column
collapse [57, 58], and steady rotating drum and chute flows [59, 60]. The PIV\sansfour \sansnine \sansfive 

analysis of an image pair, e.g. two consecutive frames from a video recording,
recovers the most probable particle displacements by cross-correlation of smaller
interrogation areas [36]. We utilise PIVlab version 2.31 [61], with the following
default settings: image pre-processing by contrast-limited adaptive histogram
equalization (CLAHE), to reduce the uncertainty in locating the correlation\sansfive \sanszero \sanszero 

peaks, using a window size of 20 pixels (px, [L2]); cross-correlation by fast
Fourier transform (FFT) with window deformation, accounting for non-uniform
particle motion within the interrogation areas; and a Gaussian 2 \times 3-point fit
of the integer displacements of the interrogation areas, to refine the correlation
peak location.\sansfive \sanszero \sansfive 

We employ a three-pass cross-correlation algorithm with interrogation areas
64\times 64, 32\times 32, and 16\times 16 (px), and 50\% overlap. Multi-pass approaches yield
reliable g-PIV estimations depending on the number of particles in the succes-
sive interrogation areas, ideally around four and one for the first and last passes,
respectively [62]. These optimal conditions are feasible for coarse-grained mate-\sansfive \sansone \sanszero 

rials with sufficient inherent texture to detect motion [55], compatible with the
experimental lighting conditions and physical resolution of the technique. As a
workaround for fine powders and other materials producing low-texture images,
we use seeding with tracer particles, also known as markers, which are coarse
particles mixed at small mass fractions, of contrasting colour, and similar or\sansfive \sansone \sansfive 

lower particle density. As a result, we obtain a mixture of light and dark parti-
cles helping to reduce the g-PIV uncertainty [56]. We apply seeding to granular
flows of the light-coloured talc, sugar, and the two LLDPE pellet samples in
DS2, mixed at 10\%, 5\%, and 10\% mass fractions, respectively. For the talc
and sugar, we use blue polystyrene masterbatch granules of median particle\sansfive \sanstwo \sanszero 

size d50 = 2.7mm, and particle density \rho \mathrm{s} = 1.1\times 103 kgm - 3. Compared GFT
experiments of mixed LLDPE pellets and markers are presented in [63].

In addition, we enhance the multi-pass algorithm using different combina-
tions of cross-correlation types and window deformation interpolators, imple-
mented from PIVlab version 2.2 [64]. Correlation quality options include the rec-\sansfive \sanstwo \sansfive 

ommended `Normal' (circular cross-correlation, linear interpolation), and also
`High' (linear cross-correlation, spline interpolation), which is expected to re-
duce the measurement errors and improve the robustness of the algorithm for
low-quality image pairs. Hence, we apply the `High' correlation quality to anal-
yse granular flows showing poor g-PIV estimations with the default `Normal'\sansfive \sansthree \sanszero 

option, as in the case of the talc, fertiliser, and silica in DS2.
We evaluate the accuracy of the proposed g-PIV approach on semi-synthetic

image pairs from GFT recordings of the materials in DS2 with minimum and
maximum d50, as shown in Fig. B.1. We select 128\times 128 px regions of interest

24



Table B.1: Granular PIV accuracy of the estimated horizontal and vertical displacements, for
different multi-pass, enhanced cross-correlation algorithms.

Material
Number Correlation \Delta u\mathrm{x} s\Delta u\mathrm{x} \Delta u\mathrm{z} s\Delta u\mathrm{z}

of passes quality (px) (px) (px) (px)

Talc

1
Normal 15.9 0.13 16.0 0.02
High 15.9 0.08 16.0 0.02

2
Normal 16.0 1.51 16.0 0.45
High 15.8 1.79 15.9 0.57

3
Normal 16.0 0.31 16.0 0.13
High 16.0 0.36 15.9 0.18

Pet food

1
Normal 15.8 0.15 15.8 0.20
High 15.8 0.08 15.8 0.09

2
Normal 15.9 0.09 15.9 0.05
High 15.9 0.09 15.9 0.03

3
Normal 16.0 0.06 15.9 0.13
High 16.0 0.06 15.9 0.13

in original images of granular columns at rest of the talc and pet food samples.\sansfive \sansthree \sansfive 

We impose an incremental displacement with equal horizontal and vertical com-
ponents \Delta u\mathrm{x} = \Delta u\mathrm{z} = 16 px on Fig. B.1a and Fig. B.1c to obtain the shifted
Fig. B.1b and Fig. B.1d, respectively. Table B.1 shows the sample means, \Delta u\mathrm{x}

and \Delta u\mathrm{z}, and standard deviations, s\Delta u\mathrm{x} and s\Delta u\mathrm{z} , of the estimated \Delta u\mathrm{x} and
\Delta u\mathrm{z} by one-pass (64\times 64), two-pass (64\times 64, 32\times 32), and three-pass (64\times 64,\sansfive \sansfour \sanszero 

