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Alternation of quantifiers is a common measure of problem complexity either in the subrecursive setting or in 
the undecidable one. Thus, the polynomial, arithmetical and analytical hierarchies arc semantically defined 
in terms of machines that make queries to oracles in a certain class, but arc syntactically characterized by 
quantifier alternation. A formula like 

3z1Vz2 ... Qzn R(z1 ... zn, Y1 • • .y,) (l) 

where Q is a existential or universal quantifi.er depending on the parity of n, defi.nes a subset oí 1N' beloriging 
to E� (in the polynomial hierarchy, see [l] eh. 8 for this hierarchy of complexity classes) if the sizes of the 
z¡ are polynomial in the si1e of (y1 ••• y,), and R is a recursive relation which is computable in polynomial 
time. Also, it defi.nes a set in En (in the arithmetical hierarchy of Kleene, see [8]) if no condition is imposed 
on the z¡ or on R aside írom being recursive. 

On the other hand, a model of computation and a theory of recursiveness that allowed an ordered ring 
or fi.eld as alphabet for the space of admissible inputs has been recently introduced by L. Blum, M. Shub 
and S. Smale in [3], which emphasised the case when the ring is the fi.eld of real numbers, 1R.. In this case, ií 
we take a formula like (l) where R is a recursive relation decidable in polynomial time, we obtain a subset 
of R 00 which is in E� in the polynomial hierachy (which is defined írom P and N Pin the same manner as 
the polynornial hierarchy in the boolean case). 

This last fact contrasts with what happens over the integers, whose existential theory is undecidable, 
and is a consequence oí the existence of quantifier elimination in the theory of the reals. In particular, it 
leads to the question oí finding a syntactical characterization of the arithmetical hierarchy over the reals. 

In section l of this paper we provide such a characteri1ation in terms of alternations of countable 
connectives (conjunctions and disjunctions) for formula: in the infinitary logic .C.., 1 11, that permits such 
connectives but no quantifi.ers. From such characterizations we show the existence of complete problems for 
each level of the hierarchy, and we exhibit some more natural problems �hat are complete in the low levels. 

In order to classify some undecidable problems, one is led to consider expressions that merge infinitary 
connectives with quantification over variables denoting real numbers, and these expressions do not fit in 
any level of the aritbmetical hierarcby. In section 2, we sbow that anotber aritbmetical hierarchy can be 
defi.ned by uaing nondeterrninistic machines and that the whole arithmetical hierarcby is contained in one oí 
the lowest levels of its nondeterministic counterpart. We also give some complete natural problems in the 
low levels oí this hierarchy. In section 3 we relate both hierarchies with classes oí subsets oí R 00 currently 
studied in descriptive set theory. This allows us to obtain some morc results concerning them. 

t Partially ■upported by the ESPRIT BRA Program of the EC under contract no. 3075, project ALCOM, DGICyT PB 89/0379 

and UPC PR9014. 
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l. The arithmetical hierarchy and infinitary logic

In what follow1, we assume the reader is aquainted with the theory oí computability and complexity over the 
real numbera introduced in [3). Thus, concepts like real Turing machine, recursive or recursively enumerable 
1ubsets oí R00 and alike will be úedy used. We just recall that by R 00 we denote the direct sum EB�

1 
lR 

and that we denote by M(z) !' the íact that the machine M with input z has halted aíter t steps, and 
by M(z) i' ita negation. Also, in many situations, we shall say simply "machine" instead oí real Turing 
machine expecting that no coníusion can arise. 

We begin by recalling that in [6), C. Michaux states a characterisation oí r.e. subsets oí R 00 in terms oí 
countable unions oí semialgebraic sets. However, no prooí is provided there and, since this characterization 
together with aome oí the central ideas underlying the prooí are central for what follows, we now give one 
possible proo(. 

Definition 1.1. A aemialgebra.ic ,et S is a subset oí some finitely dimensional real affine space, S Ç Ill n, 
for n < 00

1 
1uch that there is a finite number oí polynomials /¡; E R[Xi, ... , Xn) and sign conditions 

E¡; E{> O,= O,< O} 1uch that the íollowing equality holds : 

r t 

S== LJ ílHz1, .. ,,zn) E Rn l aign(/¡;(z11 . . .  1 zn)) = E¡;} 
j=li=l 

Thu1, the clus oí semialgebraic subsets oí 1R n is the closure under finite Boolean operations oí the class 
oí subsets defined by polynomial inequalities in the variables X1, ... , Xn . Ií all the polynomials /¡; have 
coeffi.cienta in a subfield H C lR we shall say that S is defined o ver H. 

