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Abstract

In this work we study a model of interaction of kinks of the sine-Gordon equation with a weak defect. 
We obtain rigorous results concerning the so-called critical velocity derived in [7] by a geometric approach. 
More specifically, we prove that a heteroclinic orbit in the energy level 0 of a 2-dof Hamiltonian Hε is 
destroyed giving rise to heteroclinic connections between certain elements (at infinity) for exponentially 
small (in ε) energy levels. In this setting Melnikov theory does not apply because there are exponentially 
small phenomena.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Given an evolutionary partial differential equation, a solitary wave is a solution which travels 
with constant speed and localized in space. There are several types of solitary waves which 
are important in modeling physical phenomena. In particular, kinks are solitary waves which 
travel from one asymptotic state to another. In the last years, kinks have attracted the focus of 
researchers due to their significant role in many scientific fields as optical fibers, fluid dynamics, 
plasma physics and others (see [11,15,17,18,21] and references therein).

In this work, we study a model of interaction between kinks of the sine-Gordon equation and 
a weak defect. The defect is modeled as a small perturbation given by a Dirac delta function. 
Such interaction has also been studied for the nonlinear Schrödinger equation in [13,14].

We consider the finite-dimensional reduction of the equation given by a 2-degrees of freedom 
Hamiltonian H proposed by Fei, Kivshar and Vazquez [5] (see also [7]). Following a geometric 
approach, we give conditions on the energy of the system to admit “kink-like” solutions in this 
reduced model.
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1.1. The model

The sine-Gordon equation is a nonlinear hyperbolic partial differential equation given by

∂2
t u − ∂2

xu + sin(u) = 0, (1)

which presents a family of kinks uk(x, t) given by

uk(x, t) = 4 arctan

(
exp

(
x − vt − x0√

1 − v2

))
, (2)

where the parameter v represents the velocity of the kink.
In this work, we perturb this equation by a localized nonlinear defect at the origin

∂2
t u − ∂2

xu + sin(u) = εδ(x) sin(u), (3)

where δ(x) is the Dirac delta function. This equation was studied in [5,7] where the authors 
consider finite-dimensional reductions of it to understand the kink-like dynamics. As a first step, 
they consider solutions u of small amplitude of (3), which can be approximated by solutions of 
the linear partial differential equation

∂2
t u − ∂2

xu + u = εδ(x)u, (4)

which has a family of wave solutions uim(x, t) given by

uim(x, t) = a(t)e−ε|x|/2, (5)

where a(t) = a0 cos(�t + θ0), � = √
1 − ε2/4 and im stands for impurity. The solution uim is 

not a traveling wave, but it is spatially localized at x = 0.
In order to study the interaction of kinks of the sine-Gordon equation with the defect consid-

ered in (3), [5,7] use variational approximation techniques to obtain the equations which describe 
the evolution of the kink position X and the defect mode amplitude a. To derive such equations, 
they consider the ansatz

u(x, t) = 4 arctan(exp(x − X(t))) + a(t)e−ε|x|/2. (6)

Notice that (6) combines the traveling property of the family of kinks (2) with the localized shape 
of (5).

Using the ansatz (6) in (3) and considering terms up to order 2 in ε, Fei, Kivshar and Vazquez 
[5] (see also [7]) obtain the system of Euler-Lagrange equations

8Ẍ + εU ′(X) + εaF ′(X) = 0,

ä + �2a + 1

2
ε2F(X) = 0,

(7)

where
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U(X) = −2 sech2(X), F (X) = −2 tanh(X) sech(X) and � =
√

1 − ε2

4
, (8)

which describes approximately the evolution of the kink position X and the defect mode ampli-
tude a. More details of this approach and its applications can be found in [5,7,16]. It is worth 
to mention that the finite dimensional reduction of PDE problems to ODE systems via an ade-
quate ansatz and variational methods has been considered in an extensive range of works (see 
[4,6,8–10,23,24]).

It remains as an open problem to prove that the solutions of the reduced system rigorously 
approximate the PDE solutions. Nevertheless there are numerical evidences ensuring this rea-
soning (see [19,20]). In particular, in [22], the authors analyze numerically the simulations done 
in [7] for the perturbed sine-Gordon equation (3).

From (6), if X(t) and a(t) satisfy X(t) → ±∞, Ẋ(t) → C± and a(t) → 0 as t → ±∞, 
then the associated u(x, t) (see (6)) can be seen as an “approximation” for a kink of (3), since it 
transitions from an asymptotic state to another when x − X(t) → ±∞. Moreover, abusing the 
language, we say that vi = C− and vf = C+ are the initial velocity and final velocity of the 
kink.

If X(t) satisfies X(t) → ±∞, Ẋ(t) → C± and a(t) is asymptotic to a periodic function with 
small amplitude when t → +∞ or t → −∞, then the associated u(x, t) can be seen as an ap-
proximation for a kink of (3) with asymptotically periodic oscillations. In this case, one can 
define their initial and final velocities in the same way. In addition, we also look for solutions 
(X(t), a(t)) such that a(t) → 0 as t → −∞ and a(t) is asymptotically periodic as t → +∞, 
which can be seen as an approximation of a kink with exponential decay as t → −∞ and asymp-
totic periodic oscillations as t → +∞.

In this paper we perform a rigorous study of such solutions of the finite-dimensional reduction 
(7) of the partial differential equation (3).

1.2. The reduced model

Consider the change of variables (X, Ẋ, a, ȧ) → (X, Z, b, B), where

X = X, Z = 8Ẋ√
ε
, b =

√
2�

ε
ε−1/4a, B =

√
ε

2�
ε−1/4 2

ε
ȧ, (9)

and the time rescaling τ = √
εt . Then, denoting ′ = d/dτ , the evolution equations of (7) are 

equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X′ = Z

8
,

Z′ = −U ′(X) − ε3/4

√
2�

F ′(X)b,

b′ = �√
ε
B,

B ′ = − �√ b − ε3/4

√ F(X).

(10)
ε 2�
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Notice that (10) is a Hamiltonian system with respect to

H(X,Z,b,B; ε) = Z2

16
+ U(X) + �

2
√

ε
(B2 + b2) + ε3/4

√
2�

F(X)b, (11)

which can be split as H = Hp + Hosc + R, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hp(X,Z) = Z2

16
+ U(X),

Hosc(b,B) = Hosc(b,B; ε) = �

2
√

ε
(B2 + b2),

R(X,b) = R(X,b; ε) = ε3/4

√
2�

F(X)b.

(12)

Thus the Hamiltonian H is the sum of a pendulum-like Hamiltonian Hp with an oscillator Hosc
coupled by the term R.

Remark 1.1. Applying the change of variables Y = 4 arctan(eX), the Hamiltonian system (10)
is brought into ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẏ = 2 sin(Y/2)Z/8,

Ż = 2 sin(Y/2)

(
sin(Y ) − ε3/4

√
2�

cos(Y )b

)
,

ḃ = �√
ε
B,

Ḃ = − �√
ε
b − ε3/4

√
2�

sin(Y ).

When Y = 0 and Y = 2π , this system has parabolic critical points and periodic orbits which 
have invariant manifolds. These hyperplanes Y = 0 and Y = 2π correspond to X = −∞ and 
X = +∞ of (10) respectively. For this reason, even if they are not solutions of the system, they 
can be seen as asymptotic solutions at infinity. Thus, abusing notation, we denote f (±∞) as 

lim
X→±∞f (X) when it is well defined.

System (10) inherits many properties of the sine-Gordon equation. In fact, the functions U and 
F have exponential decay when |X| → +∞, therefore, for large values of X the system becomes 
decoupled. Nevertheless, when X = O(1), the equations are coupled and the Hamiltonians Hp
and Hosc may exchange energy. This will result in interesting global phenomena.

If F = 0 (i.e. R = 0), then each energy level H = h ≥ 0 of system (7) contains a unique 
heteroclinic orbit between critical points with Ẋ ≥ 0 and all the other solutions are heteroclinic 
orbits to periodic orbits (with the same oscillation in both tails).

In this paper, we prove that the unique heteroclinic orbit between critical points in H = h

breaks down for low energies (see Theorem A) and we obtain a critical energy hc (with asso-
ciated critical initial velocity vc = 4

√
hc) such that the energy level H = h (h small) contains 
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a heteroclinic connection between a critical point and a periodic orbit (continuation of the un-
perturbed “point to point” heteroclinic) if and only if h ≥ hc. In addition we give an asymptotic 
formula for hc (see Theorem C) which happens to be exponentially small in the parameter ε. We 
also find an energy 0 < hs < hc such that the energy level H = h (h small) has a heteroclinic 
connection between periodic orbits if and only if h ≥ hs (see Theorem B).

In [7], the authors present numerical and formal arguments for the existence of the critical 
velocity vc and they conjecture that the final velocity vf in an energy level h ≥ hc (h small) is 
given by vf ≈ (vi − vc)

1/2, where vi ≥ vc is its initial velocity. Our results prove the validity of 
the asymptotic formula for vc and the conjecture for vf (see Theorem D).

We emphasize that the rigorous approach presented in this work is necessary to validate the 
conclusions obtained in [7]. In fact, their results rely on the computation of a Melnikov integral 
as a leading-order approximation for the total loss of energy �E over the separatrix of (10) with 
δ = 0 (or more precisely of the transfer of energy from the pendulum-like Hamiltonian Hp to 
the oscillator Hosc, see (12)). Nevertheless, Melnikov theory cannot be applied in this case due 
the exponential smallness in the parameter ε of the Melnikov function. In this paper we prove 
that the Melnikov function is indeed a leading-order approximation of �E. Note that this is not 
always the case: often, in problems presenting exponentially small phenomena, the Melnikov 
integral is not the dominant part of the total loss of energy over a separatrix of a Hamiltonian 
system (see [2]). In this paper, we relate the loss of energy �E of [7] with the exponentially 
small transversal intersection of the invariant manifolds Wu,s of certain objects (critical points 
and periodic orbits) at infinity.

2. Mathematical formulation and main goal

2.1. The unperturbed problem

Consider system (10) for F = 0. Then H = Hp + Hosc consists simply of two uncoupled 
integrable systems.

In the XZ-plane, the solutions are contained in the level curves Hp(X, Z) = κ . This system 
can be transformed into a degenerate (parabolic) pendulum by a change of coordinates (see 
Remark 1.1). As one can see in Fig. 1, for κ < 0, Hp = κ is diffeomorphic to a circle. For 
κ ≥ 0, Hp = κ contains the points q±

κ = (±∞, 4
√

κ) which behave as “fixed points” and are 
connected by a heteroclinic orbit ϒκ given by the graph of

Zκ(X) = 4
√

κ − U(X) = 4

√
κ + 2

cosh2(X)
, X ∈R. (13)

Notice that Υ0 is a separatrix. Analogously, (±∞, −4
√

κ) ∈ {Hp = κ} are fixed points at infinity 
connected by the heteroclinic orbit given by the graph of −Zκ(X). From now on, we focus on 
the heteroclinic orbits contained in Z > 0, since all the results of this paper can be obtained for 
the orbits in Z < 0 in an analogous way.

In the bB-plane, the solutions of (10) for F = 0 are, for κ ≥ 0,

Pκ = {Hosc = κ} =
{
(b,B); b2 + B2 = 2κ

√
ε/�

}
(see Fig. 2). (14)

Combining (13) and (14) in the energy level H = h, h ≥ 0, we define
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Fig. 1. Projection of the phase space of the unperturbed system in the XZ-plane (level curves of Hp). Positive energy 
corresponds to heteroclinic connections “between X = +∞ and X = −∞”.

Fig. 2. Projection of the phase space of the unperturbed system in the bB-plane (level curves of Hosc).

�±
κ1,κ2

= q±
κ1

× Pκ2 =
{
(±∞,4

√
κ1, b,B); b2 + B2 = 2κ2

√
ε/�

}
, (15)

for every κ1, κ2 ≥ 0 such that κ1 + κ2 = h. Notice that

• If κ2 = 0, then �±
h,0 is a degenerate saddle (parabolic) point of (10);

• If κ2 > 0, then �±
κ1,κ2

are degenerate saddle (parabolic) periodic orbits of (10).

For simplicity, we denote the limit cases κ1 = 0 and κ2 = 0 by

�±
h = �±

0,h =
{
(±∞,0, b,B), b2 + B2 = 2h

√
ε/�

}
,

p±
h = �±

h,0 = (±∞,4
√

h,0,0),

(16)

respectively. We stress that p±
h are points and �±

h are periodic orbits, both contained in the planes 
X = ±∞ and in the energy level H = h.
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Fig. 3. Projection of the heteroclinic manifolds W(κ1, κ2) in the bXB-space. In the figure, the most external cylinder is 
the projection of W(0, h) and the straight line represents the projection of W(h, 0).

These invariant objects have invariant manifolds. Denote

W(κ1, κ2) = Υκ1
× Pκ2 =

{
(X,Z,b,B); Z = 4

√
κ1 − U(X) and b2 + B2 = 2κ2

√
ε/�

}
,

(17)

for each κ1, κ2 ≥ 0 such that κ1 + κ2 = h.

(1D-0) W(0, 0) = Wu
0 (p−

0 ) = Ws
0 (p+

0 ) is a 1-dimensional heteroclinic connection (separatrix) 
between the points p−

0 and p+
0 ;

(1D-h) If h > 0, W(h, 0) = Wu
0 (p−

h ) = Ws
0 (p+

h ) is a 1-dimensional heteroclinic connection 
between the points p−

h and p+
h ;

(2D-0) If h > 0, then W(0, h) = Wu
0 (�−

h ) = Ws
0 (�+

h ) is a 2-dimensional heteroclinic manifold 
(separatrix) between �−

h and �+
h ;

(2D-κ1) If κ1, κ2 > 0, then W(κ1, κ2) is a 2-dimensional heteroclinic manifold between �−
κ1,κ2

and �+
κ1,κ2

.

For h > 0 fixed, the level energy H = h is a 3-dimensional manifold. Using the conserved 
Hamiltonian one can eliminate the variable Z, and the manifolds W(κ1, κ2) project into the
bXB-space as horizontal cylinders centered along the X-axis as shown in Fig. 3.

In this unperturbed case, there is no exchange of energy between the pendulum and the oscil-
lator through the heteroclinic connections of W(κ1, κ2), i.e. Hp and Hosc are first integrals. In the 
perturbed case (10) (F 
= 0) the coupling term R (see (11)) goes to 0 as X → ±∞ and, thus, the 
system is uncoupled at X = ±∞. As a consequence, �±

κ1,κ2
are orbits of system (10) in the sense 

of Remark 1.1. Nevertheless, the system may exchange energy between the pendulum and the 
oscillator when X varies, through the appearance of heteroclinic connections between different 
�−

κ1,κ2
and �+

κ ′
1,κ

′
2

such that κ1 + κ2 = κ ′
1 + κ ′

2 = h.

Recall that, in particular, we are interested in solutions (X(t), Z(t), b(t), B(t)) which are 
heteroclinic connections between a critical point at X = −∞ and a periodic orbit at X = +∞
(see Section 1.1). Therefore, they satisfy
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lim
t→−∞X(t) = −∞, lim

t→−∞Z(t) = vi, lim
t→−∞b(t) = lim

t→−∞B(t) = 0, (18)

lim
t→+∞X(t) = +∞, lim

t→+∞Z(t) = vf , (19)

where vi ≥ 0 is the initial velocity and vf ≥ 0 is the final velocity and (b(t), B(t)) are asymptotic 
to periodic functions as X → +∞. For such solutions

hi = H(X(t),Z(t), b(t),B(t)) = v2
i

16
, for every t ∈R.

Thus, considering hi = v2
i /16 and defining κf = v2

f /16, we have that, the solution (X(t), Z(t),

b(t), B(t)) satisfying (18) and (19) is a heteroclinic connection between the 1-dimensional un-
stable manifold of p−

hi
and the 2-dimensional stable manifold of �+

κf ,hi−κf
.

2.2. Main results

Our goal is to look for solutions traveling from X = −∞ to X = +∞. More concretely, we 
prove the existence of vc > 0 such that the solutions X of (7) coming with velocity vi from 
X = −∞ escape the defect location and continue traveling towards X = +∞ with (asymptotic) 
final velocity vf , provided vi ≥ vc.

Therefore, the critical energy hc is characterized as the lowest energy level hc = v2
c /16 such 

that for any h ≥ hc, there exist κ1, κ2 > 0 with κ1 + κ2 = h such that Wu
ε (p−

h ) ⊂ Ws
ε (�+

κ1,κ2
).

Notice that Wu
ε (p−

h ) ⊂ Ws
ε (�+

κ1,κ2
) implies that the final velocity of the corresponding orbit 

X(t) (which has initial velocity 4
√

h) is given by vf = 4
√

κ1.
To analyze the existence of heteroclinic orbits between the invariant objects at X = ±∞, 

we consider the section X = 0, which is transversal to the flow. Restricting to the energy level 
H = h, eliminating the variable Z and using (8), this section becomes the disk

�h =
{
(0, b,B) : b2 + B2 ≤ (4 + 2h)

√
ε

�

}
. (20)

We compute intersections between unstable and stable manifolds in �h.
In the unperturbed case F = 0, the one-dimensional heteroclinic connection between the “in-

finity points” p+
h and p−

h , W(h, 0) = Wu
0 (p−

h ) = Ws
0 (p+

h ) intersect �h at the point (0, 0). In the 
following theorem, we show that this heteroclinic connection breaks down when F 
= 0 if h ≥ 0
is small enough. In Fig. 4 (a) we show, on the right, the invariant manifolds Wu,s

ε (p∓
0 ) and, on 

the left, their intersection with �0: P u,s
0 . Analogously, in Fig. 4 (b) the red and blue curves on 

the right are the invariant manifolds Wu,s
ε (p∓

h ) and their intersection with �h are the red/blue 
points on the left (the disks and “tubes” in the same figures are explained below since correspond 
to invariant manifolds of periodic orbits).

Theorem A (Breakdown of the 1-dimensional connection W(h, 0)). Consider system (10). There 
exists ε0 > 0 and h0 > 0 sufficiently small such that, for every 0 < ε ≤ ε0 and 0 ≤ h ≤ h0, the 
invariant manifolds Wu,s

ε (p∓
h ) intersect �h (given in (20)). Denoting by P u,s

h the first intersection 
points,
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Fig. 4. On the right: First intersection of the invariant manifolds Wu and Ws , contained in the energy level h, with 
the section �h . On the left: Projection of the invariant manifolds Wu and Ws , contained in the energy level h, in the 
bXB-space. The case h = 0 and the case h > 0 (small) are illustrated in (a) and (b), respectively. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

∣∣P u
0 − P s

0

∣∣= d0(ε) = 2πε3/4

√
�

e−�
√

2/ε +O
(
ε7/4e−�

√
2/ε

)
, (21a)∣∣P u

h − P s
h

∣∣= d0(ε) +O(ε7/4
√

h), (21b)

where � is the constant introduced in (8).

This theorem is proven in two steps. First in Sections 4.1.1 (for h = 0) and 4.1.3 (for h > 0) 
we obtain parameterizations of the invariant manifolds. Then, in Section 4.2 we complete the 
proof by analyzing their difference.

Remark 2.1. In the asymptotic formulas (21a) and (21b), we could write � = 1. Nevertheless, 
we keep � = √

1 − ε2/4 in order to compare our results with [7]. The same remark holds for 
Theorems B, C and D below.

When F = 0, the energy level h > 0 has a family of heteroclinic manifolds W(κ1, κ2), with 
κ1 + κ2 = h, κ1, κ2 > 0, connecting the periodic orbits �±

κ1,κ2
, as can be seen in Fig. 3.

Each one intersects �h at a circle centered at (0, 0) with radius 
√

2κ2
√

ε/�, which generates 
a disk of radius 

√
2h

√
ε/� when we vary 0 < κ2 ≤ h (see (13) and (14)).

