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2 Costilla, Liu, Arnold and Fernández

1 Introduction

A variable with an ordered categorical scale is called ordinal Agresti (2013). That is,
ordinal data are categorical data where the outcome categories have a logical order
and thus the order of the categories matters. In his seminal paper, Stevens (1946),
called a scale ordinal if “any order-preserving transformation will leave the scale form
invariant” (p. 679). Examples of ordinal responses are: socio-economic status (low,
medium, high), disease severity (not infected, initial, medium, advanced), agreement
with a given statement (strongly disagree, disagree, neutral, agree, strongly agree)
and other variables that use the Likert and Braun-Blanquet scales.

Ordinal data are very common, but they might be treated wrongly in several ways.
For instance, it is common to assign numerical scores to ordinal categories, often
equally spaced scores, which might be an incorrect and restrictive assumption. More-
over, treating the ordinal responses as if they were continuous could lead to predicted
values outside the range of possible ordinal outcomes, and could produce misleading
results due to “floor” and “ceiling” effects on the dependent variable (see (Agresti,
2010, Section 1.3.1)). By assigning numerical scores, traditional cluster approaches
such as hierarchical clustering (Kaufman and Rousseeuw, 1990), association analy-
sis (Manly, 2005), and partition optimization methods like k-means clustering (Mac-
Queen, 1967) may apply. However, these methods are not based on likelihoods and
thus statistical inference tools are not available and model selection criteria can not be
used to compare different models. Another common approach is to ignore the order
of the categories altogether and thus treat the data as nominal. By ignoring the ranked
nature of the categories this approach reduces its statistical power for inference.

In the literature, ordinal data are often analysed by modelling the cumulative
probabilities of the ordinal response and using a link function, usually logit or pro-
bit. The Proportional Odds Model (POM) by McCullagh (1980) is a cumulative logit
model and is the most popular model to analyse ordinal data. The Proportional Odds
property that gives the model its name implies that the odds ratios for describing
effects of explanatory variables on the ordinal response are the same for each of
the possible ways of collapsing the q ordinal categories to a binary variable. Liu
and Agresti (2005) and Agresti (2010) described various proportional odds version
models using adjacent-categories logits, cumulative logits (McCullagh, 1980), and
continuation-ratio logits (McCullagh and Nelder, 1989).

Further challenges are posed with repeated measurements of an ordinal response,
such as in longitudinal studies. For these two-way data (unit and time period), the
correlation structure among repeated measures also needs to be accounted for. Dig-
gle et al (2002) and Agresti (2013) discussed three main approaches to the analysis of
such data: marginal models, subject-specific models, and transitional models. Tran-
sitional models include past responses as predictors, that is; they model the current
response conditional on past responses and potentially other explanatory variables. A
very popular transitional model is the first-order Markov model in which the current
response is assumed to depend only on the immediately preceding response (Diggle
et al, 2002; Kedem and Fokianos, 2005; Agresti, 2013).

When transition models also include latent variables they are known as Markov
transition, latent transition and mixture-of-experts Markov models. Latent transition
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Bayesian model-based clustering for longitudinal ordinal data 3

models have been used for model based clustering of longitudinal data and time se-
ries of continuous and categorical nature (Frydman, 2005; Pamminger et al, 2010;
Frühwirth-Schnatter et al, 2012; Cheon et al, 2014). For instance, Pamminger et al
(2010) and Frühwirth-Schnatter et al (2012) presented a mixture-of-experts time-
homogeneous Markov models to cluster categorical time series which also allowed
for covariates. Models were estimated within a Bayesian approach, compared using
several information criteria and illustrated using wage and income mobility in Aus-
tria. On the other hand, Frydman (2005) and Cheon et al (2014) developed more
restricted versions of the transition models. Cheon et al (2014) presents a disease
progression model where the number of mixture components is equal to the disease
states and thus is fixed and known in advance. Frydman (2005) considers another
constrained model where a transition matrix is estimated for a baseline cluster and
the remaining ones are only scaled versions.

Model-based clustering approaches using finite mixtures have been proposed by
several authors (McLachlan and Peel, 2000; Everitt et al, 2001), which mostly focus
on either continuous, discrete or nominal responses, see literature reviews by Fraley
and Raftery (2002), Marin et al (2005), and Melnykov and Maitra (2010). Finite mix-
ture models allow the estimation of both latent group effects and memberships and
are often fitted using the Expected-Maximisation (EM) algorithm (Dempster et al,
1977). A major advantage of this approach is the use of likelihoods for the proba-
bility models and thus access to various likelihood-based model selection criteria to
compare different models. Model-based clustering approaches for binary, count and
categorical data have been proposed by Biernacki et al (2000), Pledger (2000), Go-
vaert and Nadif (2008), Arnold et al (2010), Labiod and Nadif (2011), Pledger and
Arnold (2014). More recently, DeSantis et al (2008), Biernacki and Jacques (2015),
Fernández et al (2016), and Matechou et al (2016) have also used these models for
ordinal responses in cross-sectional settings.

