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A simple switching frequency regulated sliding
mode controller for a VSI with a full digital

implementation
Vı́ctor Repecho, Domingo Biel and Josep M. Olm

Abstract—This paper describes the design of a first order
sliding mode controller for a VSI operating at fixed switching
frequency. The proposal is simple, as it does not include any
integral or resonant action in the switching function, and good
results are obtained in terms of robustness, steady-state tracking
error, fast transient response, and low THD. The implementation
methodology using a micro controller preserves all the benefits of
a continuous time implementation. Moreover, the paper analyses
the sliding motion dynamics, and stability conditions are derived.
Experimental results obtained with a 2.2 kW inverter show that
fixed switching frequency operation and robust output voltage
regulation with good performance indexes are achieved.

Index Terms—Sliding mode control, voltage source inverter,
fixed switching frequency, nonlinear load

I. INTRODUCTION

Nowadays, voltage source inverters (VSI) are widely used in
stand-alone industrial applications as uninterrupted power sys-
tems (UPS), or AC grid emulators in small power generation
systems (as renewable), suitable for domestic appliances. As
a consequence, VSI shall meet good levels of power quality,
total harmonic distortion (THD) and transient response. Dif-
ferent PWM-based controllers have been proposed for such
systems, as repetitive control [1], [2], predictive control [3],
or finite-state machines [4], among others, usually leading to
complex control architectures.

Theoretically, sliding mode control is able to provide AC
signal with low THD, presenting good transient responses and
robust operation with controllers based on a sign function. The
drawback is that it assumes infinite switching frequency. In
practice, it is feasible to achieve quasi-sliding motion with
hysteresis comparators instead of sign functions, operating
at finite switching frequency. These type of implementations
can be found in [5]–[10], showing very good dynamics and
robustness. Unfortunately the application of both hysteretic or
SMC control with fixed hysteresis band to VSI results in a
variable switching frequency, which produces electromagnetic
noise and complicates the filter design. Some approaches have
been proposed to overcome this problem [11]–[15]. Among
them there is the work of Holmes et al. [11], which adapts
the hysteresis of the comparator by using an expression,
obtained under some assumptions, that depends on the input
voltage and on an estimation of the voltage drop across the
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load series resistance, or the work of Ho et al. [12], where
the fixed switching frequency is achieved by appropriately
calculating the on and off intervals of the power transistors.
The approaches show good performances keeping the SMC
properties, but the algorithms designed to set the switching
frequency are, in general, VSI parameter-dependent and re-
quire the measure of one or more VSI variables, so the control
simplicity is seriously affected.

SMC operation at fixed switching frequency can also be
achieved by using a zero averaged dynamics (ZAD) approach.
The ZAD implementation determines the value of the control
signal that ensures a null average value of the switching
surface in a switching period. An application of this control to
VSI is found in [14]. Results show good dynamics with low
THD and robustness of the controlled system with respect to
load variations. However, the high computation requirements
of the controller constitutes the main drawback of the proposal.

Several authors have proposed the use of a PWM, operating
at fixed switching frequency and performing the so-called
PWM-based SMC [16]–[22]. For instance, Abrishamifar et al.
[16] smooth the control signal replacing the discontinuous con-
trol law u = sign(S(X)) by S(X)

Φ , where S(X) and Φ are the
switching surface and the boundary layer parameter, respec-
tively. This technique has an easy control implementation but
both tracking error and robustness are highly compromised.
Another approach is based on the use of the equivalent control
as duty cycle of a PWM. Recalling that the equivalent control
is the ideal control that induces the sliding mode dynamics,
the design procedure generates the duty cycle as a linear
combination of several terms, namely d = deq + dL + dN ,
deq , dL and dN being the equivalent control, the linear term
and the nonlinear term, respectively. The added terms are
required to ensure convergence to the sliding surface. Among
the works that follow this idea we find: Hao et al. [17], where
a multiresonant SMC in a grid-connected VSI with an LCL
filter is designed; Zheng et al. [18], where a repetitive control
is embedded into a discrete-time SMC to enhance the steady-
state performance of a VSI; Vieira et al. [19], which presents a
combination of proportional plus resonant control and an SMC
for a three-phase VSI with LCL output filter connected to the
grid, and the interesting work of Pichan et al. [20], where the
term K sign(S(X)) is added to the equivalent control to obtain
the duty cycle. All these papers achieve good performance
indexes (low steady-state errors, low THD, etc.) working at
fixed switching frequency, but in general the control designs
requiere a trade-off between simplicity and robustness. The
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robustness of the SMC stems from the fact that the control law
is independent of the system parameters. Therefore, when the
hysteresis-based SMC is replaced by a PWM-based SMC, the
control becomes parameter sensitive and the SMC robustness
has to be recovered by adding new terms to compensate the
parameter dependence of the equivalent control, which in turn
leads to more complex control architectures.