Semialgebraic sets are the main object oí study in real algebraic geometry. For a comprehensive intro
duction to the subject see [2] and [4).

Deflnition 1.2. A language L is said to be linitely generated ií there is a finitely generated field 
extension Q( S) oí � contained in R and a countable íamily oí semialgebraic sets { An Ç Ill i"} defined over 
Q(S), such that 

L= LJ An 

nEN

This notion describes the geometrical structure oí r.e. sets, as we shall see in the following theorem. We 
firstly prove a lemma whicb is oí general interest. 

Lemma 1.3. 
reatricted to lN . 

For every partia.l mapping , : lN 1--+ lN there i, a machine M which compute, a when 

Proof: Let us recall úom [3] section l, example 6, that given a set S C lN we can decide whether a real 
number z belong1 to S. Now, we consider the polynomial 

l+n+m 
f(n,m)= 

2 (n+m)+(m+l), 

the set S= f(graph(,)), and the algorithm 

input(n) 
m:=0 
while f(n, m) fJ_ S do

m:=m+ l 
od 
RETURN(m) 

This algorithm computes ,(n).

2 
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Theorem 1.4. For any aubaet L C Ill 00 , L i., r.e. iff L i., finitely generated. 

Proof: 
( =>) Suppose that L is recognized by a machine M. We lmow that for each pair ( t, n) E IN 2, the set 

Ii,n := {z E Ill00 

1 lzl = n and z is accepted by M in time t} 
is a semialgebraic subset oí R n. Moreover there is a finitely generated field extension q( a¡, ... , ar) of 
q, where { a1, ••• , ar} is the collection of all constants appearing in the description of M, such that for 
all n E IN, Ii,n can be described by a finite number oípolynomials in q(a1, .. . , ar)[X1, ... , Xn] . Thus, 
we have that 

00 

L= (LJ Ii,n) 
t=l 

from where we deduce the statement. 
(-�=) Let us now suppose that L is finitely presented. Then there is a fini te extension q(S) = <Q(a1, ... , ar) 

oí q and a countable family of semialgebraic sets defined over q(S), {An Ç R d,.} such that L is the
union oí the An 's. 
For each n the set An can be described as a finite system �n oí equalities and inequalities (as in the 
definition) involving polynomials with coefficients in q(S). Thus, for each n, An is described by a family 

{ (/ij, E¡;)} 
where fii is a sign and /l¡ E q(S)[X1, ... , Xd,.]-
Now, each /lj can be expressed as a polynomial in q(a1, .. . , ar, Xi, .. . , Xd..] and can then be coded as 
an element oílN 00

• Thus, the same happens with the whole family {(//¡,Ef;)}. We therefore consider 
the function 

ep :IN -+ IN 
00 

n -+ the encoding oí {(.fl¡, E¡;)} 
together with the machine given by 

input(z) 
n:= lzl 
t:= l 

accept := falae 
w hile not accept do 

od 

compute {(/f;, f:;n := ep(t) 
ifd, = n then 

fi 

for every (i,j) evaluate /l¡(a1,••·,ar,z1,••·,zn) 
if the evaluated values satisfy �n then 

accept:= true 
fi 

ACCEPT 

The preceding machine accepts exactly L. • 

Remarks 1.5. We want to attract the reader's attention to the fact that the preceding theorem provides a 
particular finite representation for r.e. sets. In fact, ií a r.e. set L is given by 

00 

LJ An 
n=l 

where all the An are defined over q(a1, ... , ar ), we can represent L by the point (a1, ... , ar, a) where a is 
the real number coding the function ep. 

We now define the arithmetical hierarchy in the real setting, in the same manner as it is classically 
defined, i.e. using real Turing machines with oracles. 
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Definition 1.6. Let E0 be the class oí recursive sets. We inductively defi.ne E1+1 to be the class oí 
sets accepted by real Turing machines that consult an oracle in E1. Also, we defi.ne Ilt to be the class oí 
sets whose complements are in Ei, for every 1c ;?: O, and f:l.1 = Ei n Ili. The class AH = Ui�oEi is called 
the arithmetical lúerarchy. 

The standard relativisation arguments mutatu mutandi., allow one to prove that the inclusions between 
the difrerent levels oí the hierarchy are strict. 

