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Abstract

We tackle the obtaining of canonical forms for classifying linear control systems with
regard to changes in the state variables. Although it was solved in the 80’s for controllable
systems, it is still an open problem for the general case of multiparametric non-necessarily
controllable systems. Here we obtain a general reduced form which is canonical for a class
of systems which includes the cases already known (uniparametric systems, controllable
systems).
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1 Introduction

The internal representation of linear control systems motivates some different equivalence rela-
tions depending on if one considers changes of variables (state, input, output), external injec-
tions, feedbacks, and so on. Their study has generated a large literature, mainly in the 70’s and
80’s. However, for the apparently simplest equivalence, when only changes in the state space
are considered, canonical forms have been obtained only for the cases of uniparametric systems
([1], [4]) or controllable systems ([3]). For the general case, we obtain a reduced form (the
MG reduced form) which is canonical for a class of linear systems which includes both already
known particular cases above (uniparametric systems, controllable systems): the class when the
so-called associated Hermite system is fully decouplable.

We consider pairs of matrices (A,B) ∈MN (C)×MN×m(C) representing multiparametric linear
control systems and the equivalence relation given by linear changes in the state variables,
that is to say, the group action (S−1AS, S−1B), S ∈ M∗N (C). We can restrict ourselves to the
case A = J , a nilpotent Jordan matrix, so that we have to study the so-called p-action LB,
L ∈ Z∗(J) = {L ∈M∗N (C) : LJ = JL} ≡ Z∗(p), where p is the Segre characteristic of J .

∗Supported by the projects MTM2017-90682-REDT (all authors) and MTM2017-85669-P (third author).
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The first step (Definition 4.1) is that one associates to B = (b1, . . . , bm) a so-called BLD-matrix
K = (K1, . . . ,Km) where Ki = (bi, Jbi, . . . , J

qi−1bi), with Jqi−1bi 6= 0, Jqibi = 0, i = 1, . . . ,m
so that the action LB is equivalent to some elementary transformations of K, which we call row
BLD-ETs (Definition 2.10).

The key point in our approach is introducing the so-called Hermite systems (Definition 5.1)
when the columns of K (or equivalently, the non-zero columns of the controllability matrix) are
linearly independent. From a control point of view, it means that the controls b1, . . . , bm are
decoupled in the sense that the effect of each control can not be obtained by means of the other
ones.

Thus, the second step in our technique is reducing K to a BLD matrix K ′H (Definition 5.9)
corresponding to an Hermite system (J,BH) by means of a factorization depending on the so-
called Hermite coefficients, which are invariant with regard to changes in the state variables. In
this way, the p-equivalence class of K is determined (Theorem 5.13) by its Hermite coefficients
and the p-class of K ′H (a nicer class of BLD matrices).

Therefore, row BLD-ETs will be applied to the BLD matrices K ′H (Theorem 6.1). Indeed, we
act successively in each block column of K ′H , following a pattern similar to the MG-algorithm
for single block column (Definition 3.2). In this way we obtain (Definition 6.4) the so-called MG
reduced form U +X of K ′H , where the non-zero blocks of U are unitary ones placed in different
block rows and block columns and, for each unitary block of U , possible non-zero blocks of X
are placed in the same block row and in the right block columns (see Theorem 6.1). Also we
obtain the desired MG reduced form BMG of B.

Finally, the reduction process is finished if X = 0 (which correspond to K ′H being a fully
decouplable system), so that BMG is a canonical form for the considered system (Corollary
7.1). It includes both the particular cases already known: uniparametric systems, controllable
systems (Proposition 7.3).

If X 6= 0, it gives also a canonical form in some particular cases where no additional reductions
are possible. For example, if X has only a non-zero block in each block column and it is a
diagonal one (Proposition 8.1). In the general case, further reductions are possible (Theorem
8.7), but they do not give a canonical form because some entries are not invariant, even for
m = 2 (Remark 8.8).

The paper is organized as follows. Section 2 contains some preliminaries concerning linear control
systems and BLD-matrices. Section 3 is devoted to present the MG-algorithm. In Section 4 we
associate a BLD matrix K to each system, in such a way that its p-class is determined by the
state equivalence class of the original control system, and conversely. The key point is tackled in
Section 5, where Hermite systems are defined, and any other is factorized in an Hermite system
and a factor depending on the Hermite coefficients. Next, in Section 6, we obtain the MG
reduced form by applying in some sense the MG-algorithm to the Hermite system associated to
the given one. In Section 7 we check that the MG reduced form is indeed a canonical form in
some cases including the uniparametric systems and the controllable ones (the particular cases
nowadays known). Finally, in Section 8 we tackle to generalize our results: great difficulties
appear even for the biparametric case.

In all the paper we denote by MN (C) the complex N -square matrices and by MN×d(C) the ones
having N rows and d columns. In all the cases, if M is a set of matrices, then M∗ denotes those
having maximal rank and Sp(M) denotes the vectorial subspace spanned by the columns of the
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matrices in M . Also, we denote by d = {1, 2, . . . , d} for all integer d ≥ 1.

2 Preliminaries

2.1 Equivalence between linear control systems

The behavior of the state variables x1(t), ..., xN (t) of a time-invariant linear control system is
characterized by the state equation

ẋ(t) = Ax(t) +Bu(t)

where u(t) = (u1(t), ..., um(t)) are the controls, and A ∈ MN (C), B ∈ MN×m(C). So, it
is characterized by the pair (A,B). Its controllability subspace V is the one spanned by the
columns of the so-called controllability matrix (B,AB, ..., AN−1B) and the system is controllable
(or reachable) if dimV = N , that is to say, if rank(B,AB, ..., AN−1B) = N . We consider the
general case when rank(B,AB, ..., AN−1B) ≤ N .

If A = diag(A1, A2) and B = diag(B1, B2), the subsystems (A1, B1) and (A2, B2) do not interact
with each other. One says then that (A,B) is decoupled. In particular, V = V1 ⊕ V2, where V1
and V2 are the controllability subspaces of (A1, B1) and (A2, B2), respectively. We are mainly
interested in the case when (A,B) is decoupled into as many subsystems as there are controls,
that is to say, when each subsystem is uniparametric:

Definition 2.1 Given a system (A,B) as above, if

A = diag(A1, . . . , Am), B = diag(B1, . . . , Bm)

where (A1, B1), . . . , (Am, Bm) are uniparametric systems, we say that (A,B) is fully decoupled.