We show that, for the perturbed case, Wu
ε (�−

κ1,κ2
) and Ws

ε (�+
κ1,κ2

) also intersect �h in closed 

curves which are close to circles of radius 
√

2κ2
√

ε/� centered at P u
h and P s

h . Thus, varying 
0 ≤ κ2 ≤ h, we can see that Wu,s

ε (�±
κ1,κ2

) intersect �h in topological disks Du
h and Ds

h which are 

close to the disks of radius 
√

2h
√

ε/� centered at P u
h and P s

h , respectively. Fig. 4 (b) shows the 
invariant manifolds Wu,s

ε (�∓
κ1,κ2

) and their intersections with �h. Those intersections fill up the 
topological disks Du,s

h when one varies κ2 from 0 to h.
The existence of heteroclinic connections continuation of the unperturbed ones corresponds 

to intersections between the disks Du
h and Ds

h. Even if in the energy level h = 0, there is no (first 
round) heteroclinic connections between the points at X = ±∞ (p− and p+), the heteroclinic 
0 0



3292 O.M.L. Gomide et al. / J. Differential Equations 269 (2020) 3282–3346
Fig. 5. Relative position of the disks Du
h

and Ds
h

in the section �h in function of the energy level h. Top-left: The 
perturbed system has no heteroclinic orbits (passing a unique time through �h). Top-center: hs is the first energy level 
for which the system has a heteroclinic orbit between the biggest periodic orbits (at the infinity). Top-left: The system 
has uncountable heteroclinic orbits between periodic orbits. Bottom-left: hc is the first energy level for which the system 
has a heteroclinic orbit between a point and a periodic orbit. Bottom-right: for h > hc (small) the system still presents a 
heteroclinic connection between a point and a periodic orbit. In the bottom figures, the system also possesses heteroclinic 
orbits between periodic orbits.

connections between the periodic orbits �±
κ1,κ2

may certainly exist when h > 0, since the two 
disks may intersect for some values of h. The lowest energy level hs > 0 for which these hete-
roclinic connections exist is reached when the boundaries of these disks are tangent (see Fig. 5
top-center). Equivalently, when Wu

ε (�−
h ) intersects Ws

ε (�+
h ) in the energy level hs = hs(ε).

Theorem B (Lowest energy level with 2-dimensional heteroclinic connection). Fix h0 > 0. There 
exists ε0 > 0 sufficiently small such that, for every 0 < ε < ε0 and 0 ≤ h ≤ h0, the invariant man-
ifolds Wu

ε (�−
h ), Ws

ε (�+
h ) intersect �h (given in (20)). The first intersection is given by closed 

curves, which we denote by ∂Du,s
h . Then, there exists

hs(ε) = επ2e−2�
√

2/ε

2
(1 +O(ε)),

where � is the constant introduced in (8), such that the following statements hold for system 
(10).

(1) If 0 ≤ h < hs(ε), the closed curves ∂Du,s
h do not intersect each other.

(2) If hs(ε) ≤ h ≤ h0, the closed curves ∂Du,s
h intersect at least once.

Furthermore, given μ > 1, there exists εμ > 0 and

hμ(ε) = επ2e−2�
√

2/ε

(μ +O(ε))2 ≥ hs(ε),

2
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such that, for 0 < ε < εμ and hμ(ε) ≤ h ≤ h0, the closed curves ∂Du,s
h have at least two inter-

sections.

This theorem is proven in several steps. First in Section 4.1 we obtain parameterizations of 
the invariant manifolds involved in the theorem and in Section 4.2.2 we obtain estimates for the 
difference between those invariant manifolds and Wu

ε (p−
0 ), Ws

ε (p+
0 ). Finally, in Section 4.3 we 

complete the proof by obtaining the asymptotic formula for hs(ε) and the other statements of the 
theorem.

Theorem B ensures that, for h > hs , there is a family of heteroclinic connections between 
elements of X = ±∞ which are contained in the energy level h. (See Fig. 5 top-right.) Actually, 
we prove that, in the energy level H = hs , ∂Du

hs
and ∂Ds

hs
intersect (tangentially) at least once, 

and for this reason, ∂Du
hs

∩ ∂Ds
hs

may have more than one point. Also, our methods show that, 
for h > hs , ∂Du

h ∩∂Ds
h has at least two points and Du

h ∩Ds
h has at least one connected component 

with positive Lebesgue measure (see Fig. 5 top-right).

2.2.1. The critical energy level hc

From our approach and the definitions of Section 1.2, the critical energy level occurs for the 
smallest h such that Wu

ε (p−
h ) ⊂ Ws

ε (�+
κ1,κ2

), for some κ1, κ2 satisfying κ1 + κ2 = h. Thus, hc

occurs when Wu
ε (p−

hc
) ⊂ Ws

ε (�+
hc

).
Geometrically speaking, hc is characterized as the energy level such that P u

hc
belongs to the 

boundary of the (topological) disk Ds
hc

“centered” at P s
hc

(see Fig. 5 bottom-left). In the next 
theorem, whose proof is given in Section 4.4 we compute hc = hc(ε).

Theorem C (Existence of heteroclinic connections between p−
h and �+

h ). Consider system (10). 
There exist ε0 > 0, h0 > 0 and a function

hc(ε) = 2π2εe−2�
√

2/ε(1 +O(ε)), with 0 < ε < ε0,

such that, for every 0 < ε < ε0 and 0 < h < h0, the invariant manifolds Wu
ε (p−

h ), Ws
ε (�+

h )

intersect �h (given in (20)). The first intersection of Wu
ε (p−

h ), Ws
ε (�+

h ) with �h is given by a 
point and a closed curve, denoted by P u

h and ∂Ds
h, respectively. Then, P u

h ∈ ∂Ds
h if, and only if 

h = hc(ε).

Theorem C also holds if we change p−
h and �+

h by p+
h and �−

h , respectively.
Now, given h ≥ hc , we compute the radius κ2 = κ2(h) of the periodic orbit �+

κ1,κ2
such that 

p−
h connects to �+

κ1,κ2
through a heteroclinic orbit.

Theorem D. There exist ε0 > 0, h0 > 0 sufficiently small such that, for each 0 < ε < ε0 and 
hc(ε) ≤ h < hc(ε) +2π2εe−2�

√
2/εh0, where hc(ε) is given by Theorem C, there exists a function

κ :
(
hc(ε), hc(ε) + 2π2εe−2�

√
2/εh0

)
→ R,

such that

(1) 0 < κ(h) < h and lim
h→hc(ε)+

κ(h) = 0;

(2) For system (10), Wu(p−) ⊂ Ws(�+ );
ε h ε κ(h),h−κ(h)
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(3) There exists an orbit of (10) with input velocity vi = 4
√

h and output velocity vf = 4
√

κ(h). 
Furthermore, define vc = 4

√
hc, then

vf =√
2vccε

√
vi − vc +O((vi − vc)

3/2), (22)

where cε = 1 +O(ε).

The last item of Theorem D proves the conjecture vf ≈ O
(
(vi − vc)

1/2
)

raised in [7]. This 
theorem is proved in Section 4.5.

3. Heuristics of the proof

We devote this section to give the main ideas of the proofs of Theorems A, B, C and D. As 
we will see, the most delicate part of the proof is to obtain (21a) in Theorem A, where we give 
an asymptotic formula for the difference between the one-dimensional unstable manifold of p−

0
and the stable one of p+

0 at the section �0. Once this item is proved, the remaining results will 
follow studying the dependence on h of the stable and unstable manifolds of the different objects 
�±

κ1,κ2
considered.

To obtain the results in Theorem A, it will be more convenient to work in coordinates � =
B + ib and � = B − ib. In these coordinates, System (10) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X′ = Z

8
,

Z′ = −U ′(X) − δ√
2�

F ′(X)
(� − �)

2i
,

�′ = ωi� − δ√
2�

F(X),

�′ = −ωi� − δ√
2�

F(X),

with

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ = ε3/4,

ω = �√
ε
,

� =
√

1 − ε2

4
.

(23)

This system is Hamiltonian with respect to

H(X,Z,�,�) = Z2

16
+ U(X) + δ√

2�
F(X)

� − �

2i
+ ω

2
��, (24)

and the symplectic form dX ∧ dZ + 1

2i
d� ∧ d�.

In the next section, we summarize the information we need about the unperturbed case F = 0.

3.1. Decoupled system (F = 0)

We parameterize the invariant manifolds W(κ1, κ2) (see (17)) of the decoupled system (23)
(with δ = 0) in the coordinates (X, Z, �, �).

Lemma 3.1. The one-dimensional invariant manifold W(h, 0) = Wu
0 (p−

h ) = Ws
0 (p+

h ) is param-
eterized in the coordinate system (X, Z, �, �) by
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Nh,0(v) = (Xh(v),Zh(v),0,0), v ∈ R, (25)

such that

(1) If h = 0, then

X0(v) = arcsinh

(√
2

2
v

)
,

Z0(v) = 8(X0)
′(v) = 8√

v2 + 2
.

(26)

(2) If h > 0, then

Xh(v) = arcsinh

(√
2 + h

h
sinh

(
v
√

h/2
))

,

Zh(v) = 8(Xh)
′(v) = 4 cosh(v

√
h/2)√

1
2+h

+ sinh2(v
√

h/2)
h

.

(27)

A simple application of the L’Hospital rule shows us that Xh(v) → X0(v), pointwise, as 
h → 0. Nevertheless, the decay of Xh as v → ±∞ is significantly different from X0 (for h = 0
the decay is polynomial whereas for h > 0 is exponential). Notice that N0,0(v) has poles at the 
points ±√

2i, whereas the poles of Nh,0(v) are all contained in the imaginary axis and the closest 
to the real line are ±√

2i +O(h).

Lemma 3.2. The two-dimensional invariant manifold W(κ1, κ2) = Wu
0 (�−

κ1,κ2
) = Ws

0 (�+
κ1,κ2

), 
with κ1 ≥ 0, κ2 > 0 and κ1 + κ2 = h is parameterized in the coordinate system (X, Z, �, �) by

Nκ1,κ2(v, τ ) = (Xκ1(v),Zκ1(v),�κ2(τ ),�κ2(τ )), (28)

with v ∈R and τ ∈ T , such that

�κ2(τ ) =
√

2κ2

ω
eiτ and �κ2(τ ) =

√
2κ2

ω
e−iτ , (29)

and Xκ1 , Zκ1 are given in (26) (κ1 = 0) and (27) (κ1 > 0).

Notice that Nκ1,κ2(v, τ) → Nκ1,0(v) as κ2 → 0 uniformly, and thus the dependence of Nκ1,κ2

is regular at κ2 = 0.

Remark 3.3. Notice that, if κ2 = 0, then Nκ1,κ2 depends on one variable and if κ2 > 0, it depends 
on two variables.

Remark 3.4. The functions Nκ1,κ2(v, τ), with v or τ fixed, do not parameterize the solutions of 
(23) for δ = 0. Nevertheless, if φ0(·) denotes the flow of (23) for δ = 0, we have
t
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Fig. 6. Complex domains Du
ε and Ds

ε .

φ0
t (Nκ1,κ2(v, τ )) = Nκ1,κ2(v + t, τ + ωt),

and therefore the manifolds parameterized by Nκ1,κ2(v, τ) are invariant by the flow.

3.2. The invariant manifolds Wu
ε (p−

0 ) and Ws
ε (p+

0 ) and its difference

We devote this section to give the main ideas of the proof of the first item of Theorem A. First, 
in Section 4.1 we find parameterizations of the perturbed invariant manifolds of the different 
objects �±

κ1,κ2
in terms of the parameters v and τ (see Lemma 3.2) in suitable complex domains.

More specifically, in Section 4.1.1 (see Theorem 4.1) we study parameterizations of the one-
dimensional invariant manifolds Wu

ε (p−
0 ) and Ws

ε (p+
0 ) of the form

N�
0,0(v) = (X0(v),Z�

0(v),��
0(v),��

0(v)), � = u, s. (30)

That is, we parameterize the invariant manifolds as graphs. Those parameterizations are close to 
N0,0 (see (25), (26)), in the complex domains

Du
ε = {v ∈C; | Im(v)| < − tanβ Re(v) + √

2 − √
ε},

Ds
ε = {v ∈C; −v ∈ Du

ε },
(31)

where 0 < β < π/4 is a fixed angle independent of ε (see Fig. 6). Observe that the parameteri-
zation N0,0(v) in (26) has singularities only at ±√

2i, thus N0,0 is analytic in Du,s
ε . The reason 

why we look for the parameterizations in complex domains instead of just for real values of the 
parameters will be clear later. Indeed, the analytic continuation of the parameterizations of the 
invariant manifolds into these complex domains is fundamental in obtaining the exponentially 
small estimates for the distance between the invariant manifolds.

Both parameterizations Nu,s
0,0 (v) are defined in the complex domain Dε = Du

ε ∩ Ds
ε , which 

contains 0 (see Fig. 7). To compute the difference between the invariant manifolds in the section 
�0 (see (20)), we analyze its difference �ξ(v) given by

�ξ(v) =
(

��(v)

� (v)

)
=
(

�u
0(v) − �s

0(v)

�u(v) − �s(v)

)
,

� 0 0
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Fig. 7. Domain Dε where both parameterizations N∗
0.0 are defined.

for v ∈ Iε = Dε ∩R. Note that the invariant manifolds are parameterized as graphs and therefore 
these quantities just measure the distance between the invariant manifolds on the section v =
constant (equivalently X = constant) projected into the � and � direction. The distance in the Z
direction can be deduced from the energy conservation.

As both parameterizations are solutions of the same equation, using also the energy conserva-
tion, one can see that its difference �ξ satisfies a linear equation

�ξ ′ =
(

ωi 0
0 −ωi

)
�ξ + B(v)�ξ, (32)

where the entries of the matrix B are functions of order O(ε8/3) in Dε .
The main observation is that, if B ≡ 0, then �ξ is the analytic function

�ξ(v) =
(

eωi(v−v0)��(v0)

e−ωi(v−v1)��(v1)

)
,

for any v0, v1 ∈ Dε . Thus, choosing v0 = −i(
√

2 − √
ε) ∈ Dε and v1 = i(

√
2 − √

ε) ∈ Dε , we 
have that, for v ∈ Iε ,

|��(v)| � e−√
2ω|��(v0)| � e

−
√

2
ε |��(v0)|,

|��(v)| � e−√
2ω|��(v1)| � e

−
√

2
ε |��(v1)|.

Now, using the results of Theorem 4.1 below, we have that |��(v0)| and |��(v1)| are of order 
ε4/3 obtaining that

�ξ(v) � e
−
√

2
ε ε4/3, v ∈ Iε = Dε ∩R,
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and therefore it is exponentially small with respect to ε.
In Section 6.2, we implement these ideas in the proof of the formula (21a) in Theorem A to 

obtain the asymptotic formula for �ξ using that B is small.

3.3. The invariant manifolds Wu,s
ε (�±

κ1,κ2
)

Next step is to study the stable and unstable manifolds of the rest of invariant objects �±
κ1,κ2

, 
for κ1 + κ2 = h > 0, including the special case κ1 = h, κ2 = 0 which correspond to the points 
p±

h . For these manifolds we perform a perturbative analysis in κ1 and κ2 and therefore we need 
not to face exponentially small phenomena. For this reason, it is enough to analyze them in the 
consider complex domains

Du =
{
v ∈ C; | Im(v)| ≤ − tan(β)Re(v) + √

2/2
}

,

Ds = {v ∈C; −v ∈ Du},
(33)

for some 0 < β < π/4 fixed. Note that these domains are independent of ε, (in particular, the 
distance of the singularities of N0,0 to those domains is independent of ε). We also consider

Tσ = {τ ∈ C; | Im(τ )| < σ and Re(τ ) ∈T }. (34)

The parameterizations of the invariant manifolds Wu,s
ε (�±

κ1,κ2
) are obtained in Theorems 4.3, 4.5

and 4.6. In Theorem 4.8 we compare these parameterizations with N∗
0,0, ∗ = u, s. Then, to obtain 

information about the possible intersections between the unstable manifold Wu
ε (�−

κ1,κ2
) and the 

stable manifold Ws
ε (�+

κ ′
1,κ

′
2
), where h = κ1 + κ2 = κ ′

1 + κ ′
2 > 0 we just use the estimates (21a) in 

Theorem A and the estimates of Theorem 4.8.
More concretely, to prove the estimate (21b) in Theorem A, we use Theorem 4.8 to approx-

imate the points P u,s
h by the points P u,s

0 , and the result will follow from estimate (21a). The 
results of Theorem B are obtained looking for the minimum value of h = hs that ensures that 
there are intersections between Wu

ε (�−
h ) and Ws

ε (�+
h ). Analogously, the results of Theorem C

are obtained looking for the minimum value of h = hc where there are intersections between 
Wu

ε (p−
h ) and Ws

ε (�+
h ), which, in fact, means that Wu

ε (p−
h ) ⊂ Ws

ε (�+
h ). Finally, in Theorem D, 

we prove that if the energy h = hc of the system is slightly increased, then there also exists a 
heteroclinic connection between the point p−

h and a periodic orbit �+
κ1,κ2

at X = +∞. More 
specifically, for h > hc, Wu

ε (p−
h ) ⊂ Ws

ε (�+
κ(h),h−κ(h)), where κ(h) is a small number between 

0 and h, in such a way that, if h → hc , then �+
κ(h),h−κ(h) → �+

hc
. Furthermore, we obtained an 

estimate for the final velocity vf = 4
√

κ(h) of the heteroclinic in terms of the initial one.

4. Proofs of Theorems A, B, C and D

4.1. Parameterizations of the invariant manifolds Wu(�−
κ1,κ2

), Ws(�+
κ1,κ2

)

We devote this section to build and analyze suitable parameterizations of the invariant man-
ifolds of the periodic orbits �±

κ1,κ2
. The construction of the manifolds for the different cases is 

analogous: we find them through a Perron-like method suitable on complex domains. Never-
theless, as explained in Section 3, the complex domains are significantly different in the case 
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κ1 = κ2 = 0, that is, when we construct Wu
ε (p−

0 ) and Ws
ε (p+

0 ). In this case, to be able to obtain 
the results about their difference in Theorem A, we need to construct these manifolds in the do-
mains (31), which reach a neighborhood of size 

√
ε of the singularities ±√

2i of N(0, 0). For 
the rest of the invariant manifolds we will use the domains (33) whose points are always at a 
distance of these singularities independent of ε.

4.1.1. Parameterizations of the invariant manifolds Wu
ε (p−

0 ), Ws
ε (p+

0 )

In this section we consider parameterizations N�
0,0(v), � = u, s, given by (30), of the invariant 

manifolds Wu
ε (p−

0 ) and Ws
ε (p+

0 ) near N0,0, in the complex domains Du
ε and Ds

ε given by (31), 
respectively. The parameterization N0,0(v) in (26) has singularities only at ±√

2i, thus N0,0 is 
analytic in Du,s

ε .
We state all the results for the unstable case, since it is analogous for the stable one. Based on 

a fixed point argument, we prove the following theorem in Section 5.

Theorem 4.1. Given ν > 0. There exists ε0 > 0 such that, for 0 < ε ≤ ε0, the one-dimensional 
manifold Wu

ε (p−
0 ) is parameterized by

Nu
0,0(v) = (X0(v),Zu

0 (v),�u
0(v),�u

0(v)), (35)

with v ∈ Du
ε , where X0 is given in (26), Zu

0 (v) is obtained from H(Nu
0,0(v)) = 0 (H given in 

(24)) and

{
�u

0(v) = Q0(v) + γ u
0 (v),

�u
0(v) = −Q0(v) + θu

0 (v),
(36)

with

Q0(v) = −i
δ

ω
√

2�
F(X0(v)) = δ

ω

2iv√
2�(2 + v2)

. (37)

Furthermore, γ u
0 (v), θu

0 (v) are analytic functions such that θu
0 (v) = γ u

0 (v), for every v ∈
R ∩ Du

ε , and there exists a constant M > 0 independent of ε such that

(1)
∣∣γ u

0 (v)
∣∣ , ∣∣θu

0 (v)
∣∣≤ M

δ

ω2

1

|v|2 , for each v ∈ Du
ε , | Re(v)| ≤ ν;

(2)
∣∣γ u

0 (v)
∣∣ , ∣∣θu

0 (v)
∣∣≤ M

δ

ω2

1

|v2 + 2|2 , for each v ∈ Du
ε , | Re(v)| ≥ ν.

Remark 4.2. Notice the points p±
0 behave as degenerate-saddles at infinity, and thus the exis-

tence of local invariant manifolds for the perturbed system is not standard. Nevertheless, these 
singularities at infinity behave as parabolic points (see Remark 1.1) and Theorem 4.1 gives the 
existence of their invariant manifolds.