Proposition l. T. 
i) Et C aH1 

ii} Ilt C f:l.Ht
iii) f:l.1 C Ei
iv} !:li C Ili 

For everr 1c ;?: l th.e following inclwion.s are drict:

■ 

Our ne:d conec.m is to characterize synte.ctically the classes in AH. To do so, we begin by rece.lling
that formulas in the logic .C..,1, 1 a.re constructed from the atomic ones by using countable conjunctions and 
disjunctions. The logic .C..., 1

,1 is e.n example of an infinitary logic, and the reader interested in such logics 
should consult [5]. 

Formul� in .C.., 1 11 can have a quite complicated structure oí :nested infinitary connectives, couesponding 
to the countable ordinals. Since we shall only deal with a class offormula: possesing a simpler structure, we 
shall give a name to this class. 

Definition 1.8. For any subfi.eld F of 1R we define the arithmetical formula: of .C..,1,1 in the theory oí 
ordered fields with constants in F to be those of the form 

00 00 00 

V l\ u 'Pn1 ... n.(z1 • • ,Zn ) (2) 
n1= l n,= l n• = • 

or oí the form 
00 00 00 

l\ V u 'Pn 1 ... n.(z1 .. ,zn) (3) 
n1=l n,= l n• = l 

where 'Pn1 ... n.(z1 •. ,zn) is a quantifi.er-free formula with constants in F whose number oí free variables n 
depends on the tuple (n1, .•• , ni), and LJ is a conjunction or disjunction depending on the parity oí lc, the 
number oí connective alternationa. 

Remaries 1.9. i) The requirement that 'Pn1 ... n .(z 1 .,.zn ) be quantifier-free is not strictly necessary since 
any firat order formula in the theory oí the real closed fields has a quantifier-free equivalent one. 

ii) In the same manner as in remark 1.5, we observe now that any formula like (�) or (3) with constants 
in a field F = (l( a1, ••• , a,.) can be coded by a point ( a 1, .•. , a,., et) E IR. r+ 1. T his is t he main point for our 
syntactical characterization of the sets in the arithmetical hiera.rchy. 

We finally recall that we say that a point (a1, ••. , an) satisfi.es a system oí equations and inequalities 
�(z1, ... , zm) when n = m and the closed formula �(a1, . . .  , an) is a tautology. U is important to require 
the fi.rat condition since we want that finite formula: defi.ne semialgebrai.c sets in 1R. 00 with fi.nite dimension 
and not infinite cylinders over a semialgehrai.c basis. We extend this notion to formula: in .C...,1 11 by defining 
satisíaction oí a countable disjunction as satisfaction oí at least one oí its terms, and satisfaction oí a 
countable conjunction as satisfaction oí all oí its tei:ms. The íact that a point a = ( a1, •.. , ar) in 1R 00 

satisfies a formula �(z1, z2, ••• ) in .C...,1 11 will be denoted by 1R F �(a).
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Proposition 1.10. 
i} For every k � l and for every ,et S E E1:, there u a finitely generated eztea.tion F of � contained in 

1R. and a formula cJs lilce (2) with con,tanu in F ,uch that S= {z E 1R. 00 l R F cJ(z)}.
ii} For every k � l and for every ,et S E Il1:, there u a finitely generated eztenaion F of � contained in 

R and a formula cJs lilce (3) with con,tanu in F ,uch that S= {z E 1R. 00 l R F cJ(z)}.

Proof: 
(k = l) 

We just prove the firat statement. The second follows straight. 
Directly follows from theorem 1.4. 

(k > l) Let S E E1,. Then, there is a set A E E1:-1 and a machine M which accepts S ma.king queries to 
A. Now, if we add a w-ary symbol relation Orac(z) to our language (+, -, *, /, <, =), the same arguments 
used to prove the "ir' part of theorem 1.4 allow us to describe S as the set of the z E R 00 satisfying a
formula 00 

V ,Pn(Z¡ ... Zd,. ) (4) 
n=l 

where now the atomic subformula: of,J,n are of the kind t> O, t= O or Orac(z) for any term t and any point 
z E R 00 • By the induction hypothesis, Orac(z) is equivalent to a formula 

00 00 00 
V /\ LJ 'Pn, ... n.(Z¡ ... Zn) 

n1 =1n,=1 n•=l 
(5) 

We now substitute (5) in (4) and since infinitary connectives behave like quantifiers with respect to the 
finitary connectives, by standard manipulations we can now "push them to the outside oí the formula" 
getting a new one of the stated form. ■ 

Proposition 1.11. For every k � 1 the problem 

S1, = {(cJ,z) l e) u a formula lilce (2), z E IR.00 and IR. F cJ(z)}

belong, to E1:, and the problem 

P1: = {(cJ, z) l e) u a formula lilce (3), z E IR 00 and IR F cJ(z)}

belong, to IIA:. 