A linear change x = Sx̄, S ∈M∗N (C), in the state variables leads to a new state equation

˙̄x(t) = (S−1AS)x̄(t) + (S−1B)u(t)

that is to say, to a new pair of matrices Ā = S−1AS, B̄ = S−1B. The following definition
formalizes this transformation:

Definition 2.2 Let us consider pairs of matrices (A,B), A ∈MN (C), B ∈MN×m(C). Two of
them (A,B) and (Ā, B̄) are called state equivalent (that is to say, with regard to linear changes
in the state variables) if and only if there is S ∈M∗N (C) such that:

Ā = S−1AS, B̄ = S−1B.

If (Ā, B̄) is fully decoupled for some S ∈M∗N (C), we will say that (A,B) is fully decouplable.

Remark 2.3 Notice that other equivalence relations can be done, involving outputs, inputs,
feedbacks and so on. For example, by considering linear changes in the state variables as in
Definition 2.2 and also in the control ones: B̄ = S−1BT . It is just equivalent to the classification
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of the controllability subspaces V as A-invariant subspaces, which is a ”wild” problem (see [2]
and [5]). Obviously, this equivalence relation is the same as in Definition 2.2 if m = 1, that
is to say, the classification of monogenic A-invariant subspaces in [1] is equivalent to classify
uniparametric systems as in Definition 2.2 (Proposition 4.4).

Clearly, we can reduce the study of this equivalence relation to the case A = Ā = J , a nilpotent
lower Jordan matrix. Let us write p = (p1, ..., pn), p1 ≥ · · · ≥ pn > 0, its Segre characteristic
and Z∗(p) the non-singular matrices commuting with J . Then, the above equivalence relation
can be reduced to the following one:

Definition 2.4 Let p = (p1, ..., pn) be a non-increasing partition of N , i.e., p1 ≥ · · · ≥ pn > 0
and p1 + ...+ pn = N . Two matrices B, B̄ ∈MN×m(C) are called p-equivalent if

B̄ = LB, L ∈ Z∗(p)

Remark 2.5 Notice that the matrix belonging to Z∗(p) represents a change of Jordan bases of
J . Hence the action LB is a change of Jordan coordinates of the columns of B. For each Jordan
basis of J we write M1, ...,Mn the monogenic subspaces spanned by the corresponding Jordan
chains, so that one has the decomposition CN = M1⊕ · · · ⊕Mn, where the subspaces Mi depend
on the considered Jordan basis.

Remark 2.6 If convenient, we can consider right multiplications BR, R ∈M∗m(C), bearing in
mind that if B̄ = L(BR) is a reduced form of BR, then a reduced form of B is just B̄R−1 = LB.
In particular, we can reorder the columns of B by means of BP , where P is a permutation matrix.
Notice that the final reduced matrix LB will be different for different permutations P (or different
right factors R).

2.2 The BLD matrices

By means of associating to each matrix B = (b1, ..., bm) ∈ MN×m(C) a so-called BLD matrix
(K1, ...,Km), we will characterize the equivalence relation in Definition 2.4 as matrix elementary
transformations in the associated BLD matrix. Let us recall some notation and properties of
this kind of matrices:

Definition 2.7 (1) A matrix is called lower diagonal (LD) if it is a lower triangular matrix
constant along the diagonals.

(2) A partitioned matrix whose blocks are LD matrices will be called block lower diagonal (BLD).

(3) We denote by BLD(p, q) the BLD matrices with respect to the block partition (p, q), that is
to say, its rows are partitioned according to p = (p1, . . . , pn) and its columns are partitioned
according to q = (q1, . . . , qm).

(4) If Y ∈ BLD(p, q), we denote by Yij the block in Mpi×qj (C), by Dk
ij the k-diagonal of this

block, where the first diagonal is the element in the left bottom corner, and by ykij the entries

in Dk
ij. Then ykij = 0 if k > min(pi, qj).
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(5) In each block Yij, we say that the entry ykij or the diagonal Dk
ij has height k, depth (pi − k)

and horizontal depth qj − k.

(6) If kij = max{k : ykij 6= 0}, we say that kij is the height of Yij and we refer to the entry y
kij
ij

or the diagonal D
kij
ij as the highest ones.

(7) We define Ikij =

(
0 0
Ik 0

)
∈Mpi×qj (C) for 1 ≤ k ≤ min(pi, qj),

so that we have Yij =
∑

1≤k≤kij y
k
ijI

k
ij. In particular, if Yij = yIkij for some k we say that

Yij is a diagonal block; a unitary block if y = 1 (an identity block if k = min(pi, qj)). Then,
we denote by eki its first column (which does not depend on j).

(8) We define a block row and a block column as Yi∗ = (Yi1, Yi2, . . . , Yim) and Y∗j = (Y t
1j , Y

t
2j , . . . , Y

t
nj)

t,
respectively.

It is well known that:

Lemma 2.8 If J is a nilpotent Jordan matrix with Segre characteristic p, then the closed
subgroup Z∗(p) of Gl(N) formed by the non singular matrices which commute with J is just
BLD∗(p, p). Thus, the elements L ∈ BLD∗(p, p) are the changes of Jordan bases of J (see
Remark 2.5).

For a matrix in BLD(p, q), the left multiplication by L ∈ Z∗(p) in Definition 2.4 is equivalent
to certain elementary transformations, as we precise in the following lemma:

Lemma 2.9 [2] Let Y ∈ BLD(p, q). The left multiplication by matrices L ∈ BLD∗(p, p) is
equivalent to a sequence of the following transformations, for each block row Yi∗:

(1) Multiplying Yi∗ by a non-zero scalar β.

(2) Adding the first t rows of βYi∗ (where β is an arbitrary scalar) to the last t rows of any
Yi′∗ (for any 1 ≤ i′ ≤ n and where 1 ≤ t ≤ min(pi, pi′)).

Definition 2.10 We refer to the transformations above as row BLD elementary transformations
(row BLD-ETs).