Next sections are devoted to find parameterizations of the invariant manifolds Wu
ε (�−

κ1,κ2
)

and Ws(�+
,κ ), for κ1, κ2 ≥ 0 and κ1 + κ2 = h > 0. Even if one theorem could contain all the 
ε κ1 2
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results for κ1 ≥ 0 and κ2 ≥ 0, we state three separate theorems, Theorem 4.3 (κ1 = 0), Theo-
rem 4.5 (κ2 = 0) and Theorem 4.6 (κ1, κ2 > 0), to clarify the exposition (and the structure of the 
corresponding proofs).

4.1.2. Zero energy for the pendulum (separatrix case κ1 = 0 and κ2 = h > 0)
We look for parameterizations of the 2-dimensional invariant manifolds Wu

ε (�−
h ) and 

Ws
ε (�+

h ),

N�
0,h(v, τ ) = (

X0(v),Z0(v) + Z�
0,h(v, τ ),�h(τ ) + ��

0,h(v, τ ),�h(τ) + ��
0,h(v, τ )

)
, � = u, s,

as perturbations of W(0, h) (see Lemma 3.2) in the domains D� × Tσ , � = u, s (see (33) and 
(34)).

We prove the following theorem in Section 7.

Theorem 4.3. Fix σ > 0 and h0 > 0. There exists ε0 > 0 sufficiently small such that, for 0 < ε ≤
ε0 and 0 < h ≤ h0, Wu

ε (�−
h ) is parameterized by

Nu
0,h(v, τ ) = (X0(v),Z0(v) + Zu

0,h(v, τ ),�h(τ ) + �u
0,h(v, τ ),�h(τ) + �u

0,h(v, τ )), (38)

with v ∈ Du (see (33)) and τ ∈ Tσ , where X0, Z0, �h, �h are given by (26) and (29),

⎧⎪⎪⎨⎪⎪⎩
Zu

0,h(v, τ ) = Z0,h(v, τ ) + zu
0,h(v, τ ),

�u
0,h(v, τ ) = Q0(v) + γ u

0,h(v, τ ),

�u
0,h(v, τ ) = −Q0(v) + θu

0,h(v, τ ),

(39)

where Q0 is given by (37), and

Z0,h(v, τ ) = δ

ω
√

2�
F ′(X0(v))

�h(τ) + �h(τ)

2
= O

(
δ
√

h

ω3/2

1√
v2 + 2

)
. (40)

Furthermore, zu
0,h is a real-analytic function and γ u

0,h, θ
u
0,h are analytic functions satisfying

θu
0,h(v, τ ) = γ u

0,h(v, τ ), (v, τ ) ∈R2 ∩ Du ×Tσ ,

such that there exists a constant M > 0 independent of ε and h such that, for (v, τ) ∈ Du ×Tσ ,

|zu
0,h(v, τ )|, |γ u

0,h(v, τ )|, |θu
0,h(v, τ )| ≤ M

δ

ω

1

|√v2 + 2| . (41)

Remark 4.4. We stress that the estimates in (40) and (41) and are only valid for v2 + 2 > 1/2
and therefore do not give any information about the behavior of Nu

0,h(v, τ) near the singularities 

v = ±i
√

2. The role of these bounds is to show how the functions decay as v → ±∞.



O.M.L. Gomide et al. / J. Differential Equations 269 (2020) 3282–3346 3301
4.1.3. Positive energy for the pendulum
This section is devoted to study the invariant manifolds of the periodic orbits �∓

κ1,κ2
for κ1 > 0. 

First, we consider the case κ1 = h and κ2 = 0. In this case �∓
h,0 = p∓

h is a point. We apply the 
same ideas of Section 4.1.1 to parameterize Wu

ε (p−
h ) as

Nu
h,0(v) = (Xh(v),Zu

h,0(v),�u
h,0(v),�u

h,0(v)),

where Xh(v) has been introduced in (27). The main difference is that we need to take into account 
the singular dependence on the parameter h at h = 0. Indeed, one has to be careful of the analysis 
of the parameterizations of the invariant manifolds as v → ±∞ since Xh decays exponentially 
for h > 0 and polynomially for h = 0.

As in Theorem 4.3, for our purposes it is sufficient to parameterize the manifolds in the do-
mains Du,s (see (33)). We prove the following theorem in Section 8.

Theorem 4.5. There exist ε0 > 0 and h0 > 0 sufficiently small such that, for 0 < ε ≤ ε0 and 
0 < h ≤ h0, Wu

ε (p−
h ) is parameterized by

Nu
h,0(v) = (Xh(v),Zu

h,0(v),�u
h,0(v),�u

h,0(v)), v ∈ Du,

where Xh is given by (27), Zu
h,0(v) is obtained from H(Nu

h,0(v)) = h (H given in (24)) and

{
�u

h,0(v) = Qh(v) + γ u
h,0(v),

�u
h,0(v) = −Qh(v) + θu

h,0(v),
(42)

with

Qh(v) = −i
δ

ω
√

2�
F(Xh(v)) = O

(
δ

ω

1√
v2 + 2

)
. (43)

Furthermore, γ u
h,0(v), θu

h,0(v) are analytic functions satisfying θu
h,0(v) = γ u

h,0(v) for v ∈ R ∩ Du

such that there exists a constant M > 0 independent of ε such that for v ∈ Du

∣∣γ u
h,0(v)

∣∣ , ∣∣θu
h,0(v)

∣∣≤ M
δ

ω2

1

|v2 + 2| . (44)

Finally we deal with the case κ1, κ2 > 0. Next theorem, proven in Section 9, gives the param-
eterizations of Wu

ε (�−
κ1,κ2

).

Theorem 4.6. Fix σ > 0. There exist ε0 > 0 and h0 > 0 sufficiently small such that, for 0 <
ε ≤ ε0, 0 < h ≤ h0, and κ1 > 0, κ2 ≥ 0 with κ1 + κ2 = h, the invariant manifold Wu

ε (�−
κ1,κ2

) is 
parameterized by

Nu
κ1,κ2

(v, τ ) = (Xκ1(v),Zκ1(v) + Zu
κ1,κ2

(v, τ ),�κ2(τ ) + �u
κ1,κ2

(v, τ ),�κ2(τ ) + �u
κ1,κ2

(v, τ )),

for (v, τ) ∈ Du ×Tσ , where Xκ , Zκ , �κ , �κ are given by (27) and (29),
1 1 2 2



3302 O.M.L. Gomide et al. / J. Differential Equations 269 (2020) 3282–3346
⎧⎪⎪⎨⎪⎪⎩
Zu

κ1,κ2
(v, τ ) = Zκ1,κ2(v, τ ) + zu

κ1,κ2
(v, τ ),

�u
κ1,κ2

(v, τ ) = Qκ1(v) + γ u
κ1,κ2

(v, τ ),

�u
κ1,κ2

(v, τ ) = −Qκ1(v) + θu
κ1,κ2

(v, τ ),

(45)

where Qκ1 is given in (43) and

Zκ1,κ2(v, τ ) = δ

ω
√

2�
F ′(Xκ1(v))

�κ2(τ ) + �κ2(τ )

2
= O

(
δ
√

κ2

ω3/2

1√
v2 + 2

)
.

Furthermore, zu
κ1,κ2

is a real-analytic function and γ u
κ1,κ2

, θu
κ1,κ2

are analytic functions satisfying 
θu
κ1,κ2

(v, τ) = γ u
κ1,κ2

(v, τ ) for (v, τ) ∈ R2 ∩ Du × Tσ such that there exists a constant M > 0
independent of ε, κ1 and κ2 such that, for (v, τ) ∈ Du ×Tσ (see (33)),

|zu
κ1,κ2

(v, τ )|, |γ u
κ1,κ2

(v, τ )|, |θu
κ1,κ2

(v, τ )| ≤ M
δ

ω

1

|√v2 + 2| . (46)

4.2. Proof of Theorem A

We devote this section to complete the proofs of Theorem A. That is, to obtain (21a) and (21b). 
Note that these two asymptotic formulas are of significantly different nature. The first one is an 
asymptotic formula in ε. Since the leading-order approximation is exponentially small, one has 
to follow the techniques explained in Section 3. This is done in Section 4.2.1. On the contrary, 
(21b) is an asymptotic formula in h (which is not exponentially small) and therefore the analysis 
is done just for the real parameterizations. This is done in Section 4.2.2.

4.2.1. Splitting of Wu
ε (p−

0 ) and Ws
ε (p+

0 )

By Theorem 4.1, both parameterizations Nu,s
0,0 (v) are defined in the complex domain Dε =

Du
ε ∩ Ds

ε , which contains 0 (see Fig. 7). As explained in Section 3.2, to compute the difference 
between the invariant manifolds in the section �0 (see (20)), we analyze �ξ(v) given by

�ξ(v) =
(

�u
0(v) − �s

0(v)

�u
0(v) − �s

0(v)

)
,

for v ∈ Iε = Dε ∩R.
In Section 6.2, we prove that �ξ satisfies (32) and we also prove the following theorem, which 

provides an asymptotic formula for the difference �ξ . This theorem implies the estimate (21a)
in Theorem A.

Theorem 4.7. Consider system (23). Given any compact interval I ⊂ R containing 0, there exists 
ε0 > 0 sufficiently small such that, for every 0 < ε < ε0, the parameterizations N�

0,0(v), � = u, s, 
given in (30), are defined for v ∈ I and satisfy⎧⎪⎪⎨⎪⎪⎩

�u
0(0) − �s

0(0) = −i
2πδ√

�
e−√

2ω +O(ωδ3e−√
2ω),

�u
0(0) − �s

0(0) = i
2πδ√ e−√

2ω +O(ωδ3e−√
2ω).

(47)
�
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4.2.2. Approximation of Wu
ε (�−

κ1,κ2
) by Wu

ε (p−
0 ) in the section �h

Recall that for the unperturbed case, we have that

W(κ1, κ2) ∩ �h = {(Z,b,B); Z = 4
√

2 + κ1 and b2 + B2 = 2κ2/ω},

(see (17)). Thus, the sets W(κ1, κ2) ∩ �h and W(0, 0) ∩ �0 are (κ1 + √
κ2)-close. Since the 

perturbed invariant manifolds are close to the unperturbed ones (see Theorems 4.3, 4.5, 4.6), 
in the next theorem we approximate Wu

ε (�−
κ1,κ2

) by Wu
ε (p−

0 ) for κ1, κ2 small. Using energy 
conservation and the fact that � and � are complex conjugate for real values of the variables, 
it is enough to compare the invariant manifolds only in the variable �. We define the projection 
π�(X, Z, �, �) = �.

Theorem 4.8. Consider κ1, κ2 ≥ 0, κ1 + κ2 = h, and the parameterization of Nu
κ1,κ2

of 
Wu

ε (�−
κ1,κ2

) obtained in Theorems 4.1, 4.3, 4.5, and 4.6. Then, there exist ε0 > 0 and h0 > 0
sufficiently small such that for 0 < h ≤ h0 and 0 < ε ≤ ε0

π�Nu
κ1,κ2

(0, τ ) − π�Nu
0,0(0) = �κ2(τ ) +O

(
δ
√

κ1

ω2 + δ
√

κ2

ω3/2

)
, τ ∈T ,

where �κ2(τ ) has been introduced in (29).

The proof of this theorem is done in Section 10. The result of this theorem for κ1 = h and 
κ2 = 0 implies equation (21b) in Theorem A (note that we are abusing notation since, in this 
case, the function Nu

κ1,κ2
does not depend on τ ).

4.3. Proof of Theorem B

Theorems 4.3 and 4.8 provide, for 0 ≤ h ≤ h0, ε ≤ ε0, the existence of the invariant mani-
folds Wu

ε (�−
h ) and Ws

ε (�+
h ) and their approximation by Wu

ε (p−
h ) and Ws

ε (p+
h ). The invariant 

manifolds Wu
ε (�−

h ) and Ws
ε (�+

h ) are parameterized by

N
u,s
0,h (v, τ ) =

⎛⎜⎜⎜⎜⎜⎝
X0(v)

Z0(v) + Z0,h(v, τ ) + z
u,s
0,h(v, τ )

�h(τ) + �
u,s
0 (v) + Fu,s(v, τ, h, ε)

�h(τ) + �
u,s
0 (v) + Fu,s(v, τ, h, ε)

⎞⎟⎟⎟⎟⎟⎠ , (v, τ ) ∈ (Du,s ∩R) ×T ,

where X0, Z0 are given in (26), Z0,h and zu,s
0,h are given by (39), �h and �h are given in (29), 

�
u,s
0 , �u,s

0 are given in (36) and Fu,s are analytic functions such that

Fu,s(v, τ, h, ε) = O
(

δ
√

h

ω3/2

)
.

Consider the section �h (which corresponds to v = 0 ∈ Du ∩ Ds ). Then, Wu
ε (�−

h ) and Ws
ε (�+

h )

intersect along a heteroclinic orbit if and only if there exist τu, τ s in [−π, π) such that 
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Nu
0,h(0, τu) = Ns

0,h(0, τ s). Moreover, using energy conservation, Nu
0,h(0, τu) = Ns

0,h(0, τ s) if, 
and only if,

�h(τ
u) + �u

0(0) + Fu(0, τu, h, ε) = �h(τ
s) + �s

0(0) + F s(0, τ s, h, ε),

�h(τ
u) + �u

0(0) + Fu(0, τu, h, ε) = �h(τ
s) + �s

0(0) + Fu(0, τ s, h, ε).

Since τu, τ s ∈ R, using Theorem 4.7, the expression of �h in (29), the equations above are 
equivalent to √

2h

ω
(cos(τu) − cos(τ s)) + M1(ε) + F1(τ

u, τ s, h, ε) = 0,√
2h

ω
(sin(τu) − sin(τ s)) − 2πδ√

�
e−√

2ω + M2(ε) + F2(τ
u, τ s, h, ε) = 0,

(48)

where 0 < ε ≤ ε0, 0 < h ≤ h0 and M1, M2, F1, F2 are real-analytic functions such that

M1,M2 = O(ωδ3e−√
2ω) and F1,F2 = O

(
δ
√

h

ω3/2

)
.

We change the parameter h ≥ 0

h = π2ωδ2e−2
√

2ω

2�
μ2, for μ ≥ 0. (49)

Then, since 0 < h ≤ h0, it is sufficient to consider

0 < μ ≤ μ0 = 1

δ0π

√
2�0h0

ω0
e
√

2ω0,

where �0 =
√

1 − ε2
0/4, ω0 = �0/

√
ε0 and δ0 = ε

3/4
0 . Considering ε0 > 0 sufficiently small, we 

can assume that μ0 > 1. Replacing h in (48) and multiplying the equation by 

√
�

πδ
e
√

2ω > 0, we 

may rewrite (48) as

μ(cos(τu) − cos(τ s)) + M̃1(ε) + F̃1(τ
u, τ s,μ, ε) = 0,

μ(sin(τu) − sin(τ s)) − 2 + M̃2(ε) + F̃2(τ
u, τ s,μ, ε) = 0,

(50)

where M̃1, M̃2, F̃1, F̃2, are real-analytic functions such that

M̃1, M̃2 = O(ωδ2) and F̃1, F̃2 = O
(

δ

ω
μ

)
.

Define the function G = (G1, G2) : [−π, π]2 × (0, μ0] × [0, ε0] → R2 corresponding to the 
left-hand side of system (50). Recalling that δ = ε3/4 and ω = �/

√
ε, it is clear that
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G(τu, τ s,μ, ε) =
(

μ(cos(τu) − cos(τ s)) +O(ε)

μ(sin(τu) − sin(τ s)) − 2 +O(ε)

)
. (51)

The equation G(τu, τ s, μ, 0) = (0, 0) has a unique family of solutions

S0 = {(α,−α,1/ sin(α),0); arcsin(1/μ0) ≤ α ≤ π − arcsin(1/μ0)} .

We find zeroes of G using the Implicit Function Theorem around every solution of the family 
S0. Denote α0 = arcsin(1/μ0) and fix 0 < α0 ≤ α ≤ π − α0. Then,

(1) G(α, −α, 1/ sin(α), 0) = (0, 0),

(2) det

(
∂(G1,G2)

∂(μ, τ s)

)
(α, −α, 1/ sin(α), 0) = 2 sin(α) 
= 0.

Thus, it follows from the Implicit Function Theorem that there exist εα > 0 and unique functions 
τ s
α : (α − εα, α + εα) × [0, εα) → [−π, π], μα : (α − εα, α + εα) × [0, εα) → (0, μ0] such that

G(τu, τ s
α(τu, ε),μα(τu, ε), ε) = (0,0).

Furthermore {
τ s
α(τu, ε) = −α +O(τu − α, ε),

μα(τu, ε) = 1/ sin(α) +O(τu − α, ε),
τu ∈ (α − εα,α + εα). (52)

Consider the compact set K = [α0, π − α0]. We can find n ∈ N , α1, · · · , αn with respective
εα1 , · · · , εαn , previously found, such that the intervals (αi − εαi

, αi + εαi
), i = 1, · · · , n form a 

finite cover of K . Using the uniqueness of solutions obtained from the Implicit Function Theo-
rem, it is possible to conclude that there exist ε1 > 0 sufficiently small and functions

τ s∗
(
τu, ε

)= −τu +O(ε),

μ∗
(
τu, ε

)= 1/ sin(τu) +O(ε),

defined for every ε < ε1 and τu ∈ K , such that

G
(
τu, τ s∗

(
τu, ε

)
,μ∗

(
τu, ε

)
, ε
)= (0,0).

This implies that there exists at least one heteroclinic connection in the energy level

h = π2ωδ2e−2
√

2ω

2�
(μ∗(τu, ε))2, τu ∈ K.

Moreover, (μ∗(τu, 0))2 ≥ (μ∗(π/2, 0))2 = 1, for every τu ∈ K . Thus (μ∗(τu, ε))2 ≥ 1 + O(ε)

for τu ∈ K and ε < ε1. Therefore, since μ∗(π/2, ε) = 1 +O(ε), there must exist a curve τu
min(ε), 

such that

(μ∗(τu, ε))2 ≥ (μ∗(τu (ε), ε))2,
min
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for τu ∈ K , ε < ε1, and μ∗(τu
min(ε), ε) = 1 +O(ε).

Thus, defining

hs(ε) = π2ωδ2e−2
√

2ω

2�
(μ∗(τu

min(ε), ε))
2 = π2ωδ2e−2

√
2ω

2�
(1 +O(ε)),

system (23) has one heteroclinic orbit between the periodic orbits �−
h and �+

h in the energy level 
0 < h ≤ h0 if, and only if h ≥ hs(ε).

It only remains to prove the last statement of Theorem B. Given μ1 > 1, let τu
1 =

arcsin(μ−1
1 ) ∈ [α0, π/2) ⊂ K , and consider the function g(τu, ε) = μ∗(τu, ε) − μ∗(τu

1 , ε). Ap-
plying the Implicit Function Theorem to g = 0 at the point (π − τu

1 , 0), there exist εμ1 > 0 and 
a unique curve τu

2 = τu
2 (τu

1 , ε), defined for 0 ≤ ε < εμ1 , such that μ∗(τu
2 , ε) = μ∗(τu

1 , ε) and 
τu

2 (τu
1 , ε) = π − τu

1 + O(ε). Moreover, taking εμ1 small enough τu
1 
= τu

2 for ε < ετu
1

. Thus, in 
the energy level

hμ1 = π2ωδ2e−2
√

2ω

2�
(μ∗(τu

1 , ε))2,

where μ∗(τu
1 , ε) = μ1 +O(ε), there exist two heteroclinic connections corresponding to τu

1 and 
τu

2 .
This completes the proof of Theorem B.

Remark 4.9. Notice that g(π/2, 0) = ∂τug(π/2, 0) = 0 and ∂2
τug(π/2, 0) 
= 0. Unfortunately, 

the characterization of the bifurcation of zeros for ε > 0 becomes impossible, since there is no 
information on ∂εg(π/2, 0), and its computation requires complicated second order expansions 
which are beyond the objectives of this work. Nevertheless, under some non-degenericity condi-
tion, for example ∂εg(π/2, 0) 
= 0, it is possible to detect a saddle-node bifurcation.