Proof: As before we shall only prove that SA: E E1: . For 1c = l the part ( {::::) of theorem 1.4 proves our 
statement. 

For 1c > l, for every e) like (l) and for every n E IN we shall denote by c)n the subformula 

00 00 

/\ lJ 'Pn,n, ... n.(Z1,,, Zn) 
n,=1 n•=l 

We bave that e) = V:=1 cJn, and from this equality and the fact that SA:-1 E E1:-1 by the induction
hypothesis, we design the following machine 

input(cJ, z) 
n:= l 
accept := fal,e 
w hile not accept do 

compute cJn 

od 

if (cJn, z) E S1:-1 then 
accept := true 

fi 

ACCEPT 

that accepts SA: by querying a set in EA:-l• • 
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In the rest ofthis section we exhibit some problems that are complete in the first levels ofthe arithmetical 
hierarchy. 

Let INJ be the set {z E JR.00 l the function computed by M:,; is injective}. 

Theorem 1.12. The aet INJ ia II 1 -complete. 
Proof: We first note that the set belongs to 11 1 since z EINJ if and only if it satisfies 

00 00 00 

l\ l\ l\ Vz.1 ... Vz.nVY1 ... Vym M:,;(z.)l' VM:1:(Y) l' VM:,;(z.) = M:1:(Y)
n=lm=ll::l 

On the other hand, we can map any formula 

00 

�(v) = l\ ip1(v)
1=1 

and any z. E R 00 to t he coding / ( �, z) oí t he following machine 

input(y) 
n:= IYI 
for i = l to n do 

od 

if ,ip;(z) then 

RETURN(l) and HALT 
fi 

RETURN(y) 
Clearly, if �(z.) is true, then the function computed by M/(ib,z) is injective, since it is the identity. On the 
other hand, if �(z.) is false, then there is a t E 1N such that ip1(z) is false, and so, the function computed by 
MJ(ib,z) returns l for every y such that IYI � t. That shows that INJ is 11 1-hard. ■ 

A classical undecidable problem in the Boolean setting is to decide wheter the language recognized by 
a given machine is finite. Oí course, this is equivalent to saying that such a language is contained in {O, 1}1 
for some k E 1N, and then that the language can be recognized by a "finite" machine (a circuit for instance). 
This last problem is also interesting in the real case since, in particular, Blum, Shub and Smale introduced 
a class oí finite machines (see [3] §2). So we define the problem FIN to be the set 

{ z E 1R 00 l the set acepted by the machine M:,; is contained in 1R 1 for some k E 1N}

As in the Boolean case (cf. [8] §14.8) we have the following result 

Theorem 1.13. The aet FIN ia E2 -complete. 
Proof: We first note that FIN is indeed in E2 since it can be written in the following way 

00 00 00 

V /\ /\ Vz1 ... Vzm (m< n V M"' has not accepted (z1 ... Zm) after t steps) 
n=l m:11=1 

Now, we consider the reduction which associates with any formula oí the form 

00 00 

�(v) = V /\ <p;,,(v)
i=l 1=1 

and any z. E R 00 t he coding / ( �, z) oí t he following machine 

input(y) 
n:= IYI 

6 
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for i = l to n do 
t:= l 
w hile not accept do 

od 
od 
ACCEPT 

Ü -,<p¡,,(z) then 
accept := true 

fi 

In case that z satisfi.es � there is a j E N such that for every t E N we bave that <p¡
11(z) is true, and then, 

for all inpuh with si1e greater than t, the machine M1(�,z.) will loop forever, showing that f(�,z) EFIN. 
On the other hand, if z does not satisfy that formula, it is immediate that M/(�,z.) accepts all R 00 and that 
finishes our proof. ■ 

We recall that a subset S of R 00 is bounded when there is a constant K E N such that for every z E S 
llzll2 

= z¡ + ... + zfz¡ < K. Thus we define BOU to be the set 

{z E R 00 l the language accepted by M:r: is bounded} 

for which we can prove the following result. 