Remark 2.11 According to the above lemmas, to each row BLD-ET one associates a left mul-
tiplication LB, L ∈ Z∗(p) or, equivalently, a change of the Jordan basis of J .

Example 2.12 Let us consider Y below. Then, LY is obtained by applying (2) with: t = 2,
β = −4, i = 1, i′ = 2.

Y =


1 0 0 0 0
2 1 0 6 0
3 2 1 7 6

4 0 0 8 0
5 4 0 9 8

 LY =


1 0 0 0 0
2 1 0 6 0
3 2 1 7 6

0 0 0 8 0
−3 0 0 −15 8
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As announced, we will use BLD-ETs in order to simplify the matrices Y ∈ BLD(p, q). Indeed
we will focus mainly on the following techniques.

Proposition 2.13 [2] Let Y ∈ BLD(p, q)

(1) Any block Yij can be reduced, by means of row BLD-ETs, to the unitary one I
kij
ij , where

kij is the height of Yij (see (6) in Definition 2.7).

(2) Let Yij = I
kij
ij be a unitary block. By means of row BLD-ETs one can make 0 all the other

diagonals in Y∗j having the same or less height than kij, and the same or greater depth
than pi − kij:

yksj = 0, if k ≤ kij and ps − k ≥ pi − kij

(2’) In particular, if Yij is an identity matrix (that is to say, kij = qj = pi), then all the
remaining blocks in Y∗j can be made 0.

Notice that, in (2) above, the blocks in Y∗j′ , for j′ 6= j, remain unaffected if Yij′ = 0, but not in
general. Because of that, we must pay attention when BLD-ETs are applied by recurrence with
regard to j (for example, in Theorem 6.1).

Definition 2.14 We define by (i, j)-row BLD-ET the composition of row BLD-ETs in (1) and
(2).

Example 2.15 Let us consider the block Y22 in Y below. By means of (2,2)-row BLD-ETs as
in (1) above, we can make y122 = 0. Next, by means of (2,2)-row BLD-ETs as in (2), we can
make y212 = y112 = y132 = 0, but we cannot change y232.

Y =



0 0 0 0 0 0
y311 0 0 0 0 0
y211 y311 0 y212 0 0
y111 y211 y311 y112 y212 y113
y321 0 0 0 0 0
y221 y321 0 1 0 0
y121 y221 y321 y122 1 y123
y231 0 0 y232 0 0
y131 y231 0 y132 y232 y133


LY =



0 0 0 0 0 0
y311 0 0 0 0 0
y211 y311 0 0 0 0
y111 y211 y311 0 0 y113
y321 0 0 0 0 0
y221 y321 0 1 0 0
y121 y221 y321 0 1 y123
y231 0 0 y232 0 0
y131 y231 0 0 y232 y133



3 The MG-algorithm

A basic tool in our technique to reduce B is the following reduction for a block column BLD
matrix:

Proposition 3.1 Let us consider a block column BLD matrix Y = (Y t
1 , . . . , Y

t
n)t ∈ BLD(p, q),

p = (p1, ..., pn).
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(1) There exists a unique matrix U = (U t1, ..., U
t
n)t of the form U = LY for some L ∈ Z∗(p),

characterized as follows:

Ui(s) = I
k(s)
i(s) , s ∈ r ; Ui = 0, i /∈ {i(s) : s ∈ r}

where the finite sequences of indices i(1), ..., i(r) and k(1), ..., k(r) are such that:

1 ≤ i(1) < i(2) < · · · < i(r) ≤ n,

q ≥ k(1) > k(2) > · · · > k(r) ≥ 1,

pi(s) ≥ k(s), 1 ≤ s ≤ r

pi(s+1) − k(s+ 1) < pi(s) − k(s), 1 ≤ s ≤ r − 1

(2) In particular, the only non-zero parameters of the first column of U are valued 1 and are
placed in the blocks i(1), ..., i(s) with k(1) > ... > k(r) height and pi(1)−k(1), . . . , pi(r)−k(r)
depth, respectively. As a consequence pi(s) − pi(s+1) ≥ 2, 1 ≤ s ≤ r − 1.

In addition, the matrix U above is the same for any other matrix Ȳ obtained from Y by means
of row BLD-ETs.

Proof. It is obtained by applying the following algorithm.

(1) Let k(1) = max{ki : i ∈ n} and i(1) = max{i ∈ n : ki = k(1)}.

Then, D
k(1)
i(1) is the highest diagonal of Yi(1) and by means of i(1)-row BLD-ETs one obtains

blocks U1, ..., Ui(1), Yi(1)+1(1), ..., Yn(1) such that:

(1.1) Ui(1) = I
k(1)
i(1)

(1.2) For i < i(1): Ui = 0

(1.3) For i > i(1): we recall that Dk
i = 0, k ≥ k(1), and now Dk

i (1) = 0 if k < k(1) and
pi − k ≥ pi(1) − k(1)

(1.3’) In particular, Yi(1) = 0 if pi = pi(1) or pi = pi(1) − 1

(2) Next, by recurrence, for s = 2, . . . , r, let k(s) = max{ki : i(s − 1) < i ≤ n} and i(s) =
max{i : ki = k(s)} (obviously k(s) < k(s− 1), i(s) > i(s− 1)).

Then, by means of i(s)-row BLD-ETs applied to the blocks Yi with i(s − 1) < i ≤ n one
obtains U1, ..., Ui(1), ..., Ui(s), Yi(s)+1(s), ..., Yn(s) such that:

(2.1) Ui(s) = I
k(s)
i(s)

(2.2) For i(s− 1) < i < i(s): Ui = 0

(2.3) For i > i(s): Dk
i (s) = 0 if k < k(s) and pi − k ≥ pi(s) − k(s) (or k ≥ k(s))

(2.3’) In particular, Yi(s) = 0 if pi = pi(s) or pi = pi(s) − 1

It is clear that the indices i(s), k(s) can not be changed by means of row BLD-ETs. So, the
matrix U is unique and does not depend on row BLD-ETs in Y .
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Definition 3.2 Let us consider a block column BLD matrix Y ∈ BLD((p1, ..., pn), q).

(1) The indices i(s) and k(s), s ∈ r = {1, ..., r} in the above proposition are called the block
indices and the diagonal indices of Y , respectively.