An alternative to set the switching frequency in an SMC
was proposed in [23], where direct regulation of the switching
period is achieved by using an additional loop to adjust the
bandwith of a hysteresis comparator. Following the procedures
detailed in that work, the switching frequency controller (SFC)
is designed here to be applied to SMC VSI guaranteeing
convergence of the switching period to its reference value.
Differently from [23], where the SMC was implemented with
analogue hardware in a low power converter, a much more
versatile full digital controller applied to a 2.2kW power
inverter is presented in this work. The novelties of the proposal
in this paper are:

1) The control scheme is simpler than the ones cited in
the above paragraphs. Only the SMC and the switching
frequency regulation loops are required to obtain per-
formance indexes close to those inherent to the ideal
sliding motion, such as very low THD or fast transient
response.

2) The continous time behaviour of a comparator with
hysteresis has been emulated in a microcontroller, en-
forcing the switching function to be constrained in a
symmetric hysteresis bandwidth under sliding motion.
In this scenario, the average of the switching function
is null in steady-state [24]. Therefore, the average value
of the steady-state error becomes null as well without
using integral or resonant terms in the switching surface.

The article is structured as follows. The VSI model is
described in Section II. The sliding mode control is designed in
Section III, which also includes the corresponding stability and
tracking performance analyses for different loads. Some imple-
mentation issues are discussed in Section IV. The experimental
results are shown in Section V, and a comparative analysis
with different control techniques available in the literature
is provided in Section VI. Finally, conclusions are drawn in
Section VII.

II. VOLTAGE SOURCE INVERTER MODEL

Figure 1 shows the block diagram of a VSI with the
proposed SMC and SFC. The VSI dynamics is described by
the following state space equations:

C
dvc
dt

= il − io, (1)

L
dil
dt

= −vc + E u, (2)

where il is the inductor current, vc is the output voltage, io is
the load current, L is the inductance, C is the capacitance, and
E is the input voltage. The load current depends on the output
voltage, namely io = f(vc), f being a function encompassing
any reactive linear load, as shown in Figure 1. The power
switches are represented by M1,M2,M3, and M4. Switches

M1 and M4 are short circuited when u = 1 and remain in
open state when u = −1, whereas M2 and M3 work in
a complementary way. Therefore, the discontinuous control
input u takes values in the discrete set {−1, 1}.

Load
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Fig. 1. Block diagram of a VSI circuit scheme with a generic linear load
connected at the output, including the SMC and SFC control loops.

III. SLIDING MODE CONTROL DESIGN

A. Switching surface

The control goal is to track a sinusoidal reference voltage,
v∗c , at the VSI output. Specifically,

v∗c = A sinωt. (3)

The proposed switching function is:

σ (vc, xM ) := ψ1(v∗c − vc) + ψ2C
dv∗c
dt
− ψ2

Lx
MRb

xM , (4)

where xM is the signal coming from a current transformer
(CT) measuring the high frequency components of the inductor
current, and ψ1, ψ2 > 0 are the switching function parameters.

Notice that the switching function does not include any
integral or repetitive term and the inductor current is mea-
sured using the CT. The CT is a ferrite core-based current
transformer with insertion losses lower than other sensing
solutions, such as shunt resistors. Moreover, it is designed
to work with high frequencies, thus achieving a bandwidth
larger than Hall effect sensors do. Therefore, the CT provides
the fast dynamics of the switching function around σ = 0,
this yielding the desired relative degree. Taking into account
the magnetic coupling of the CT and considering that the
secondary winding of the transformer is loaded with a resistor
Rb, the equation that relates the voltage through Rb, xM , and
the current flowing through the transformer primary winding,
il, is

Lx
dxM
dt

= −RbxM +RbM
dil
dt
, (5)

where M and Lx are the mutual and secondary inductances,
respectively.
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B. Ideal sliding motion

The ideal sliding dynamics is found using the equivalent
control method [25]. The equivalent control, ueq , is the control
value that guarantees invariance of the sliding manifold, i.e.
σ = σ̇ = 0. On the one hand, once the surface is reached, i.e.
σ = 0, it stems from (4) that

xM = Mβ [g (v∗c )− αvc] , (6)

where α = ψ1/ψ2, β = Rb/Lx, and

g (v∗c ) = αv∗c + C
dv∗c
dt

.