Theorem 1.14. The ,et BOU ia E2-complete. 
Proof: The membership in E2 comes from the fact that BOU can be expressed by the formula 

00 00 00 

V À À Vz1 ... Vzn (ll(z1, ... , Zn)II <KV M:r: accepts (z1 ... Zn) in less than t steps) 
K=ln=ll=l 

To see the hardness in the class, just consider the reduction which associates with any formula 

00 00 

�(v) = V À <p¡
1
,(v) 

i=l 1=1 

and any z E R 00 t he coding / ( �, .z) oí t he following mac hi ne 

input(y) 
K := IIYll

2

for i = l to n do 
t:= l 

od 

w hile not accept do 
if-,ip¡

11(z) then 
accept:= true 

fi 
od 

ACCEPT 

7 
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2. N ondeterminism strikes again

If we try to classify the problem TOT of deciding wheter a given machine computes a total function, we findthat the problem is expreBBed by a formula like 
00 00 

/\ Vv1 ... Vv,. V (Mz halts on input (v1 ... v,.) after lesa than t steps)n=l t=l
but no way aeems to be available for moving the quantifiers inside the acope of all infinitary connectives(to further eliminate them) and thus, no membership in any class in AH clearly follows. However, the
membership of a given machine in TOT can be disproved by a real Turing machine with an oracle in I:1 ifwe allow this machine to make nondeterministic guesses. This property motivates the following definition. 
Definition 2.1. Let :E� be the class of recursive sets. We inductively define :Ef+i to be the class oí
sets accepted by nondeterministic real Turing machines that consult an oracle in :Ef. Also, we define IIfto be the cws of sets whose complements are in :Ef, for every 1: � O, and Af = Ef n IIf. The classNAH = U1:�0Ef is called the nondeterministíc aríthmetícal hierarchy. 

Again, we have the very firat relation between classes in N AH.
Proposition 2.2.

i) Ef C Af+i
··; ITN AN 11 1: C "-'1:+i

···; AN C 'C"N ni "-'1: "'1:iv) Af C IIf

For every 1: � l the following incluaion., are atrict:

• 

A syntactical characterization of N AH can also be done, this time by means of classes oí formulre inthe logic .C.w11w, an extension oí .C.w1 ,1 obtained by allowing also first order quantification. 
Definition 2.3. For any subfield F of lEl we define the aríthmetícal formullE oí .C.,.,1

o,., in the theory oíordered fields with constants in F to be those of the form

or the form

00 00 

V 3z1,1 ... 3z1,r, /\ Vz2,1 ... Vz2,r,.
n,=1 n:.=l

00 

lJ IPn 1 ••• n,.(Y1 • • •Yn)"•=l 
00 00 00 

/\ Vz1,1 ... Vz1,r, V 3z2,1 ... 3z2,r2 
• • • lJ 'Pn, ... n,. (Y1 • • • Yn)n1=l n2=l "•=l 

(6)

(7) 

where rp,. •···"• (y1 ••• y,.) is a quantifier-free formula with constants in F whose number of free variables ndepends on the tuple (n1, ..• , nA:), and LJ is a conjunction or disjunction depending on the parity oí 1:, the number of connective alternations. 
Lemma 2.4. For any formula like {6} or {7} th.ere u an equivalent one with. th.e !ame form and !u.eh.th.atfor any l� j � 1:-1, r,= n,. 
Proof: Let us consider a formula like (6)

00 

rp= V 3z¡ ... 3zr,. 1Pn lZ1,•••,Zr,.
,1l)

n=l 
To every pair (n,r,.) we associate m,.= 2n 3r ... Clearly, m,.� maz{n,r,.}. Now, if S= {m,. l n E IN}, wedefine 

where

00 

({J= V 3z1 ... 3zm ,ijr(z1, ... , Zm, 1l)
m=l 

- _ { ,p,.(z1, ... , Zr-n, 1l) V (V'J'=r,.+l zJ < O), if m= m,. E S
,Pm - (V'J'=1 zJ < O), if m </. § 

Clearly, e¡, is equivalent to rp and repeating this procedure with the W,. we eventually get a formula as stated.■
8



As in the deterministic case, we have the following result. 

