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Permanent-magnet synchronous motors (PMSM) are widely used in industrial appliances, wind
and aerospace applications and also in electrical vehicles. This motor presents better efficiency,
higher power density, less weight and volume than other machines for the same power. The electrical
characteristics of the motor are nonlinear and require the application of nonlinear control techniques
(or linear ones by linearizing the dynamics) to regulate the speed, the position or the torque of the
machine. Moreover, the encoder used to measure the position or the speed is quite expensive
and observers are usually needed. In this project, we study different control techniques applied to
a PMSM for regulating the speed of the machine. Matlab simulations are used to compare the
behaviors obtained with the different controllers.

I. INTRODUCTION

The main problem we face when designing and study-
ing different control techniques of the PMSM system [1]
is its nonlinear behavior. The aim is to stabilize the sys-
tem with the proper control so we consider two potential
approaches, either use the Lyapunov direct method [2], a
non-linear technique, or linearize the system via feedback
so that we can design a control for a linear system [3].

The remainder of this paper is organized as follows. In
section II, the mathematical model of the motor is de-
scribed. In section III the tests that will be performed
are introduced. In sections IV to VI, various control
strategies are presented and the results obtained with
each of them are discussed. In section VII, the different
controllers are compared, in terms of their performance.
Finally, in section VIII some conclusions are presented.

II. MATHEMATICAL MODEL OF THE PMSM

We will work in the rotor reference (dq) frame. The
electrical and mechanical equations of the PMSM [4] are
the following:
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where the inputs, variables and parameters are:
ud and uq dq frame stator voltages
id and iq dq frame stator currents
Ld and Lq dq axes inductances
p number of pole pairs
φv rotor flux
Rs stator resistance
ω speed
TL load torque
J inertia
B viscous friction coefficient

In this paper we will assume that the state variables
id, iq and w are available, whereas ud and uq are used
as control variables. For the controller design, the load
torque will be considered to be an unknown disturbance
and the parameter values are shown in table I.

TABLE I. Parameters of the PMSM
Rs = 1.2 Ω φv = 0.18 V.s/rad J = 0.006 kg.m2

p = 3 Ld = Lq = 0.011 H B = 0.0001 N.m.s/rad

III. TESTING METHODOLOGY

By searching for the equilibrium points of the system
we can discern two degrees of freedom, allowing us to
set the value of two state variables. We use ied = 0,
which is a typical current value for this kind of motor,
and wd = 300rad/s as our target speed in equilibrium.

Three tests will be carried out for each of the control
designs. The first one will focus on the start-up perfor-
mance of the system, assuming known invariant system
parameters and that no torque is applied. The second
one will assume a change in the B and J parameters no
larger than one order of magnitude, most probable in
a practical environment, once the system has stabilized.
The third and final one will once again assume known in-
variant parameters but will introduce a constant torque
value once the system has reached the steady state.

IV. LYAPUNOV-BASED CONTROL

The first approach we use to design the control is find-
ing a Lyapunov function such that guarantees stability of
the system in terms of the error with no need of solving
any equation. If we consider that Ld = Lq = L, one can
prove that the function
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where x = x− x∗, being x∗ the equilibrium point, using
the following proper control

ūq = pLiedω̄, ūd = −2

3

LBwd

φv
ω̄

fulfils the condition. Of course, if it proves global stability
it also demonstrates local stability of the system around
the equilibrium point.

The test results are shown in figure 1. For the first
test we see that the system takes around 5 seconds to
reach the target speed, with no error in the steady-state.
When running the second test we observe no error when
changing J, but a discrepancy can be seen for a change
in B. Lastly, an important error appears in the third test
results when applying a torque of value 1 Nm.

FIG. 1. Lyapunov-based control performance

V. FULL STATE CONTROL USING FEEDBACK
LINEARIZATION

The other approach is to linearize the system using
feedback linearization. We perform the following change
of control variables

ud = vd − pLqwiq (4)

uq = vq + pLdwid + pwφv (5)

that allows us to decouple the electric dynamic equations
(1) and (2) and make the nonlinear terms disappear so
that we can design vn using linear methods. To do that,
one can assume that the electrical variables’ dynamics
are much faster than the mechanical one, so the control
algorithm may be split into to parts: current control loop
and mechanical control loop. For the fast dynamics, ω
changes very slowly, while for the slow one the intensi-
ties rapidly achieve their stationary value so that we use
iq = rq as the input control. The equation (3) can be
considered linear as well.