(2) The algorithm to obtain them in the proof of this proposition will be called the MG-
algorithm.

Example 3.3 Let us consider p = (7, 6, 4) and the matrix Y below, where a, b 6= 0. Clearly
k(1) = 5, i(1) = 1.

By means of 1-row BLD-ETs with D5
1 one obtains the matrix Ȳ below.

Y =



0
0
a
∗ a
∗ ∗ a
∗ ∗ ∗ a
∗ ∗ ∗ ∗ a

0
0
∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
b
∗ b
∗ ∗ b
∗ ∗ ∗ b



Ȳ =



0
0
1

1
1

1
1

0
0
0
0
0
0

b
∗ b
∗ b
∗ b


Next k(2) = 4, i(2) = 3 and the bottom block can be reduced to the unitary one I43 .

Remark 3.4 In Proposition 4.4 we will see that this algorithm solves immediately the uni-
parametric case, which is equivalent to the already known classification of monogenic invariant
subspaces (Remark 2.3). It justifies its denomination MG.

4 The associated BLD matrix

We recall that we deal with pairs of matrices (J,B) where J is a nilpotent Jordan matrix with
Segre characteristic p = (p1, ..., pn) and B = (b1, ..., bm). Our aim is to obtain a p-equivalent
canonical form of it. A key point of our approach is associating to B a BLD matrix and then
applying row BLD-ETs based on the MG-algorithm.

Definition 4.1 Let J ∈MN (C) be a nilpotent lower Jordan matrix with Segre characteristic p
and B = (b1, ..., bm) ∈MN×m(C).

(1) For each 1 ≤ j ≤ m, let Kj be the matrix whose columns are the non-zero images of bj,
that is to say, the non-zero columns of the controllability matrix of (J, bj):

Kj = (bj , Jbj , ..., J
qj−1bj), Jqj−1bi 6= 0, Jqjbj = 0
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They span the controllability subspace Vj and: qj = dimVj = rankKj

We say that qj is the height of bj. Obviously, qj ≤ p1.

(2) We write q = (q1, ..., qm). By reordering the columns of B if necessary (see Remark 2.6),
in the sequel we will assume: p1 ≥ q1 ≥ ... ≥ qm where the initial order is preserved
if qj = qi.

(3) The BLD matrix associated to B is defined as K = (K1, ...,Km) ∈ BLD(p, q)

(4) Conversely, B = KE, where E ∈ BLD(q, (1, ...
m︸︷︷︸, 1)) and its only non-zero blocks are

the diagonal ones: Ejj = (10...0)t. That is to say, the only non-zero entry of E∗1, ..., E∗m
is valued 1 and placed in the row 1, q1 + 1, ..., q1 + ...+ qm−1 + 1, respectively.

(5) The matrices LK,L ∈ Z∗(p), are called p-equivalent to K.

The following lemma is obvious:

Lemma 4.2 Let B, B̄ ∈ MN×m(C) and K, K̄ be their associated BLD matrices, respectively.
Then:
B̄ = LB if and only if K̄ = LK, where L ∈ Z∗(p).

Corollary 4.3 Let B, B̄ ∈MN×m(C) and K, K̄ be their associated BLD matrices, respectively.
Then the following two statements are equivalent:

(i) B, B̄ are p-equivalent.

(ii) q = q̄ and K, K̄ are p-equivalent.

Therefore, as announced, p-equivalent matrices are obtained by means of row BLD-ETs of K
(Lemma 2.9). In particular, the classification for m = 1 in [1] and [4] follows immediately (see
Remark 2.3).

Proposition 4.4 Let us consider the particular case m = 1, that is to say, B = (b1) and the
associated BLD matrix is a block column K = (K1) ∈ BLD(p, (q1)). Then:

(i) The p-class of B is characterized by the block indices i(1), ..., i(r) and the diagonal indices
k(1), ..., k(r) of K.

(ii) A p-canonical form of B is the column matrix described in (2) of Proposition 3.1: the only
non-zero parameters are valued 1 and are placed in the blocks i(1), ..., i(s) with k(1) > ... >
k(r) height.

We recall: pi(s+1) − k(s+ 1) < pi(s) − k(s) and pi(s) − pi(s+1) ≥ 2, 1 ≤ s ≤ r − 1.

Remark 4.5 The above result gives a geometrical interpretation of the above indices i(1), ..., i(r).
We recall that the canonical form is the result of a change of the Jordan basis of J (see Remark
2.5). Then, if M1, ...,Mn are the monogenic Jordan subspaces for the new Jordan basis of J ,
one has

V1 ⊂Mi(1) ⊕ ...⊕Mi(r)

where V1 is the controllability subspace of (J, b1).
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5 Reduction to the associated Hermite system having decoupled
controls

A second key tool in our technique is reducing K to a BLD matrix K ′H whose non-zero columns
are linearly independent, by means of a factorization depending on the so-called Hermite coef-
ficients (Definition 5.9). So, the study of the p-equivalence can be reduced to matrices K ′H of
this kind (Theorem 5.13). In the next section the MG-algorithm (Definition 3.2) will be applied
to the block columns of such matrices K ′H .

Definition 5.1 Let J ∈MN (C) be a nilpotent lower Jordan matrix with Segre characteristic p
and B = (b1, ..., bm) ∈ MN×m(C). We say that (J,B) is an Hermite system if the columns of
the BLD matrix K associated to B (or, equivalently, the non-zero columns of the controllability
matrix) are linearly independent. If it is not, the Hermite indices h1, ..., hm of (J,B) are defined
as:

h1 = min{k : Jkb1 ∈ Sp(b1, ..., Jk−1b1)}

hj = min{k : Jkbj ∈ Sp(K1, ...,Kj−1, bj , Jbj , ..., J
k−1bj)}, for 1 < j ≤ m

Obviously, h1 = q1 and hj ≤ qj. We write: h = (h1, ..., hm). Notice that it can be non-decreasing
(except h1 ≥ hj) and that some hj can be 0.