4.4. Proof of Theorem C

Following the same lines of Section 4.3, we use Theorems 4.3 (for the invariant manifold 
Ws

ε (�+
h )), 4.5 (for the invariant manifold Wu

ε (p−
h )) and 4.8 (to compare them to Ws

ε (p+
0 ) and 

Wu
ε (p−

0 )). Then, we can see that Wu
δ (p−

h ) ⊂ Ws
δ (�+

h ), if and only if⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
√

2h

ω
cos(τ s) + M1(ε) + F1(τ

s, h, ε) = 0,

−
√

2h

ω
sin(τ s) − 2πδ√

�
e−√

2ω + M2(ε) + F2(τ
s, h, ε) = 0,

(53)

has solutions τu, τ s ∈ [−π, π], 0 < ε ≤ ε0, 0 < h ≤ h0 where h0 is given in Theorem 4.5. The 
functions Mj, Fj are real-analytic and satisfy

Mj = O(ωδ3e−√
2ω) and Fj = O

(
δ
√

h

ω3/2 + δ
√

h

ω2

)
, j = 1,2.

In order to look for solutions of (53), we consider the change
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h = 2π2ωδ2e−2
√

2ω

�
μ2, 0 < μ ≤ μ0 =

√
�0h0

δ0π
√

2ω0e−√
2ω0

. (54)

Considering ε0 > 0 sufficiently small, we can assume that μ0 > 1. Replacing h in (53) and 

multiplying it by 

√
�

2πδe−√
2ω

> 0, we may rewrite this system as

−μ cos(τ s) + M̃1(ε) + F̃1(τ
s,μ, ε) = 0,

−μ sin(τ s) − 1 + M̃2(ε) + F̃2(τ
s,μ, ε) = 0,

(55)

where M̃j , F̃j , are real-analytic functions such that

M̃j = O(ωδ2) and F̃j = O
(

δ

ω
μ

)
, j = 1,2.

Define the function G : [−π, π] × (0, μ0] ×[0, ε0] → R2 as the left-hand side of system (55). 
Recalling that δ = ε3/4 and ω = �/

√
ε, we can see that

G(τs,μ, ε) =
(− μ cos(τ s) +O(ε)

− μ sin(τ s) − 1 +O(ε)

)
. (56)

Since,

(1) G(−π/2, 1, 0) = (0, 0),

(2) det

(
∂(G1,G2)

∂(τ s,μ)

)
(−π/2, 1, 0) = 1,

we can apply the Implicit Function Theorem to obtain ε∗ > 0 and functions τ s∗ : [0, ε∗) →
[−π, π], μ∗ : [0, ε∗) → (0, μ0] such that G(τs∗(ε), μ∗(ε), ε) = 0 for 0 ≤ ε ≤ ε∗. Furthermore, 
τ s∗ (ε) = −π/2 +O(ε) and μ∗(ε) = 1 +O(ε).

Defining

hc(ε) = 2π2ωδ2e−2
√

2ω

�
(μ∗(ε))2 = 2π2ωδ2e−2

√
2ω

�
(1 +O(ε)),

and reducing ε0 to ε∗, Theorem C follows directly from these facts.

4.5. Proof of Theorem D

Following the same lines of Section 4.3, we use Theorems 4.5 (for the invariant manifold 
Wu

ε (p−
h )), 4.6 (for the invariant manifold Ws

ε (�+
κ1,κ2

)), and 4.8 (to compare them to Ws
ε (p+

0 )

and Wu(p−)). We can see that Wu(p−) ⊂ Ws(�+
,κ ), if and only if
ε 0 δ h δ κ1 2
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−
√

2κ2

ω
cos(τ s) + M1(ε) + F1(τ

s, h, ε) = 0,

−
√

2κ2

ω
sin(τ s) − 2πδ√

�
e−√

2ω + M2(ε) + F2(τ
s, h, ε) = 0,

(57)

has a solution τ s ∈ [−π, π] for 0 < ε ≤ ε0, 0 < h ≤ h0. The functions Mj, Fj are real-analytic 
and

Mj = O(ωδ3e−√
2ω) and Fj = O

(
δ
√

κ2

ω3/2 + δ
√

κ1

ω2 + δ
√

h

ω2

)
, j = 1,2, κ1 + κ2 = h.

We consider the change of parameters and variables

h = 2π2ωδ2e−2
√

2ω

�
(μ∗(ε) + μ)2, (58)

κ2 = 2π2ωδ2e−2
√

2ω

�
(μ∗(ε) + μ − ξ)2, (59)

τ s = τ s∗ (ε) + τ, (60)

where (μ∗(ε), τ s∗ (ε)) is the solution of (55). Since κ2 ≤ h, μ∗(ε) = 1 +O(ε) and we are looking 
for solutions with μ, ξ, τ ≈ 0, we have that ξ ≥ 0 and (μ∗(ε) + μ − ξ)2 ≤ (μ∗(ε) + μ)2.

Replacing h, κ2 and κ1 and multiplying it by 

√
�

2πδe−√
2ω

> 0, system (57) as

−(μ∗(ε) + μ − ξ) cos(τ s∗ (ε) + τ) + M̃1(ε) + F̃1(τ,μ, ξ, ε) = 0,

−(μ∗(ε) + μ − ξ) sin(τ s∗ (ε) + τ) − 1 + M̃2(ε) + F̃2(τ,μ, ξ, ε) = 0,
(61)

where M̃j , F̃j , are real-analytic functions such that M̃j = O(ωδ2) and

F̃j = O
(

δ

ω

(
(μ∗(ε) + μ − ξ) +

√
(μ∗(ε) + μ)2 + (μ∗(ε) + μ − ξ)2

ω1/2 + (μ∗(ε) + μ)

ω1/2

))
,

j = 1,2.

Define the function G : [−χ0, χ0] × [0, χ0] × [−χ0, χ0] × [0, χ0] → R2 as the left hand side 
of system (55) and fix χ0 > 0 small enough. Recalling that δ = ε3/4 and ω = �/

√
ε, we can see 

that

G(τ,μ, ξ, ε) =
(− (μ∗(ε) + μ − ξ) cos(τ s∗ (ε) + τ) +O(ε)

− (μ∗(ε) + μ − ξ) sin(τ s∗ (ε) + τ) − 1 +O(ε)

)
.

From Section 4.4, μ∗(0) = 1 and τ s∗ (0) = −π/2. Thus G(τ, μ, ξ, 0) = (0, 0) has a solution τ = 0
and μ = ξ . Since, we are looking for solutions with μ, ξ ≈ 0, we consider the solution μ = ξ = 0. 
Then, since
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(1) G(0, 0, 0, 0) = (0, 0),

(2) det

(
∂(G1,G2)

∂(τ, ξ)

)
(0, 0, 0, 0) = 1,

we can apply the Implicit Function Theorem to obtain ε0 > 0 and unique functions τ : [0, ε0) ×
[0, ε0) → [−χ0, χ0], ξ : [0, ε0) × [0, ε0) → [−χ0, χ0] such that G(τ(μ, ε), μ, ξ(μ, ε), ε) = 0. 
Furthermore τ(μ, ε) = O(μ, ε) and ξ(μ, ε) = O(μ, ε). For ε = 0, we have that ξ = μ and τ = 0
is a solution of G(τ, μ, ξ, ε) = (0, 0). Thus ξ(μ, 0) = μ and, for ε small enough, ξ(μ, ε) =
μ +O(ε).

Finally, if ξ = 0, then κ2 = h, κ1 = 0 and therefore (57) becomes (53). Thus, considering 
the different scalings done in the systems and the uniqueness of solutions of (53) obtained in 
Section 4.4, we conclude that ξ(0, ε) = τ(0, ε) ≡ 0.

These facts, allows us to see that

ξ(μ, ε) = cεμ +O(μ2), with cε = 1 +O(ε).

Hence, for μ ≥ 0 sufficiently small, in the energy level

hμ = 2π2ωδ2e−2
√

2ω

�
(μ∗(ε) + μ)2,

there exists a unique heteroclinic connection between p−
hμ

and �−
hμ

(κ
μ
1 , κμ

2 ), where

κ
μ
2 = 2π2ωδ2e−2

√
2ω

�
(μ∗(ε) + μ − ξ(μ, ε))2,

and κμ
1 = hμ − κ

μ
2 . Moreover, if −μ∗(ε) < μ < 0 there is no heteroclinic connections in the 

energy level hμ.

We set vi =√
hμ, vf =

√
κ

μ
1 and vc = √

hc, where

hc(ε) = 2π2ωδ2e−2
√

2ω

�
(μ∗(ε))2.

In what follows we give an asymptotic formula to the output velocity vf of orbits with incoming 
velocity vi ≈ vc. We omit the dependence of vi, vf on μ in order to simplify the notation. For 
μ ≥ 0 sufficiently small, we have

v2
f = κ

μ
1 = hμ − κ

μ
2

= 2π2ωδ2e−2
√

2ω

�

(
(μ∗(ε) + μ)2 − (μ∗(ε) + μ − ξ(μ, ε))2

)
= 2π2ωδ2e−2

√
2ω

�

(
ξ(μ, ε)(2(μ∗(ε) + μ) − ξ(μ, ε))

)
= 2π2ωδ2e−2

√
2ω

(cεμ +O(μ2))(2μ∗(ε) + (2 − cε)μ +O(μ2))

�
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= 2π2ωδ2e−2
√

2ω

�
(2μ∗(ε)cεμ +O(μ2)).

Notice that

vi − vc =
√

2π2ωδ2e−2
√

2ω

�
μ.

Thus

v2
f = 2vccε(vi − vc) +O((vi − vc)

2).

Finally, we obtain that

vf =√
2vccε

√
vi − vc +O((vi − vc)

3/2).

Theorem D follow directly from these facts.

5. Proof of Theorem 4.1

The strategy to prove the existence of Wu
ε (p−

0 ) and Ws
ε (p+

0 ) when δ 
= 0 (see (23)), is to look 
for a parameterization Nu

0,0(v) of Wu
ε (p±

0 ) as a perturbation of N0,0(v).
As in the unperturbed case W(0, 0) is parameterized as a graph over X (see (26)), we look for 

Nu
0,0 as

Nu
0,0(v) = (X0(v),Zu

0 (v),�u
0(v),�u

0(v)). (62)

Next lemma, which is straightforward, gives the equation Nu
0,0(v) has to satisfy to be invariant 

by the flow of (23).

Lemma 5.1. The invariant manifold Wu
δ (p−

0 ), with δ 
= 0, is parameterized by Nu
0,0(v) if and 

only if (�u
0(v), �u

0(v)) satisfy

d�

dv
(v) − ωi�(v) = − δ√

2�
F(X0(v)) +

(
Z0(v)

η̃0(v,�,�)
− 1

)(
ωi�(v) − δ√

2�
F(X0(v))

)
,

d�

dv
(v) + ωi�(v) = − δ√

2�
F(X0(v)) +

(
Z0(v)

η̃0(v,�,�)
− 1

)(
−ωi�(v) − δ√

2�
F(X0(v)))

)
,

lim
v→−∞�(v) = lim

v→−∞�(v) = 0,

(63)

where

η̃0(v,�,�) = 4

√
−U(X0(v)) − δ√

2�
F(X0(v))

�(v) − �(v)

2i
− ω

2
�(v)�(v), (64)

with X0 given in (26), U, F given in (8), and Zu(v) = η̃0(v, �u(v), �u(v)).
0 0 0
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The term δ√
2�

F(X0(v)) decays as 1/v as v → ∞. To have integrability, we consider the 
change of variables (36) to system (63). Then, (γ u

0 , θu
0 ) satisfy

d

dv
γ − ωiγ = ωiγ (η0(v, γ, θ) − 1) − (Q0)′(v),

d

dv
θ + ωiθ = −ωiθ(η0(v, γ, θ) − 1) + (Q0)′(v),

lim
v→−∞γ (v) = lim

v→−∞ θ(v) = 0,

(65)

where Q0 is given by (37) and

η0(v, γ, θ) =
(

1 + 4δ2

�ω

(
F(X0(v))

Z0(v)

)2

− 8ω
γ θ

(Z0(v))2

)−1/2

. (66)

To prove Theorem 4.1, it is sufficient to find a solution of (65).

Proposition 5.2. Fix ν > 0. There exists ε0 > 0 such that for 0 < ε ≤ ε0, the equation (65) has 
a solution (γ u

0 (v), θu
0 (v)) defined in the domain Du

ε ⊂ C (see (31)) such that θu
0 (v) = γ u

0 (v), for 
every v ∈ Du

ε ∩R. Furthermore, both γ u
0 , θu

0 satisfy bounds (1) and (2) of Theorem 4.1.

We look for a fixed point (γ u
0 , θu

0 ) of the operator

Gω,0 = Gω ◦F0, (67)

where

Gω(γ, θ)(v) =

⎛⎜⎜⎜⎜⎜⎜⎝

v∫
−∞

eωi(v−r)γ (r)dr

v∫
−∞

e−ωi(v−r)θ(r)dr

⎞⎟⎟⎟⎟⎟⎟⎠ , (68)

F0(γ, θ)(v) =
(

ωiγ (v)(η0(v, γ (v), θ(v)) − 1) − (Q0)′(v)

−ωiθ(v)(η0(v, γ (v), θ(v)) − 1) + (Q0)′(v)

)
, (69)

and Q0, η0 are given in (37) and (66), respectively.

5.1. Banach spaces and technical lemmas

In this section, we introduce a Banach space which will be used to find a fixed point of Gω,0.
Consider the complex domain Du

ε given in (31). For each analytic function f : Du
ε → C, 

ν > 0, α ≥ 0, we consider:

‖f ‖α,ν = sup
u

|v2f (v)| + sup
u

|(v2 + 2)αf (v)|. (70)

v∈Dε ∩{Re(v)≤−ν} v∈Dε ∩{Re(v)>−ν}
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For any ν > 0, and α > 0 fixed, the function space

Xα,ν = {f : Du
ε →C; f is an analytic function such that, ‖f ‖α,ν < ∞} (71)

is a Banach space with respect to the norm ‖ · ‖α,ν .
We also consider the product space

X 2
α,ν =

{
(f, g) ∈ Xα,ν ×Xα,ν; g(v) = f (v) for every v ∈ Du

ε ∩R
}

,

endowed with the norm

‖(f, g)‖α,ν = ‖f ‖α,ν + ‖g‖α,ν .

Proposition 5.3. Given ν > 0, α > 0 fixed, and (f, g) ∈ X 2
α,ν , we have that Gω(f, g) ∈ X 2

α,ν . 
Furthermore, there exists a constant M > 0 independent of ε such that

‖Gω(f,g)‖α,ν ≤ M

ω
‖(f, g)‖α,ν ,

for every (f, g) ∈X 2
α,ν .

The proof of Proposition 5.3 follows from [12].

Proposition 5.4. Let η0 be the function given in (66), and F0 given in (69). Given ν > 0 and 
K > 0, there exist ε0 > 0 and M > 0 such that:

For 0 < ε ≤ ε0 and (γj , θj ) ∈ B0(R) ⊂ X 2
2,ν where R = K

δ

ω2 and j = 1, 2, the following 

statements hold for v ∈ Du
ε .

(1)
∣∣η0(v, γj (v), θj (v)) − 1

∣∣≤ Mδ2;
(2) |η0(v, γ1(v), θ1(v)) − η0(v, γ2(v), θ2(v))| ≤ Mδω2‖(γ1, θ1) − (γ2, θ2)‖2,ν ;
(3) F0(γj , θj ) ∈ X 2

2,ν ;

(4) ‖F0(γ1, θ1) −F0(γ2, θ2)‖2,ν ≤ Mδ2ω‖(γ1, θ1) − (γ2, θ2)‖2,ν .

Proof. Replacing the expressions of F , X0 and Z0 given in (8) and (26) in (66), we obtain

η0(v, γ, θ) =
(

1 + δ2

4�ω

v2

v2 + 2
− (v2 + 2)ω

γ θ

8

)−1/2

. (72)

Taking γ, θ ∈ B0(R), the first statement of the proposition comes from the following inequalities∣∣∣∣ δ2

4�ω

v2

v2 + 2
− (v2 + 2)ω

γ θ

8

∣∣∣∣≤M
δ2

ω
, if Re(v) ≤ −ν,∣∣∣∣ δ2

4�ω

v2

v2 + 2
− (v2 + 2)ω

γ θ

8

∣∣∣∣≤Mδ2, if Re(v) ≥ −ν.
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We observe that

|η0(v, γ1, θ1) − η0(v, γ2, θ2)| ≤Mω|(v2 + 2)γ1(v)||θ1(v) − θ2(v)|
+ Mω|(v2 + 2)θ2(v)||γ1(v) − γ2(v)|

(73)

Thus, if Re(v) ≤ −ν, then

∣∣∣(v2 + 2)γ1(v)(θ1(v) − θ2(v))

∣∣∣≤ R

∣∣∣∣v2 + 2

v2

∣∣∣∣ ‖θ1 − θ2‖2,ν

|v|2 ≤ M
δ

ω2 ‖θ1 − θ2‖2,ν , (74)

whereas, if Re(v) ≥ −ν,∣∣∣(v2 + 2)γ1(v)(θ1(v) − θ2(v))

∣∣∣≤ M
δ√
ε
‖θ1 − θ2‖2,ν . (75)

Recalling that ω = �/
√

ε and joining (74) and (75), we obtain that estimate (75) holds in Du
ε . 

The other term in (73) is bounded in an analogous way. Thus, statement (2) holds.
If (γj , θj ) ∈ X 2

2,ν , then η0(v, γj , θj ) ∈ R, for each v ∈ Du
ε ∩ R, thus, it is clear that 

F0(γj , θj ) ∈ X 2
2,ν . Finally, for v ∈ Du

ε ,

|π1 ◦F0(γ1, θ1)(v)−π1 ◦F0(γ2, θ2)(v)|= ω |γ1(v)(η0(v, γ1, θ1)−1)−γ2(v)(η0(v, γ2, θ2)−1)|
≤ Mδ2

(
1

ω
+ 1

)
ω|γ1(v) − γ2(v)|

+Mδω3‖(γ1, θ1) − (γ2, θ2)‖2,ν |γ2(v)|.

Therefore,

‖π1 ◦F0(γ1, θ1) − π1 ◦F0(γ2, θ2)‖2,ν ≤Mδ2
(

1

ω
+ 1

)
ω‖γ1 − γ2‖2,ν

+ MRδω3‖(γ1, θ1) − (γ2, θ2)‖2,ν

≤Mδ2ω‖(γ1, θ1) − (γ2, θ2)‖2,ν .

We can prove the same bound for the second coordinate of F0 analogously. �
Proposition 5.5. Consider the operator Gω,0 = Gω ◦F0, where Gω and F0 are given in (68) and 
(69). Given ν > 0, there exists a constant M > 0 independent of ε, such that

∥∥Gω,0(0,0)
∥∥

2,ν
≤ M

δ

ω2 .

Proof. Recall that F0(0, 0) = (−(Q0)′(v), (Q0)′(v)), where Q0 is given by (37). Thus 
π1 ◦F0(0,0)(v) = π2 ◦F0(0, 0)(v), for each v ∈ Du

ε ∩R and

‖F0(0,0)‖2,ν = 2
δ√ ‖F(X0)

′‖2,ν .

ω 2�
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A straightforward computation shows that

F(X0(v))′ = 2
√

2(v2 − 2)

(v2 + 2)2 .

Then,

|v2F(X0(v))′| ≤ M, for Re(v) ≤ −ν,

|(v2 + 2)2F(X0(v))′| ≤ M|v2 + 2| ≤ M, for Re(v) ≥ −ν.

The result follows directly from these bounds and Proposition 5.3. �
5.2. The fixed point argument

Finally, we prove the existence of a fixed point of Gω,0.

Proposition 5.6. Given ν > 0 fixed. There exists ε0 > 0 such that for ε ≤ ε0, the operator Gω,0
has a fixed point (γ u

0 , θu
0 ) in X 2

2,ν . Furthermore, there exists a constant M > 0 independent of ε
such that

‖(γ u
0 , θu

0 )‖2,ν ≤ M
δ

ω2 .

Proof. From Proposition 5.5, there exists a constant b1 > 0 independent of h and ε such that∥∥Gω,0(0,0)
∥∥

2,ν
≤ b1

2

δ

ω2 .