The purpose of this article is to extend this model-based clustering approach to the
case of longitudinal ordinal data. In particular, we propose a latent transitional model
that uses the POM parametrisation and includes cluster interactions. Our model con-
tributes to the literature in a number of ways. In contrast to Cheon et al (2014) and
Frydman (2005), neither the number of mixture components nor the time transitions
are fixed or restricted in any way (other than through identifiability constraints). Im-
portantly, cluster interactions provide a flexible way to capture different time patterns
by cluster. On the other hand, unlike Pamminger et al (2010) and Frühwirth-Schnatter
et al (2012), our model is time-heterogenous and by using cumulative distributions
it is specifically tailored to ordinal data. Finally, our use of the WAIC (Watanabe,
2009) for model comparison of finite mixture models, is also novel as to date in the
Bayesian literature it is only being used for mixtures of continuous data (Gelman
et al, 2014b; Vehtari et al, 2017).

The structure of this article is as follows: Section 2 describes the data to be used
to illustrate the model. Next, Section 3 shows the methodology in detail, including
the likelihood function, Bayesian estimation methodology, model comparison, clas-
sification strategy and a validation of the model using simulated data.
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4 Costilla, Liu, Arnold and Fernández

2 Data

2.1 Self-Reported Health Status over 2001-2011 in Australia

We apply our model to self-reported health status (SRHS) from the Household, In-
come and Labour Dynamics in Australia (HILDA) Survey. HILDA is a household-
based panel study which began in 2001 that collects information about economic and
subjective well-being, labour market dynamics and family dynamics. SRHS was col-
lected using the following question: “In general, would you say your health is:” with
alternatives: “Poor”, “Fair”, “Good”, “Very Good” and “Excellent”. SRHS is thus an
ordinal variable with five categories. We use individuals with complete SRHS records
over 2001 to 2011. Overall, this amounts to 4,660 respondents over 11 occasions.

Figure 1 presents the distribution of SRHS over the study period. The upper panel
shows the SRHS distribution for all years of the study period and the lower panel
presents this distribution at the beginning and end. In the upper panel, we can see
that there is a general tendency to report slightly lower levels of SRHS over time.
With the exception of 2009, every year the SRHS distribution shifts a little to the left,
towards the lower end of the ordinal scale. The bottom panel allows us to have a closer
look at the beginning and end of the study period. In 2001, most individuals reported
“Very Good” health. This was very closely followed by “Good” SRHS. About an
eighth reported their health as “Excellent” and about a tenth as “Fair”. A very low
number of individuals said their health was “Poor”. In contrast to that, in 2011 the
same individuals reported slightly lower health levels and most people reported being
in “Good” health. At the same time, the number of “Excellent” and “Very Good”
answers decreased and “Poor” and “Fair” increased. In summary, responses were
slightly less positive but otherwise similar during 2001-2011.

For each individual SRHS is highly correlated across time. Table 1 presents the
2001-2011 transitions between ordinal categories for all individuals. Proportions in
the diagonal and its adjacent cells are very high, about 40% or more. This means that
even after 11 years individuals in this survey are very likely to report a health status
that is very similar to their starting one. Put simply, SRHS was fairly stable between
2001 and 2011, a fact that confirms what we already observed in Figure 1.

2011
% 2001 Poor Fair Good V. Good Excellent Total

2001

Poor 0.02 0.42 0.40 0.14 0.04 0.00 1.00
Fair 0.13 0.13 0.44 0.34 0.07 0.01 1.00
Good 0.32 0.02 0.21 0.54 0.20 0.02 1.00
V. Good 0.37 0.01 0.09 0.38 0.46 0.07 1.00
Excellent 0.16 0.01 0.04 0.21 0.47 0.27 1.00
Total 1.00

Table 1: 2001-2011 transitions in self-reported health status (SRHS) in the HILDA
survey.
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Fig. 1: Distribution of self-reported health status (SRHS) in HILDA over 2001-2011.
The upper panel shows stacked bar charts for all years and the lower panels show
barplots for 2001 and 2011.

3 Model

Let Y be an ordinal response with q levels measured over n subjects on p occasions,
with indexes i, j,k for subjects, occasions, and ordinal levels, respectively. We fur-
ther assume the existence of R clusters of individuals but the cluster membership is
unknown. Subjects come from latent cluster r with probability πr ≥ 0, ∑

R
r=1 πr = 1

and let P(Yi j = k|i ∈ r,yi( j−1) = k′) = θr jk′k, where i ∈ r indicates the membership of
subject i is cluster r. We extend the POM by modelling the cumulative probability of
each ordinal outcome as
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6 Costilla, Liu, Arnold and Fernández

Logit[P(Yi j ≤ k|i ∈ r,yi( j−1))] =µk−αr−
q

∑
k′=1

βrk′ I(yi( j−1) = k′)− γ j

where I(.) is an indicator function equal to 1 if the argument is true. This model could
be expressed equivalently as:

Yi j | i ∈ r,yi( j−1) = k′ ∼ Categoricalq(θr jk′.) ,
q

∑
k=1

θr jk′k = 1

θr jk′k =
1

1+ e−(µk−αr−βrk′−γ j)
− 1

1+ e−(µk−1−αr−βrk′−γ j)

i = 1, . . . ,n, j = 2, . . . , p,
p

∑
j=2

γ j = 0,

µk−1 < µk, k = 1, . . . ,q, µ0 =−∞, µ1 = 0, and µq = ∞,
q

∑
k′=1

βrk′ = 0;∀r = 1 . . .R,

(1)

That is, each ordinal response yi j is the realization of a categorical distribution with
probabilities θr jk′1, . . .θr jk′q. Notice that the linear predictor for the probability θr jk′k
contains both observed (previous response yi( j−1), and occasion j) and unobserved
covariates (cluster membership for subject i). The parameter µk is sometimes referred
as a cut point for each ordinal category, αr is the effect of the latent cluster r, βrk′ the
effect of having an outcome k′ at the previous occasion for subjects in cluster r, and
γ j the effect of occasion j. The choice of a negative sign preceding αr, βrk′ , and
γ j implies that increases in these coefficients increase the probability of observing
outcomes in the upper end of the ordinal scale (closer to q than to 1).