Proposition 5.2 With the above notation:

(1) h1 = rankK1; hj = rank(K1, . . . ,Kj)− rank(K1, . . . ,Kj−1), 2 ≤ j ≤ m

(2) The chains: b1, Jb1, ..., J
h1−1b1, b2, Jb2, ..., J

h2−1b2, ..., bj , Jbj , ..., J
hj−1bj (∗)

where the corresponding chain is assumed empty if hj = 0, form a basis of V1 + ... + Vj
(= Sp(K1, ...,Kj)) for any 1 ≤ j ≤ m.

(3) Therefore, for any 1 < j ≤ m: qj − hj = dim((V1 + ...+ Vj−1) ∩ Vj)

Proof.

(1) It follows immediately from the definition.

(2) Clearly, if Jhjbj ∈ Sp(K1, ...,Kj−1, bj , Jbj , ..., J
hj−1bj) (∗∗)

then also Jhj+1bj , ..., J
qj−1bj belong to this subspace. Therefore, the chains (*) span V1 +

...+Vj . And they are linearly independent because, by definition, hj is the minimal exponent
verifying (**).

(3) dim((V1 + ...+ Vj−1) ∩ Vj) = dim(V1 + ...+ Vj−1) + dimV1 − dim(V1 + ...+ Vj−1) =
= (h1 + ...+ hj − 1) + qj − (h1 + ...+ hj) = qj − hj .

Remark 5.3 If hj = 0, then Vj ⊂ V1 + ...+ Vj−1 and the above formula holds.

If hj = qj, then Vj ∩ (V1 + ...+ Vj−1) = {0} so that none of the effects of the control bj can
be obtained by means of b1, ..., bj−1.

Page 10 of 26

URL: http:/mc.manuscriptcentral.com/glma  Email: GLMA-peerreview@journals.tandf.co.uk

Linear and Multilinear Algebra

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

11

In particular, (J,B) is an Hermite system if hj = qj for all 1 ≤ j ≤ m. Then V1 ⊕ ...⊕ Vm
and we say that the controls b1, ..., bm are decoupled in the sense that the effects of each control
can not be obtained by means of the other ones.

Thus, we can make the condition in Definition 5.1 explicit.

Definition 5.4 With the notation in Definition 5.1, we define the Hermite coefficients λkij, for

1 ≤ j ≤ m, 1 ≤ i ≤ j, 1 ≤ k ≤ hi, of (J, b) as the coordinates of Jhjbj in the basis (*) from
Proposition 5.2:

Jhjbj =

j∑
i=1

(λ1ijbi + ...+ λhiij J
hi−1bi)

Obviously, all the Hermite coefficients are 0 if (J,B) is an Hermite system. Also, one assumes
λkij = 0 if hi = 0.

The following characterization of the Hermite indices (except λkij for hj = 0) is immediate.

Lemma 5.5 In the basis (*) from Proposition 5.2, the matrix of the restriction of J to V1 +
...+ Vm is an upper triangular (h1, ..., hm)-block matrix of the form

0 · · · 0 ∗ 0 · · · 0 ∗
1 ∗ ∗

. . .
...

...
...

... · · ·
1 ∗ 0 · · · 0 ∗

0 · · · 0 ∗
1 ∗ · · ·

. . .
...

... · · ·
1 ∗ · · ·

· · · · · · · · ·


where the entries ∗ in the h1 + ...+ hj column are: λ11j , ..., λ

h1
1j ;λ12j , ..., λ

h2
2j ; ...;λ1jj , ..., λ

hj
jj

Again the blocks corresponding to hj = 0 are empty.

By construction λkij = 0 if i > j, hi = 0 or k > hi. Let us see that some other
Hermite coefficients are 0.

Proposition 5.6 With the above notation, let 1 ≤ j ≤ m.

(1) For i = j, the Hermite coefficients are 0: λ1jj = ... = λ
hj
jj = 0

(2) More generally, for 1 ≤ i ≤ j: λkij = 0 if k ≤ qi − qj + hj
In other words, only the following (qj−hj)−(qi−hi) Hermite coefficients can be non-zero:

λqi−qj+hj+1, ..., λhi

(2’) In particular, λkij = 0 if qj − hj ≤ qi − hi
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Proof.

(1) Obviously λkjj if hj = 0. If not, they appear in the diagonal blocks in Lemma 5.5: they
must be 0 because the restriction of J to V1 + ...+ Vm is nilpotent.

(2) As Jqj−hj (Jhjbj) = Jqjbj = 0, one has: 0 =
∑j

i=1

∑hi
k=1 λ

k
ijJ

k−1+qj−hjbj

From the linear independence of the vectors in (*) from Proposition 5.2:

λkij = 0 if k − 1 + qj − hj < qi

(2’) λkij = 0 except for k such that: qi − qj + hj < k ≤ hi.

Example 5.7 For q = (5, 4, 2) and h = (5, 2, 1) the only (possible) non-zero Hermite coefficients
are: λ412, λ

5
12;λ

5
13.

As a direct consequence of (1) in Proposition 5.6, we have a new characterization of the Hermite
indices:

Corollary 5.8 In the conditions of Definition 5.1:

hj = min{k : Jkbj ∈ Sp(K1, ...,Kj−1) = V1 + ...+ Vj−1}

for 1 < j ≤ m (We recall h1 = q1).

It will be convenient to organize the Hermite coefficients in a BLD matrix Λ as follows, in order
to obtain the associate Hermite system:

Definition 5.9 Let J ∈ MN (C) be a nilpotent lower Jordan matrix with Segre characteristic
p = (p1, ..., pn), B = (b1, ..., bm) ∈ MN×m(C) and λkij the Hermite coefficients of (J,B), where
1 ≤ j ≤ m, 1 ≤ i < j, qi − qj + hj < k ≤ hi.

(1) We define the matrix of Hermite coefficients Λ ∈ BLD(q, q) of (J,B) as follows:

• the diagonal blocks, as well as the lower ones, are 0: Λij = 0 if i ≥ j
• also, for i < j: Λij = 0 if qj − hj ≤ qi − hi (in particular, if hi = 0)

• if i < j and qj − hj > qi − hi, the last row of Λij is formed by 0 entries and the
(possible) non-zero Hermite coefficients (see (2) in Proposition 5.6):(

0 · · · 0 λhiij · · · λ
qi−qj+hj+1
ij

)
(2) Then, we associate the system (J,BH) to (J,B) :

K ′H = (K ′1, ...,K
′
m)

.
= K(I − Λ)

BH = (b′1, ..., b
′
m)

.
= K ′HE = K(I − Λ)E

which we call the Hermite system associated to (J,B).
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Example 5.10 In the conditions of Example 5.7:

Λ =



0 0 0

0
. . . 0

0
. . .