On the other hand, it follows from (4), (5) that:

σ̇ = ψ2

[
ġ (v∗c )− αdvc

dt
+

1

M
xM −

1

L
(E u− vc)

]
. (7)

Hence, demanding σ̇ = 0 and using (6) one gets that

ueq =
L

E

[(
1

L
− αβ

)
vc − α

dvc
dt

+ βg (v∗c ) + ġ (v∗c )

]
. (8)

Finally, the ideal sliding dynamics follows taking (8) to (1),
(2):

dvc
dt

=
1

C
(il − io) (9)

dil
dt

= −αβvc −
α

C
(il − io) + βg (v∗c ) + ġ (v∗c ) , (10)

this yielding

C
d2vc
dt2

+α
dvc
dt

+αβvc = C
d2v∗c
dt2

+(α+βC)
dv∗c
dt

+αβv∗c−
dio
dt
.

(11)
As expected, the dynamics depends on the output current, io.
Therefore, the stability of (11) should be analysed for the
different (linear or nonlinear) output loads. In particular, when
the converter works with a linear load, the output current in
the s domain can be expressed as Io(s) = Vc(s)Z

−1(s), Z(s)
being the load impedance. Notice that for resistive loads it is
Z(s) = R, while in the general case it answers to a rational
function of s.

Then, the closed-loop transfer function, T (s), stemming
from the Input-Output (I/O) system (11) reads as

T (s) =
Vc(s)

V ∗c (s)
=

Cs2 + (α+ βC) s+ αβ

Cs2 + (α+ Z−1(s)) s+ αβ
, (12)

where Vc(s), V
∗
c (s) denote, respectively, the Laplace trans-

forms of the output voltage, vc, and its reference, v∗c , defined
in (3). Hence, the poles of T (s) are given by the solutions of

1+G(s)Z−1(s) = 0, with G(s) =
s

Cs2 + αs+ αβ
. (13)

Proposition 1. The I/O linear system with transfer function
(12) shows a unique 2π

ω -periodic solution, which is asymptot-
ically stable.

Proof. Notice that, as C,α, β > 0, the poles of G(s) in (13)
are in the left complex plane; moreover,

Re (G(jω)) =
ω2α

(αβ − ω2C)
2

+ ω2α2
> 0, ∀ω.

Then, G(s) is a Positive Real (PR) transfer function, and
|arg (G(jω)| ≤ π

2 [26]. In turn, non-ideal linear loads can
be considered as networks that combine resistors, lossy ca-
pacitors and lossy inductors, so the impedance Z(s) is dis-
sipative and, consequently, Strictly Positive Real (SPR) [27].
Hence, its inverse, Z−1(s), is also an SPR function [28], and∣∣arg

(
Z−1(jω

)∣∣ < π
2 . Therefore,

∣∣arg
(
G(jω)Z−1(jω)

)∣∣ <
π, which means that the Nyquist plot of G(s)Z−1(s) neither
crosses nor encircles −1. Consequently, by the Nyquist crite-
rion, 1 + G(s)Z−1(s) has all its roots in the left complex
plane, so T (s) is a stable transfer function, this entailing
that the solutions of the corresponding I/O linear system are
asymptotically stable.

Finally, (i) the fact that all the poles of T (s) be in the left
complex plane guarantees that the unforced I/O linear system
with transfer function T (s), i.e. that with v∗c = 0, has no
other periodic solutions but vc = 0, and (ii) according to (12),
the input of the I/O linear system with transfer function T (s)
depends on v∗c and a number of its derivatives, so it is 2π

ω -
periodic as well. The result is therefore guaranteed by standard
theory of linear periodic systems (see [29], for example).

C. Switching function parameters design

The design of the parameters α and β should guarantee a
good behaviour in the sliding mode response and an accurate
steady-state tracking performance. On the one hand, assuming
that the converter operates with linear load, a proper design
of β ensures perfect tracking of the reference for a nominal
resistive load. This statement is established in the following
proposition.

Proposition 2. Assume that a resistive load with impedance
Z(s) = R is connected to the converter output. If R = Rn,
with

Rn =
1

βC
,

then perfect tracking is achieved, i.e. vc tends asymptotically
to the periodic signal v∗c (t) as t tends to infinity.

Proof. In this case (12) boils down to

T (s) =
Cs2 +

(
α+R−1

n

)
s+ αβ

Cs2 + (α+R−1) s+ αβ
. (14)

When R = Rn one has that T (s) = 1, so v∗c (t) is a periodic
solution of the ideal sliding dynamics (11). Uniqueness and
asymptotic stability stem immediately from the fact that Cs2+(
α+R−1

)
s+αβ has its two roots in the left complex plane.

