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Abstract. The multi-fidelity machine learning framework proposed in this paper leverages
a probabilistic approach based on Gaussian Process modeling for the formulation of stochas-
tic response surfaces capable of describing propeller performance for different mission profiles.
The proposed multi-fidelity techniques will help coping with the scarcity of high-fidelity measure-
ments by using lower-fidelity numerical predictions. The existing correlation of the multi-fidelity
data sets is used to infer high-fidelity measurements from lower fidelity numerical predictions.
The probabilistic formulations embedded in Gaussian Process regressions gives the unique op-
portunity to learn the target functions describing propeller performance at different operating
conditions, while quantifying the uncertainty associated to that specific prediction. While the
multi-fidelity autoregressive scheme allows to construct high accurate response surfaces using
only few experimental data, Uncertainty Quantification (UQ) provides an important metric to
asses the quality of the learning process. We demonstrate the capability of the proposed frame-
work to predict the performance of a controllable pitch propeller using few experimental data
coming from towing tank experiments and many medium-fidelity predictions obtained using an
in-house developed BEM, validated and verified in many previous studies.

1 INTRODUCTION AND MOTIVATION

Controllable Pitch Propellers (CPP) offer a propulsion flexibility that is particularly suitable
for marine vehicles designed to operate at different mission profiles. Predicting CPP perfor-

1

544



Stefano Gaggero, Antonio Coppede, Diego Villa, Giuliano Vernengo and Luca Bonfiglio

mance in a wide range of operating conditions, therefore, is essential for the characterization
of the propulsive features of a vessel. Modern propeller design relies on design by optimization
techniques in which propeller performance are predicted using low- or medium-fidelity numerical
methods, while design assessment is often performed with high-fidelity computational models
[1, 2] or, in case of innovative designs, through open-water experiments at the cavitation tunnels
[3]. Once the design process converges towards an optimized shape (as in [4, 5]), it is important
to characterize CPP propellers for different operating conditions in order to increase the knowl-
edge of the engineering system, predicting possible pitfalls due to performance loss, increase
in fuel oil consumption or other important consequences such as excessive loads on the blade,
radiated noise [6] or the occurrence of cavitation that could compromise the structural integrity
of the propeller. Considering instead an existing, operating, vessel it would be necessary to
measure the performance of the propulsion system in a wide range of operating conditions to
have its complete characterization. However, in most cases, this might be technically prohibitive
and too expensive to be achieved.

In this study we present a mathematical framework capable of constructing accurate surro-
gate models using only a few high-fidelity data and many numerical predictions performed with
inexpensive, low-fidelity computer codes. In this paper we propose a supervised learning frame-
work in which the labeled data coming from two different outputs are blended together using
multi-fidelity Gaussian process regression [7, 8, 9, 10, 11, 12]. Multi-fidelity Gaussian Process
Regressions have been successfully applied in the naval engineering field for the hydrodynamic
and hydro-structural shape optimization of super-cavitating hydrofoils [13, 14] and hull-forms
for both calm water resistance [15] and ship motions reduction [16]. Bonfiglio et al. [17] used
numerical predictions and experiments to predict hydrodynamic performance of a conventional
super-cavitating hydrofoil in the operating conditions input space by leveraging multi-fidelity
Gaussian Process Regressions. More simplified multi-fidelity strategies for surrogate model for-
mulations have been recently proposed in [18, 19]. To the best of our knowledge, this is the
first time such tools are applied for the predictions of propeller performance in the operating
conditions input space.

2 GAUSSIAN PROCESS REGRESSIONS

The supervised learning framework proposed in this paper is based on the formulation of
probabilistic regression models that are capable of combining multiple sets of data coming from
different information sources and providing quantities of interest information at different fidelity
levels. In particular, we leverage Gaussian Process GP regressions in order to model a non-linear
function describing the CPP performance in terms of thrust (KT ) and torque (KQ) coefficient at
different advance coefficients (J). In the present paper we demonstrate the main advantages of
the proposed framework through a study that involves two different information sources, namely
experimental data and numerical predictions. The framework can be extended to an arbitrary
number of information sources.