Theorem 2.5. For every k � l the problem 

S1: = {(ep, z) l ep u a formula li/ce (6), z E R 00 and R F ep(z)} 

u Ef -complete, and the problem 

P1: = {(ep, z) l ep u a formula li/ce (7), z E R 00 and R F ep(z)} 

u Ilf -complete. ■ 

Our next goal is to relate the deterministic arithmetical hierarchy to the nondeterministic one. 

Remarks 2.6. We have seen in lemma 1.3 that any partial recursive function can be computed by a real 
Turing machine since it can be coded in a real number. On the other hand, any real number can be considered 
to code a function Crom the naturals to the naturals. In the sequel, if z E R, we shall denote by [ z] such 
function and we just recall here that given n, m E IN and z E R, the predicate [z](n) =mis recursive. 

Lemma 2. 7. For every k � 2 and for every ep E II1: there u a formula ep equivalent to ep of the form 

3z,J, and au.eh that if k = 2 then ,J, E II1, elae ,p E Il1,_2, 
Proof: Let 

'P =

= 

00 00 

l\ V 
nk=ln•-1 =1 

00 00 

l\ V n•=l n•-1 =1 

00 

LJ 'Pn1, .. ,,nk(y) 
n1=l 

epn•,n•-1 (y) 

For every y E R 00 we bave that 

R F ep(y) {:::::::} Vn1: E 1N 3n1:-1 E IN s.t. epn.,nk_1(y) holds 
{:::::::} 3/ : IN -+ IN total s.t. Vi E IN 'Pï,J(i)(Y) holds 

00 00 

{:::::::} R F 3z /\ /\ (m f. [z](i) V 'Pï,m(Y) 
i=lm=l 

Now, since m-¡. [z](i) is a recursive predicate, we can write it as a countably conjunction and by contracting 
the three conjunctions in one, we get the desired result. ■ 

Proposition 2.8. AH Ç �f.

Proof: By repeated applications of the preceeding lemma, it easily follows that VkII1: Ç Ef. Then, since 
E1: C Il1:+1, it follows that VkE1: Ç Ef. Taking complements we get that VkE1: Ç IIf and II1: Ç IIf úom 
where we deduce the desired result. ■ 

We dose this section classifying a cou ple of problems inside N AH. 
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Theorem 2.9. The aet TOT ia U!f -complete. 
Proof: We have aheady seen that it belongs to II!f. For the hardness, just consider for any formula 

00 00 

� = l\ Vv1 ... Vv¡ V �i,c(z, v)
i=l t=l 

and any z the code /(�, z) ohhe machine 
input(y) 
n:= IYI
t:= l 

accept := falae 
w hile not accept do 

od 
od 
RETURN(y) 

if �;,,(z, y) then 
accept:= true 

fi 

which computes a total function ií and only ií z ETOT. • 

Theorem 2.10. The aet EXH= { z E R 00 l the function computed by M:r ia ezhauative} u II!f -complete. 
Proof: The set belongs to II!f since it can be written by 

00 00 00 

/\ V111 ••• V11n V V 3w1 ••• Vwm ( M:r ( W¡ ••• Wm) ! e returning ( 111 ••• tln)) 
n=l m=lC=l 

The reduction given in the preceding theorem shows also the hardness of this problem. 

3. Real Turing machines and descriptive set theory

• 

The study of subseta oí R, R n, EB R or II R lies at the core of what is called descriptive set theo_ry. Sets 
oí real numbers a.re classified there according to a certain measure oí the complexity of their descciptions. 
A central role is played by the Borelian sets which are those generated from the open ones by períorming 
complements, and countable unions and intersections, and also by the analytical sets which are continuous 
images oí Borelians. In this section we shall prove that the aritmetical subsets of R 00 are exactly the Borelian 
ones oí finite order, and that sets in class E!/ are exactly the analytical ones. From those results we shall 
deduce that the inclusion AH C li!f is strict. 

We thus begin by recalling some basic notions oí descriptive set theory (the interested reader can find 
a good exposition oí the topic in [7]). 

Definition S.l. A Polisb space is any topological space homeomorphic to a separated, complete metric 
one. A Polish space is said to be perfect if it has no isolated points. Thus the real field is a perfect Polish 
space. On the other hand, the class oí Polish spaces is closed under countable sums and products as well as 
under closed and open subspaces. 