For R 6= Rn, Proposition 2 indicates that a steady-state
error between vc and v∗c occurs, as vc tends asymptotically
to a 2π

ω -periodic solution different from v∗c . However, it is
possible to keep such a tracking error small enough for values
of R belonging to a wide vicinity of the nominal Rn through a
proper design of the control parameter α. Replacing β = 1

RnC

in (14) and defining γ = 1
RC , one gets

T (s) =
Cs2 + (α+ βC) s+ αβ

Cs2 + (α+ γC) s+ αβ
. (15)
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The transfer function T (s) has two zeros and two poles with

the same natural frequency, ωn =
√

αβ
C , but with different

damping factor:

ξz =
1

2

(
µ+

1

µ

)
for the zeros, and

ξp =
1

2

(
µ+

Rn
R
· 1

µ

)
for the poles, with µ =

√
α
βC . The magnitude and phase of

T (s) at the reference frequency measure the accuracy of the
tracking behaviour, and ideally (when R = Rn) they take the
values of 1 and 0, respectively, indicating a perfect tracking
of the reference. It is clear that to ensure a good tracking
performance ωn should be as high as possible and

|ξz − ξp| =
1

2µ
|1− Rn

R
|

should take a low value. Both specifications are fulfilled when
α takes a high value.

The parameter α is designed to ensure a good dynamics
in sliding motion. From (14), the characteristic polynomial of
T (s) is:

Cs2 + (α+ γC) s+ αβ = 0. (16)

In order to plot the root locus of (16), the equation is re-written
as:

1 +
α

C
· s+ β

s2 + γs
= 0. (17)

Figure 2 depicts the root locus when a load satisfying γ =
0.5β is used. The values of the breakaway and break-in points,
s1, s2, and the corresponding values of α for those points, are
also shown.

Root Locus
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(
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√
β
√
β − γ

)

αs1 = C
(
2β − γ − 2

√
β
√
β − γ

)s1 = −β +
√
β
√
β − γ

−γ

Fig. 2. Root locus of (17) for γ = 0.5β.

From the plot, one can infer that the roots of (16) providing
a fast overdamped response are obtained when α > αs2 .
Therefore, in order to ensure an overdamped response what-
ever the value of the load is, s2 and αs2 should be evaluated

for the expected range of R. Choosing Rn as the minimum
resistive load, the working range for γ is 0 < γ ≤ β. As

s2(γ) = −β −
√
β
√
β − γ

αs2(γ) = C
(

2β − γ + 2
√
β
√
β − γ

)
are, respectively, increasing and decreasing functions within
the working range, it is immediate that, for all γ ∈ (0, β],

s2 ∈
(

lim
γ→0

s2(γ), lim
γ→β

s2(γ)

]
= (−2β,−β]

αs2 ∈
[

lim
γ→β

αs2(γ), lim
γ→0

αs2(γ)

)
= [βC, 4βC).

Therefore, if α fulfils

α > 4βC =
4

Rn
,

the roots of (16) are overdamped for all R ∈ [Rn,+∞).
Additionally, according to Figure 2, it is clear that (16) will
have a root in the range (s2, −β), thus entailing a transient
response with a time constant, τ , at least equal or higher than
(2β)

−1 and always smaller than β−1.
As a conclusion, the control parameters design guidelines

can be summarized in the following steps:
1) Take the minimum value of the load, Rn.
2) Determine β =

1

RnC
.

3) Select α >
4

Rn
to guarantee an overdamped response

in the output voltage dynamics for all the expected load
conditions.

4) Set the transformer ratio
(N1

N2

)
and the secondary

inductance Lx of the CT, and the value of ψ2. Finally,
calculate the rest of parameters as ψ1 = αψ2, Rb = βLx

and M = Lx
N1

N2
.

Table I shows the converter parameters of the assembled
prototype. The sliding mode controller has been designed for
a peak power of 3.3 kW , and hence Rn = 14.7 Ω. Therefore,
β has been calculated as β = 680, and α has been set to
α = 1. With this design the magnitude and phase of (14) for
different load levels between 15 Ω and 200 Ω are plotted in
Figure 3. As expected, the amplitude and phase tracking errors
are below 1% and 1.5◦, respectively, at 50 Hz.

Remark 1. The switching function parameters depend on the
output capacitor value (recall (4)). An analysis of the effect of
the capacitor variations shows that the maximum values of the
amplitude and phase tracking errors at 50 Hz are of 1.4% and
1.52◦, respectively, when the capacitance undergoes a 20%
variation with respect its nominal value, and the response of
the output voltage is still overdamped for variations up to
100%.

D. Control law and sliding domain

Sliding motion [25] is enforced on σ = 0 using the
discontinuous control law

u = sign(σ). (18)
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Fig. 3. Frequency response of T (s) in (15) for different resistive loads
between 15Ω and 200Ω; α = 1, β = 680.