2.1 Nonlinear regression with Gaussian processes

The multi-fidelity model proposed in this paper allows to infer high-fidelity predictions by
using information mainly provided by lower fidelity models. In this setting, we assume that we
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have a data-set comprising of input/output pairs D = {(xi, yi)Ni=1} = {X, y} where X is a set
of given parameters describing the operating conditions of the propeller (e.g. J and P/D) and
y is their corresponding performance metric (e.g. KT or KQ). The final goal is to infer a latent
function f describing each quantity of interest in terms of nosy input data:

y = f(X) + �. (1)

Here X is considered to be a matrix in RN×D containing the N input points at which we
have observed the outputs y ∈ RN×1. Moreover, � is a noise process that may be corrupting
our observations of y. For simplicity, here we assume that � is Gaussian and uncorrelated, i.e.
� ∼ N (0, σ2

nI), where σ2
n is an unknown variance parameter that will be learned from the data,

0 is a zero column vector of size N , and I is the N ×N identity matrix.
In this study we will consider, without lack of generality, zero-mean Gaussian process priors

on f , i.e., f(x) ∼ GP(0, k(x, x�; θ)), our goal is to first identify the optimal set of kernel hyper-
parameters and model parameters, Θ = {θ, σ2

n}, and then use the optimized model to perform
predictions at a set of new unobserved locations x∗. A central role in this process is played
by the covariance kernel function k(x, x�; θ) that depends on a set of hyper-parameters θ and
encodes any prior belief or domain expertise we may have about the underlying function f . Here,
in absence of any domain-specific knowledge we have used the squared exponential covariance
kernel.

Model training is performed through minimizing the negative log-marginal likelihood of the
Gaussian process model [7]. In our setup, the likelihood is Gaussian and can be computed in a
closed analytical form

Θ∗ = argmin
Θ

L(Θ) :=
1

2
log |K + σ2

nI|+
1

2
yT (K + σ2

nI)
−1y +

N

2
log(2π), (2)

where K is a N × N covariance matrix constructed by evaluating the kernel function k(·, ·; θ)
at the locations of the input training data in X. The minimization here is carried out using the
quasi-Newton optimizer L-BFGS with random restarts [7]. Finally, once the model has been
trained on the available data, we can compute the posterior predictive distribution at a new
location x∗, namely p(y∗|x∗,D) ∼ N (μ(x∗),Σ(x∗)), by conditioning on the observed data as

μ(x∗) = k(x∗, X)(K + σ2
n)

−1y (3)

Σ(x∗) = k(x∗, x∗)− k(x∗, X)(K + σ2
n)

−1k(X,x∗). (4)

Here, we must emphasize the use of Gaussian processes as flexible prior distributions for
Bayesian regression of deterministic nonlinear functions. It is well known and understood that
Gaussian processes offer a flexible class of prior distributions over function spaces, and provide
a concrete formulation for Bayesian non-parametric regression [20]. Under the Central Limit
Theorem, one can rigorously prove that Gaussian processes can be obtained as the infinite limits
of deep neural networks (i.e., neural networks with multiple layers, an infinite number of neurons
per layer, and a Gaussian prior on their weights) [21]. Moreover, rigorous statistical consistency
estimates can be obtained using approximation theory in Reproducing Kernel Hilbert Spaces
[22]. Therefore, our choice of employing a Gaussian process prior for approximating the non-
linear function f in equation 1 is reasonable, as this choice allows us to approximate smooth,
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yet arbitrarily complicated functions in high-dimensions. A need for a more complex non-
Gaussian prior would only arise in cases where f would have jump discontinuities (leading to
a bi-modal distribution of y for a given x), or in cases where our observations are corrupted
by a non-Gaussian noise process. Such cases are not relevant to our study as our quantities of
interest are smooth functions of their inputs, and our observations y are outputs of deterministic
computer simulations. Therefore, the reader should hereby note the difference between modeling
stochastic phenomena using Gaussian distributions (which is not relevant to this study) versus
approximating smooth deterministic functions using Bayesian non-parametric regression with
Gaussian process priors, which is the main building block of this study.

