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Abstract.  
Offshore production and export risers in deep-water oil and gas applications are highly 
slender and flexible cylindrical structures subject to complex environmental and operational 
loading conditions. In particular, catenary risers having variable curvature have been widely 
considered by industry as a technologically and economically viable solution for deep waters. 
Nevertheless, the mechanism of dynamic instability of curved bendable pipes transporting 
flows has not been properly investigated in the literature despite such practical and theoretical 
importance. In this study, the dynamic response and stability of catenary risers conveying 
internal flows are investigated by using a linearized finite element-based continuum pipe 
model. The governing fluid-structure interaction equations are derived using Hamilton’s 
principle and formatted into a generalized eigenvalue form in order to assess its stability for 
varying internal flow speeds. This procedure elucidates the contribution of the Centrifugal and 
Coriolis related terms for the onset of divergence and flutter unstable modes. It is shown that 
the pipe’s tension to bending rigidity ratio plays a catalytic role in the occurrence and 
evolution of intermodal coupling of the flutter modes in post-divergence regime. Theories and 
numerical strategies present in this study are being extended to the multiphase flow-induced 
vibration applications. 
 
1 INTRODUCTION 

Marine risers are widely used for offshore oil and gas transportation in deep waters and 
their operability has a direct impact on the life cycle and economics of the field. Because of 
its inherent flexibility and tight horizontal offset constraints, the riser comprises the most 
sensitive component within the oil and gas extraction system. It is therefore that the subject of 
understanding the riser’s linear or nonlinear dynamic response has attracted the interest of the 
scientific community.  

A marine riser, transporting crude oil and natural gas is simply supported at normal 
operation conditions. The dynamics of a pinned-pinned configuration has been extensively 
studied with regard to external loading and the basic mechanism of vortex induced vibrations 
(VIVs) is well documented in the literature [1]. In that regard various numerical [2] and 
computational [3] investigations have been performed in the past two decades. The dynamic 
response of a flexible riser due to internal single-phase flows has been formulated using 
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different approaches for planar vibrations, see Semler et al. [4] and Lin et al. [5], while there 
are also works focusing on the 3D dynamic response behavior [6].  

Deep-water ocean exploration expansion constantly demands for longer and slenderer 
risers, which inherently exhibit new dynamic features [7, 8]. A different modeling 
methodology is based on elastica theory. The extensible elastica has been well established in 
previous works [9, 10]. Moreover, the fluid plug flow model has been extended to include the 
effect of pulsatile flow-induced vibrations [11,12,13,14]. Extensibility effects have been 
highlighted by Chucheepsakul et al. [15] and Monprappusorn et al. [11]. 

Dynamic response attributed to internal slug flows in subsea piping systems is quickly 
becoming an issue of increasing concern due to its role in fatigue related failures. The slug 
flow regime potentially generates more pronounced structural vibrations due to the fluctuation 
of density, velocity and pressure of the transported fluid mixture [16]. Patel and Seyed [17] 
were among the first to formulate the mathematical expressions for the time-varying flow in a 
flexible riser in the 2-D plane. Their model, however, was a simplified version of internal slug 
flow excluding a lot of the fluid-structure complexity. It is only recently that the importance 
of slug flows to the riser dynamics has been appreciated in the academic community [18,19]. 
So far investigations have demonstrated that slug flows give rise to increased normal and 
axial responses contributing to higher dynamic tension, curvature and bending stresses. 
Further experimental and analytical works should be carried out to better understand the 
dynamic interaction of internal and external flow on a flexible catenary pipe as well as other 
operational impacts.  

The aim of this fundamental work is to make use of a finite element formulation for 
modeling the effects of single-phase flow on the stability boundaries and dynamic response of 
deep-water catenary pipes. The current work is the initial stage for incorporating the full 3D 
nonlinear behavior of a flexible liquid-conveying pipe while subjected to space-time varying 
external flow excitations. Previous research on the stability limits of pipes [20,21] has focused 
on simple straight pipe configurations either pinned-pinned or cantilevered. It is believed by 
the authors that the nature and stability mechanism of a flexible riser with varying curvature 
has been neglected in the literature. Consequently, this paper will focus on the investigation of 
different patterns of instability which influence the behavior of the stability limits by 
formulating the catenary pipe dynamics using a new procedure.  