. . . 0

0 0
. . .

. . .
. . .

0 0 0 0 0 0 0 λ5
12 λ4

12 0 λ5
13

0 0 0
0 0 0
0 0 0
0 0 0 0 0 0 0 0 0 0 0

0 0 0
0 0 0 0 0 0 0 0 0 0 0



Obviously, if (J,B) is an Hermite system then Λ = 0, K ′H = K and BH = B. If it is not, let us
check that the system (J,BH) above is indeed an Hermite system.

Lemma 5.11 With the above notation:

(1) For each K ′j , 1 ≤ j ≤ m, with hj < qj, the columns hj + 1, ..., qj are 0 (in particular,
K ′j = 0 if hj = 0).

(2) The remaining columns of K ′H (that is to say, the first hj columns of each K ′j) form
the BLD matrix KH associated to (J,BH) and they are linearly independent. Hence,
KH ∈ BLD∗(p, h).

Proof. By construction: b′j = bj −
∑j

i=1

∑hi
k=qi−qj+hj+1 λ

k
ijJ

k−1−hjbi.

Hence Jhjb′j = Jhjbj −
∑

i

∑
k λ

k
ijJ

k−1bi = 0.

And analogously for (2).

Remark 5.12 Notice that KH is just a basis of the controllability subspace V , presented as in
[6].

We attempt the key result in this section: two systems are p-equivalent if they have the same
matrices of Hermite coefficients and their associated Hermite systems are p-equivalent.

Theorem 5.13 Let J ∈MN (C) be a nilpotent lower Jordan matrix, with Segre characteristic p,
and B, B̄ ∈MN×m(C). Let Λ, Λ̄ be respectively the matrices of Hermite coefficients in Definition
5.9, and K ′H , K̄

′
H be respectively the associated Hermite systems. Then the following statements

are equivalent:

(i) B, B̄ are p-equivalent.

(ii) Λ = Λ̄ and K ′H , K̄
′
H are p-equivalent.
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Proof.

If B̄ = LB, then Λ = Λ̄ because the Hermite indices and the Hermite coefficients do not depend
on the Jordan basis. Therefore by Corollary 4.3, K̄ = LK and K̄ ′H = K̄(I − Λ)E = LK ′H .

Conversely, B̄ = K̄ ′H(I − Λ)−1E = LK ′H(I − Λ)−1E = LB.

6 The MG reduced form

We have seen in the previous section that, in order to classify a system (J,B), it is sufficient to
apply row BLD-ETs to the associated matrix K ′H which verifies the nice properties in Lemma
5.11. Thus,by applying the MG-algorithm in Section 3 to each block column of K ′H , we reduced
it to its so-called MG reduced form U +X such that: the non-zero blocks of U are unitary ones,
placed in different block rows and block columns; the non-zero blocks of X are placed in block
rows having unitary blocks of U in some previous block column. More explicitly:

Theorem 6.1 Given J ∈ MN (C) a nilpotent lower Jordan matrix with Segre characteristic
p = (p1, ..., pn) and B ∈MN×m(C). Let K ′H be the associated BLD matrix in Definition 5.9.

Then, there is an unique matrix

U +X = L(m, ..., 1)K ′H , L(m, ..., 1) ∈ Z∗(p)

characterized as follows:

(1) For each 1 ≤ j ≤ m:
Uij = 0 if i 6= ij(1), ..., ij(rj)

Uij(s),j = I
kj(s)

ij(s),j
, 1 ≤ s ≤ rj

where the finite sequences of block indices ij(1), . . . , ij(rj) and diagonal indices kj(1), . . . , kj(rj)
satisfy:

ij(s) /∈ {i1(1), ..., i1(r1)} ∪ ... ∪ {ij−1(1), ..., ij−1(rj−1)}, 1 ≤ s ≤ rj

1 ≤ ij(1) < ... < ij(rj) ≤ n

hj ≥ kj(1) > ... > kj(rj) ≥ 1

pij(s) ≥ kj(s), 1 ≤ s ≤ rj
pij(s+1) − kj(s+ 1) < pij(s) − kj(s), for 1 ≤ s < rj

As a consequence: pij(s) − pij(s+1) ≥ 2, 1 ≤ s < rj

(2) For each 1 ≤ j ≤ m:

Xij = 0 if i 6= iu(s) for all 1 ≤ u < j, 1 ≤ s ≤ ru

If Xiu(s),j 6= 0, its height liu(s),j satisfies liu(s),j ≤ hj and

piu(s) − liu(s),j < pij(t) − kj(t) or liu(s),j > kj(t) for all 1 ≤ t ≤ rj

In particular, X∗1 = 0.
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(3) h1 = k1(1) and hj = max(kj(1),max{liu(s),j : 1 ≤ u < j, 1 ≤ s ≤ ru}) for 2 ≤ j ≤ m.

Proof.

(1) It is sufficient to apply the MG-algorithm successively: firstly, to the first block column K∗1;
next, to the blocks of K∗2 which correspond to zero blocks in the above transformation; and
so on.

(2) By means of (ij(t), j)-row BLD-ET, 1 ≤ t ≤ rj we reduce all Xiu(s),j to 0 except those in
(2).

(3) The equalities are true because KH has maximal rank, so that it is so the successive trans-
formations of KH .