The key motivation for adopting a Bayesian approach to approximate deterministic functions
stems from the central role played by the quantification of the uncertainty associated with our
surrogate model predictions. This uncertainty can reflect both any bias in the training data as
well as the uncertainty inherent to the prior modeling assumptions themselves. Besides offering
a quantitative mechanism for assessing model inadequacy, this is key to facilitating the judicious
acquisition of new information within an optimization loop (see for instance [17]).

2.2 Multi-fidelity modeling

The aforementioned work-flow can be straightforwardly extended to handle cases involving
data that originate from different information sources of variable fidelity [12, 23, 8]. For sim-
plicity, here we outline the process corresponding to two levels of fidelity, although this can
be generalized to arbitrarily many levels. In a two-level multi-fidelity setting we observe data
D = [{(xLi , yLi)

NL
i=1}, {(xHi , yHi)

NH
i=1}] = {X, y}, where (xL, yL) and (xH , yH) are input/output

pairs generated by a low- and high-fidelity model, respectively, typically with NL >> NH . Then,
our goal is to set up a multi-variate regression framework that can return accurate high-fidelity
predictions while being primarily trained on low-fidelity data. To do so, we consider the follow-
ing multi-output Gaussian process regression model first put forth by Kennedy and O’Hagan
[12]:

yL = fL(xL) + �L (5)

yH = fH(xH) + �H (6)

fH(x) = ρfL(x) + δ(x) (7)

fL(x) ∼ GP(0, kL(x;x
′; θL), �L ∼ N (0, σ2

nL
I) (8)

δ(x) ∼ GP(0, kH(x;x′; θH), �H ∼ N (0, σ2
nH

I) (9)

Here fL(x) and δ(x) are considered to be two independent Gaussian processes, ρ is a scaling
parameter that is learned during model training along with the variances σ2

nL
and σ2

nH
that

potentially corrupt the low- and high-fidelity data, respectively. As a consequence of the auto-
regressive assumption in Eq. 7, the joint distribution of the low- and high-fidelity data inherits
the following structure:

y =

[
yL
yH

]
∼ N

([
0
0

]
,

[
kL(xL, x

′
L; θL) + σ2

nL
I ρkL(xL, x

′
H ; θL)

ρkL(xH , x′L; θL) ρ2kL(xH , x′H ; θL) + kH(xH , x′H ; θH) + σ2
nH

I

])

(10)
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Evidently, the covariance of y now has a block structure, where the diagonal blocks model the
data in each fidelity level and the off-diagonal blocks model the cross-correlation structure be-
tween different levels of fidelity. Model training and posterior predictions can now be performed
by using the concatenated low- and high-fidelity data along with this block covariance matrix
structure replacing K in Eq. 2- 4. Specifically, the minimization of the log-marginal likeli-
hood in Eq. 2 will return the optimal set of model parameters and hyper-parameters, namely
Θ = {θL, θH , ρ, σ2

nL
, σ2

nH
}, which can be subsequently used to perform posterior predictions using

Eq. 3, 4.

3 PROPELLER PERFORMANCE DATA SETS

The propeller performance we considered for current analyses are those of the P2772. P2772 is
the four-bladed, left-handed controllable pitch propeller of the “Medium Size Tanker” provided
in the framework of the European Project AQUO [24]. It has an expanded area ratio of 0.45 and
a chord over diameter at r/R = 0.7 of 0.29. At the design condition, the pitch over diameter
ratio measured at r/R = 0.7 is equal to 0.87. Model scale tests are available from SSPA Sweden.
Three pitch settings in addition to the design conditions are considered, namely P/D = 0.9, 0.75
and 0.6, which correspond to rigid rotations of the propeller blades from +0.72 to −6.6◦.