Given (γ1, θ1), (γ2, θ2) ∈ B0(b1δ/ω
2) ⊂ X 2

2,ν , we can use Propositions 5.3, 5.4 (with K = b1) 
and the linearity of the operator Gω to see that∥∥Gω,0(γ1, θ1) − Gω,0(γ2, θ2)

∥∥
2,ν

≤ M

ω
‖F0(γ1, θ1) −F0(γ2, θ2)‖2,ν

≤ Mδ2‖(γ1, θ1) − (γ2, θ2)‖2,ν .

Thus, choosing ε0 sufficiently small, we have that Lip(Gω,0) ≤ 1/2. Also, it follows that 
π1 ◦ Gω,0(γ, θ)(v) = π2 ◦ Gω,0(γ, θ)(v), for each v ∈ Du

ε ∩R and (γ, θ) ∈ B0(b1δ/ω
2).

Therefore Gω,0 sends the ball B0(b1δ/ω
2) into itself and it is a contraction. Thus, it has a 

unique fixed point (γ u
0 , θu

0 ) ∈ B0(b1δ/ω
2). �

Proposition 5.2 is a consequence of Proposition 5.6.

6. Proof of Theorem 4.7

6.1. The difference map

In Proposition 5.6, we have found complex functions ��
0 = Q0 + γ �

0 and ��
0 = −Q0 + θ�

0
defined in the complex domains D�

ε , respectively, such that,

N� (v) = (X0(v),Z�(v),��(v),��(v)),
0,0 0 0 0
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are parameterizations of W�
δ (p∓

0 ) of (23). Both (�u
0, �u

0) and (�s
0, �

s
0) are defined in the complex 

domain

Dε = Du
ε ∩ Ds

ε. (76)

Note that 0 ∈ Iε := Dε ∩ R. To prove that the heteroclinic connection between p−
0 and p+

0 of 
(23) is broken for ε > 0 sufficiently small, it is sufficient to show that∣∣Nu

0,0(v) − Ns
0,0(v)

∣∣≥ ∣∣(�u
0,�u

0)(v) − (�s
0,�

s
0)(v)

∣∣> 0, (77)

for some v ∈ Iε . To this end, we study the difference map

�ξ(v) =
(

�u
0(v) − �s

0(v)

�u
0(v) − �s

0(v)

)
=
(

γ u
0 (v) − γ s

0 (v)

θu
0 (v) − θs

0(v)

)
, (78)

where (γ �
0 , θ�

0 ), � = u, s, are given by Proposition 5.6.

Proposition 6.1. The difference map �ξ satisfies the differential equation:

�ξ ′ = A�ξ + B(v)�ξ, (79)

where

A =
(

ωi 0
0 −ωi

)
and B(v) =

(
b1,1(v) b1,2(v)

b2,1(v) b2,2(v)

)
, (80)

and there exists a constant M independent of ε, such that for v ∈ Dε ,

|bj,k(v)| ≤ Mωδ2, j, k = 1,2. (81)

Proof. Recall that both (γ u,s
0 , θu,s

0 ) satisfy (65) and therefore(
γ ′ − ωiγ

θ ′ + ωiθ

)
= F0(γ, θ),

where F0 is given in (69). Therefore �ξ satisfies

�ξ ′ = A�ξ + G(v), (82)

where G(v) = g(v, γ u
0 (v), θu

0 (v)) − g(v, γ s
0 (v), θs

0(v)), with

g(v, z1, z2) =
(

iωz1(η0(v, z1, z2) − 1)

− iωz2(η0(v, z1, z2) − 1)

)
.

Notice that G(v) is a known function, since (γ u,s
0 , θu,s

0 ) are given by Proposition 5.6. We 
apply the Integral Mean Value Theorem to obtain
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g(v, γ u
0 , θu

0 ) − g(v, γ s
0 , θs

0) =
(

b1,1(v) b1,2(v)

b2,1(v) b2,2(v)

)
·
(

γ u
0 − γ s

0
θu

0 − θs
0

)
, (83)

where bj,k are analytic functions, j, k = 1, 2. Estimate (81) follows from Propositions 5.4 and 
5.6. �
6.2. Exponentially small splitting of Wu

ε (p−
0 ) and Ws

ε (p+
0 )

We study the solutions of (79). Notice that, if B = 0, then any analytic solution of (79) which 
is bounded in Dε is exponentially small with respect to ε for real values v ∈ Iε . In this section, 
we follow ideas from [3] to prove that the same holds for solutions of the full equation (79) using 
that B (given in (80)) is small for ε small enough.

We are interested in obtaining an asymptotic expression for �ξ given in (78). From Proposi-
tion 5.6, we have that (γ u,s

0 , θu,s
0 ) is obtained as a fixed point of Gu,s

ω,0. Thus, the difference map 
can be expressed as

�ξ = Gu
ω,0(γ

u
0 , θu

0 ) − Gs
ω,0(γ

s
0 , θs

0).

Therefore, as γ u,s
0 , θu,s

0 are small, it suggests that the dominant part of �ξ should be given by 
M = Gu

ω,0(0, 0) − Gs
ω,0(0, 0). For this reason, we decompose

�ξ = M+ �ξ1, (84)

where M = (M�, M�) is given by the Melnikov integrals

M�(v) = ieiωv

∞∫
−∞

e−iωr 2δ(r2 − 2)

ω
√

�(r2 + 2)2
dr = c0

1e
iωv,

M�(v) = −ie−iωv

∞∫
−∞

eiωr 2δ(r2 − 2)

ω
√

�(r2 + 2)2
dr = c0

2e
−iωv,

(85)

and �ξ1 = (�1
�, �1

�).
A straightforward computation proves the following lemma.

Lemma 6.2. The constants c0
1 and c0

2 are given by

c0
1 = −i

2πδ√
�

e−√
2ω, and c0

2 = c0
1. (86)

Theorem 4.7 is equivalent to the following theorem. The remainder of Section 6.2 is devoted 
to prove it.

Theorem 6.3. There exists ε0 > 0 sufficiently small such that for v ∈ Iε ⊂ R, 0 < ε ≤ ε0,

�ξ(v) = M(v) +O
(
ωδ3e−√

2ω
)

, (87)
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where M = (M�, M�) is the Melnikov vector defined in (85).

6.2.1. A fixed point argument for the error �ξ1
We write �ξ1 in (84) as solution of a fixed point equation in the functional space

E =
{
f :Dε →C2; f is analytic and ‖f ‖E < ∞

}
, (88)

where

‖f ‖E =
2∑

j=1

sup
v∈Dε

|(v2 + 2)2πj ◦ f (v)|. (89)

We also consider the linear operator H0 given by

H0(g)(v) =

⎛⎜⎜⎜⎜⎜⎜⎝
eωiv

v∫
v∗

e−iωrπ1(B(r) · g(r))dr

e−ωiv

v∫
v∗

eiωrπ2(B(r) · g(r))dr

⎞⎟⎟⎟⎟⎟⎟⎠ , (90)

where v∗ = −(
√

2 − √
ε)i and B is the matrix given (80).

Using (81), the operator H0 is well-defined from Eε to itself. To simplify the notation, we 
introduce the function

I (k1, k2)(v) = eAv

(
k1
k2

)
=
(

eiωvk1

e−iωvk2

)
, (91)

where kj ∈ C, j = 1, 2, v ∈ Dε and A is the matrix given by (80). Notice that M(v) =
I (c0

1, c
0
2)(v).

Lemma 6.4. The difference map �ξ belongs to Eε and ‖�ξ‖E ≤ Mε. Furthermore, there exist 
(c1, c2) ∈ C2 such that:

�ξ1(v) = I (c1 − c0
1, c2 − c0

2)(v) +H0(�ξ1)(v) +H0(M)(v), (92)

and |cj − c0
j | ≤ Mδ3e−√

2ω, j = 1, 2, where M is a constant independent of ε.

Proof. Since (γ u,s
0 , θu,s

0 ) ∈ X 2
2,ν , it is clear to see that �ξ ∈ Eε . In addition, from Proposition 5.6,

‖�ξ‖E ≤ 2(‖(γ u
0 , θu

0 )‖2,ν + ‖(γ s
0 , θs

0)‖2,ν) ≤ M
δ

ω2 ,

where M is a constant independent of ε.
Since �ξ is a solution of (79), the method of variation of parameters implies that, given 

v1, v2 ∈Dε , there exist c1, c2 ∈ C such that
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�ξ(v) =

⎛⎜⎜⎜⎜⎜⎜⎝
eωivc1 + eωiv

v∫
v1

e−iωrπ1(B(r) · �ξ(r))dr

e−ωivc2 + e−ωiv

v∫
v2

eiωrπ2(B(r) · �ξ(r))dr

⎞⎟⎟⎟⎟⎟⎟⎠ . (93)

We take v1 = v∗, v2 = v∗, with v∗ = −(
√

2 − √
ε)i. Thus,

�ξ(v) = I (c1, c2)(v) +H0(�ξ)(v).

Using that �ξ = M + �ξ1, M(v) = I (c0
1, c

0
2)(v) and H0 is linear,

�ξ1(v) = I (c1 − c0
1, c2 − c0

2)(v) +H0(�ξ1)(v) +H0(M)(v).

Now, we bound |cj − c0
j |, j = 1, 2. By (84) and Proposition 5.6,

‖�ξ1‖2,ν = ‖�ξ −M‖2,ν

= ‖(γ u
0 , θu

0 ) − (γ s
0 , θs

0) − (Gu
ω,0(0,0) − Gs

ω,0(0,0))‖2,ν

= ‖Gu
ω,0(γ

u
0 , θu

0 ) − Gu
ω,0(0,0) − (Gs

ω,0(γ
s
0 , θs

0) − Gs
ω,0(0,0))‖2,ν

≤ Mδ2(‖(γ u
0 , θu

0 )‖2,ν + ‖(γ s
0 , θs

0)‖2,ν)

≤ M
δ3

ω2 .

Thus,

|πj (�ξ1(v))| ≤ M
δ3

ω2|v2 + 2|2 ≤ Mδ3, for each v ∈ Dε, j = 1,2.

In particular, replacing v = v∗ in the first component of (92), we obtain that

|eωiv∗
(c1 − c0

1)| ≤ Mδ3 ⇔ |c1 − c0
1| ≤ Mδ3eω

√
εe−√

2ω ≤ 2Mδ3e−√
2ω.

Analogously, taking v = v∗ in the second component of (92), we obtain that |c2 − c0
2| ≤

2Mδ3e−√
2ω. �

6.2.2. Exponential smallness of �ξ1
Consider the function space

Z = {f :Dε →C2; f is analytic and ‖f ‖Z < +∞}, (94)

where

‖f ‖Z =
2∑

sup
v∈Dε

∣∣∣eω(
√

2−| Im(v)|)πj ◦ f (v)

∣∣∣ . (95)

j=1
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In order to prove Theorem 6.3, it is enough to check that �ξ1 belongs to Z and that ‖�ξ1‖Z ≤
Mωδ3. Our strategy to achieve these results is to prove that both I (c1 − c0

1, c2 − c0
2) and H0(M)

belong to Z and that the operator Id −H0 is invertible in Z .

Lemma 6.5. There exists ε0 > 0, such that the linear operator Id − H0 is invertible in Z for 
ε ≤ ε0. Furthermore, there exists M > 0 independent of ε such that ‖H0‖Z ≤ Mωδ2 and hence

‖(Id −H0)
−1‖Z ≤ (1 − ‖H0‖Z )−1 ≤ 1 + Mωδ2. (96)

Proof. Since H0 is a linear operator, to prove this lemma, it is sufficient to show that ‖H0‖Z ≤
Mωδ2 < 1.

Let h ∈ Z and denote by M any constant independent of ε. Using (81) and (95), we have that 
for v ∈ Dε and j = 1, 2,

|πj (B(v) · h(v))| ≤
2∑

k=1

|bj,k(v)πk(h(v))| ≤ Mωδ2e−ω(
√

2−| Im(v)|)‖h‖Z .

Thus

|eω(
√

2−| Im(v)|)π1(H0(h)(v))| =
∣∣∣∣∣∣e

√
2ω

v∫
v∗

e−iω(r−v−i| Im(v)|)π1(B(r) · h(r))dr

∣∣∣∣∣∣
≤ Mωδ2e−√

2ωe
√

2ω‖h‖Z
v∫

v∗

∣∣∣e−iω(r−v−i| Im(v)|)
∣∣∣ eω| Im(r)|dr

≤ Mωδ2‖h‖Z
v∫

v∗
eω(Im(r)+| Im(r)|−Im(v)−| Im(v)|)dr.

Since Im(v∗) ≤ Im(r) ≤ Im(v), we have that Im(r) + | Im(r)| − Im(v) − | Im(v)| ≤ 0, then∣∣∣∣∣∣
v∫

v∗
eω(Im(r)+| Im(r)|−Im(v)−| Im(v)|)dr

∣∣∣∣∣∣≤ M.

Analogously, we have that

|eω(
√

2−| Im(v)|)π2(H0(h)(v))| ≤ Mωδ2‖h‖Z ,

and thus ‖H0(h)‖Z ≤ Mωδ2‖h‖Z . Since, ‖H0‖Z < 1, for ε sufficiently small, the linear opera-
tor Id −H0 is invertible and satisfies (96). �

Now, recall that M = I (c0
1, c

0
2), where I is given by (91) and c0

1, c
0
2 are given by (86). More-

over, from Lemma 6.4, we have that
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(Id −H0)�ξ1 = I (c1 − c0
1, c2 − c0

2) +H0(I (c0
1, c

0
2)). (97)

Since Id−H0 is invertible in Z , it only remains to show that I (c1 − c0
1, c2 − c0

2) and I (c0
1, c

0
2)

belong to Z .

Lemma 6.6. Given k1, k2 ∈C, then the function I given in (91) satisfies

‖I (k1, k2)‖Z ≤ Me
√

2ω(|k1| + |k2|), (98)

where M is a constant independent of ε.

To prove Lemma 6.6 it is enough to recall the definitions of ‖ · ‖Z in (95) and I in (91).

Lemma 6.7. The error vector �ξ1 given in (84) belongs to Z and it is determined by

�ξ1 = (Id −H0)
−1

(
I (c1 − c0

1, c2 − c0
2

)
+ (Id −H0)

−1 (H0(M)) . (99)

Furthermore, there exists a constant M > 0 independent of ε such that

‖�ξ1‖Z ≤ Mωδ3. (100)

Proof. From Lemmas 6.4 and 6.2, we have that |cj − c0
j | ≤ Mδ3e−√

2ω, and |c0
j | ≤ Mδe−√

2ω , 

j = 1, 2. Therefore, it follows from Lemma 6.6 that I (c1 − c0
1, c2 − c0

2) ∈ Z , and M =
I (c0

1, c
0
2) ∈ Z . Furthermore

‖I (c1 − c0
1, c2 − c0

2)‖Z ≤ Mδ3 and ‖M‖Z ≤ Mδ.

As Id − H0 is invertible in Z by Lemma 6.5, formula (99) is equivalent to (92). Therefore, 
�ξ1 ∈ Z and, using again Lemma 6.5,

‖�ξ1‖Z ≤ ‖(Id −H0)
−1‖Z

(
‖I (c1 − c0

1, c2 − c0
2)‖Z + ‖H0(M)‖Z

)
≤ Mδ3 + M‖H0‖Z‖M‖Z
≤ Mωδ3. �

Proof of Theorem 6.3. Finally, we prove that �ξ1 is exponentially small and we obtain an 
asymptotic formula for �ξ . From (100) and the definition of the norm (95), we have

|eω(
√

2−| Im(v)|)πj ◦ �ξ1(v)| ≤ Mωδ3, for v ∈Dε, and j = 1,2. (101)

In particular, if v ∈ Iε = Dε ∩ R, |�ξ1(v)| ≤ Mωδ3e−√
2ω, for j = 1, 2. The result follows 

directly from this bound and (84). �
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7. Proof of Theorem 4.3

In this section we look for parameterizations of the invariant manifolds Wu
ε (�−

h ) of the peri-
odic orbits �−

h of the form

Nu
0,h(v, τ ) = (X0(v),Z0(v) + Zu

0,h(v, τ ),�h(τ ) + �u
0,h(v, τ ),�h(τ) + �u

0,h(v, τ )), (102)

where Z0, �h, �h are given in (26) and (29), as a perturbation of N0,h(v, τ) (see (28)).

Lemma 7.1. The invariant manifold Wu
δ (�−

h ), with δ 
= 0, can be parameterized by Nu
0,h(v, τ)

in (102) if (Zu
0,h(v, τ), �u

0,h(v, τ), �u
0,h(v, τ)) satisfy the following system of partial differential 

equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂vZ + ω∂τZ + Z′
0(v)

Z0(v)
Z = − Z

Z0(v)
∂vZ − δ√

2�
F ′(X0(v))

� − �

2i

− δ√
2�

F ′(X0(v))
�h(τ) − �h(τ)

2i
,

∂v� + ω∂τ� = − Z

Z0(v)
∂v� + ωi� − δ√

2�
F(X0(v)),

∂v� + ω∂τ� = − Z

Z0(v)
∂v� − ωi� − δ√

2�
F(X0(v)),

lim
v→−∞Z(v, τ) = lim

v→−∞�(v, τ ) = lim
v→−∞�(v, τ) = 0, for each τ ∈ [0,2π],

(103)
and Zu

0,h, �
u
0,h, �

u
0,h are 2π -periodic in the variable τ .

In contrast to the 1-dimensional case, for technical reasons, we do not use that H(Wu
ε (�−

h )) =
h to obtain Z = Z(X, �, �). Thus, we deal with the problem in dimension 3.

As in the 1-dimensional case (63), if we set Z = � = � = 0, the right-hand side of (103)
decays as 1/|v| as v → −∞. To have quadratic decay as |v| → ∞ to have integrability, we 
perform with the change (39) to system (103). Then, (zu

0,h, γ
u
0,h, θ

u
0,h) satisfy

∂vz + ω∂τ z + Z′
0(v)

Z0(v)
z =f h

1 (v, τ ) − z + Z0,h(v, τ )

Z0(v)
∂vz − ∂vZ0,h(v, τ )

Z0(v)
z

− δ√
2�

F ′(X0(v))
γ − θ

2i
,

∂vγ + ω∂τγ − ωiγ =f h
2 (v, τ ) − (Q0)′(v)

Z0(v)
z − z + Z0,h(v, τ )

Z0(v)
∂vγ,

∂vθ + ω∂τ θ + ωiθ = − f h
2 (v, τ ) + (Q0)′(v)

Z0(v)
z − z + Z0,h(v, τ )

Z0(v)
∂vθ,

lim
v→−∞ z(v, τ ) = lim

v→−∞γ (v, τ ) = lim
v→−∞ θ(v, τ ) = 0,

(104)

where
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f h
1 (v, τ ) = − ∂vZ0,h(v, τ ) − Z′

0(v)

Z0(v)
Z0,h(v, τ )

− δ√
2�

F ′(X0(v))
Q0(v)

i
− Z0,h(v, τ )∂vZ0,h(v, τ )

Z0(v)
, (105)

f h
2 (v, τ ) = − (Q0)′(v) − Z0,h(v, τ )(Q0)′(v)

Z0(v)
,

and Q0, Z0,h are given by (37), (40), respectively.
We consider equation (104) with (v, τ) ∈ Du × Tσ (see (33) and (34)), and asymptotic con-

ditions lim
Re(v)→−∞ z(v, τ) = lim

Re(v)→−∞γ (v, τ) = lim
Re(v)→−∞ θ(v, τ) = 0, for every τ ∈Tσ .

Proposition 7.2. Fix σ > 0 and h0 > 0. There exists ε0 > 0 sufficiently small such that for 0 <
ε ≤ ε0 and 0 ≤ h ≤ h0, equation (104) has a solution (zu

0,h, γ
u
0,h, θ

u
0,h) defined in Du ×Tσ such 

that zu
0,h is real-analytic, γ u

0,h, θ
u
0,h are analytic, θu

0,h(v, τ) = γ u
0,h(v, τ ) for each (v, τ) ∈ R2, and

lim
Re(v)→−∞ zu

0,h(v, τ ) = lim
Re(v)→−∞γ u

0,h(v, τ ) = lim
Re(v)→−∞ θu

0,h(v, τ ) = 0,

for every τ ∈Tσ . Furthermore, (zu
0,h, γ

u
0,h, θ

u
0,h) satisfy the bounds in (41).