Example 6.2 Let us consider m = 3, n = 6, and the following sequences of block indices:

i1(1) = 2, i1(2) = 6 (r1 = 2); i2(1) = 1, i2(2) = 4 (r2 = 2); i3(1) = 5 (r3 = 1)

Then, the matrix U +X in the above theorem has the form:

U +X =



0 I
k2(1)
1,2 X1,2

I
k1(1)
2,1 X2,2 X2,3

0 0 0

0 I
k2(2)
4,2 X4,3

0 0 I
k1(3)
5,3

I
k1(2)
6,1 X6,2 X6,3



Summarizing, one has:

Corollary 6.3 Let J ∈ MN (C) be a nilpotent lower Jordan matrix, with Segre characteristic
p = (p1, ..., pn), and B = (b1, . . . , bm) ∈ MN×m(C). In order to characterize the p-equivalence
class of B, the following elements are invariant:

(i) the heights q1 ≥ ... ≥ qm

(ii) the matrix Λ (or, equivalently, the Hermite indices h1, ..., hm and the Hermite coefficients
λkij)

(iii) the matrix U in the above theorem (or, equivalently, the block indices ij(s) and the diagonal
indices kj(s))

Then, a reduced form for B is BMG
.
= (U +X)(I − Λ)−1E where U +X = L(m, ..., 1)K ′H in

the above theorem.

Definition 6.4 In the conditions of the above theorem, we say that U +X = L(m, ..., 1)K ′H is
the MG reduced form of K ′H and that U is its m-monogenic component.

Moreover, we say that the matrix

BMG = (U +X)(I − Λ)−1E

is the MG reduced form of B. Notice that (I − Λ)−1 = I + Λ + . . .Λm−1 because Λm = 0.
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In the next section we analize the case X = 0 when the reduction process is finished. Further
reductions are needed if X 6= 0 (see Section 8).

Remark 6.5 From a geometrical point of view, the block indices in Theorem 6.1 give a direct
decomposition (see Remark 2.5) of the space:

CN = M0 ⊕M1 ⊕ ...⊕Mm

where:
M j = Mij(1) ⊕ ...⊕Mij(rj), 1 ≤ j ≤ m

M0 = ⊕i6=ij(s)Mi

From the above theorem, we have the following decomposition for each b′j, 1 ≤ j ≤ m:

b′j = uj + xj , uj ∈M j , xj ∈M1 ⊕ ...⊕M j−1

The first column of U∗j is a canonical form for the component uj, as in (ii) of Proposition 4.4
or, equivalently, as generator of a monogenic A-invariant subspace (see Remark 2.3). Also we
say that uj is the m-monogenic component of b′j, 1 ≤ j ≤ m, and that the block indices kj(s)
are the m-monogenic indices of B.

On the contrary, the first column of X∗j is not a canonical form of the component xj of b′j, so
that further row BLD-ETs are needed if xj 6= 0.

7 The case when the associated Hermite system is fully decou-
plable (X = 0)

Let us summarize the process till now. Given a system (J,B), in Section 4 we have associated
to it a BLD matrix K in such a way that the p-reductions of B can be obtained by means
of row BLD-ETs in K (in particular, the MG-algorithm in Section 3). Next, in Section 5, we
restrict our study to the associated matrix K ′H verifying the nice property that it corresponds
to an Hermite system. Then, in Section 6, the matrix K ′H has been reduced by means of row
BLD-ETs (based in the MG-algorithm in Section 3) to a matrix U +X. If X = 0, the reduction
process is finished, so that BMG is a canonical form. We will see that this case includes the
results already known.

Corollary 7.1 Let us consider (J,B) a system where J ∈ MN (C) is a nilpotent lower Jordan
matrix, with Segre characteristic p = (p1, ..., pn), and B ∈ MN×m(C). Let K be its associated
BLD matrix, Λ be its matrix of Hermite coefficients, K ′H = K(I−Λ) and U+X = L(m, ..., 1)K ′H
be its MG reduced form. Then:

(1) X = 0 if and only if the Hermite system (J,BH) associated to (J,B) is fully decouplable.

(2) Then, the p-equivalence class of B is characterized by:

(i) the heights q1 ≥ ... ≥ qm
(ii) the matrix Λ of Hermite coefficients (or, equivalently, the Hermite indices h1, ..., hm

and the Hermite coefficients λkij, 1 ≤ j ≤ m, 1 ≤ i < j, qi − qj + hj < k ≤ hi)
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(iii) the m-monogenic component U (or, equivalently, m-monogenic indices ij(1), ...ij(rj),
kj(1), ..., kj(rj), 1 ≤ j ≤ m)

and a p-canonical form of B is

BMG = U(I − Λ)−1E

Proof.

If X = 0, it is clear that the block column U∗j , 1 ≤ j ≤ m, is the BLD matrix associated
to the subsystem (J j , b̄′j) where J j = diag(Jij(1), ..., Jij(rj)) and that all these subsystems are
decoupled.

Conversely, if (J,BH) is fully decouplable, the MG reduction in Theorem 6.1 acts separately in
each uniparametric subsystem, giving only unitary blocks.

Then, (2) follows immediately.

Example 7.2 Let us consider p = (8, 4, 3) and B below. Then q = (7, 5) and K is as follows.

B =



0 0
1 0
2 0
−1 −3
0 −4
5 9
1 −2
−1 −17

0 0
3 1
0 2
−1 −9

4 0
5 0
−1 −12



, K =



0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
−1 2 1 0 0 0 0 −3 0 0 0 0
0 −1 2 1 0 0 0 −4 −3 0 0 0
5 0 −1 2 1 0 0 9 −4 −3 0 0
1 5 0 −1 2 1 0 −2 9 −4 −3 0
−1 1 5 0 −1 2 1 −17 −2 9 −4 −3

0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 1 0 0 0 0
0 3 0 0 0 0 0 2 1 0 0 0
−1 0 3 0 0 0 0 −9 2 1 0 0

4 0 0 0 0 0 0 0 0 0 0 0
5 4 0 0 0 0 0 0 0 0 0 0
−1 5 4 0 0 0 0 −12 0 0 0 0



.