(a) Surface Mesh for BEM calculations (b) Pressure coefficient distribution (CPN )
on the key blade. Design pitch at J = 0.5

Figure 1: The P2772 propeller.

Numerical calculations were carried out using the Boundary Element Methods developed at
the University of Genoa [3, 1]. It makes use of the key blade approach (figure 1(b)) to solve
steady and unsteady problems also in presence of cavitation. In current analyses, we exploit
steady, non-cavitating calculations on a blade surface mesh of 1500 panels (figure 1(a)) to char-
acterize the open water performance of the propeller at the same functioning conditions available
from experiments. Bollard-pull functioning, at any pitch settings, were not calculated due to the
inherent limitations of BEM in dealing with zero inflow speed. Differences between calculations
and measurements are reasonable with an average deviation for thrust and torque of about 2%
(both overestimated) when the design pitch is considered. At the reduced pitch, instead, calcula-
tions significantly underestimate (18% and 15% on average) propeller performance. Moreover, as
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highlighted in figures 3(a) and 3(c), also the slope of the thrust and the torque curves computed
by the BEM are significantly different from measurements.

4 STOCHASTIC SURROGATE MODELS PREDICTIONS

We leverage the data set previously described to construct probabilistic surrogate models
describing CPP characteristics at different advance coefficients J and different pitch ratios P/D.
To demonstrate the capabilities of the multi-fidelity GP regressions framework proposed in this
paper, we first focus on a simplified one-dimensional input space. The input matrix X is defined
in RNT×1 where NT is the number of input points used to train our surrogate models. We
have at our disposal N = 10 experiments, performed at the SSPA towing tank [24]. The cost
of the experimental campaign consists mostly in the construction of the propeller model and
set-up of the towing tank, that including the cost of the equipment and the time required for
its calibration. Additional experiments at different advance coefficients do not usually cause a
significant increase in cost or time. Nevertheless, in this paper we aim at demonstrating the
capabilities of the proposed multi-fidelity framework of predicting quantities of interest when
high-fidelity measurements are expensive or difficult to obtain. We model our probabilistic
surrogates using a zero-mean GP with a squared exponential covariance function k, which in
one dimension is defined as follows:

k(xp, xq) = σ2
f exp

(
− 1

2�
|xp − x�q|2

)
+ σ2

nδpq (11)

The covariance function depends on three hyper-parameters, representing signal variance σf ,
length-scale � and noise-variance σn. Here we assume noise-free experiments, hence σn=0.
Hyperparameters are discovered using the the available data and minimizing the negative log-
likelihood, as described in (2). Once the hyper-parameters describing our data-sets are discov-
ered, posterior mean predictions are obtained from (3) and (4), which for thrust coefficient read
as follows:

K̂T (J
∗) = k(J∗, J)(K + σ2

n)
−1KT (J) (12)

Σ(J∗) = k(J∗, J∗)− k(J∗, J)(K + σ2
n)

−1k(J, J∗). (13)

Here the relative L2 error between model prediction K̂T and experiments KT is computed (at
the location of the measurements) as follows:

||K̂T −KT ||
||KT || =

√∑NV
i=1 |K̂T (Ji)−KT (Ji)|2√∑NV

i=1 |KT (Ji)|2
(14)

Here NV is the number of available experiments not including in training (NV = N −NT ).

Figure 2 presents results obtained using NT = 3 (figures 2(a) and 2(b)) and NT = 2 points
(figures 2(c) and 2(d)). Each point represent a measurement of thrust and torque obtained an
experiment performed at a given advance coefficient J .
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(a) Three Experiments: J=0, J=0.4, J=0.72 (b) Three Experiments: J=0, J=0.16, J=0.24

(c) Two Experiments: J=0.16, J=0.321 (d) Two Experiments: J=0.08, J=0.64

Figure 2: Construction of single-fidelity GP regressions for thrust (blue) and torque (red) coefficients
in the 1-D input space of advance coefficient J . The posterior mean is described by dashed lines, while
uncertainty is described by a colored 2σ band. High-fidelity data used in model training are represented
by means of circular dots, while high-fidelity measurements are described by green continuous line. Panels
show results obtained for different training data sets.