32\times 32, 16\times 16) cross-correlation algorithms---interrogation areas in px---with
both `Normal' and `High' quality enhancements. We discard missing vectors
and outliers in the PIVlab analyses with the MATLAB®functions \ttr \ttm \ttm \tti \tts \tts \tti \ttn \ttg 
and \ttr \ttm \tto \ttu \ttt \ttl \tti \tte \ttr \tts . We observe accurate \Delta u\mathrm{x} and \Delta u\mathrm{z} in the case of talc, with
s\Delta u\mathrm{x} and s\Delta u\mathrm{z} below 1 px in all the tested configurations except for the two-pass\sansfive \sansfour \sansfive 

estimation of \Delta u\mathrm{x}. In the case of pet food, we note increasing accuracy of \Delta u\mathrm{x}

and \Delta u\mathrm{z} with the number of passes, and a greater robustness of the estima-
tions, evidenced by the reduced s\Delta u\mathrm{x}

and s\Delta u\mathrm{z}
. In conclusion, the increasing

number of passes improve accuracy, and more clearly for higher-texture images,
whereas correlation quality shows a minor impact on the overall acceptable ac-\sansfive \sansfive \sanszero 

curacy of the g-PIV estimations. Consequently, we verify our PIV approach to
describing the flowability of industrial granular materials, complemented by the
measurement redundancy of the fully-instrumented GFT.

Appendix C. Interpretation of PCA in high dimensions

We use PCA to explain flowability by capturing the most data variability\sansfive \sansfive \sansfive 

in the data sets. Each PC is a linear combination of all the original variables,
and thus interpreting the PCA results on the basis of material properties is
difficult for data sets with an elevated number of variables, e.g. 126 in the case
of DS2. In response to this limitation, simplified PCA approaches have been
introduced, see [32], allowing us to try to approximate the complex granular\sansfive \sanssix \sanszero 

flow behaviour by a subset of the original variables. Sparse PCA (SPCA) is
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Fig. B.1: Semi-synthetic, 8-bit grayscale image pairs of: a, b) talc with added marker particles;
c, d) pet food.
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Fig. C.1: Explained variance of the first principal component of DS2 obtained by PCA, and
as a function of the number of selected variables by sparse PCA (SPCA).

increasingly used in the study of multiscale phenomena [65], as a technique
for selecting the governing coefficients at different scales from traditional PCA
decompositions. We examine the variable selection of DS2 using the SPCA
algorithm with soft-thresholding regularisation presented in [66], adapted for\sansfive \sanssix \sansfive 

data sets with a significantly larger number of variables than observations [67],
and implemented for MATLAB® in [68].

We observe the decrease of explained variance with increasing sparsity of
the PC1 loadings in Fig. C.1. The first principal component obtained by PCA
explains 43\% of the variance in DS2, whereas a minimum of 67 non-zero load-\sansfive \sansseven \sanszero 

ings are required to have a reasonable information loss below 5\% of the total
variance for the first sparse principal component (SPC1). With a 47\% spar-
sity, the non-zero PC1 loadings correspond to the conventional variables \rho \mathrm{b}
and C\mathrm{u}---with weights 0.17 and 0.05, respectively---and to the specialised vari-
ables shown in Fig. C.2. The specialised material properties are described in\sansfive \sansseven \sansfive 

Table 3, and the test cases are numbered according to Table 2. SPC1 iden-
tifies a dominant positive correlation between all the energy components, the
poured bulk density, and the ramp and peak loads, across all test cases. Other
variables describing surface morphology are also selected, which are negatively
correlated with measures of three characteristic times, and air permeability in\sansfive \sanseight \sanszero 

vacuum conditions. It seems that the granular materials in DS2 are distinctively
characterised with the GFT, and that all the different measurements resulting
from the sample pre-conditioning and the instrumentation redundancy of the
apparatus are necessary as a whole to explain flowability.
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Fig. C.2: PC loadings of the specialised variables in the sparse PC1 (SPC1), explaining 38\%
of the total variance in DS2 with 67 non-zero loadings.

In spite of the above findings, SPCA may still be used as a rough estimate\sansfive \sanseight \sansfive 

of the governing material properties in the data trends revealed by PCA. We
approximate the first two principal components of DS2 by selecting a manage-
able subset of ten original variables in each case. Fig. C.3 shows that SPC1 and
SPC2 are dominated by the evolution of the potential energy, and by the initial
and final heights, respectively, of the granular systems tested with the GFT.\sansfive \sansnine \sanszero 

However, compared to the traditional PCA results in Fig. 15b, we note poorer
grouping of the materials included in DS2 when projected into SPC1-SPC2, as
illustrated in Fig. C.4. The relative positions of the observations in the SPC1-
SPC2 space are distorted, affecting the identification of distinctive traits for
similarly flowing materials, and even more so for data sets with larger number\sansfive \sansnine \sansfive 

of observations. Ultimately, we expect the clustering tendency of the data to be
affected by variable selection, thereby justifying for the full characterisation of
granular materials for practical applications.
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