We devote the rest of this section to prove Proposition 7.2. Equation (104) can be written as 
the functional equation

Lω(z, γ, θ) = Ph(z, γ, θ), (106)

where Lω and Ph are the operators

Lω(z, γ, θ) =

⎛⎜⎜⎝∂vz + ω∂τ z + Z′
0(v)

Z0(v)
z

∂vγ + ω∂τγ − ωiγ

∂vθ + ω∂τ θ + ωiθ

⎞⎟⎟⎠ , (107)

and

Ph(z, γ, θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
f h

1 (v, τ ) − z + Z0,h(v, τ )

Z0(v)
∂vz − ∂vZ0,h

Z0(v)
z − δ√

2�
F ′(X0(v))

γ − θ

2i

f h
2 (v, τ ) − (Q0)′(v)

Z0(v)
z − z + Z0,h(v, τ )

Z0(v)
∂vγ

−f h
2 (v, τ ) + (Q0)′(v)

Z0(v)
z − z + Z0,h(v, τ )

Z0(v)
∂vθ

⎞⎟⎟⎟⎟⎟⎟⎠ .

(108)



O.M.L. Gomide et al. / J. Differential Equations 269 (2020) 3282–3346 3323
7.1. Banach spaces and technical results

For analytic functions f : Du →C and g : Du ×Tσ → C and α > 0, we define

‖f ‖α = sup
v∈Du

|(v2 + 2)α/2f (v)|,

‖g‖α,σ =
∑
k∈Z

‖g[k]‖αe|k|σ ,
(109)

where g(v, τ) =
∑
k∈Z

g[k](v)eikτ .

Remark 7.3. Notice that there exists a constant d > 0 independent of ε such that the distance 
between each v ∈ Du (given in (33)) and the poles ±i

√
2 of N0,h(v, τ) (given in (28)) is greater 

than d . The weight |v2 +2|α/2 in the norm ‖ · ‖α is chosen to control the behavior as Rev → −∞
and to have it well-defined for v = 0 ∈ Du. In fact, at infinity this norm is equivalent to the norm 
with weight |v|α .

We also define

�g�α,σ = max{‖g‖α,σ ,‖∂τ g‖α,σ ,‖∂vg‖α+1,σ }, (110)

and the Banach spaces

Xα,σ = {g : Du ×Tσ → C is an analytic function, such that ‖g‖α,σ < ∞},
Yα,σ = {g : Du ×Tσ → C is an analytic function, such that �g�α,σ < ∞}.

Consider the product spaces

X 3
α,σ =

{
(f, g,h) ∈Xα,σ ×Xα,σ ×Xα,σ ; f is real-analytic, g(v, τ ) = h(v, τ ),

for every v ∈ Du ∩R, τ ∈T
}
,

Y3
α,σ =

{
(f, g,h) ∈ Yα,σ ×Yα,σ ×Yα,σ ; f is real-analytic, g(v, τ ) = h(v, τ ),

for every v ∈ Du ∩R, τ ∈ T
}
,

endowed with the norms

‖(f, g,h)‖α,σ = ‖f ‖α,σ + ‖g‖α,σ + ‖h‖α,σ ,

�(f, g,h)�α,σ = �f �α,σ + �g�α,σ + �h�α,σ ,

respectively. We present some properties of the norm ‖ · ‖α,σ , which are proven in [2].

Lemma 7.4. Given real-analytic functions f :C →C, g, h : Du ×Tσ → C, the following state-
ments hold
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(1) If α1 ≥ α2 ≥ 0, then

‖h‖α2,σ ≤ ‖h‖α1,σ .

(2) If α1, α2 ≥ 0, and ‖g‖α1,σ , ‖h‖α2,σ < ∞, then

‖gh‖α1+α2,σ ≤ ‖g‖α1,σ ‖h‖α2,σ .

(3) If ‖g‖α,σ , ‖h‖α,σ ≤ R0/4, where R0 is the convergence ratio of f ′ at 0, then

‖f (g) − f (h)‖α,σ ≤ M‖g − h‖α,σ .

7.2. The operators Lω and Gω

Let f , g, and h be analytic functions defined in Du ×Tσ . We define

F [k](f )(v) =
v∫

−∞

eωik(r−v)Z0(r)

Z0(v)
f [k](r)dr,

G[k](g)(v) =
v∫

−∞
eωi(k−1)(r−v)g[k](r)dr, (111)

H [k](h)(v) =
v∫

−∞
eωi(k+1)(r−v)h[k](r)dr,

and consider the linear operator Gω given by

Gω(f,g,h) =

⎛⎜⎜⎜⎜⎜⎜⎝

∑
k

F [k](f )(v)eikτ

∑
k

G[k](g)(v)eikτ

∑
k

H [k](h)(v)eikτ

⎞⎟⎟⎟⎟⎟⎟⎠ . (112)

Lemma 7.5. Fix α ≥ 1 and σ > 0, the operator

Gω : X 3
α+1,σ → Y3

α,σ ,

given in (112) is well-defined and the following statements hold:

(1) Gω is an inverse of the operator Lω : Y3
α,σ → X 3

α+1,σ given in (107), i.e. Gω ◦ Lω = Lω ◦
Gω = Id;

(2) �Gω(f, g, h)�α,σ ≤ M‖(f, g, h)‖α+1,σ ;

(3) If f [0] = g[1] = h[−1] = 0, then �Gω(f, g, h)�α,σ ≤ M �(f, g, h)�α,σ .

ω
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The proof of Lemma 7.5 can be found in [2].
To find a solution of (104), it is sufficient to find a fixed point of the operator

Gω,h = Gω ◦Ph, (113)

where Gω is given by (112) and Ph is given by (108).

7.3. The operator Ph

We show some properties of the operator Ph defined in (108).

Lemma 7.6. Fix σ > 0, h0 > 0. For 0 ≤ h ≤ h0, the operator Ph defined in (108) satisfies

‖Ph(0,0,0)‖2,σ ≤ M
δ

ω
.

Proof. Notice that Ph(0, 0, 0) = (f h
1 , f h

2 , −f h
2 ), where f h

1 and f h
2 are given by (105), and in-

volve the functions F ′(X0), Z0, Z′
0, Q

0, Q′
0, Z0,h, ∂vZ0,h. By (8), (26), (37) and (40), we can 

see that

‖Q0‖1,σ ,‖(Q0)′‖2,σ ≤ M
δ

ω
,

∥∥Z0,h

∥∥
1,σ

,‖∂vZ0,h‖2,σ ≤ M
δ
√

h

ω3/2 ,

‖Z0‖1,σ ,‖Z′
0‖2,σ ,‖F ′(X0)‖1,σ ≤ M.

It follows from these bounds and Lemma 7.4 that

‖f h
1 ‖2,σ ≤ M max

{
δ
√

h

ω3/2 ,
δ2

ω
,

δ2

ω3 h

}
= M max

{
δ
√

h

ω3/2 ,
δ2

ω

}
,

‖f h
2 ‖2,σ ≤ M max

{
δ

ω
,

δ2

ω5/2

√
h

}
= M

δ

ω
. �

Lemma 7.7. Fix σ > 0, h0 > 0 and K > 0. If 0 ≤ h ≤ h0, the operator

Ph : Y3
1,σ →X 3

2,σ ,

is well defined. Moreover, given (zj , γj , θj ) ∈ B0(Kδ/ω) ⊂ Y3
1,σ , j = 1, 2,

‖Ph(z1, γ1, θ1) −Ph(z2, γ2, θ2)‖2,σ ≤ M

(
δ + δ

ω3/2

√
h

)
�(z1, γ1, θ1) − (z2, γ2, θ2)�1,σ ,

(114)
where M is a constant independent of ε and h.
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Proof. It is straightforward to see that Ph is well defined. Denote Pj
h = πj ◦ Ph. We show the 

bound of the difference for P1
h and P2

h , since the bound of P3
h can be obtained in exactly the 

same way as P2
h .

Notice that

P1
h(z1, γ1, θ1) −P1

h(z2, γ2, θ2) = − δ√
2�

F ′(X0(v))
(γ1 − γ2) − (θ1 − θ2)

2i

− ∂vZ0,h(v, τ )

Z0(v)
(z1 − z2) − ∂vz2

z1 − z2

Z0(v)

− z1 + Z0,h(v, τ )

Z0(v)
(∂vz1 − ∂vz2).

Using the bounds contained in the proof of Lemma 7.6 and that Z0 is lower bounded in Du by a 
positive constant independent of ε, one can see that

∥∥∥P1
h(z1, γ1, θ1) −P1

h(z2, γ2, θ2)

∥∥∥
2,σ

≤ M max

{
δ,

δ

ω3/2

√
h

}
�(z1, γ1, θ1) − (z2, γ2, θ2)�1,σ .

Now,

P2
h(z1, γ1, θ1) −P2

h(z2, γ2, θ2) = − (Q0)′(v)

Z0(v)
(z1 − z2) − ∂vγ2

z1 − z2

Z0(v)

− z1 + Z0,h(v, τ )

Z0(v)
(∂vγ1 − ∂vγ2),

which, proceeding analogously,

∥∥∥P2
h(z1, γ1, θ1) −P2

h(z2, γ2, θ2)

∥∥∥
2,σ

≤ M max

{
δ

ω
,

δ

ω3/2

√
h

}
�(z1, γ1, θ1) − (z2, γ2, θ2)�1,σ .

�
7.4. The fixed point theorem

Now, we write Proposition 7.2 in terms of Banach spaces and we prove it through a fixed point 
argument applied to the operator Gω,h given by (113).

Proposition 7.8. Fix σ > 0 and h0 > 0. There exists ε0 > 0 such that for 0 < ε ≤ ε0, the operator 
Gω,h in (113) has a fixed point (zu

0,h, γ
u
0,h, θ

u
0,h) ∈ Y3

1,σ . Furthermore, there exists a constant 
M > 0 independent of ε and h such that

�(zu
0,h, γ

u
0,h, θ

u
0,h)�1,σ ≤ M

δ

ω
.

Proof. From Lemmas 7.5 and 7.6, there exists a constant b2 > 0 independent of ε and h such 
that
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�Gω,h(0,0,0)�1,σ ≤ M‖Ph(0,0,0)‖2,σ ≤ b2

2

δ

ω
.

Consider the operator Gω,h = Gω ◦Ph : B0(b2δ/ω) ⊂ Y1,σ → Y1,σ . Notice that Lemmas 7.5 and 
7.7 imply that it is well defined in these spaces.

To show that Gω,h sends B0(b2δ/ω) into itself, consider K = b2 in Lemma 7.7 and 
(zj , γj , θj ) ∈ B0(b2δ/ω), j = 1, 2. It follows from Lemmas 7.5, 7.7 and the fact that Gω is a 
linear operator that

�Gω,h(z1, γ1, θ1) − Gω,h(z2, γ2, θ2)�1,σ ≤ M ‖Ph(z1, γ1, θ1) −Ph(z2, γ2, θ2)‖2,σ

≤ Mδ �(z1, γ1, θ1) − (z2, γ2, θ2)�1,σ .

Choosing ε0 sufficiently small such that Lip(Gω,h) < 1/2, Gω,h sends B0(b2δ/ω) into itself 
and it is a contraction. Thus, it has a unique fixed point (zu

0,h, γ
u
0,h, θ

u
0,h) ∈ B0(b2δ/ω). �

8. Proof of Theorem 4.5

The strategy used to prove Theorem 4.5 is analogous to the one of Theorem 4.1 taking into 
account that all the expressions appearing become singular as h → 0. We write

Nu
h,0(v) = (Xh(v),Zu

h,0(v),�u
h,0(v),�u

h,0(v)). (115)

Lemma 8.1. Given h > 0, the invariant manifold Wu
δ (p−

h ), with δ 
= 0, is parameterized by 
Nu

h,0(v) if and only if (�u
h,0(v), �u

h,0(v)) satisfy

d�

dv
(v) = Zh(v)

η̃h(v,�,�)

(
ωi�(v) − δ√

2�
F(Xh(v))

)
,

d�

dv
(v) = Zh(v)

η̃h(v,�,�)

(
−ωi�(v) − δ√

2�
F(Xh(v)))

)
,

lim
v→−∞�(v) = lim

v→−∞�(v) = 0,

(116)

and

η̃h(v,�,�) = 4

√
h − U(Xh(v)) − δ√

2�
F(Xh(v))

�(v) − �(v)

2i
− ω

2
�(v)�(v),

with Xh given in (26), U, F given in (8), and Zu
h,0(v) = η̃h(v, �u

h,0(v), �u
h,0(v)).

As in Section 5, we compute an explicit term of (�u
h,0, �

u
h,0). Thus, the solution of (116) can 

be written as (42) and (γ u , θu ) satisfy
h,0 h,0
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d

dv
γ − ωiγ = ωiγ (ηh(v, γ, θ) − 1) − (Qh)′(v),

d

dv
θ + ωiθ = −ωiθ(ηh(v, γ, θ) − 1) + (Qh)′(v),

lim
v→−∞γ (v) = lim

v→−∞ θ(v) = 0,

(117)

where Qh is given in (43) and

ηh(v, γ, θ) =
(

1 + 4δ2

�ω

(
F(Xh(v))

Zh(v)

)2

− 8ω
γ θ

(Zh(v))2

)−1/2

. (118)

We prove Theorem 4.5 by finding a solution of (117) in the next proposition.

Proposition 8.2. There exists ε0 > 0 and h0 > 0 such that for 0 < h ≤ h0 and 0 < ε ≤ ε0, equa-
tion (117) has a solution (γ u

h,0(v), θu
h,0(v)) defined in Du (see (33)) such that θu

h,0(v) = γ u
h,0(v)

for every v ∈R. Furthermore, (γ u
h,0, θ

u
h,0) satisfy the bound (44).

To prove Proposition 8.2, it is sufficient to find a fixed point (γ u
h,0, θ

u
h,0) of the operator

Gω,h = Gω ◦Fh, (119)

where Gω is given in (68) and

Fh(γ, θ)(v) =
(

ωiγ (v)(ηh(v, γ (v), θ(v)) − 1) − (Qh)′(v)

−ωiθ(v)(ηh(v, γ (v), θ(v)) − 1) + (Qh)′(v)

)
, (120)

and Qh, ηh are given in (43) and (118), respectively.
The rest of this section is devoted to find a fixed point of (119).

8.1. Banach spaces and technical lemmas

By (8), (27) and (43)

Qh(v) = 2δi

ω
√

2�

⎛⎜⎝
√

2+h
h

sinh(v
√

h/2)

1 + 2+h
h

sinh2(v
√

h/2)

⎞⎟⎠ , (121)

which has poles at

s
±,j
h,k = i

2√
h

(
δj,1π ± arcsin

(√
h

2 + h

)
+ 2kπ

)
, (122)

where δj,1 is the delta of Kronecker, j = 0, 1 and k ∈ Z. All these singularities are contained in 
the imaginary axis and satisfy



O.M.L. Gomide et al. / J. Differential Equations 269 (2020) 3282–3346 3329
s
±,j
h,k = i

(
±√

2 +O(h) + 2√
h

(
δj,1π + 2kπ

))
.

Thus, for h sufficiently small 
∣∣∣s±,j

h,k

∣∣∣≥ 3
√

2/4, j = 0, 1 and k ∈Z.

Therefore, we can consider the same domain Du in (33). It satisfies the following property, 
whose proof is straightforward.

Lemma 8.3. If v ∈ Du is such that | Re(v)| ≥ χ0, for some χ0 > 0, then

| Im(v)| ≤ χ0 + 1

χ0
|Re(v)|.

For α ≥ 0, we consider the Banach space

Xα = {
f : Du → C; f is analytic and ‖f ‖α < ∞}

, (123)

endowed with the norm

‖f ‖α = sup
v∈Du

|(v2 + 2)α/2f (v)|, (124)

and the product space

X 2
α =

{
(f, g) ∈ Xα ×Xα; g(v) = f (v) for every v ∈ R

}
,

endowed with the norm ‖(f, g)‖α = ‖f ‖α + ‖g‖α . Remark 7.3 and Lemma 7.4 also apply to 
‖ · ‖α .

Lemma 8.4. Given 0 < h0 ≤ 1, there exists a constant M∗ > 0 such that, for each v ∈ Du and 
0 < h ≤ h0, ∣∣∣sinh(v

√
h/2)

∣∣∣≥ M∗√h|v|,
∣∣∣cosh(v

√
h/2)

∣∣∣≥ M∗.

The following Lemma is proved in [1].

Lemma 8.5. Let 1/2 < β < π/4 be fixed. The following statements hold

(1) There exists β0 > 0 sufficiently small such that Du ⊂ Du(β0), where

Du(β0) =
{
v ∈C; | Im(v)| ≤ − tan(β + β0)Re(v) + 2

√
2/3

}
.

(2) Given α > 0, if f : Du(β0) → C is a real-analytic function such that

mα(f ) = sup
v∈Du(β0)

|(v2 + 2)α/2f (v)| < ∞,

then, for any n ∈N
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‖f (n)‖α+n ≤ Mmα(f ).

In the remaining of this paper, all the Landau symbols O(f (v, h, ε)) denote a function de-
pendent on v, h and ε such that there exists a constant M > 0 independent of h and ε such that 
|O(f (v, h, ε))| ≤ M|f (v, h, ε)|, for every (v, h, ε) in the domain considered.

Lemma 8.6. There exist h0 ∈ (0, 1) and a constant M > 0 such that, for v ∈ Du and 0 < h ≤ h0,

(1) |F(Xh(v))| ≤ M

|√v2 + 2| ;

(2) |F(Xh(v))′| ≤ M

|v2 + 2| ,

where Xh given in (27) and F(X) in (8).

Proof. By (43) and (121), we have that

F(Xh(v)) = −2

√
h

2 + h

1

sinh(v
√

h/2)

⎛⎝ 1

1 + h
2+h

1
sinh2(v

√
h/2)

⎞⎠ .

Then, Lemma 8.4 implies

|F(Xh(v))| ≤ M
√

h
1√
h|v|

⎛⎝ 1∣∣∣1 + h
2+h

1
sinh2(v

√
h/2)

∣∣∣
⎞⎠ .

Notice that ∣∣∣∣1 + h

2 + h

1

sinh2(v
√

h/2)

∣∣∣∣≥ 1 − h

2 + h

∣∣∣∣ 1

sinh2(v
√

h/2)

∣∣∣∣ ,
and, by Lemma 8.4,

h

2 + h

∣∣∣∣ 1

sinh2(v
√

h/2)

∣∣∣∣≤ h

2 + h

1

(M∗)2h|v|2 ≤ 1

2(M∗)2|v|2 .

Thus, for |v| ≥ (M∗)−1, ∣∣∣∣1 + h

2 + h

1

sinh2(v
√

h/2)

∣∣∣∣≥ 1/2. (125)

We also know that, if |v| ≥ (M∗)−1, |√v2 + 2| ≤ √
1 + 2M∗|v|. Hence

|(
√

v2 + 2)F (Xh(v))| ≤ M
|√v2 + 2| ≤ M.
|v|
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Now, assume that |v| ≤ (M∗)−1. Hence |v√
h/2| ≤ M and expanding sinh(z) at 0 we obtain

F(Xh(v)) = −2

√
2+h
h

(
v
√

h/2 +O(h3/2v3)
)

1 + 2+h
h

(
hv2/4 +O(h2v4)

)
= −2

√
2 + h(v/2 +O(h))

1 + v2/2 +O(h)
.

Since v ∈ Du, we have that there exists M > 0 such that

|1 + v2/2 +O(h)| ≥ |1 + v2/2| −O(h) ≥ M −O(h).

Therefore, for h > 0 sufficiently small, we have that |F(Xh(v))| ≤ M , for |v| ≤ (M∗)−1, and 
since |√v2 + 2| is inferiorly and superiorly bounded by nonzero constants in this domain, we 
have that

|(
√

v2 + 2)F (Xh(v))| ≤ M for |v| ≤ (M∗)−1.