Definition S.2. The class of Borelian aubaeta of a Polish space X is the smallest class of subsets of X 
containing the open sets and closed under complements, countable unions and countable intersections. A 
Borelian subset of X is said to be of linite order when it can be obtained from the open sets oí X by a finite 
number oí such operations. A subset A of a Polish space X is said to be analytical when there is another 
Polish space Y and a continuous function / : Y -+ X such that A = f(Y). In the case that X = R 00 we 
shall denote these three classes oí sets by BOIR, Borf;, and Analyticaln respectively. 
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Theorem 3.3.

metical ,eu. 
The cltUa o/ Borelian au.baeta o/ finite order o/ R 00 coincidea with the clau o/ arith-

Proof: Since open sets are in I:1 and AH is closed under finitely many complements, countable unions 
and intersections, we get that borelian sets of finite order are arithmetic. 

In order to prove the converse, it is enough to show thai any semialgebraic subset of m.n is borelian of 
finite order. Now, isf S is such a set, it can be described by a Boolean combination of equations of the form 

/(z1,•••,zn) = O Ol /(z¡, ... ,zn) > O 

The first formula defines a closed set of R 00 and so, a Borelian one of finite order. The second one can be 
written as 

oc 
l 

V /(z¡, ... ,zn) � ¡ 
l:=l 

and thus as a countable union of closed subsets of R 00, again Borelian o{ finite order. The conclusion now 
follows straightforwardly. ■

Theorem 3.4. The aet., in I:f are preciaely the analytical aet., in R 00• 

Proof: We shall rely on a characterization of analytical sets as projections of Borelian sets of finite order. 
In faci, we recall thai if X is a perfect Polish space, and Y is any other Polish space, a subset P C Y is 
analytical if and only if there is a Borelian set of finite order Q C X x Y such that P is the projection of Q 
(see (7] lG.12). We now take X to be R. and Y to be R. 00• Now, by the preceding theorem, Pis analytical 
if and only if there is an arithmetical formula cp(z, y) such that 

P = {y E R.00 l R. F 3z cp(z,y)} 

By repeatedly aplying lemma 2.7. we can transform cp(z, y) into a I:f formula úom where we deduce that
analytical subsets of R. 00 are in I:!f. 

For the converse, let us consider a set S defined by a formula 

00 00 

V 3z1 ... 3zn /\ 'Pn,t(z1 1 • • •  ,zn,Y) 
n=l t=l 

and the set B C 1R. 00 x R. 00 defined by 

00 00 

u n 'Pn,t(z¡, • • • 1 Zn, y)
n=l 1=1

Since that last formula is arithmetical, Bis a borelian set. Now, we consider the projection 

1r :R 00 
X R. 00 -+ R 00 

(z,y)-+ y 

and it is trivial thai S = 1r(B), which proves that S is analytical. 

Corollary 3.5. The aeú in 6.f are ezactly the Borelian onea. 

• 

Proof: It is well known that a subset of a Polish space is analytical and co-analytical if and only if it is 
Borelian ([7] 2E.2 ). ■ 

Corollary 3.6. The inclu.aion AH C 6.!f ia atrict. 

Proof: Let us consider the set B = {(k, z) l z E .5'1,}. Trivially, Bis Borelian, since it is the union of a 
collection of sets isomorph.ic to the S1: 's. On the other hand, let us suppose that B E AH. Then, there is a 
k such that BE I:1:. But using Bas an oracle, we can decide S1:+2, and thus this set should belong to E1:+ 1 
contradicting proposition 1.7. ■ 
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We can then summari1e the relations between both arithmetical hierarchies in the following diagram 
where the arrows denote strict inclusions. 

EN l AnalyticalR 

11 11 

Eo E1 E2 ... Ef Ef 

11 /' "" /' "" /' "" /' "" 

.6.1 = R .6.2 AH-+ .6.f .6.f NAH 

11 "" /' "" /' 11 11 "" /' "" / 

Ilo Il1 Il2 ... Bor' Bora nf nf ... 

11 

fiN 
l 

Remarks 3. T. More relations can be pursued between the classes defined here and classes o{ real sets 
studied elsewhere. For instance, as a consequence oítheorem 3.4 we bave that the part oíthe nondeterministic 
arithmetical hierarchy constructed from Ef coincides with Suslin's projective hierarchy ([7] IE). Also, subsets 
o{ R (or R 00) can be defined using classical recursion theory: an open set is semirecursive when the basic
open sets (open balls with rational center and radius) that arc contained in it is a recursive set. From 
this class a whole hierarchy is obtained, an it can be seen that its classes are strictly contained in their 
corresponding classes within AH. 
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