Figure 2 demonstrates how GP can accurately approximate thrust and torque at different
advance coefficients J if surrogate models are trained using N = 3 measurements opportunely
selected. In figure 2(a) posterior means (dashed lines in figure 2(a)) approximate experiments
with a relative L2 error of 1.96% for KT and 1.93 for KQ%. As demonstrated in figure 2(a),
the accuracy of model predictions is satisfactory in the whole input range J ∈ [0, 0.7]. The
maximum uncertainty is located at J = 0.17. This is consistent with the location of the
experiments used in training: uncertainty becomes larger far from the data and where the
function to discover is characterized by higher gradients. Selecting N = 3 experiments at
different advance coefficients increases the uncertainty and the relative L2 error, as presented
in figure 2(b), where we trained surrogate models using only experiments performed at the
lowest advance coefficients. Also in this case the uncertainty is higher far from the data, as

7

550



Stefano Gaggero, Antonio Coppede, Diego Villa, Giuliano Vernengo and Luca Bonfiglio

Table 1: Validation of GP single-fidelity regressions for different high-fidelity measurements used for
model training. Four different cases correspond to different training data sets. Relative L2 error com-
puted at the locations of high-fidelity measurements that were not included in model training, maximum
uncertainty (2σ) and location of maximum uncertainty (JΣmax

) are described for both thrust (KT ) and
torque (KQ) coefficients. High-fidelity inputs are indicated in terms of advance coefficients in square
bracket.

.

KT KQ

Inputs (J) L2 error 2
√
Σmax JΣmax L2 error 2

√
Σmax JΣmax

[0, 0.40, 0.72] 1.96% 0.008 0.17 1.93 % 0.008 0.17
[0, 0.16, 0.24] 8.1% 0.05 0.7 11.4 % 0.03 0.8
[0.16, 0.321] 8.2% 0.15 0.7 11.7 % 0.06 0.7
[0.08, 0.64] 8.2% 0.18 0.36 3.3% 0.07 0.36

demonstrated by the 2σ shaded regions in figure 2(b). When using only N = 2 measure-
ments, the quality of model prediction significantly decreases, as showed in figures 2(c) and
2(d). Even if the relative L2 error does not significantly increase, the trend of both thrust and
torque coefficient is not correctly captured and the uncertainty associated to surrogate model
prediction highlights these discrepancies. Table 1 summarizes results in figure 2 and demon-
strates the importance of a strategic selection of training data when constructing probabilistic
surrogate models. In many engineering problems quantities of interest can be inferred using
prediction models based on simplified physics, numerical approximations or empirical regres-
sions. This is true also for hydrodynamic objective functions characterizing propeller perfor-
mance. The following examples demonstrate how numerical models, based on the simplified
assumption of potential flow, can significantly improve the predictions of open water propeller
performance in a wide range of operating conditions. The situation is well represented in fig-
ure 3(a) where we have NT = 2 experiments available and low-fidelity predictions available in
the entire range of J . The accuracy of low-fidelity numerical predictions is qualitatively de-
scribed in figure 3(a). The relative error between predicted and measured thrust coefficient is
as high as 20% at J = 0.1. We construct multi-fidelity surrogate models as described in section
2(b). In particular, we use a data set D1 = [{(JLi ,KT Li)

NL
i=1}, {(JHi ,KTHi)

NH
i=1}] = {J,KT } and

D2 = [{(JLi ,KQLi)
NL
i=1}, {(JHi ,KQHi)

NH
i=1}] = {J,KQ} where NL = 7, JL is a vector of evenly

spaced advance coefficients (J ∈ [0.1, 0.7]) and NH = 2 represents the number of high-fidelity
measurements collected during the experimental campaign. The covariance selected for modeling
both low- and high-fidelity data, as well as the their cross-correlation is a squared exponential
function as described in equation (11).