A. Control without integral action

Both electrical and mechanical loop have a decoupled
and linear dynamics. The three controls vd, vq and rq
will have a typical feedback controller structure with a
reference gain per a reference value plus a feedback gain
per the corresponding state variable that will ensure a
stable dynamic equation ending up in the desired refer-
ence value. In order to do that we have to place the
poles pd, pq and pw in a proper location. It is important
to note that by construction of the solution, the real part
of the slow pole pw must be at least 5 times smaller in
absolute value than the electric poles pd and pq so that
they become the fast ones.

Setting the pole values to pd = pq = −4000 and pω =
−40, the first test shows that the system reaches steady
state in close to 0.15s, without any error (see figure 2).
Once again, a change in the J parameter does not effect
the steady state of the system, but the error when B is
changed is practically imperceptible. This change has to
be of at least an order of magnitude higher to have a
notable effect. On the contrary, when applying a torque
of 10 Nm in the third test, the error in speed is still
important.

FIG. 2. FSF control w/o integral action performance

B. Control with integral action

The problem encountered using the previous imple-
mentation is due to the added disturbance, that is, the
torque, as it affects the equilibrium point and conse-
quently the term responsible for the linearization. In or-
der to fix it, one could extend the mechanical loop while
leaving the electrical loop the same, since the torque only
appears in the mechanical equation. This means adding
an integral action to the controller so that the error in
ω is integrated over time. Since we have increased the
range, we need a new condition, i.e to place a fourth pole
to the controller.

This new pole is set to pz = −40.8. Running the tests
again (see figure 3), the settling time of the system is
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now slightly higher, of around 0.2s for the first one. In
the second test, the error becomes not negligible, but
nonexistent. Additionally, the target speed is reached
when applying the third test conditions with a torque of
50 Nm.

FIG. 3. FSF control w/ integral action performance

VI. OBSERVER DESIGN

Until now we have assumed that the entire state is
known. However, it is not always the case, since espe-
cially the speed measurement might have a lot of noise
or perturbations. Normally, the measurements that are
available are the currents’ (and sometimes the rotor po-
sition, but we are not taking it into consideration).

Starting from the same idea of dividing the system
into two loops, the electrical control will be exactly the
same as in the previous point, but in the mechanical,
we will use the angular speed observed ŵ instead of the
measured. We will work with the dependence there is
between the dynamics of iq (2) and w (3) so that we
can observe the angular velocity from the measurements
of the intensity. It’s important to mention that with the
design of the observer we can not deal with the non-linear
term appearing in the third equation due to Lq 6= Ld. It
has an observability degree of 2 but since we already have
iq measured, we can design a minimum order observer.
The observer gain is obtained with the eigenvalue assign-
ment problem of the closed-loop error system character-
istic polynomial with the desired one, which involves a
single observer pole po.

We set po = −100. Starting with the constant target
speed test, we can see in figure 4 that the behavior of
the system is the same as with the previous controller,
and the observed speed is apparently identical to the real
speed. Regarding the second test, the change of both the
B and J follows a behavior similar to the one observed
when using the feedback controller without integral ac-
tion, and therefore the error is negligible. However, when
running the third test with a torque of 50 Nm, a large
error appears in the steady-state speed. This is due to

the fact that the observer does not take into account the
effect of the torque in the mechanical equation, so the
observed speed is not correct. Therefore one can see that
the controller makes the observed speed reach the desired
value, but not the real speed.

FIG. 4. Feedback control with observer performance

VII. FIELD ORIENTED CONTROL

Field oriented control (FOC), also called vector con-
trol, is a variable-frequency drive control method, that
is, the AC motor speed is adjusted and controlled by
varying motor input frequency and voltage. It helps us
with the issue of entering a disturbance (the torque).