Importantly, the cluster interactions provide flexible and parsimonious ways to
introduce different time patterns by cluster. They allow both time-constant and time-
varying unobserved heterogeneity to be captured. The inclusion of γ j allows θr jk′k to
vary over time, that is for individuals to have time-heterogeneous transitions between
ordinal categories. Note also that this transitional model does not model the first
response (Y.1) and instead conditions on its value. Finally, notice also that following
the seminal paper of Albert and Chib (1995) we set µ1 = 0 and have no constraint on
any αr. By fixing the first cut point, this parametrisation allows better mixing of the
MCMC chain during Bayesian estimation.

3.1 Likelihood

Given the dependence on the previous outcome, we can factorize the likelihood to

separate the contribution of the first occasion, e.g. Y = (Y.1,
∼
Y ). Assuming indepen-

dence over the rows, the likelihood for the observations with j ≥ 2 becomes
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L(
∼
Y |µ,α,β ,γ,π,Y.1) =

n

∏
i=1

R

∑
r=1

πr

p

∏
j=2

q

∏
k′=1

q

∏
k=1

θ
I(yi j=k,yi( j−1)=k′)
r jk′k , (2)

3.2 Bayesian Estimation

Following Robert and Casella (2005),Gelman et al (2014a), McKinley et al (2015)
and Fernández and Arnold (2016), we use the following weakly informative priors:

µ | σ2
µ

iid∼ OS[Normal(0,σ2
µ)], µk > µk−1; k = 1, . . . ,q µ0 =−∞; µ1 = 0,µq = ∞

αr | σ2
α

iid∼ Normal(0,σ2
α), r = 1, . . . ,R

βrk′ | σ2
β r

iid∼ Degenerate Normal(q;0,σ2
β r), k′ = 1, . . . ,q;

q

∑
k′=1

βrk′ = 0;∀r = 1, . . . ,R

γ j | σ2
γ

iid∼ Degenerate Normal(p−1;0,σ2
γ ), j = 2, . . . , p,

p

∑
j=2

γ j = 0

σ
2
µ ∼ Inverse Gamma(aµ ,bµ)

σ
2
α ∼ Inverse Gamma(aα ,bα)

σ
2
β r ∼ Inverse Gamma(aβ ,bβ )

σ
2
γ ∼ Inverse Gamma(aγ ,bγ)

π ∼ Dirichlet(φ), r = 1, . . . ,R.
(3)

where OS=Order Statistics and the hyperparameters are set to: aµ = aα = aβ = 3,
bµ = bα ,bβ = 40 , and φ = 1.5. In words, we assign Truncated Normal priors for the
cut points µ , Normal priors with zero mean and unknown variance for α , Degenerate
Normal priors with zero mean and unknown variance for β and γ , Dirichlet prior for
the mixing probabilities π , and Inverse Gamma priors for the unknown variances σ2

µ ,
σ2

α and σ2
β

. Note that, a degenerate normal distribution is a probability distribution
with normally distributed realizations whose sum is equal to their mean multiplied
by the number of realizations. It is thus a convenient prior for random variables with
support in R and sum to zero constrains such as β and γ in our model. Formal deriva-
tion of this prior can be found in Fernández and Arnold (2016). Figure 2 shows a
graphical representation of the model and priors.

Posterior distributions for the model parameters are not available in closed form.
To perform the posterior computation, we then use a Markov Chain Monte Carlo
(MCMC) sampling scheme. In particular, we use a Random-Walk Metropolis-Hastings
algorithm (Metropolis et al, 1953; Hastings, 1970) to sample blocks of parameters
separately (µ,α,β and π and the parameters of the priors). For instance, to sam-
ple from the posterior distribution of µ = (µ1 = 0,µ2 . . . ,µq−1) we follow McKinley
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γ j
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Fig. 2: Graphical representation of the latent transitional model and priors.

et al (2015) and use a truncated uniform with a fixed stepsize τ as a proposal. The
algorithm is as follows:

1. Set starting values for all parameters:
(µ,α,β ,γ,π,σ2

µ ,σ
2
α ,σ

2
β
,σ2

γ ) = (µ0,α0,β0,γ0,π0,σ
2
µ0
,σ2

α0
,σ2

β0
,σ2

γ0
)

2. Set the stepsize of the proposal (τ)
3. Choose k from k = 2, . . . ,q−1 at random and generate a new µ ′k candidate from

µ
′
k | µk,µk−1,µk+1∼U [ max(µk−τ,µk−1), min(µk+τ,µk+1)] k= 1, . . . ,q−1

4. Accept µ ′k with probability

min

1,
P(
∼
Y |µ ′,α,β ,γ,π,Y.1)P(µ ′|σ2

µ)

P(
∼
Y |µ,α,β ,γ,π,Y.1)P(µ|σ2

µ)
× min(µk + τ,µk+1)−max(µk− τ,µk−1)

min(µ ′k + τ,µk+1)−max(µ ′k− τ,µk−1)


5. Repeat steps 3 and 4 until convergence.

Here P(Y |µ,α,β ,γ,π,Y.1) represents the likelihood in equation 2 and P(µ|σ2
µ) is

the prior for parameters: µ | σ2
µ

iid∼ OS[Normal(0,σ2
µ)] µk > µk−1, k = 1, . . . ,(q−1).