2 MODELING PROCESS  

2.1 Static configuration of catenary risers 
The riser is considered to be a flexural sagged cable-like elastic structure and its planar 

configuration only due to the effective self-weight is considered here for convenience. 
Bending rigidity is neglected for the static analysis but considered for the vibrational response 
from the equilibrium position. The static profile of an SCR (steel catenary riser) is governed 
by the catenary configuration given by Equation [1]. This is a plausible simplification because 
of the pinned connections at the boundaries and due to the fact that SCR curvatures are 
relatively small [2].  
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EW is the computed effective weight accounting for the weight of the riser in air, the buoyancy 
of the riser element, the weight of the internal flow and the added mass effect of the pipe 
surrounding sea-water. wH  is the horizontal component of the riser tension which is spatially 
constant. Integrating Equation (1) twice and applying appropriate boundary conditions the 
static riser shape is obtained. The corresponding riser tension, neglecting the shear 
component, can also be derived accordingly [22]. Thus, for given EW , wH and specified 
horizontal and vertical pipe projections H HX ,Y , the total length, catenary geometry and static 
tension along the pipe is straight forwardly determined. Current flow forces on the pipe are 
neglected in this work as the focus lies in the internal flow-induced vibrations.    

 2.2 Fluid-pipe dynamic equations 
Consider a straight-pipe element subject to small amplitude vibrations. A generic pipe-

fluid element has axial and transverse displacements u( x,t )  and w( x,t ), respectively. Let 
the distance measured along the pipe’s local coordinate system be x , while the vertical 
coordinate be z . As the fluid flows along the curve described by the centerline, its motion is 
affected by the vertical acceleration, angular acceleration and changing curvature. An element 
of fluid being transported along the pipe has constant velocity U  tangent to the pipe axis and 
velocity  

ww t  in the vertical direction. For a general pipe planar configuration, the 

velocity of the center of a fluid element along the curvilinear coordinate s is given by the 
following expression [20]: 
                                                   

  f
rV i k        

DU x z
t s Dt

  (2) 

where, r is the position vector to a point measured from the origin and  D
Dt

 is the 

material derivative of the fluid element. Assuming that the curvilinear pipe is modeled using 
inter-connecting straight elements, the kinetic energy of the fluid of a straight segment of 
length L  in the local coordinate system can be written as:  
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The kinetic energy of the pipe is simply given by: 

  2 2

02
 

L
p

p

m
T u w dx   (4) 

where, fm is per unit length mass of the fluid and pm  is the mass density of the pipeline, 
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respectively. The upper dash denotes the local system in the orientation of the individual 
straight element. The potential energy of a straight pipe segment because of bending, axial 
strain and tension is given by the following formula [21]: 

  2 2

0 0

1 1
2 2

    
L L

p T x pU = EA dx EI w dx   (5) 

where, 
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The overdot and prime denote the derivatives with respect to time t and local spatial 
coordinate x , respectively. Substituting Equation (6) to (5) and neglecting some higher order 
terms we get the expression:  

 2 2 2

0 0

1 12
2 2

          
L L

p pU = T u u EA u dx EI w dx   (7) 

p pA ,I  are the second moment of area and the mass density of the pipeline, respectively.  

 2.3 Effect of cable tension on the system dynamics  
In this work the contribution of cable tension on the dynamic equations of motion is 

considered by referring to Ghaffar’s formulation [23] for a uniform section cable under 
uniform loading. The model stays within linear theory by considering small displacements 
from the position of the static catenary equilibrium. The analysis restricts its attention to small 
vibration response in the vertical plane. Let wH be the horizontal component of cable tension 
given by the equations of the catenary configuration [22]. H(t) is the cable tension caused by 
inertia forces. It is assumed that H(t) is small compared to wH or w wH + H(t) H . Vibration 
damping of the structure is neglected at this stage.  

As a result of small, free vibrations about the position of static equilibrium, the horizontal 
component of tension, wH  will change to wH + H(t)  and the differential length of the cable 
ds will increase to ds ds . The potential energy of the cable element is then expressed as:  

      ( )     
 

t w E
dsdU = H H t ds W w ds
dx

  (8) 

where ds  is the pipe stretch of the differential length ds and w is the vertical vibrational 
displacement in the direction of gravity. The first term in Equation (8) is the strain energy 

stored in the element ds and is equal to the average force  
  

w
1 dsH + H(t)
2 dx

times the pipe 

stretch   ds . The factor 1
2

is needed due to the fact that H(t) increases from zero to its 

maximum value and ds
dx

 is the cosine of the inclination angle. The second term represents the 

gravity energy, i.e., the potential energy loss due to the lowered position of the effective load. 
Integrating Equation (8) and following several differential calculus manipulations leads to the 
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following equation:  

 
2

0 0

1
2

                                 
  

H H H2X X X

t w
0

1 w w y wU (t)= H dx+ H(t) dx dx
2 t x x x

  (9) 

To bring Equation (9) in a more convenient form, we make use of the cable equation which 
relates the stretching of the cable element to the geometric displacements which it undergoes 
[24]: 
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0
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e
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dx

 is the virtual length of the cable. Equation (9) then becomes:  
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t w

p
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  (11) 

The second term of the above equation expresses that part of potential energy stored 
elastically in the cable, i.e. strain energy of the cable. The first term containing the constant 

wH represents the potential energy resulting from the elevation of the cable. In this analysis 
the cable is considered deformable but inextensible.  