Proposition 3. The control law (18) induces sliding motion on
the switching surface σ = 0 within the sliding domain given
by

−1 < ueq < 1, (19)

with ueq defined in (8).

Proof. Using (7), (5), (8), and the fact that E,L, ψ2 > 0, it
results that

σσ̇ = −Eψ2

L
σ (sign(σ)− ueq) < 0, ∀σ 6= 0,

whenever (19) is verified.

E. Switching frequency regulation

SMC is usually implemented by means of hysteresis com-
parators and therefore the control law in (18) is replaced by:

u =

{
−1 if σ < −∆k or (|σ| < ∆k & σ̇ > 0)
1 if σ > ∆k or (|σ| < ∆k & σ̇ < 0) ,

(20)
where ∆k > 0 is a hysteresis added to bound the switching
frequency [5]. It is well known that hysteresis comparators
with fixed bandwidth lead to a variable switching frequency
when used in VSI. In order to get a fixed switching frequency
operation this work uses the SFC scheme proposed in [23].
That paper details the design procedure of the SFC for a
general SMC controlled affine system and determines the
set of hypotheses to be fulfilled in order to guarantee the
desired switching frequency regulation. Following those steps
the SFC parameter can be set to ensure asymptotic stability
of the switching frequency regulation loop. Moreover, note
that with the proposed switching function, defined in (4), the
switching function derivatives, given by (7), do not depend
on the VSI load current. Therefore, the design of the SFC
parameter guaranties stability whatever the load connected to
the VSI is.

IV. IMPLEMENTATION DETAILS

The SMC and the SFC are implemented using the
TMS320F28377S microcontroller (µC) from Texas Instru-
ment, see Figure 1. The control law accelerator (CLA) ex-
ecutes the SMC with a frequency of 1 MHz. In order to keep
the expected behaviour of a hysteresis comparator in a discrete
time implementation, the emulation strategy proposed in [30]
is applied. This methodology assumes piecewise behaviour
of σ within the hysteresis region, which is a reasonable
assumption under a proper control design (see [23] for details).
The technique predicts the incoming value of the switching
function, detects if this value is within the hysteresis band or
not, and generates a PWM signal in a 1 µs period to ensure
the commutation of the switching function at the proper value.

TMS320F28377S

ADC PWM

CPU

CLA

TIMER

TMU

u
vc

xM

u Tk

∆kv∗c

cos(ωt)

sin(ωt)

ψ2Cv̇
∗
c

SMC

SFC

Fig. 4. Block diagram of the peripheral used for the implementation of the
SMC and the SFC in the TMS320F28377S µC.

A sketch of the implementation is displayed in Figure 4.
The main CPU executes the SFC once per rising edge of u.
The algorithm output is the hysteresis value, ∆k = Ψk + Ωk,
composed by an integral action, Ψ, and a feedforward action,
Ωk. The discrete-time integrator is given by:

Ψk = Ψk−1 + γek−1, (21)

where the error at the kth switching period is defined as the
difference between the actual switching period, Tk, and the
reference period, T ∗. A general purpose timer of the µC (200
MHz, 32 bit) measures the on time, T+

k , the off time, T−k ,
and the switching period, Tk, of the control action u when the
kth switching interval ends (rising edge of u). Regarding the
feedforward control, it is defined as:

Ωk =
ρ̂k−1 − ρ+

k

ρ̂k
Ωk−1 +

ρ+
k−1

ρ̂k
Ωk−2 +

ρ̃k−1 − ρ̃k
ρ̂k

Ψk−1,

(22)
where ρ̂k := ρ+

k − 2ρ−k and ρ̃k := 2
(
ρ+
k − ρ

−
k

)
, with

ρ+
k := [σ̇k(vc, xM )u=−1]

−1
, ρ−k := [σ̇k(vc, xM )u=+1]

−1
,

being the inverses of the samples of the switching function
derivatives (given by (7)) in the kth switching interval (see [23]
for details). Notice that there exists a delay of one period in the
measurement of the switching period. This issue is addressed
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by approximating Ωk by its preceding sample, i.e, Ωk ≈ Ωk−1,
and the values of ρ±k−1 are estimated as:

ρ+
k−1 =

T+
k−1

∆k−1 + ∆k−2
, ρ−k−1 =

T−k−1

2∆k−1
. (23)

It should be noticed that (23) provides ρ±k−1 directly, avoiding
the well-known problems related to the amplification of the
switching noise produced by standard time derivation.

V. EXPERIMENTAL RESULTS

The parameter values of the VSI prototype, the SMC and
the SFC are shown in Table I.

TABLE I
VOLTAGE SOURCE INVERTER PARAMETERS.