Detailed proposals for all model parameters are given in Appendix A.
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3.3 Model Comparison

There are several ways to compare models in a Bayesian framework: (i) using Bayes
Factors (Kass and Raftery, 1995), (ii) estimating the joint posterior distribution of
all competing models using Reversible Jump MCMC (Green, 1995; Richardson and
Green, 1997) and/or other approaches that explore this joint posterior of variable
dimension, and (iii) using information criteria. We will use the latter approach here.

Importantly, (frequentist-like) information criteria that use a loss function evalu-
ated at a point estimate are not directly applicable in a Bayesian setting if the posterior
distribution of the parameters can not be adequately represented by an unidimensional
summary statistic, e.g: mean, median. For example, this is the case for AIC and BIC
that compare model (mis)fit by evaluating the log-likelihood at the maximum likeli-
hood estimate. This is specially relevant for mixture models where the likelihood is
invariant to the labelling of the individual mixture components and thus the posterior
distribution of the parameters is multimodal. This non-identifiability of individual
mixture components is a characteristic of mixture models and is known in the lit-
erature with the name of the label switching problem (McLachlan and Peel, 2000;
Richardson and Green, 1997; Marin et al, 2005).

To compare among competing models we therefore use the Widely Aplicable In-
formation Criterion (WAIC) developed by Watanabe (2009) which uses the posterior
distribution of all the parameters. For a model with parameters ω and data Y , the
WAIC is defined as

WAIC1 =−2
n

∑
i=1

log
∫

p(Yi|ω)p(ω|Y )d(ω)+2p1

≈−2
n

∑
i=1

log
[

∑
S
s=1 p(Yi|ωs)

S

]
+2p1

(4)

where S is the number of iterarions in the MCMC chain and p1 is the effective number
of parameters

p1 =
n

∑
i=1
{log

∫
p(Yi|ω)p(ω|Y )d(ω)−

∫
log p(Yi|ω)p(ω|Y )d(ω)}

≈
n

∑
i=1
{log

[
∑

S
s=1 p(Yi|ωs)

S

]
−
[

∑
S
s=1 logp(Yi|ωs)

S

]
}

(5)

Alternatively, the effective number of parameters and the WAIC can also be approxi-
mated by

p2 =
S

∑
s=1

Var[log p(Yi|ωs)]

WAIC2 ≈−2
n

∑
i=1

log
[

∑
S
s=1 p(Yi|ωs)

S

]
+2p2

(6)
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10 Costilla, Liu, Arnold and Fernández

Defined in these ways the WAIC is on the same scale as the AIC and BIC. The
term p(Yi|ω) is the contribution of the ith observation to the likelihood and is referred
to as pointwise predictive density in the literature (Geisser and Eddy, 1979; Gelman
et al, 2014a). We follow this terminology here and call the first component of the
WAIC definition log predictive density (LPD).

It is important to stress that the WAIC overcomes the label switching problem
by integrating out the posterior distribution of all parameters p(ω|Y )d(ω) from the
pointwise predictive density p(Yi|ω). In practice, this integral is approximated by
Monte Carlo integration using all MCMC draws p(Yi|ωs) as shown in the second
line of (4). A similar procedure is used to approximate the integrals involved in the
calculation of p1 (5).

As a comparison, we also present the Deviance Information Criterion (DIC) by
Spiegelhalter et al (2002, 2014), which is being used extensively in Bayesian applica-
tions. We separate out its two components: posterior mean Deviance (D) and number
of effective parameters (pDIC) so that these can be adequately compared to the WAIC
components. The DIC is defined as:

DIC = D(ω)+ pDIC

where:

D(ω) =−2Eω|Y [log p(Y |ω)] =−2
[

∑
S
s=1 logp(Y |ωs)

S

]
pDIC =−2Eω|Y [log p(Y |ω)]+2log[p(Y |ω̃(Y ))]

(7)

Note that DIC requires a plug-in estimate of the posterior distribution ω̃(Y ) to be
calculated. Here we take the mean posterior for each parameter ω̃(Y ) = E[ω|Y ] as a
plug-in but it could also be any value that adequately represent the posterior distribu-
tion such as the median or the mode.

DIC must be used with caution in cases where the posterior distribution of the
parameters is multimodal, such as in mixtures or hierarchical models. In these cases,
the effective number of parameters pd can be negative and thus the resulting DIC
value should not be trusted (Celeux et al, 2006; Spiegelhalter et al, 2014). More-
over, DIC is not asymptotically consistent as it is not aiming to select the true model
(Spiegelhalter et al, 2002).

3.4 Model validation using simulated data

In order to validate the model, we simulated data from the mixture model in (1).
Specifically, we used a mixture with three-components, equal proportions, five ordi-
nal categories and sampled 1000 observations over 15 occasions (R= 3,n= 1000, p=
15,q = 5). Varying cluster-occasion interactions (βrk′ ) were also setup so that the
model exhibits different patterns over time. True values for all parameters (µ,α,β ,γ,π)
can be found in Table 2. This model is estimated using three parallel MCMC chains,
each with a burn-in of 27,000 and length 540,000. We assess the convergence of the
MCMC chains using the Potential Scale Reduction Factor (PSRF) by Gelman and
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Rubin (1992). PSRF is a multi-chain diagnostic test with values higher than 1.2 indi-
cating lack of convergence. For this syntetic dataset, PSRF values for all parameters
are very close one (not shown here) and thus we can conclude that our MCMC chains
have converged.