The differential equations of motion for catenary riser as well as the correct number of 
boundary conditions can be derived using Hamilton’s principle given by the integral form:  

 
2

1

0( )    
t

t

T U W   (12) 

The total virtual work W by the flow induced forces is zero because these have been 
considered in the terms for the kinetic energy of the fluid. The resulting equations of motion 
are:  

  
4 2 2 2 2

2
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where,  
2

0 0

1
2

( )
                   
 

H HX X
p

e
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  (14) 

and in the axial direction,  

    
2 2 2 2

2
2 2 22 0   

     
    p f f p f

u u u uEA T m U m U m m
x x x t t

  (15) 

 
In Equation (13) the cable tension stiffness contribution is considered in the global w  

coordinate, while the rest is in the element local coordinate w . The above methodology takes 
into account the static stress as well as the effect of vibrational change of riser tension and 
consequently the finite element eigenvalue analysis to follow determines more accurately the 
riser’s modal characteristics.  
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 2.3 Finite element formulation  
The finite element model is formulated by using directly the potential and kinetic energy 

expressions presented in the previous sections. The displacement field within the element e   
is then assumed:  

            N d N d( , ) ( ) , ( , ) ( ) w ue e e e e e
w x t t u x t t   (16) 

where  Nw e
 and  Nu e

are standard shape function matrices in local vertical and 
longitudinal direction of the element. 

Substitution of Equation (16) to Equations (3), (4), (7) and (11) and appropriate 
integrations will produce the mass, stiffness and damping related matrices. Following 
conventional finite element procedure [25] the discretized equation of motion reads:  

 
        CM d( ) (U) d( ) K K K K K ( ) d( ) f      cor b Hw Ht centT Tt t U t   (17) 
The element mass matrix Me  consists of the terms resulting from the expressions 

       
0

M N N  
T

w p f w we
m m dx  and        

0

M N N  
T

u p f u ue
m m dx  in the local 

coordinates. The transformation to global coordinates and matrix assembly follows the 
standard procedure [25]. The bending stiffness matrix is that of typical Euler-Bernoulli beam 

element consisting of  
0

K N N    
   

T

bw p w we
EI dx  and  

0

K N N    
   

T

bu p u ue
EA dx . 

The centrifugal related terms appear as stiffness terms in the discretized equation of motion 
with the following form: 
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The Coriolis impact appears in the following damping matrix form:  
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  (19) 

 
The gravitational energy related to the constant horizontal riser tension results in:  
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where xL is the element’s projection in the horizontal axis. The strain energy of the riser 
due to additional tension H(t) caused by vibrations reads:  
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where, the nonlinear second order terms in the cable equation have been neglected. 
Implementing the displacement model in Equation (21), the latter is written for the summation 
of N elements. 
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where, d is the vector of total degrees of freedom. Using the following notation:  

      
2 2

10 2 12 2 12
ˆ ˆ ˆN ,

xL N
T x x x x

we N e
e

L L L L
f dx f f



   
 
 
 

   (23) 

 
The stiffness matrix because of inertial dynamic tension H(t)  finally reads: 

    
2 2

1 1ˆ ˆK
t

Tp E E
H N N

e w w

EA W Wdy dy
f f

L H dx H dx
   

            
         

  (24) 

The above matrix is symmetric and partially complete as opposed to banded matrix 
structures arising from the other elemental matrix structures. The axial tension in the 
longitudinal direction of the riser is considered from the potential term of Equation (7) 

2
1

0

1
2

 
L

U T u dx  , leading to the elemental stiffness matrix  
0

K    T
u uT e

T N N dx . The term 

2
0

1 2
2

 
L

U T u dx leads to the forcing term  
0

  T
T ue

f TN dx . 

 2.4 Stability analysis   
In order to assess the stability of the system at different flow velocities U , Equation [17] is 

conveniently written in the following state space form:  
    E x xc cA   (25) 
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where,  x d,d    is the state vector and:  

 
K K K K K ( ) 0C ( ) C M

E ,
I 0 0 I

w tb T H H centcor d
c c

UU
A

    
 

       
    

  (26) 

A small amount of structural damping is assumed in the form of a Rayleigh damping 
matrixC M K d M Ka a . The stability of the system is assessed by plotting the complex 
eigenvalues of Equation (25) for increasing flow velocities. When the real part of an 
eigenvalue becomes positive the system loses stability in the linear sense. Two types of 
instabilities are possible in this case. A divergent type which is reached when the overall 
stiffness becomes null, and a flutter type instability caused by the coupling of two or more 
modes at a specific frequency also related to negative damping terms [26, 27]. 