Parameter Symbol Value

Input voltage E 420 V

Desired output voltage amplitude A 220
√

2 V

Output voltage frequency f 50 Hz

Inductor L 440 µH

Capacitor C 100 µF

Output power (Linear Load) P 2.2 kW

Switching period reference T ∗ 50 µs

Current transformer parameters Lx, M , Rb 10 mH , 33 µH , 6.8 Ω

Sliding mode control parameters ψ1, ψ2 100, 100

SFC control parameter γ
[
104, 107

]

Fig. 5. The VSI prototype used in the experimental testing.

The VSI switches are IGBT 50MT060WTHA from
Vishay. The output capacitor consists of two capacitors
C4AEGBW5500A3LJ connected in parallel (2x50 µF), and a
gapped ferrite cores wound with copper litz wire implements
the power inductor (2x 200 µH). The CT is manually wound
using a ferrite core of 3C90 material from Ferroxcube. The
number of turns is 300, and the required value of Lx is

adjusted adding an air gap to the core. Figure 5 shows a picture
of the assembled power inverter.

The experimental results have been obtained for a resistive
load and also when a diode rectifier is connected at the VSI
output.

vc io

∆

u

Fig. 6. Steady-state VSI response with a load of 2.2 kW; SFC with γ =
2.5 ·106. Top: output voltage, vc, output current, io, hysteresis value, ∆, and
control signal, u. Bottom: FFT detail of the control signal, u.

A. Test 1: Resistive load

Figure 6 shows the system steady-state performance at nom-
inal conditions, namely, 2.2 kW with resistive load. The output
voltage, vc, the output current, io, the hysteresis value, ∆, and
the control signal, u, are presented in the top plot of the Figure.
In turn, the bottom plot shows the Fast Fourier Transform
(FFT) of the control signal. Notice that the output signal has a
good behaviour, and achieves the desired switching frequency
(confirmed by the FFT of the control signal) by adapting the
hysteresis value. Table II shows the measured values of the
THD (less than 0.3%) and the maximum voltage tracking
error (less than 1.05%) for different values of the output
power. Additionally, a power efficiency of 95% has also been
measured in the inverter for the 2.2 kW load.

The VSI has also been tested when the load changes from
0 to 2.2 kW. The transient response can be seen in Figure
7, where the output voltage, vc, the output current, io, and
the voltage error, v∗c − vc are shown. The voltage error has
been computed by the µC, and loaded in a digital to analog
converter, DAC, for visualization, with a resulting scale of
247.18 V/V. A maximum error of 4.5% of the output voltage
amplitude can be observed in the transient. Notice that the
transient has been produced in the worst case, where the
peak current is maximum. As the implemented discrete-time
SMC emulates the behaviour of the continuous-time one,
the reaching time is minimum, since the control action does
not change until the switching function reaches again the
hysteresis band. This result confirms the theoretical prediction,
thus validating all the assumptions made at the design and
implementation stages.

The following test shows the SFC operation. Starting from a
fixed hysteresis value, i.e. with the SFC disabled, the enabling
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TABLE II
EXPERIMENTAL RESULTS OF THE VSI

Linear Load

Output Power (kW) THD1 Voltage (%) Voltage error (%)

0 0.2 0.59

0.5 0.3 0.73

1 0.3 0.89

1.8 0.3 0.97

2.2 0.3 1.04

Nonlinear Load

Output power THD Voltage/Nonlinear current Peak current/Crest factor

(kW) (%) (A)/ -

0.63 1.1/81.2 17.6/3.4

1 FLUKE 434 Power quality analyzer

of the SFC results in switching frequency regulation. Figure 8
presents the behaviour of the output voltage, vc, the hysteresis
value, ∆k, and the switching period, T . Notice, on the one
hand, that the switching period is, as expected, time-varying
when the hysteresis is fixed, and how it is properly regulated,
with a smooth and fast transient response, to the desired value
when the SFC is enabled. On the other hand, the output
voltage dynamics is not affected by the hysteresis transient
that appears when the SFC changes from the disabled state to
the enabled one, thus confirming that the SFC does not have
any impact in the SMC dynamics.

B. Test 2: Diode rectifier load

The diode rectifier produces a nonlinear current depending
on the state of the diodes, which act as switches, the capacitor
value and the applied load. This load has two different working
states, one when there is no current consumption from the VSI
(diodes open) and another one when the diodes are closed,
thus behaving as a reactive linear load. The parameter values
of the rectifier are RL = 132 Ω, rs = 1 Ω, CL = 6.6 mF,
and it provides a crest factor of 3.4 with a current peak of
17.6 A for an output voltage amplitude of 220

√
2 V. Figure

9 shows the output voltage, vc, the output current, io, and the
voltage error, v∗c −vc. The bottom row of Table II presents the
main performance parameters of this test. The results in Table
II and Figure 9 confirm a very good performance of the VSI
loaded with a the diode rectifier. The magenta signal shows
the tracking voltage error, which achieves 21 V (peak to peak)
in the worst case, corresponding to a 3.4 % of the reference
value.