Table 2 shows summary statistics for the posterior distribution of all model pa-
rameters. In addition to the true values, it shows the mean posterior, standard error
(SE) and the 95% credible interval. Importantly, the mean posterior for all parameters
is very close to their true values (given their SE’s). Moreover, in all cases the 95%
credible intervals contain the true values of the parameters. These results are reassur-
ing because they provide evidence that the proposed model and MCMC sampler are
working properly. R and C++ scripts to completely reproduce the simulation results in
Table 2 are publicly available at: https://github.com/Cholokiwi/pomtc.

3.5 Classification

We use heatmaps to visually assess the fuzziness of the estimated classification of
individuals into clusters. It is important to stress that heatmaps should only be used
to visualise the best fitting model(s) after comparison among all candidate models
as the human eye tends to see patterns in any given image (Wilkinson and Friendly,
2009).

Classification probabilities ẑir close to one would mean that our fuzzy probabilis-
tic clustering is “crisp”. To do so, we calculate the co-clustering probabilities for
all individuals. We define here a co-clustering probability Cii′ as the probability that
any pair of individuals (i, i′) come from the same cluster r conditional on the model
parameters Ω and the observed responses Y at the MCMC iteration s:

Cii′ =
∑

S
s=1 ∑

R
r=1 ẑs

ir ẑ
s
i′r

S
, for i, i′ = 1, . . . ,n and s = 1, . . . ,S. (8)

where

ẑs
ir =

πs
r ∏

p
j=2 ∏

q
k′=1 ∏

q
k=1 θ

s,I(yi j=k)
r jk′k

∑
R
a=1 πs

a ∏
p
j=2 ∏

q
k′=1 ∏

q
k=1 θ

s,I(yi j=k)
a jk′k

That is, ẑir is the posterior mean of the classification probabilities zs
ir over the MCMC

chain. Note that θ
s,I(yi j=k)
r jk′k is obtained evaluating (1) at the model parameters µ,α,β ,γ,π

for each MCMC iteration s.

4 Results

We illustrate the model using a random subsample of 230 individuals from HILDA
who had complete responses over 2001-2011, that is individuals with SRHS in all
eleven waves. We used the R statistical language, version 3.3.3 (R Core Team,
2017), linked with C++ routines to implement the model. The model is fitted using
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95% Credible Interval
Par True Mean SE Lower Upper

µ2 0.98 1.04 0.03 0.98 1.08
µ3 1.79 1.84 0.03 1.78 1.90
µ4 2.77 2.82 0.04 2.74 2.90
α1 1.39 1.42 0.06 1.30 1.53
α2 0.39 0.37 0.05 0.27 0.48
α3 2.39 2.33 0.09 2.15 2.50

β11 -0.53 -0.57 0.07 -0.72 -0.43
β12 -0.46 -0.39 0.07 -0.53 -0.26
β13 -0.30 -0.31 0.07 -0.45 -0.17
β14 -0.30 -0.33 0.07 -0.47 -0.18
β15 1.59 1.61 0.08 1.45 1.76
β21 -0.98 -0.96 0.06 -1.07 -0.84
β22 -0.89 -0.90 0.08 -1.06 -0.75
β23 -0.88 -1.06 0.10 -1.24 -0.85
β24 -0.56 -0.53 0.11 -0.73 -0.31
β25 3.30 3.45 0.12 3.20 3.65
β31 -1.36 -1.45 0.14 -1.74 -1.17
β32 -0.30 -0.42 0.13 -0.67 -0.17
β33 -0.29 -0.29 0.11 -0.52 -0.09
β34 -0.02 0.05 0.10 -0.14 0.23
β35 1.96 2.10 0.08 1.93 2.25

γ2 0.21 0.20 0.06 0.08 0.31
γ3 -0.18 -0.17 0.06 -0.29 -0.05
γ4 0.58 0.63 0.06 0.51 0.76
γ5 -0.35 -0.33 0.06 -0.45 -0.21
γ6 0.15 0.20 0.06 0.09 0.32
γ7 0.68 0.61 0.06 0.49 0.73
γ8 0.77 0.75 0.06 0.63 0.88
γ9 -1.11 -1.10 0.06 -1.21 -0.97

γ10 -0.35 -0.42 0.06 -0.53 -0.29
γ11 -1.22 -1.22 0.07 -1.35 -1.10
γ12 -0.17 -0.13 0.06 -0.24 -0.01
γ13 1.56 1.60 0.07 1.48 1.73
γ14 1.72 1.68 0.07 1.54 1.84
γ15 -2.28 -2.30 0.07 -2.44 -2.17
π1 0.33 0.35 0.03 0.29 0.41
π2 0.33 0.35 0.02 0.31 0.38
π3 0.33 0.30 0.03 0.25 0.36

log-like -16806 -16809 4.21 -16817 -16801

Table 2: True values and posterior summary statistics for model parameters in simu-
lated data (n = 1000, p = 15,q = 5,R = 3).

a varying number of latent groups from one (R = 1 no-clustering) to seven (R = 7
latent groups). For each R, three parallel chains with different starting points were
run for 4.5 million iterations, thin by 500 and the first three quarters were discarded
as burn-in. Thus, inference was carried out using S = 6750 iterations (3×4.5×106×
0.25/500 = 6750). Depending on the number of mixture components, each chain
took around 15-60 minutes to run using Xeon E5-2680 2.50GHz CPUs. After select-
ing the best fitting model using the WAIC, we post-processed the chains according to
the relabelling algorithm of Stephens (2000) to deal with label switching. Finally, to
ease comparability we also sorted the clusters by increasing cluster effect α so that
respondents in cluster 1 have the lowest levels of SRHS and those in cluster R the
highest ones.