3 SIMULATION RESULTS  

 3.1  Application of stability analysis on a long catenary riser 

T=500 KN T=1000 KN T=1500 KN 

  
 

   

   
Figure 1: Riser mode shapes for different magnitudes of top tension. 

The model developed in the previous section is put to the test by considering catenary 
risers for different top tensions. Varying top tension leads to a different length and shape for 
the riser, following Equation (1). The horizontal and vertical riser projections are 

1688HX m  and 1000HY m  Chatjigeorgiou [18]. Young’s modulus of elasticity is 
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207E GPa  while the inner and outer pipe diameters are 0 385.iD m  and 0 429.oD m , 
respectively. The pipe mass is 219 4. /pm kg m and added mass 148 16. /am kg m  while the 
submerged weight is 699 /EW N m . The elastic stiffness pEA and flexural rigidity pEA  are 

equal to 95 83 10. N and 8 21 209 10. Nm . At static position the pipe is assumed empty. Fig. 1 
presents the first three modes for zero internal flow for three different top tension values. The 
initial static configuration of the catenary is shown in the dotted blue curve. 

 
By solving Equation [25] for increasing flow speed U  the system’s complex eigenvalues 

 are obtained. The dimensionless frequency  is related to the corresponding eigenvalue by 

the expressions 2( )p i
H

p

m m
Re( ) imag X

EI
 


   , 2( )p i

H
p

m m
Im( ) Re X

EI
 


    [20]. 

respectively following the example case presented in  
The Argand diagram of Fig. 2 depicts the dynamic behavior of the first 5 modes when 

internal flow velocity is varied between 0 90.... /U m s  for top tension 500T KN . In this 
case the system loses stability in its first mode by divergence via a pitch fork bifurcation at 

27 /U m s . At the divergence limit the frequencies become purely imaginary. The post-
divergence dynamic behavior comprises of coupled mode flutter type instabilities as well as 
higher divergent modes. Fig. 2 shows that for this case of flexible riser the observed flutter 
instabilities do not follow distinct paths crossing the real axis but appear to oscillate between 
different modes contributing to the scattered plot arrangement observed. The loci in the plot 
are symmetric about the real axis but because the modes couple in pairs the mode symbols are 
exchanged. Fig. 3 presents the first divergence and flutter stability limits for increasing top 
tension. Obviously higher tension leads to stiffer riser and thus less susceptible to fluid-elastic 
instabilities put the trend appears not be linear.  

 

 
Figure 2: Complex frequency diagrams for a pinned-pinned catenary pipe. First 5 modes are depicted (black 

circles mode 1, green circles mode 2, green squares mode 3, red hexagons mode 4 and blue hexagons mode 5. 
Magenta points are the points at final flow speed U=90m/s.) 
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Figure 3: First flutter and divergence critical stability limits for catenary riser subjected to increaring top tension. 

    3.2  Parameters affecting post-divergence behavior  

    
 

 
 
 
 
 
 
 
 

  

 

 

 

 

 

 

Figure 4: Real component of dimensionless frequency,   , as a function of internal flow velocity for 2 different 
catenary cases with Delta parameters (Delta=7.18 and Delta=157.6 respectively). 
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The post-divergence stability behavior of catenary pipes conveying fluid is quite more 
complex compared to that of straight pipe configurations, see for example [21]. It has been 
observed by the authors that the dynamic behavior changes depending whether the pipe works 
primarily in tension or bending and can be qualitatively described by the parameter [2].  

 w
p

p

HDelta
EI

    (27) 

where, p  is the total length of the catenary. Fig. 4 presents the evolution of the real 
component of dimensionless frequency with variable internal flow for two cases. The first 
case is that of a small catenary having 200HX m and 200HY m , with top tension 100KN . 
The second case is that of a large catenary as depicted in the middle column of Fig. (1). The 
modal inter-coupling and flutter transition points are much more pronounced for the second 
case. Apparently, the tension effect results in frequency closeness with increasing flow speed 
which results in inter-modal coupling in pairs which transits between different modes. Also, 
there are multiple divergence re-stabilization points and higher divergence modes. Although 
these results are a product of linear theory, it has been argued that in most cases the buckled 
case (in this case divergence mode) is not far away from the original stable equilibrium 
configuration and the linear theory is able to predict the post-divergence dynamics quite well 
[20]. 

 CONCLUSIONS  
A new methodology to model the vibration response and linear instability behavior of 

catenary riser pipes under different loading and operation conditions has been developed. The 
pipe’s tension contribution to the pipe’s modal attributes considers both the static and 
dynamic inertia contribution. The equations of motion are formatted into a finite element 
framework and stability limits are assessed by means of a state space approach. The analysis 
gives insight into the correlation of top tension to divergence and flutter onset as well as the 
influence of different parameters to the post divergence behavior of the catenary. Pipes mostly 
working in tension show an irregular flutter coupling behavior. 
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