Figure 10 shows the output voltage, vc, the output current,
io, the hysteresis value, ∆, and the control signal, u, in
the top plot, and the control signal FFT in the bottom plot.
This test confirms that even in the face of a discontinuous
current consumption, the control algorithm tracks the reference
voltage and properly regulates the switching period. It should
be noticed that, due to the operation of the diode rectifier,
the SMC and the SFC undergo constant transients. As a

vc

v∗c − vc io

14 V

Fig. 7. Transient response when the load abruptly changes from no load to
2.2 kW; SFC with γ = 2.5 · 106. Output voltage, vc, output voltage error,
v∗c − vc, and output current, io.

vc ∆k

T

SFC off SFC on

Fig. 8. VSI response in no load condition when the SFC is disabled and
enabled; SFC with γ = 107. Output voltage, vc, hysteresis value, ∆k ,
switching period, T .

vc

vc − v∗cio

21 V 3.5 V

Fig. 9. VSI response with nonlinear load; SFC with γ = 104. Output voltage,
vc, output voltage error, v∗c − vc, and output current, io.
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vc io

∆

u

Fig. 10. VSI response with nonlinear load; SFC with γ = 104. Top: output
voltage, vc, output current, io, hysteresis value, ∆, and control signal, u.
Bottom: FFT of the control signal, u.

consequence, the switching period slightly deviates from the
desired one, generating small harmonics in the vicinity of the
desired switching frequency, as indicated by the FFT of Figure
10. Nevertheless, even in these conditions the switching period
can be considered constant.

VI. COMPARATIVE ANALYSIS

The control algorithm has been compared with different
controllers reported in the last 10 years. Table III shows
the main figures of merit for the SMC-SFC, the discrete-
time repetitive SMC with exponential-based bi-power reaching
law (DRSMC) [18], the discrete time SMC (DSMC) [18],
the standard first order sliding mode control (SMC) for sin-
gle [16] and three phase inverter [20], terminal SMC with
integral-compensation (TSMC-IC) [31] and two PWM-based
controllers: the repetitive control (RC) [18] and the model
predictive control (MPC) [32]. Notice that the SMC-SFC,
the standard SMC and the TSMC-IC achieve the best THD
indexes with a linear load. For the nonlinear load the DRSMC
exhibits the best THD performance but the SMC-SFC and the
SMC present indexes very close to the best one.

As regards the transient time after a load change, it should
be remarked that the RC index highlights the well-known
drawback of this control technique providing a long transient
time. On the other hand, it has to be pointed out that the
transient time is highly dependent on the output capacitor
and for that reason the MPC and the SMC-SFC show longer
transient time values. Concerning load regulation, the best
index corresponds to the DRSMC, whereas SMC-SFC, DSMC
and RC also present values bellow 0.5%, which are also very
good.

The last two columns of the comparative table show the
number of control parameters to be adjusted and the type of
operations to be programmed in the software control routine.
These items provide insight into the computing resources
required by the controller and the control structure. Notice
that the repetitive control algorithm manages a high number
of delayed states, thus implying a high computational cost.

Furthermore, with regard the power operation (()α) and dq
transform, they also involve considerable computing cost and
the rest of operations (+, x, /, sign()) can be considered
simple and with reduced computational effort. Therefore,
the DRSMC, TSMC-IC and RC are the ones with higher
computational cost, being the SMC and SMC-SFC the lower
ones.

Finally, for illustrative purposes, a set of numerical simula-
tions comparing the proposed SFC-SMC with the DRSMC and
the RC are presented. In order to make a fair comparison, each
controller has been designed with the parameters of the VSI
presented in Table I and the operating switching frequency
is set to 20 kHz, which is the frequency regulated by the
SFC in this work. Therefore, it is assumed that both the
DRSMC and the RC can be executed in 50 µs. It has to be
also remarked that the simulation setup has been carried out
using the Matlab Simscape Power Systems Toolbox, and it
has considered realistic experimental issues such as the dead-
time of the transistor control signals, the computation delay
(1 µs for the SMC-SFC and 50 µs for the DRSMC and
the RC) and the ADC resolution. Dynamic and steady-state
performances have been tested for linear load transients, bus
voltage variations, and nonlinear load.

Specifically, two tests have been carried out. Test 1 consists
of a start-up with a abrupt load changes from no load to 2.2
kW at t = 0.025 s and again to no load at t = 0.035 s, and
a 20% bus voltage reduction at t = 0.045 s. Test 2 considers
a nonlinear load corresponding to a diode rectifier with load
parameters RL = 132 Ω, rs = 0.35 Ω, and CL = 6.6 µF.