Table 3 shows the model comparison results. For each fitted model, it presents:
number of clusters (R), number of parameters (npars), mean posterior of the log-
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likelihood (logl), DIC (D and pd) and the two versions of the WAIC and their cor-
responding components (LPD, p1, p2, WAIC1, and WAIC2). The table allows us to
highlight a few things. Firstly, the model with six clusters have the lowest values for
both WAIC versions and thus provide the best fit. Secondly, although logl, D and
WAIC decrease monotonically until R = 6, these decrements are very are small from
R = 3 onwards. In other words, a model with R = 6 provides only a slightly better
fit than a model with R = 5 and so on. Thus, an information criterion with a higher
penalty for the number of parameters will be likely to choose a model with fewer
mixture components. Last but not least, DIC has a negative number of effective pa-
rameters pd and thus should not be used for model comparison in this case. Neither
version of the WAIC has this drawback.

Posterior summary statistics, convergence diagnostics, traceplots and posterior
distributions for the above model with R = 6 can be found in Appendices C and D.

R npars logl D pDIC DIC LPD p1 WAIC1 p2 WAIC2
1 20 -2354 4708 17 4724 4682 25 4733 26 4734
2 27 -2195 4390 23 4412 4360 29 4419 30 4421
3 33 -2136 4272 -466 4297 4238 34 4306 35 4308
4 39 -2129 4258 -51 4286 4222 36 4293 37 4296
5 45 -2124 4248 -412 4276 4206 42 4289 44 4294
6 51 -2121 4242 -80 4271 4202 40 4282 42 4286
7 57 -2122 4244 -2428 4250 4200 44 4288 47 4294

Table 3: Bayesian model comparison using WAIC for the HILDA dataset.

Next, we check the classification results using the co-clustering probabilities, i.e.
probability that respondents belong to the same cluster over all MCMC iterations, de-
fined in (8) for the model with six components. Figure 3 displays these co-clustering
probabilities for the model in the original data (top panel) and ordered by cluster (bot-
tom panel). We can see that when ordering the respondents by cluster, we are able to
visualise high co-clustering probabilities within cluster as well as their relative size,
area of rectangles in the diagonal, which provides a visual indication of the estimated
cluster proportions π̂ = (0.08,0.32,0.26,0.24,0.05,0.04). The selected model with
six clusters not only provides the best fit among R = 1, . . . ,7 but also provides a crisp
allocation of individuals to the estimated clusters.

What do these estimated clusters look like? Figure 4 displays the overall and
cluster specific distribution of SRHS by year. To ease interpretation, the plots include
point estimates for selected parameters. Values for α̂r and π̂r correspond to posterior
means and σ̂2

β r to posterior medians. Furthermore, we also sorted the latent groups
by increasing cluster effect α̂r so that individuals in the first and last cluster have the
lowest and highest levels of SRHS, α̂1 = 2.8 and α̂6 = 12.4 respectively. Plots also
include an estimate of the variance of the cluster interactions, posterior median σ̂2

β r
which measures the mobility between ordinal categories for individuals that belong
to the cluster. Higher values of σ̂2

β r imply a cluster formed by individuals that move
more between ordinal categories over time. That is, respondents in these clusters tend
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Fig. 3: Co-clustering probabilities for the original HILDA data (upper panel) and the
model with six latent groups (bottom panel).
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to change more their health status from 2001 to 2011. Conversely, smaller σ̂2
β r values

imply a cluster where individuals have less movement among ordinal levels and thus
tend to report a similar health status in the study period.

Figure 4 shows very different SRHS cluster profiles over time. Firstly, cluster 3
has the highest mobility, σ̂2

β3 = 8.3, and spreads among all five ordinal categories.
Respondents in this cluster are about a quarter of the total (π̂=0.26). Although less
pronounced, Cluster 2 exhibits a high pattern of mobility σ̂2

β2 = 0.8 and accounts for
a third of the sample (π̂=0.32). Despite being located at different levels of the ordinal
scale (α̂), the remaining clusters have lower levels of mobility with σ̂2

β r ≈ 0.3. People
in cluster 1 for instance have a neutral perception of their health status (centered
around the “Fair” category). On the other hand, cluster 6 represents the extreme of
positiveness as respondents in these are extremely satisfied with their health status
and have responses mostly in the “Excellent” category.