kL(xpL, xqL) = σ2
fL exp

(
− 1

2�L
|xpL − x′qL|2

)
+ σ2

nLδpq (15)

kH(xpH , xqH) = σ2
fH exp

(
− 1

2�H
|xpH − x′qH |2

)
+ σ2

nHδpq (16)

Therefore, a total of 7 hyper-parameters Θ = [σfL, �L, σnL, σfH , �H , σnH , ρ] will be learned from
negative log-likelihood minimization. In the proposed multi-fidelity training, surrogate models
are constructed assuming noise-free high-fidelity data and noisy low-fidelity predictions, in which
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(a) KT at J=0.161, J=0.321 (b) low- high-fidelity correlation

(c) KQ at J=0.161, J=0.321 (d) low- high-fidelity correlation

Figure 3: Construction of multi-fidelity GP regressions for thrust and torque coefficients in the 1-D input
space of advance coefficient J . The posterior mean is described by red dashed line, while uncertainty is
described by a 2σ band colored in red. Low-fidelity data are evenly distributed in the range of J ∈ [0, 0.7]
and they are described with blue continuous line. High-fidelity data used in model training are represented
by means of green circular dots, while high-fidelity measurements are described by green continuous line.
For each quantity of interest we indicated the correlation between low- (LF) and high-fidelity (HF) data
by means of red dashed curve (figures 3(b) and 3(d)). Grey dashed curve represents the situation for
which LF=HF.

the noise σnL will be learned from data through negative log-likelihood minimization. Figure 3
presents results obtained for thrust coefficient predictions using NL = 7 low-fidelity numerical
predictions and NH = 2 high-fidelity towing tank measurements at J = 0.16 and J = 0.32.
Results in figure 3(a) demonstrate the significant improvements obtained by combining high-
fidelity experimental measurements with low-fidelity numerical predictions. Even with low-
fidelity predictions characterized by high inaccuracies (20% for J = 0.1), the linear correlation
between low- and high-fidelity data (showed in figure 3(b)), allows to construct multi-fidelity
GP leveraging the autoregressive assumption expressed in (7). Results presented in figure 3(c)
in terms of torque coefficient predictions (KQ) confirms the advantages of the multi-fidelity
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Table 2: Validation of GP regressions for different high-fidelity measurements used for model train-
ing. Four different cases correspond to many sets of high-fidelity data. For each high-fidelity data set,
multi-fidelity surrogates (HF+LF) are compared to single-fidelity models (HF) in terms of relative L2

error computed at the locations of high-fidelity measurements that were not included in model training,
maximum uncertainty (2σ) and location of maximum uncertainty (JΣmax). Results are presented for
both thrust (KT ) and torque (KQ) coefficients. High-fidelity inputs are indicated in terms of advance
coefficients in square bracket. Low-fidelity inputs are evenly distributed in J ∈ [0, 0.7].

KT KQ

Inputs (J) L2 error 2
√
Σmax JΣmax L2 error 2

√
Σmax JΣmax

[0, 0.40, 0.72]HF 1.96% 0.008 0.17 1.93 % 0.008 0.17
[0, 0.40, 0.72]HF + LF 0.26% 0.002 0.18 0.54% 0.0004 0.14

[0, 0.16, 0.24]HF 8.1% 0.05 0.7 11.4 % 0.03 0.8
[0, 0.16, 0.24]HF + LF 3.95% 0.001 0.8 4.36 % 0.0001 0.8

[0.16, 0.321]HF 8.2% 0.15 0.7 11.7 % 0.06 0.7
[0.16, 0.321]HF + LF 3.9% 0.0005 0 2.42 % 0.0006 0

[0.08, 0.64]HF 8.2% 0.18 0.36 3.3% 0.07 0.36
[0.08, 0.64]HF + LF 2.07% 0.0004 0 1.13% 0.0004 0

framework. In particular, the good accuracy of the posterior mean obtained using high-fidelity
data at low advance coefficients is confirmed also at higher J . Table 2 presents results obtained
using the multi-fidelity framework presented in this study and compares them with single-fidelity
modeling. For each high-fidelity data set described in table 1 we trained a multi-fidelity surrogate
by blending towing tank measurements with low-fidelity predictions obtained using the BEM
previously described. Results in table 2 clearly demonstrate the significant advantages of the
multi-fidelity framework.