This concludes the proof of the first item. One can obtain item 2 using Lemma 8.5. �
Lemma 8.7. Given 0 < h0 ≤ 1, there exists a constant M > 0 such that, for v ∈ Du and 0 < h ≤
h0,

∣∣∣∣∣ 1

Z2
h(v)

1

v2 + 2

∣∣∣∣∣≤ M,

where Zh in (27).

The proof is analogous to the one of Lemma 8.6.

8.2. The fixed point theorem

Now, we study the operator Gω,h in order to find a fixed point in X 2
2 . Recall the definition 

of Gω,h = Gω ◦ Fh in (119), and notice that Gω is the same operator of the case h = 0. Thus, 
Proposition 5.3 still holds for functions in the Banach space X 2

2 .

Proposition 8.8. Given (f, g) ∈ X 2
2 , we have that Gω(f, g) ∈ X 2

2 . Furthermore, there exists a 
constant M > 0 independent of ε such that

‖Gω(f,g)‖2 ≤ M

ω
‖(f, g)‖2 .

We proceed by studying the operator Fh in (120).



3332 O.M.L. Gomide et al. / J. Differential Equations 269 (2020) 3282–3346
Proposition 8.9. There exists h0 > 0, ε0 > 0 and a constant M > 0 such that for, 0 < ε ≤ ε0 and 
0 < h ≤ h0,

∥∥Gω,h(0,0)
∥∥

2 ≤ M
δ

ω2 .

Proof. Notice that Fh(0, 0) = (−(Qh)′(v), (Qh)′(v)) (see (43)), which implies

‖Fh(0,0)‖2 = 2
δ

ω
√

2�
‖F(Xh)

′‖2.

Thus, it is enough to apply Lemma 8.6 and Proposition 8.8. �
Proposition 8.10. There exist ε0 > 0, h0 > 0 and a constant M > 0 such that for 0 < ε ≤ ε0, 
0 < h ≤ h0:

Let ηh be given in (118) and take (γj , θj ) ∈ B0(R) ⊂ X 2
2 with j = 1, 2 and R = K

δ

ω2 , where 

K is a constant independent of h and ε, the following statements hold.

(1)
∣∣ηh(v, γj (v), θj (v)) − 1

∣∣≤ M
δ2

ω
;

(2) |ηh(v, γ1(v), θ1(v)) − ηh(v, γ2(v), θ2(v))| ≤ M
δ

ω
‖(γ1, θ1) − (γ2, θ2)‖0;

(3) ‖Fh(γ1, θ1) −Fh(γ2, θ2)‖2 ≤ Mδ2‖(γ1, θ1) − (γ2, θ2)‖2.

Proof. Lemmas 8.6 and 8.7 and the fact that (γ, θ) ∈ B0(R) imply∣∣∣∣∣4δ2

�ω

(
F(Xh(v))

Zh(v)

)2

− 8ω
γ θ

(Zh(v))2

∣∣∣∣∣≤ M
δ2

ω
.

Thus, using (118), it follows that

|ηh(v, γ, θ) − 1| ≤ M

∣∣∣∣∣4δ2

�ω

(
F(Xh(v))

Zh(v)

)2

− 8ω
γ θ

(Zh(v))2

∣∣∣∣∣≤ M
δ2

ω
,

and using also Lemma 8.7, we have

|ηh(v, γ1, θ1) − ηh(v, γ2, θ2)| ≤ Mω

∣∣∣∣γ1θ1 − γ2θ2

(Zh(v))2

∣∣∣∣
≤ MRω

( |θ1 − θ2|
|(Zh(v))2(v2 + 2)| + |γ1 − γ2|

|(Zh(v))2(v2 + 2)|
)

≤ M
δ

ω
‖(γ1, θ1) − (γ2, θ2)‖0.

Finally, it follows from items (1) and (2) of this proposition and (120) that



O.M.L. Gomide et al. / J. Differential Equations 269 (2020) 3282–3346 3333
‖π1 ◦Fh(γ1, θ1) − π1 ◦Fh(γ2, θ2)‖2 ≤ω ‖ηh(v, γ1, θ1) − 1‖0 ‖γ1 − γ2‖2

+ ω‖γ2‖2 ‖ηh(v, γ1, θ1) − ηh(v, γ2, θ2)‖0

≤Mδ2‖γ1 − γ2‖2 + MωR
δ

ω
‖(γ1, θ1) − (γ2, θ2)‖0

≤Mδ2‖(γ1, θ1) − (γ2, θ2)‖2.

Analogously, we obtain the same inequality for the second component of Fh. �
Finally, we are able to prove Proposition 8.2 (and thus Theorem (4.5)) by a fixed point argu-

ment.

Proposition 8.11. There exist ε0 > 0, h0 > 0 and a constant M > 0 such that for 0 < h ≤ h0 and 
ε ≤ ε0, the operator Gω,h (given in (119)) has a fixed point (γ u

h,0, θ
u
h,0) in X 2

2 which satisfies

‖(γ u
h,0, θ

u
h,0)‖2 ≤ M

δ

ω2 .

Proof. From Proposition 8.9, there exists a constant b3 > 0 independent of h and ε such that

∥∥Gω,h(0,0)
∥∥

2 ≤ b3

2

δ

ω2 .

Now, given (γ1, θ1) and (γ2, θ2) in B0(b3δ/ω
2), we can use Propositions 8.10 (with K = b3) and 

8.8 and the linearity of the operator Gω to see that

∥∥Gω,h(γ1, θ1) − Gω,h(γ2, θ2)
∥∥

2 ≤ M

ω
‖Fh(γ1, θ1) −Fh(γ2, θ2)‖2

≤ M
δ2

ω
‖(γ1, θ1) − (γ2, θ2)‖2.

Choosing ε0 sufficiently small, we have that Lip(Gω,h) ≤ 1/2. Therefore Gω,h sends the ball 
B0(b3δ/ω

2) into itself and it is a contraction. Thus, it has a unique fixed point (γ u
h,0, θ

u
h,0) ∈

B0(b3δ/ω
2). �

9. Proof of Theorem 4.6

In this section we prove the existence of Wu
ε (�−

κ1,κ2
), with δ 
= 0. As in the previous sections, 

we look for parameterizations Nu
κ1,κ2

of Wu
ε (�−

κ1,κ2
) as graphs

Nu,s
κ1,κ2

(v, τ ) = (Xκ1(v),Zκ1(v) + Zu,s
κ1,κ2

(v, τ ),�κ2(τ ) + �u,s
κ1,κ2

(v, τ ),�κ2(τ ) + �u,s
κ1,κ2

(v, τ )),

(126)
where Xκ1, Zκ1 are given in (26) and �κ2, �κ2 are given in (29).

Following the same lines of Section 8 we have a characterization of Nu
,κ .
κ1 2
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Lemma 9.1. Write Zu
κ1,κ2

(v, τ) =Zκ1,κ2(v, τ) +zu
κ1,κ2

(v, τ), �u
κ1,κ2

(v, τ) =Qκ2(v) +γ u
κ1,κ2

(v, τ), 
�u

κ1,κ2
(v, τ) = −Qκ1(v) + θu

κ1,κ2
(v, τ), where Qκ1 is given by (43) and

Zκ1,κ2(v, τ ) = δ

ω
√

2�
F ′(Xκ1(v))

�κ2(τ ) + �κ2(τ )

2
, (127)

with �κ1 , �κ1 given by (29). Then, Nu
κ1,κ2

(v, τ), given in (126), with κ1, κ2 ≥ 0 and κ1 + κ2 = h, 
parameterizes Wu(�−

κ1,κ2
) provided (zu

κ1,κ2
, γ u

κ1,κ2
, θu

κ1,κ2
) satisfy

∂vz + ω∂τ z + Z′
κ1

(v)

Zκ1(v)
z =f

κ1,κ2
1 (v, τ ) − z + Zκ1,κ2(v, τ )

Zκ1(v)
∂vz − ∂vZκ1,κ2(v, τ )

Zκ1(v)
z

− δ√
2�

F ′(Xκ1(v))
γ − θ

2i
,

∂vγ + ω∂τγ − ωiγ =f
κ1,κ2
2 (v, τ ) − (Qκ1)′(v)

Zκ1(v)
z − z + Zκ1,κ2(v, τ )

Zκ1(v)
∂vγ,

∂vθ + ω∂τ θ + ωiθ = − f
κ1,κ2
2 (v, τ ) + (Qκ1)′(v)

Zκ1(v)
z − z + Zκ1,κ2(v, τ )

Zκ1(v)
∂vθ,

lim
v→−∞ z(v, τ ) = lim

v→−∞γ (v, τ ) = lim
v→−∞ θ(v, τ ) = 0,

(128)

where

f
κ1,κ2
1 (v, τ ) = − ∂vZκ1,κ2(v, τ ) − Z′

κ1
(v)

Zκ1(v)
Zκ1,κ2(v, τ ) − δ√

2�
F ′(Xκ1(v))

Qκ1(v)

i

− Zκ1,κ2(v, τ )∂vZκ1,κ2(v, τ )

Zκ1(v)
,

f
κ1,κ2
2 (v, τ ) = − (Qκ1)′(v) − Zκ1,κ2(v, τ )(Qκ1)′(v)

Zκ1(v)
.

(129)

We consider the equation (128) with (v, τ) ∈ Du × Tσ with the asymptotic conditions 
lim

Re(v)→−∞ z(v) = lim
Re(v)→−∞γ (v) = lim

Re(v)→−∞ θ(v) = 0, for every τ ∈Tσ .

Theorem (4.6) is a consequence of the following proposition.

Proposition 9.2. Fix σ > 0. There exist h0 > 0 and ε0 > 0 sufficiently small such that for 0 <
ε ≤ ε0, 0 < h ≤ h0 and κ1, κ2 ≥ 0 with κ1 + κ2 = h, system (128) has an analytic solution 
(zu

κ1,κ2
, γ u

κ1,κ2
, θu

κ1,κ2
) defined in Du × Tσ (see (33) and (34)) such that zu

κ1,κ2
is real-analytic, 

θu
κ1,κ2

(v, τ) = γ u
κ1,κ2

(v, τ ) for each (v, τ) ∈ Du ×Tσ ∩R2 and

lim
Re(v)→−∞ zu

κ1,κ2
(v, τ ) = lim

Re(v)→−∞γ u
κ1,κ2

(v, τ ) = lim
Re(v)→−∞ θu

κ1,κ2
(v, τ ) = 0,

for every τ ∈Tσ . Furthermore, (zu
,κ , γ u

,κ , θu
,κ ) satisfies the bounds in (46).
κ1 2 κ1 2 κ1 2
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Equation (128) can be written as the functional equation

Lω,κ1(z, γ, θ) = Pκ1,κ2(z, γ, θ), (130)

where Lω,κ1 and Pκ1,κ2 are the functional operators given by

Lω,κ1(z, γ, θ) =

⎛⎜⎜⎝∂vz + ω∂τ z + Z′
κ1

(v)

Zκ1(v)
z

∂vγ + ω∂τ γ − ωiγ

∂vθ + ω∂τ θ + ωiθ

⎞⎟⎟⎠ , (131)

and

Pκ1,κ2(z, γ, θ)=

⎛⎜⎜⎜⎜⎜⎜⎝
f

κ1,κ2
1 (v, τ ) − z + Zκ1,κ2(v, τ )

Zκ1(v)
∂vz − ∂vZκ1,κ2

Zκ1(v)
z − δ√

2�
F ′(Xκ1(v))

γ − θ

2i

f
κ1,κ2
2 (v, τ ) − (Qκ1)′(v)

Zκ1(v)
z − z + Zκ1,κ2(v, τ )

Zκ1(v)
∂vγ

−f
κ1,κ2
2 (v, τ ) + (Qκ1)′(v)

Zκ1(v)
z − z + Zκ1,κ2(v, τ )

Zκ1(v)
∂vθ

⎞⎟⎟⎟⎟⎟⎟⎠.

(132)
We show the existence of an inverse Gκ1

ω of Lω,κ1 in the Banach spaces X 3
α,σ and Y3

α,σ introduced 
in Section 7.1.

Given analytic functions f , g, and h defined in Du ×Tσ , consider

F [k]
κ1

(f )(v) =
v∫

−∞

eωik(r−v)Zκ1(r)

Zκ1(v)
f [k](r)dr, (133)

and G[k](g), H [k](h) given in (111). Then, we define the linear operator Gκ1
ω

Gκ1
ω (f,g,h) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
k

F [k]
κ1

(f )(v)eikτ

∑
k

G[k](g)(v)eikτ

∑
k

H [k](h)(v)eikτ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (134)

Lemma 9.3. Fix α ≥ 1 and σ > 0. There exists κ0
1 > 0 sufficiently small, such that, for 0 < ε ≤ ε0

and 0 < κ1 ≤ κ0
1 , the operator

Gκ1
ω : X 3

α+1,σ → Y3
α,σ

is well-defined and satisfies:

(1) Gκ1
ω is an inverse of the operator Lω,κ : Y3 →X 3 , i.e. Gκ1

ω ◦Lω,κ = Lω,κ ◦Gκ1
ω = Id;
1 α,σ α+1,σ 1 1
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(2) �Gκ1
ω (f, g, h)�α,σ ≤ M‖(f, g, h)‖α+1,σ ;

(3) If f [0] = g[1] = h[−1] = 0, then �Gκ1
ω (f, g, h)�α,σ ≤ M

ω
�(f, g, h)�α,σ ,

where M is a constant independent of κ1 and ε.

The proof of the following lemma is analogous to that in Lemma 10.3 below.

Lemma 9.4. Let F , Xκ1, Zκ1 be given by (8) and (27). There exist κ0
1 > 0 and a constant M > 0

such that, for v ∈ Du and 0 < κ1 ≤ κ0
1 ,

(1) |F(Xκ1(v))′′| ≤ M

|v2 + 2|3/2 ;

(2)

∣∣∣∣Z′
κ1

(v)

Zκ1(v)

∣∣∣∣≤ M

|√v2 + 2| .

Lemma 9.5. Fix σ > 0 and K > 0. There exist ε0 > 0 and h0 > 0 sufficiently small such that, 
for 0 < ε < ε0, 0 ≤ h ≤ h0 and κ1, κ2 ≥ 0 with κ1 + κ2 = h, the operator Pκ1,κ2 : Y3

1,σ → X 3
2,σ , 

is well defined and there exists a constant M > 0 such that

‖Pκ1,κ2(0,0,0)‖2,σ ≤ M
δ

ω
.

Moreover, given (zj , γj , θj ) ∈ B0(Kδ/ω) ⊂ Y3
1,σ , j = 1, 2,

∥∥Pκ1,κ2(z1, γ1, θ1) −Pκ1,κ2(z2, γ2, θ2)
∥∥

2,σ
≤ M

(
δ + δ

ω3/2

√
h

)
�(z1, γ1, θ1) − (z2, γ2, θ2)�1,σ .

(135)

Proof. Recall that Pκ1,κ2(0, 0, 0) = (f
κ1,κ2
1 , f κ1,κ2

2 , −f
κ1,κ2
2 ), where f κ1,κ2

1 , f κ1,κ2
2 are given in 

(129), respectively, and involve the functions F ′(Xκ1), Z
′
κ1

/Zκ1, Q
κ1 , (Qκ1)′, Zκ1,κ2 , ∂vZκ1,κ2

which can be computed using the expressions in (8), (27), (37), and (40). By Lemmas 8.6, 8.7
and 9.4, we have

‖Qκ1‖1,σ ,‖(Qκ1)′‖2,σ ≤ M
δ

ω
,

∥∥Zκ1,κ2

∥∥
1,σ

,‖∂vZκ1,κ2‖2,σ ≤ M
δ
√

κ2

ω3/2 ,

‖Z′
κ1

/Zκ1‖1,σ ,‖F ′(Xκ1)‖1,σ ≤ M.

Therefore, using also Lemma 7.4, one has

‖f κ1,κ2
1 ‖2,σ ≤ M max

{
δ
√

κ2

ω3/2 ,
δ2

ω
,

δ2

ω3 κ2

}
= M max

{
δ
√

κ2

ω3/2 ,
δ2

ω

}
,

‖f κ1,κ2
2 ‖2,σ ≤ M max

{
δ

ω
,

δ2

ω5/2

√
κ2

}
= M

δ

ω
.
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Thus, ‖Pκ1,κ2(0, 0, 0)‖2,σ ≤ Mδ/ω.
Following the lines of the proof of Lemma 7.7 one can complete the proof of Lemma 9.5. �
Now, we write Proposition 9.2 in terms of Banach spaces. Then, it can be proved in the same 

way as Proposition 7.8 by considering the operator Gω,κ1,κ2 = Gκ1
ω ◦Pκ1,κ2 .

Proposition 9.6. Fix σ > 0. There exist h0 > 0 and ε0 > 0 such that, for 0 < ε ≤ ε0, 0 < h ≤ h0
and κ1, κ2 ≥ 0 with κ1 + κ2 = h, the operator Gω,κ1,κ2 = Gκ1

ω ◦Pκ1,κ2 , with Gκ1
ω and Pκ1,κ2 given 

in (134) and (132), respectively, has a fixed point (zu
κ1,κ2

, γ u
κ1,κ2

, θu
κ1,κ2

) ∈ Y3
1,σ . Furthermore, 

there exists a constant M > 0 independent of ε, κ1 and κ2 such that

�(zu
κ1,κ2

, γ u
κ1,κ2

, θu
κ1,κ2

)�1,σ ≤ M
δ

ω
.

This completes the proof of Theorem 4.6.

10. Proof of Theorem 4.8

We compare the parameterizations of Wu
ε (�−

κ1,κ2
) obtained in Sections 7, 8 and 9, respectively, 

with the parameterization (62) of Wu
ε (p−

0 ) obtained in Section 5.

10.1. Approximation of Wu
ε (�−

h ) by Wu
ε (p−

0 )

We compare the parameterizations Nu
0,h and Nu

0,0 of Wu
ε (�−

h ) and Wu
ε (p−

0 ), obtained in The-
orems 4.3 and 4.1, respectively.

Proposition 10.1. Let �u
0(v), �u

0(v) and �u
0,h(v, τ), �u

0,h(v, τ) be given in (36) and (39), respec-
tively. Given h0 > 0, there exists ε0 > 0 and a constant M > 0, such that for v ∈ Du ∩R, τ ∈T , 
0 ≤ ε ≤ ε0 and 0 ≤ h ≤ h0,

∣∣∂τ (�
u
0,h(v, τ ) − �u

0(v))
∣∣ , ∣∣�u

0,h(v, τ ) − �u
0(v)

∣∣≤ M
δ
√

h

ω3/2 ,

∣∣∂τ (�
u
0,h(v, τ ) − �u

0(v))
∣∣ , ∣∣�u

0,h(v, τ ) − �u
0(v)

∣∣≤ M
δ
√

h

ω3/2 .

(136)

Proof. Considering h = 0 in Theorem 4.3, it follows that Nu
0,0(v, τ) is also a parameterization 

of Wu
ε (p−

0 ). Since Wu
ε (p−

0 ) is parameterized by both Nu
0,0(v) (from Theorem 4.1) and Nu

0,0(v, τ)

(from Theorem 4.3) and both have the same first coordinate, these parameterizations coincide. 
Therefore γ u

0,0 and θu
0,0 given in Theorem 4.3 with h = 0 depend only on the variable v and we 

can write

�u
0(v) = Q0(v) + γ u

0,0(v),

�u
0(v) = −Q0(v) + θu

0,0(v).

Based on these arguments, we can use Theorem 4.3 and Proposition 7.8 to see that
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(
�u

0,h(v, τ ) − �u
0(v)

�u
0,h(v, τ ) − �u

0(v)

)
=
(

γ u
0,h(v, τ ) − γ u

0,0(v)

θu
0,h(v, τ ) − θu

0,0(v)

)
,

where (zu
0,0, γ

u
0,0, θ

u
0,0) and (zu

0,h, γ
u
0,h, θ

u
0,h) are fixed points of the operators Gω,0 and Gω,h given 

in (113), respectively.
Denoting

E = (zu
0,h − zu

0,0, γ
u
0,h − γ u

0,0, θ
u
0,h − θu

0,0),

we compute ‖E‖1,σ .
Notice that

E = (zu
0,h − zu

0,0, γ
u
0,h − γ u

0,0, θ
u
0,h − θu

0,0)

=Gω,h(z
u
0,h, γ

u
0,h, θ

u
0,h) − Gω,h(z

u
0,0, γ

u
0,0, θ

u
0,0)

+ Gω,h(z
u
0,0, γ

u
0,0, θ

u
0,0) − Gω,0(z

u
0,0, γ

u
0,0, θ

u
0,0).