5 Discussion and Conclusions

Model-based clustering approaches provide a way to identify latent groups and re-
duce the data dimensionality. In this paper, we proposed a latent transitional model
that uses the proportional odds parametrisation for longitudinal ordinal data. The pro-
posed finite mixture model includes cluster (αr) and occasion (γ j) effects as well
as cluster interactions with the immediate past response (βrk′ ) which allow time-
heterogeneous transitions and the lagged response to have a different effect on each
cluster. We estimated the model within a Bayesian approach using MCMC with a
block Metropolis-Hastings sampler. To compare among models with different num-
ber of mixture components we used WAIC but also shown DIC for completeness. In
addition to that, a relabelling strategy allowed us to identify the latent groups itself.
We applied the model to self-reported health status data (“Poor”, “Fair”, “Good”,
“Very Good” and “Excellent”) over 11 years in an Australian household panel survey
and found evidence for six latent groups with distinct patterns over time. Our pro-
posal extends the currently available models by providing a flexible way to capture
different time patterns by cluster and time-heterogeneous transitions. By using the
WAIC to compare the number of components in finite mixtures of ordinal data, it
also contributes to the Bayesian literature of model comparison.

Our model has several limitations. Firstly, it is computer-intensive and estima-
tion might become impractical when dealing with big datasets, e.g. millions of units
followed over hundreds of occasions. In general this is the case for MCMC based
inference but in our case it is complicated by the unavailability of the posterior dis-
tribution in closed form and the need to simulate it using the Metropolis-Hastings
sampler. This however is only a technological limitation and can be overcome, or at
least alleviated, by the use of grid computing and parallelizing the computer code
used for estimation. Alternative ways to deal with big data in our context will be
to resort to non-exact Bayesian methods such as Variational Approximations (Wain-
wright and Jordan, 2008; Hui et al, 2017) and Approximate Bayesian Computation
(Beaumont et al, 2002; Gutmann et al, 2018).
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Fig. 4: Distribution of SRHS by year in all HILDA data and estimated six clusters.
Values for α̂r and π̂r correspond to posterior means and σ̂2

β r to posterior medians.
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Secondly, caution should be taken when interpreting the estimated mixture com-
ponents. Mixture models are very flexible and can fit any dataset given enough com-
ponents. Therefore, selecting too many cluster components is a danger when working
with mixture models. Information criteria like WAIC and DIC penalise model com-
plexity but as the Bayesian equivalents of the AIC they also have a “conservative”
penalty term (twice the number of effective parameters) which does not take into ac-
count sample size. In fact, this might be the case for some of the estimated clusters in
the health status application presented here. For instance, clusters 5 and 6 (Figure 4)
have cluster interactions with similar variances but centered on more positive levels
of the ordinal scale. Furthermore, models with R = 3 and R = 6 have very similar
mean posterior log-likelihoods, -2136 and -2121 in Table 3, and thus provide similar
estimated parameters and clusters. Therefore, other non-predictive Bayesian infor-
mation criteria like the WBIC (Watanabe, 2013; Friel et al, 2017) or the sBIC (Drton
and Plummer, 2017) could be worth exploring here.

Lastly, Bayesian approaches can always be sensitive to choice of priors. In or-
der to check for this possibility, in Section 3.4 we use simulated data to validate the
model and found that our weakly informative priors and MCMC sampler were able
to recover the true parameters of the model. It would be interesting though, to run a
simulation study where our Bayesian estimation strategy is further tested in a vari-
ety of scenarios. Nonetheless, no simulation study will provide an absolute guarantee
that either the proposed priors or the model itself are appropiatte for every data ap-
plication.

We plan to extend the model in two directions: exploring other ways to incor-
porate the correlation and including the number of mixture components as parame-
ters in the model. The former could be done by including past responses of higher
orders, not just the previous response as in the current model. The latter would im-
ply the use of an encompassing model, where the number of mixture components
is not longer fixed. Reversible Jump MCMC (Green, 1995; Richardson and Green,
1997) and Bayesian Non-Parametric models (Müller et al, 2015; DeYoreo and Kot-
tas, 2017) are for instance examples of such trans-dimensional approaches. Albeit
having a more complex parameter space, these models also estimate the distribution
for the number of mixture components and thus simplify the comparison amongst
competing models.
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Appendices

A. Proposals

After choosing initial values for all model parameters (µ , α , β , γ , π , σ2
µ , σ2

α , σ2
β

, and
σ2

γ ), we proceed to update them according to the following:

µ
′
k | µk,µk−1,µk+1∼U [ max(µk−τ,µk−1), min(µk+τ,µk+1)] k= 2, . . . ,q−1, µ0 =−∞,µ1 = 0 µq =∞

α
′
r | αr

iid∼ Normal(αr,σ
2
α p) r = 1 . . .R,

β
′
rk′ | βrk′

iid∼ Normal(βrk′ ,σ
2
β p) k′ = 1 . . .q−1, βrq =−

q−1

∑
k′=1

βrk′ , ∀r = 1 . . .R,

γ
′
j | γ j

iid∼ Normal(γ j,σ
2
γ p) j = 2 . . . p−1, γp =−

p−1

∑
j=2

γ j

logit(w′) | logit(w)∼ Normal(logit(w),σ2
π p) w = πr1/(πr1 +πr2) r1,r2 ∈ 1 . . .R

π
′
r1 = w′(πr1 +πr2) π

′
r2 = (1−w′)(πr1 +πr2)

log(σ ′2µ ) | log(σ2
µ)∼ Normal(log(σ2

µ),σ
2
σ µ p)

log(σ ′2α ) | log(σ2
α)∼ Normal(log(σ2

α),σ
2
σα p)

log(σ ′2
β
) | log(σ2

β
)∼ Normal(log(σ2

β
),σ2

σβ p)

log(σ ′2γ ) | log(σ2
γ )∼ Normal(log(σ2

γ ),σ
2
σγ p)

With proposals “steps”: τ = 0.5, σ2
α p = 0.1, σ2

β p = 0.1,σ2
γ p = 0.1, σ2

π p = 0.25, σ2
σ µ p =

log(2), σ2
σα p = log(4), σ2

σβ p = log(1.5) and σ2
σγ p = log(2)
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B. Posterior summary statistics and convergence diagnostics, HILDA R = 6.