The simulation results are presented in Figure 11. Notice
how the results for the SMC-SFC perfectly match the exper-
imental results shown in Figure 7 for the response to a load
change and in Figure 9 for a nonlinear load. From Figure 11 it
can also be noticed that the steady-state error in the SMC-SFC
is slightly better than that of the DRSMC and the RC for both
linear and nonlinear tested loads, whereas all the controllers
present quite similar transient responses. It has to be pointed
out that the start-up of the RC controller requires more than
200 ms for reaching the steady-state; this is the reason why
the simulation time of the RC has been extended with respect
to the SMC-SFC and the DRSMC. Finally, with regard to
the bus voltage variation, the SMC-SFC shows a more robust
behaviour than the DRSMC and the RC.

Summarizing, from the data listed in Table III it can be
inferred that the SMC-SFC shows the lowest THD for a
linear load, while the other performance indexes are very
close to the best ones, and the computational requirement
is low. Moreover, the simulation results comparing SMC-
SFC, DRSMC and RC performances obtained with the same
VSI parameters indicate that the SMC-SFC presents the best
steady-state behavior when operating with the tested linear
and nonlinear loads. As a conclusion, the proposed SMC-
SFC controller shows performance indexes very close, in some
cases even better, to alternative solutions but allowing an easier
implementation.
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TABLE III
FIGURES OF MERIT OF THE SMC-SFC, THE DRSMC [18], THE DSMC [18], THE RC [18], THE SMC ( [16] AND [20]), THE MPC [32] AND THE

TSMC-IC [31]

Vdc Vac fsw C L P THD (L) THD (NL) Transient time Load regulation Control parameters Operations1

SMC-SFC 420 V 220 Vrms 20 kHz 100 µF 0.4 mH 2.2 kW 0.3 % 1.1 % 0.75 ms 0.45 % 3 +, x , /, sign()

DRSMC 750 V 380 Vrms 9 kHz 10 µF 2 mH 6 kW (3 phase) 0.7 % 1.0 % 0.3 ms 0.13 % 8 +, x , /, ()α, RC

DSMC 750 V 380 Vrms 9 kHz 10 µF 2 mH 6 kW (3 phase) 1.9 % 2.8 % 2 ms 0.39 % 7 +, x , /, ()α

RC 750 V 380 Vrms 9 kHz 10 µF 2 mH 6 kW (3 phase) 0.9 % 1.8 % 200 ms 0.26 % 2 +, x , /, RC

SMC 360 V 220 Vrms 15 kHz 9.4 µF 0.36 mH 1.76 kW 1.1 % 1.7 % 0.5 ms 1 % 3 +, x, /, sign()

SMC 390 V 110 Vrms 15 kHz 33 µF 0.88 mH 3 kW (3 phase) 0.4 % 1.7 % 0.3 ms 2.7 % 2 +, x, /, sign()

MPC 350 V 120 Vrms 4-6 kHz 60 µF 2.5 mH 1.2 kW (3 phase) 2.8 % 3.5 % 2 ms 5.4 % 5 +, x , /, dq

TMSC-IC 250 V 110 Vrms 20 kHz 10 µF 1 mH 0.6 kW 0.48 % 1.34 % 1.5 ms - % 7 +, x , /, ()α

1 The symbols correspond to: addition (+), multiplication (x), division (/), sign function (sign()), power (()α), repetitive control (RC) and dq transform (dq).
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Fig. 11. Simulation result of SMC-SFC, DRSMC and RC. Top plot: response of SMC-SFC to Test 1 (left) and Test 2 (right). Middle plot: response of
DRSMC to Test 1 (left) and Test 2 (right). Bottom plot: response of RC to Test 1 (left) and Test 2 (right).
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VII. CONCLUSIONS

The design of a simple sliding mode control operating at
fixed switching frequency in a VSI has been presented in this
paper. The stability of the controlled system has been analysed
for different loads. The sliding controller uses a first order
switching surface and does not require any additional integral
or resonant term. Moreover, the sliding parameters have been
designed to ensure a good sliding motion performance for the
different working scenarios. The sliding mode controller has
been implemented by means of a hysteresis comparator, and
the switching frequency has been regulated using an outer
control loop that varies the hysteresis bandwidth.

A 2.2 kW VSI has been assembled and the controllers
have been digitally implemented in a microcontroller. The
prototype has been tested with a resistive load and with a
diode rectifier, and the experimental results have confirmed
the expected robustness and the fixed switching frequency
regulation, showing low THD at the output voltage with small
tracking error for all the tested loads.
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