5 CONCLUSIONS

The paper presents a probabilistic approach to predict propeller performance using a diverse
pool of data sources. The probabilistic learning framework constructed on the basis of recursive
Gaussian Process Regressions is based on a linear autoregressive model. This approach allowed
us to seamlessly blend low-fidelity numerical data coming from Boundary Element Method pre-
dictions with high-fidelity measurements obtained from cavitation tunnel experiments. In this
paper we demonstrate the advantages of the proposed method by constructing surrogate models
for open water thrust and torque coefficient of a conventional propeller, for which cavitation
tunnel experiments where available at many advance coefficients. However, we validated the
proposed framework by considering a limited number of high-fidelity data in the formulation of
multi-fidelity GP models. This demonstrated how the proposed method brings significant advan-
tages if applied to engineering problems characterized by data scarcity such as the performance
predictions of full scale propellers on operating vessels.
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[14] L. Bonfiglio, P. Perdikaris, J. del Águila, and G. E. Karniadakis. A probabilistic framework
for multidisciplinary design: Application to the hydrostructural optimization of supercavi-
tating hydrofoils. International Journal for Numerical Methods in Engineering, 116(4):246–
269, 2018.

[15] H.C. Raven. Minimising Ship Afterbody Wave Making using Multifidelity Techniques. In
Proceedings of the 32nd Symposium on Naval Hydrodynamics (SNH), August 5-10, 2018,
Hamburg, Germany, 2018.

[16] L. Bonfiglio, P. Perdikaris, G. Vernengo, J. S. de Medeiros, and G. E. Karniadakis. Im-
proving swath seakeeping performance using multi-fidelity gaussian process and bayesian
optimization. Journal of Ship Research, 62(4):223–240, 2018.

[17] L. Bonfiglio, P. Perdikaris, S. Brizzolara, and G. Karniadakis. A multi-fidelity framework for
investigating the performance of super-cavitating hydrofoils under uncertain flow conditions.
In 19th AIAA Non-Deterministic Approaches Conference, page 1328, 2017.

[18] L. Bonfiglio, J. O. Royset, and G. E. Karniadakis. Multi-disciplinary risk-adaptive design
of super-cavitating hydrofoil. In 2018 AIAA Non-Deterministic Approaches Conference,
page 1177, 2018.

[19] J. O. Royset, L. Bonfiglio, G. Vernengo, and S. Brizzolara. Risk-adaptive set-based design
and applications to shaping a hydrofoil. Journal of Mechanical Design, 139(10):101403,
2017.

[20] C. E. Rasmussen. Gaussian processes in machine learning. In Advanced lectures on machine
learning, pages 63–71. Springer, 2004.

[21] R. M. Neal. Priors for infinite networks. In Bayesian Learning for Neural Networks, pages
29–53. Springer, 1996.

[22] A. Stuart and A. Teckentrup. Posterior consistency for gaussian process approximations of
bayesian posterior distributions. Mathematics of Computation, 87(310):721–753, 2018.

[23] P. Perdikaris, D. Venturi, and G. E. Karniadakis. Multifidelity information fusion algorithms
for high-dimensional systems and massive data sets. SIAM Journal on Scientific Computing,
38(4):B521–B538, 2016.

[24] AQUO. Work Package 2: Noise Sources, Task T2.3: Experimental investigations in model
scale. AQUO - Achieve QUieter Oceans by shipping noise footprint reduction, European
Commission within the Call FP7, 7th framework program, Grant Agreement no. 314227,
2015.

12

555