We use again the linearizing control (4) and (5) and
take the same considerations as in the full state control

To proceed in a much more comfortable and appropri-
ate way we will work with Laplace transformations as we
are interested in the frequency domain and with the X
variables.

The linear control designs are: Vn(s) = kP In(s) and
Rq(s) = (kIs + kP )W (s). Now we want the poles of the
closed loop transfer function to be located in such a way
that the system is stable and meets the specifications we
want. Notice that the integral action is adding a zero
that must be placed far enough from the poles for the
control to be valid. We impose a pole p1 on the open left-
half plane for the electrical loop controller and a pair of
complex poles such as λ± = −σ±jwd for the mechanical
loop controller.

For the simulation, we set the current pole to the same
value as the feed-back controller, p1 = −4000. As for
the mechanical poles, we choose the poles by taking into
account the properties of a second-order system: the set-

tling time ts = 4
σ and the overshoot Mp = e

−πσ
ωd . On

the one hand, we can choose wd as small as we want, it
might as well be zero. On the other hand, in principle,
one could expect to get a better response of the system
the larger σ is. However, as we approach the zero of the

transfer function, located in α = − σ2+w2
d

2σJ+B , these formu-
las are no longer valid. In practice, a larger σ gives a
shorter settling time, but for a certain value of σ (in our
case, σ > 400, approximately) the overshoot starts to in-
crease. We will then arbitrarily use this value to get the
minimum possible overshoot.
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TABLE II. Comparison of the controllers’ performance

Lyapunov Feedback Integral Observer FOC
Number of sensors 3 3 3 2 3
Global stability Guaranteed Guaranteed Guaranteed Guaranteed Guaranteed
Steady-state error Nonexistent Nonexistent Nonexistent Nonexistent Nonexistent
Dynamic response Slow Fast Fast Fast Very fast
Overshoot Null Null Null Null Noteworthy
Robustness to B Very low High Very high High Very high
Robustness to torque Very low Low Very high Low Very high
Ld 6= Lq No Yes Yes No Yes

Having said this, we proceed with the tests, whose re-
sults are shown in figure 5. We start with the first test,
for which we obtain a settling time of around 0.025s and
an overshoot slightly below 50 rad/s (16%). There is no
error in steady-state. The second test does not show any
noticeable effect on the specified parameter variations. It
is not until the variations in B are of an order of magni-
tude 4 times larger than its original value that we begin
to see those effects. Lastly, we see that the system is also
robust to a large load torque. Applying a torque of 300
Nm, we get a maximum error in the transient stage of 5
rad/s, and an overshoot of 1 rad/s, whereas no error is
observed in the steady-state.

FIG. 5. FOC performance

VIII. CONTROLLER COMPARISON

We have seen that all the controllers provide global
stability with no steady-state error when the system pa-
rameters are known and no torque is applied. However

when this is not the case they present quite different be-
haviours.

These different behaviours are observed in terms of
start-up performance, considering both time needed to
reach stationary state and overshoot, robustness to vari-
ations of the B parameter (having obtained no visible
effects given by the variation of J) and the load torque,
and whether their analytical treatment allows for differ-
ent dq axes inductances consideration or not.

Another major property is the number of sensors
needed for the implementation of the controllers, which
corresponds to the number of state variables that they
assume to be known.

A summary of the controllers’ properties is shown in
table II.

IX. CONCLUSIONS

In this paper we have studied some approaches to the
control of a PMSM non-linear system. We have shown
that either using a proper Lyapunov function or feedback
linearization techniques one can design a controller with
global stability. Moreover, with the second approach it is
possible to obtain a design that is robust to variations (or
uncertainty) of the system parameters, as well as external
disturbances such as an applied load torque.

The most convenient designs presented in this paper,
assuming that all the state of the system is available, are
the full-state feedback linearization with integral action
in the mechanical loop and a field-oriented control. The
first one has no overshoot, while the second one provides
a much faster response.

Moreover, we have shown a possible observer design
that can be used to estimate the speed of the motor, in
such a way that the speed sensor is no longer needed.
However, the results manifest poor robustness to an ex-
ternal disturbance.
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