Par Median Mean SE Lower CI Upper CI PSRF

µ2 3.53 3.54 0.24 3.12 4.04 1.00
µ3 6.86 6.87 0.27 6.35 7.38 1.00
µ4 11.06 11.06 0.33 10.46 11.73 1.00
σ2

µ 0.27 0.34 0.25 0.08 0.74 1.00
α1 2.76 2.76 0.49 1.74 3.67 1.00
α2 5.02 4.99 0.33 4.40 5.60 1.04
α3 5.27 5.27 0.24 4.77 5.74 1.00
α4 8.20 8.17 0.53 7.47 9.15 1.10
α5 9.87 9.84 0.73 8.39 11.23 1.07
α6 12.39 12.40 1.02 10.17 14.64 1.06
σ2

α 28.60 31.96 15.05 10.72 59.19 1.00
β11 -0.15 -0.17 0.42 -0.97 0.68 1.03
β12 -0.31 -0.31 0.36 -1.01 0.37 1.00
β13 0.23 0.24 0.34 -0.40 0.93 1.01
β14 0.17 0.19 0.44 -0.72 1.06 1.00
β15 0.06 0.05 0.91 -1.86 1.78 1.02
β21 -0.53 -1.92 2.74 -7.06 0.58 1.00
β22 -1.03 -1.50 1.06 -3.68 -0.35 1.00
β23 0.32 0.17 0.51 -1.05 0.89 1.00
β24 1.44 2.16 1.45 0.90 5.06 1.00
β25 -0.26 1.09 2.72 -1.45 6.08 1.00
β31 -6.06 -4.63 2.78 -7.12 0.50 1.00
β32 -3.08 -2.67 1.04 -3.92 -0.69 1.00
β33 -0.45 -0.42 0.61 -1.53 0.66 1.02
β34 4.36 3.63 1.53 0.85 5.19 1.00
β35 5.51 4.09 2.64 -0.85 6.34 1.00
β41 -0.19 -0.29 0.81 -1.19 0.73 1.18
β42 -0.19 -0.22 0.50 -0.98 0.58 1.13
β43 -0.29 -0.30 0.29 -0.85 0.27 1.03
β44 -0.10 -0.03 0.60 -0.62 0.41 1.25
β45 0.78 0.84 0.78 -0.27 1.88 1.17
β51 0.17 0.17 0.44 -0.70 1.00 1.01
β52 0.29 0.31 0.46 -0.68 1.22 1.03
β53 0.26 0.27 0.40 -0.55 1.04 1.04
β54 0.23 0.24 0.36 -0.46 0.94 1.00
β55 -1.03 -0.99 0.78 -2.44 0.70 1.10
β61 -0.06 -0.05 0.44 -0.94 0.87 1.00
β62 -0.06 -0.06 0.46 -1.00 0.84 1.01
β63 -0.15 -0.16 0.45 -1.07 0.66 1.04
β64 0.04 0.06 0.39 -0.77 0.86 1.00
β65 0.24 0.22 0.69 -1.17 1.57 1.04
σ2

β1 0.28 0.33 0.20 0.09 0.73 1.02
σ2

β2 0.77 3.54 5.67 0.12 15.43 1.00
σ2

β3 8.29 8.56 6.86 0.17 20.43 1.00
σ2

β4 0.25 0.45 1.51 0.09 0.67 1.31
σ2

β5 0.29 0.35 0.23 0.09 0.77 1.00
σ2

β6 0.27 0.33 0.24 0.08 0.72 1.00
γ2 0.42 0.42 0.14 0.15 0.69 1.00
γ3 0.17 0.17 0.13 -0.09 0.42 1.00
γ4 0.04 0.04 0.13 -0.20 0.28 1.00
γ5 -0.08 -0.08 0.13 -0.33 0.17 1.00
γ6 0.06 0.06 0.13 -0.19 0.29 1.00
γ7 0.06 0.06 0.13 -0.18 0.32 1.00
γ8 -0.02 -0.02 0.12 -0.27 0.20 1.00
γ9 0.06 0.06 0.13 -0.19 0.31 1.00

γ10 -0.24 -0.24 0.13 -0.48 0.01 1.00
γ11 -0.46 -0.47 0.13 -0.71 -0.21 1.00
σ2

γ 0.16 0.17 0.07 0.07 0.31 1.00
π1 0.08 0.08 0.02 0.04 0.13 1.01
π2 0.32 0.31 0.06 0.20 0.40 1.03
π3 0.26 0.27 0.05 0.19 0.37 1.00
π4 0.24 0.24 0.04 0.16 0.33 1.15
π5 0.05 0.06 0.04 0.02 0.13 1.32
π6 0.04 0.04 0.01 0.01 0.07 1.08

log-like -2121 -2121 4.54 -2130 -2113 1.03
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C. Traceplots and marginal posterior distributions, HILDA R = 6.
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