For 0 ≤ h ≤ h0, (zu
0,h, γ

u
0,h, θ

u
0,h) ∈ B0(Mδ/ω) and Gω,h is Lipschitz in this ball with 

Lip(Gω,h) ≤ Mδ. Then,

�Gω,h(z
u
0,h, γ

u
0,h, θ

u
0,h) − Gω,h(z

u
0,0, γ

u
0,0, θ

u
0,0)�1,σ ≤ Mδ�E�1,σ .

Choosing ε0 sufficiently small such that Lip(Gω,h) < 1/2, we obtain

�E�1,σ ≤ M�Gω,h(z
u
0,0, γ

u
0,0, θ

u
0,0) − Gω,0(z

u
0,0, γ

u
0,0, θ

u
0,0)�1,σ .

Now, denoting Ph(z
u
0,0, γ

u
0,0, θ

u
0,0) −P0(z

u
0,0, γ

u
0,0, θ

u
0,0) = �0

h, where Ph is given in (108), and 

using that 
�
(zu

0,0, γ
u
0,0, θ

u
0,0)

�
1,σ

≤ Mδ/ω, we have that 
∥∥�0

h

∥∥
2,σ

≤ M δ
√

h

ω3/2 .

It follows from the linearity of Gω and Lemma 7.5 that

�
Gω,h(z

u
0,0, γ

u
0,0, θ

u
0,0) − Gω,0(z

u
0,0, γ

u
0,0, θ

u
0,0)

�
1,σ

≤ M
δ
√

h

ω3/2 .

Thus, we conclude that �E�1,σ ≤ M
δ
√

h

ω3/2 . �
10.2. Approximation of Wu

ε (p−
h ) by Wu

ε (p−
0 )

We compare the parameterizations Nu
0,0 and Nu

h,0 of Wu
ε (p−

0 ) and Wu
ε (p−

h ), obtained in The-
orems 4.1 and 4.5, respectively.

Proposition 10.2. Let �u
0(v), �u

0(v) and �u
h,0(v), �u

h,0(v) be given in (36) and (42), respectively. 
There exist ε0 > 0, h0 > 0 and a constant M > 0 such that, for 0 < ε ≤ ε0 and 0 ≤ h ≤ h0,

(1)
∣∣∣�u

h,0(0) − �u
0(0)

∣∣∣≤ M
δ
√

h
;

ω2
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(2)
∣∣∣�u

h,0(0) − �u
0(0)

∣∣∣≤ M
δ
√

h

ω2 .

10.2.1. Technical lemmas
To prove Proposition 10.2, we first state some lemmas.

Lemma 10.3. Let X0, Z0, Xh, Zh, Q0, and Qh be given in (26), (27), (37) and (43) and fix 
M0 > 0. There exist h0 > 0 and a constant M > 0 such that, for 0 ≤ h ≤ h0 and v ∈ Du with 
|h1/4v| ≤ M0,

(1) |F(Xh(v)) − F(X0(v))| ≤ M
√

h

|√v2 + 2| ;

(2) |Zh(v) − Z0(v)| ≤ M
√

h

|√v2 + 2| ;

(3)

∣∣∣∣ 1

Zh(v)
− 1

Z0(v)

∣∣∣∣ 1

|√v2 + 2| ≤ M
√

h;

(4)
∣∣(Qh)′(v) − (Q0)′(v)

∣∣≤ Mδ
√

h

ω|v2 + 2| .

Proof. Using the formulas (8), (26) and (27), we obtain

F(Xh(v)) − F(X0(v)) = −2 

⎛⎜⎝
√

2+h
h

sinh(v
√

h/2)

1 + 2+h
h

sinh2(v
√

h/2)
− √

2
v

v2 + 2

⎞⎟⎠.

Since |vh1/4| ≤ M0, it follows that |v√
h/2| ≤ Mh1/4 � 1.

Expanding sinh(z) at 0, we have

√
2 + h

h
sinh(v

√
h/2)

1 + 2+h
h

sinh2(v
√

h/2)
=

√
2 + h

h

(
v
√

h

2
+O(h3/2|v|3)

)

1 + 2 + h

h

(
v2h

4
+O(h2|v|4)

)

=
√

2v +O(
√

h|v|)
v2 + 2 +O(

√
h|v|2)

=
√

2v

v2 + 2

(
1 +O(

√
h)
)

.

Item (1) follows directly from this expression, considering h sufficiently small. Items (2) and (3)

can be computed in an analogous way.
Formulas (37) and (43) imply

∣∣∣(Qh)′(v) − (Q0)′(v)

∣∣∣≤ M
δ

ω
|F ′(Xh(v))Zh(v) − F ′(X0(v))Z0(v)|.

Thus, it is enough to apply the bounds in items (1) and (2) to obtain item (4). �
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Lemma 10.4. Let η0 and ηh be given in (66) and (118), respectively, and consider the functions 
(γ u

0 , θu
0 ) obtained in Proposition 5.6. Fix M0 > 0. There exist ε0 > 0, h0 > 0 and a constant 

M > 0 such that for 0 < ε ≤ ε0, 0 ≤ h ≤ h0 and v ∈ Du with |h1/4v| ≤ M0,

∣∣ηh(v, γ u
0 , θu

0 ) − η0(v, γ u
0 , θu

0 )
∣∣≤ Mδ

√
h

ω
.

Proof. Using the expression of ηh in (118) and that 
∥∥(γ u

0 , θu
0 )
∥∥

2 ≤ Mδ/ω2 � 1, it follows from 
Lemmas 8.6, 8.7 and 10.3 that

∣∣ηh(v, γ u
0 , θu

0 ) − η0(v, γ u
0 , θu

0 )
∣∣≤ M

δ

ω

∣∣∣∣∣
(

F(Xh)

Zh

)2

−
(

F(X0)

Z0

)2
∣∣∣∣∣+ Mω

∣∣γ u
0 θu

0

∣∣ ∣∣∣∣∣ 1

Z2
h

− 1

Z2
0

∣∣∣∣∣
≤ Mδ

√
h

ω
. �

10.2.2. Proof of Proposition 10.2
The domain Du defined in (33) is contained in the domain Du

ε defined in (31). Therefore, the 
restriction of the fixed point obtained in Section 5 can be seen as an element of the space X 2

2
with the same bound.

Proposition 10.5. Consider (γ u
0 , θu

0 ) and (γ u
h,0, θ

u
h,0) obtained in Theorems 5.6 and 8.11, respec-

tively, and the operator Gω,h given by (119). Then, there exist ε0 > 0, h0 > 0 and a constant 
M > 0 such that for 0 ≤ h ≤ h0 and 0 < ε ≤ ε0,

∥∥Gω,h(γ
u
h,0, θ

u
h,0) − Gω,h(γ

u
0 , θu

0 )
∥∥

0
≤ M

δ2

ω

∥∥(γ u
h,0, θ

u
h,0) − (γ u

0 , θu
0 )
∥∥

0
.

Proof. By Proposition 8.10, we have

∣∣ηh(v, γ u
h,0, θ

u
h,0) − ηh(v, γ u

0 , θu
0 )
∣∣≤ M

δ

ω

∥∥(γ u
h,0, θ

u
h,0) − (γ u

0 , θu
0 )
∥∥

0
.

Thus, using the expression of Fh in (120) and Proposition 8.10,∥∥π1(Fh(γ
u
h,0, θ

u
h,0) −Fh(γ

u
0 , θu

0 ))
∥∥

0
≤ω

∥∥ηh(v, γ u
h,0, θ

u
h,0) − 1

∥∥
0

∥∥γ u
h,0 − γ u

0

∥∥
0

+ ω
∥∥γ u

0

∥∥
0

∥∥ηh(v, γ u
h,0, θ

u
h,0) − ηh(v, γ u

0 , θu
0 )
∥∥

0

≤Mδ2
∥∥γ u

h,0 − γ u
0

∥∥
0

+ Mδ
∥∥γ u

0

∥∥
2

∥∥(γ u
h,0, θ

u
h,0) − (γ u

0 , θu
0 )
∥∥

0

≤M

(
δ2 + δ2

ω2

)∥∥(γ u
h,0, θ

u
h,0) − (γ u

0 , θu
0 )
∥∥

0
.

The same bound can be obtained for the second coordinate of Fh. Thus∥∥Fh(γ
u , θu ) −Fh(γ

u, θu)
∥∥ ≤ Mδ2

∥∥(γ u , θu ) − (γ u, θu)
∥∥ .
h,0 h,0 0 0 0 h,0 h,0 0 0 0
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Now, denote �j
h = πj

(
Fh(γ

u
h,0, θ

u
h,0) −Fh(γ

u
0 , θu

0 )
)

, j = 1, 2, and �h = (�1
h, �

2
h). Then,

∣∣π1
(
Gω,h(γ

u
h,0, θ

u
h,0) − Gω,h(γ

u
0 , θu

0 )
)
(v)

∣∣=
∣∣∣∣∣∣

0∫
−∞

eωis�1
h(s + v)ds

∣∣∣∣∣∣ .
Since �h ∈ X 2

2 , we can change the path of integration to obtain∣∣∣∣∣∣
0∫

−∞
eωis�1

h(s + v)ds

∣∣∣∣∣∣=
∣∣∣∣∣∣

0∫
−∞

eωie−iβ ξ�1
h(e

−iβξ + v)eiβdξ

∣∣∣∣∣∣
≤

0∫
−∞

eω sin(β)ξ |�1
h(e

−iβξ + v)|dξ

≤ ‖�h‖0

0∫
−∞

eω sin(β)ξ dξ

≤ M

ω
‖�h‖0.

The same argument holds for the second coordinate of Gω,h(γ
u
h,0, θ

u
h,0) − Gω,h(γ

u
0 , θu

0 ). �
Lemma 10.6. Let F0 and Fh be given in (69) and (120), respectively, and consider the functions 
(γ u

0 , θu
0 ) obtained in Theorem 5.6. Given M0 > 0 fixed, there exist ε0, h0 > 0 and a constant 

M > 0 such that for 0 ≤ h ≤ h0, 0 < ε ≤ ε0 and v ∈ Du with |h1/4v| ≤ M0,

∣∣πj ◦Fh(γ
u
0 , θu

0 )(v) − πj ◦F0(γ
u
0 , θu

0 )(v)
∣∣≤ Mδ

√
h

ω|v2 + 2| , j = 1,2.

Proof. Lemmas 10.3 and 10.4 imply∣∣π1(Fh(γ
u
0 , θu

0 )(v) −F0(γ
u
0 , θu

0 ))(v)
∣∣≤|(Qh)′(v) − (Q0)′(v)|

+ ω
∣∣γ u

0

∣∣ ∣∣ηh(v, γ u
0 , θu

0 ) − η0(v, γ u
0 , θu

0 )
∣∣

≤M
δ
√

h

ω|v2 + 2| .

The same holds for the second coordinate. �
Proposition 10.7. Consider the functions (γ u

0 , θu
0 ) obtained in Proposition 5.6 and the operators 

Gω,0 and Gω,h given in (67) and (119), respectively. There exist ε0 >, h0 > 0 and a constant 
M > 0 such that, for 0 < ε ≤ ε0 and 0 < h ≤ h0

∥∥Gω,h(γ
u
0 , θu

0 ) − Gω,0(γ
u
0 , θu

0 )
∥∥

0 ≤ Mδ
√

h
.

ω2
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Proof. It follows from the proof of Proposition 8.11 that the Lipschitz constant of Gω,h in a ball 
B0(Kδ/ω2), for some K > 0 fixed, satisfies Lip(Gω,h) ≤ Mδ2/ω. Moreover, ‖Gω,h(0, 0)‖2 ≤
Mδ/ω2 and ‖(γ u

0 , θu
0 )‖2 ≤ Mδ/ω2. Thus

‖Gω,h(γ
u
0 , θu

0 )‖2 ≤ ‖Gω,h(γ
u
0 , θu

0 ) − Gω,h(0,0)‖2 + ‖Gω,h(0,0)‖2 ≤ M
δ

ω2 .

Moreover, ‖Gω,0(γ
u
0 , θu

0 )‖2 = ‖(γ u
0 , θu

0 )‖2 ≤ Mδ/ω2.
Let v ∈ Du and first assume that |h1/4v| ≥ 1, hence

∣∣πj (Gω,h(γ
u
0 , θu

0 )(v) − Gω,0(γ
u
0 , θu

0 )(v))
∣∣≤ ∥∥Gω,h(γ

u
0 , θu

0 )
∥∥

2

|v2 + 2| +
∥∥Gω,0(γ

u
0 , θu

0 )
∥∥

2

|v2 + 2|
≤ M

δ

ω2||v|2 − 2|
≤ M

δ

ω2(1/
√

h − 2)

≤ M
δ

ω2

√
h,

for h > 0 sufficiently small, j = 1, 2.
Now, assume that |h1/4v| < 1, and denote �j

h = πj (Fh(γ
u
0 , θu

0 ) −F0(γ
u
0 , θu

0 )), j = 1, 2.
Consider the path s = e−iβξ (since �h ∈ X 2

2 ) and let ξ0(v) ∈ R be such that v0(v) = v +
e−iβξ0(v) is the unique point of intersection between the curve γ (ξ) = v + e−iβξ and the circle 
Sh of radius h−1/4 centered at the origin.

∣∣π1(Gω,h(γ
u
0 , θu

0 ) − Gω,0(γ
u
0 , θu

0 ))(v)
∣∣=

∣∣∣∣∣∣
0∫

−∞
eωis�1

h(s + v)ds

∣∣∣∣∣∣
=
∣∣∣∣∣∣

0∫
−∞

e−ωie−iβ ξ�1
h(v + e−iβξ)e−iβdξ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
ξ0(v)∫

−∞
e−ωie−iβ ξ�1

h(v + e−iβξ)e−iβdξ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
0∫

ξ0(v)

e−ωie−iβ ξ�1
h(v + e−iβξ)e−iβdξ

∣∣∣∣∣∣∣ .
Notice that the points in the path γ (ξ) = v + e−iβξ satisfy that |γ (ξ)h1/4| ≥ 1 for every 

ξ ≤ ξ0(v) and |γ (ξ)h1/4| < 1 for every ξ0(v) < ξ < 0. Also, let v∗
0(v) = eiβv0(v), and notice 

that Im(v∗(v)) = Im(v) and |h1/4v∗(v)| = 1. See Fig. 8.
0 0
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Fig. 8. Definition of the points v0(v) and v∗
0 (v).

Thus the first integral satisfies that∣∣∣∣∣∣∣
ξ0(v)∫

−∞
e−ωie−iβ ξ�1

h(v + e−iβξ)e−iβdξ

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣

v∗
0 (v)∫

−∞
eωi(v−r)�1

h(r)dr

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣eωi(v−v∗
0 (v))

v∗
0 (v)∫

−∞
eωi(v∗

0 (v)−r)�1
h(r)dr

∣∣∣∣∣∣∣
= ∣∣π1(Gω,h(γ

u
0 , θu

0 )(v∗
0(v)) − Gω,0(γ

u
0 , θu

0 )(v∗
0(v)))

∣∣
≤ M

δ
√

h

ω2 .

Now, since |γ (ξ)h1/4| < 1 for every ξ0(v) < ξ < 0, we can use Lemma 10.6 to see that the 
second integral satisfies∣∣∣∣∣∣∣

0∫
ξ0(v)

e−ωie−iβ ξ�1
h(v + e−iβξ)e−iβdξ

∣∣∣∣∣∣∣≤
0∫

ξ0(v)

eω sin(β)ξ |�1
h(v + e−iβξ)|dξ

≤ Mδ
√

h

ω

0∫
−∞

eω sin(β)ξ 1

|(v + e−iβξ)2 + 2|dξ

≤ Mδ
√

h

ω|v2 + 2|
0∫

eω sin(β)ξ dξ
−∞
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≤ Mδ
√

h

ω2|v2 + 2| .

The result follows from these bounds. �
Now, define E(v) = (γ u

h,0(v) − γ u
0 (v), θu

h,0(v) − θu
0 (v)) and notice that(

�u
h,0(0) − �u

0(0)

�u
h,0(0) − �u

0(0)

)
=
(

Qh(0) − Q0(0)

−Qh(0) + Q0(0)

)
+ E(0)T .

Using (37) and (43), we have Qh(0) = Q0(0) = 0. Hence, to prove Proposition 10.2, it is enough 
to bound ‖E‖0. Since (γ u

h,0, θ
u
h,0) and (γ u

0 , θu
0 ) are fixed points of Gω,h and Gω,0, respectively,

E = (γ u
h,0, θ

u
h,0) − (γ u

0 , θu
0 )

= Gω,h(γ
u
h,0, θ

u
h,0) − Gω,h(γ

u
0 , θu

0 ) + Gω,h(γ
u
0 , θu

0 ) − Gω,0(γ
u
0 , θu

0 ).

It follows from Propositions 10.5 and 10.7 that

‖E‖0 ≤ ‖Gω,h(γ
u
h,0, θ

u
h,0) − Gω,h(γ

u
0 , θu

0 )‖0 + ‖Gω,h(γ
u
0 , θu

0 ) − Gω,0(γ
u
0 , θu

0 )‖0

≤ Mδ2‖E‖0 + Mδ
√

h

ω2 .

Thus, for ε0 sufficiently small, we have that ‖E‖0 ≤ 2
Mδ

√
h

ω2 . This completes the proof.

10.3. Approximation of Wu
ε (�−

κ1,κ2
) by Wu

ε (p−
0 )

In this section, we obtain an approximation of Nu
κ1,κ2

by Nu
0,0, by approximating Nu

κ1,κ2
by 

Nu
κ1,0

and Nu
κ1,0

by Nu
0,0.

Proceeding as for Proposition 10.1 and Lemma 9.5, one can obtain the next result.

Proposition 10.8. Let �u
κ1,0

(v), �u
κ1,0

(v) and �u
κ1,κ2

(v, τ), �u
κ1,κ2

(v, τ) be given in (42) and (45), 
respectively. There exist ε0 > 0, h0 > 0 and a constant M > 0 such that, for v ∈ Du ∩R, τ ∈T , 
0 ≤ ε ≤ ε0, 0 ≤ h ≤ h0 κ1, κ2 ≥ 0 with κ1 + κ2 = h,∣∣∣∂τ (�

u
κ1,κ2

(v, τ ) − �u
κ1,0(v))

∣∣∣ , ∣∣∣�u
κ1,κ2

(v, τ ) − �u
κ1,0(v)

∣∣∣≤ M
δ
√

κ2

ω3/2 ,∣∣∣∂τ (�
u
κ1,κ2

(v, τ ) − �u
κ1,0(v))

∣∣∣ , ∣∣∣�u
κ1,κ2

(v, τ ) − �u
κ1,0(v)

∣∣∣≤ M
δ
√

κ2

ω3/2 .

(137)

Notice that Proposition 10.2 allows us to approximate Nu
κ1,0

by Nu
0,0, for κ1 sufficiently small. 

Thus, we can combine this fact with Proposition 10.8 to obtain the following proposition.

Proposition 10.9. Let �u
0(v), �u

0(v) and �u
κ1,κ2

(v, τ), �u
κ1,κ2

(v, τ) be given in (36) and (45), 
respectively. There exist ε0 > 0, h0 > 0 and a constant M > 0 such that, for v ∈ Du ∩R, τ ∈T , 
0 ≤ ε ≤ ε0, 0 ≤ h ≤ h0 and κ1, κ2 ≥ 0 with κ1 + κ2 = h,
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∣∣�u
κ1,κ2

(v, τ ) − �u
0(v)

∣∣ , ∣∣�u
κ1,κ2

(v, τ ) − �u
0(v)

∣∣≤ M
δ
√

κ2

ω3/2 + M
δ
√

κ1

ω2 ,

∣∣∂τ (�
u
κ1,κ2

(v, τ ) − �u
0(v))

∣∣ , ∣∣∂τ (�
u
κ1,κ2

(v, τ ) − �u
0(v))

∣∣≤ M
δ
√

κ2

ω3/2 .

(138)
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