The two last columns of K are linear dependent from the preceding ones, so that (J,B) is not
an Hermite system. We obtain (J,BH) by means of:

Λ =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −3 0 0 0 0
0 0 0 0 0 0 0 2 −3 0 0 0
0 0 0 0 0 0 0 0 2 −3 0 0
0 0 0 0 0 0 0 0 0 2 −3 0
0 0 0 0 0 0 0 0 0 0 2 −3

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



,K′H =



0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
−1 2 1 0 0 0 0 0 0 0 0 0
0 −1 2 1 0 0 0 0 0 0 0 0
5 0 −1 2 1 0 0 2 0 0 0 0
1 5 0 −1 2 1 0 0 2 0 0 0
−1 1 5 0 −1 2 1 −2 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 1 0 0 0 0
0 3 0 0 0 0 0 2 1 0 0 0
−1 0 3 0 0 0 0 0 2 1 0 0

4 0 0 0 0 0 0 0 0 0 0 0
5 4 0 0 0 0 0 0 0 0 0 0
−1 5 4 0 0 0 0 0 0 0 0 0


Finally, by applying the MG-algorithm to K ′H we obtain U + X below. As X = 0 we can
compute the canonical form BMG:
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U +X =



0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0



, BMG =



0 0
1 0
0 0
0 −3
0 2
0 0
0 0
0 0

0 0
0 1
0 0
0 0

1 0
0 0
0 −3


More explicitly, the action of the MG-algorithm transforms B′H = (b′1, b

′
2) successively as follows:

0 0
1 0
2 0
−1 0
0 0
5 2
1 0
−1 −2
0 0
3 1
0 2
−1 0
4 0
5 0
−1 0



,



0 0
1 0
0 0
−5 0
2 0
5 2
−9 −4
−3 −2
0 0
3 1
0 2
−1 0
4 0
5 0
−1 0



,



0 0
1 0
0 0
0 0
2 0
−20 2

1 −4
22 8
0 0
3 1
0 2
−1 0
4 0
5 0
−1 0



,



0 0
1 0
0 0
0 0
0 0
−20 2

1 −4
18 8
0 0
3 1
0 2
−1 0
4 0
5 0
−1 0



,



0 0
1 0
0 0
0 0
0 0
0 2
0 −4
0 8
0 0
0 1
0 2
0 0
1 0
0 0
0 0



,



0 0
1 0
0 0
0 0
0 0
0 2
0 −4
0 8
0 0
0 1
0 0
0 0
1 0
0 0
0 0



,



0 0
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1
0 0
0 0
1 0
0 0
0 0



Obviously, the hypothesis in the above corollary holds when m = 1, so that it includes the
already known result in Proposition 4.4. Let us see that it includes also the other already
known case, when the given system is controllable.

Proposition 7.3 Let (J,B) be a controllable pair. Then the hypothesis in the above corollary
holds, so that, the conclusions (1) and (2) are valid.
More explicitly:

(i) The (non-zero) Hermite indices h are just the Segre characteristic p, up to permutations.
In particular, the number of non-redundant controls are just n, so that one can assume
m = n and hj = pσ(j), 1 ≤ j ≤ m = n, where σ is a permutation of {1, ..., n}.
In addition, p1 = q1 = h1, so that σ(1) = 1.

(ii) For each 1 ≤ j ≤ m = n, there is only one block index ij(1) = σ(j) and one diagonal index
kj(1) = hj.

In particular, i1(1) = 1 and k1(1) = p1.

(iii) The matrix U has one non-zero block in each block column and block row, and they are
identity blocks:

Uσ(j),j = (Ipσ(j) |0) ∈Mpσ(j)×qj (C) for 1 ≤ j ≤ m = n

In particular, U11 = Ip1
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Proof. If (J,B) is controllable, the matrix in Lemma 5.5 is just J , up to permutations of the
Jordan blocks, and (i) follows.

Therefore Uij(1),j is an identity block, so that (ii) and (iii) follow from (2′) in Proposition 2.13.

Example 7.4 If (J,B) is controllable with p = (6, 3, 2), q = (6, 5, 4), h = (6, 2, 3), then:

Λ =



0 0 0
0 λ4

12 0

0 λ5
12

. . . λ6
13

0 λ6
12

. . .
. . . 0

. . .

0 0
. . .

. . .
. . . 0

. . .

0 0 0 0 0 0 0 0 λ6
12 λ5

12 λ4
12 0 0 0 λ6

13

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
0 0 0
0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



, E =



1
0
0
0
0
0

1
0
0
0
0

1
0
0
0



U +X =



1
1

1
1

1
1

1 0
1 0

1 0

1 0 0 0
1 0 0 0


, BMG =



1 0 0
0 λ4

12 0
0 λ5

12 λ6
13

0 λ6
12 0

0 0 0
0 0 0

1
0
0

1
0



8 The case X 6= 0

When X 6= 0 further row BLD-ETs can be considered in order to simplify X, preserving U . In
some particular cases, this simplification is not possible, so that (U + X)(I − Λ)−1E is indeed
a canonical form. For example in the following obvious case, when X has only a non-zero block
in each block column and it is a diagonal one.

Proposition 8.1 In the conditions of Corollary 7.1, let us assume X 6= 0 but it has only a
non-zero block in each column block, which is a diagonal one. That is to say, for each block
column X∗j, 2 ≤ j ≤ m, there is a unique row block index i[j] (among those having a non-zero
block of U in some left block column)

i[j] ∈ ∪1≤u<j{iu(1), . . . , iu(ru)} and lj ≤ pi[j], qj
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such that Xi[j],j is the only non-zero block in X∗j and it is a diagonal one:

Xi[j],j = x
lj
i[j],jIlj ; Xi,j = 0 if i 6= i[j]

Then, the p-equivalence class of B is characterized by:

(i) the heights q1 ≥ · · · ≥ qm,

(ii) the matrix Λ of Hermite coefficients,

(iii) the m-monogenic indices ij(1), . . . , ij(rj), kj(1), . . . , kj(rj), 1 ≤ j ≤ m

(iv) the row indices i[j], the heights lj, and the coefficients x
lj
i[j],j for 1 ≤ j ≤ m

and a p-canonical form of B is:

BMG = (U +X)(I − Λ)−1E

Example 8.2 Let us consider p = (8, 4, 3) as in Example 7.2, but B as below. Then we obtain:

B =



0 0
1 0
2 0
−1 −3
0 −4
5 5
1 −1
−1 −14

0 0
3 0
0 1
−1 −7

4 −4
5 −3
−1 −10



, K =



0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
−1 2 1 0 0 0 0 −3 0 0 0 0
0 −1 2 1 0 0 0 −4 −3 0 0 0
5 0 −1 2 1 0 0 5 −4 −3 0 0
1 5 0 −1 2 1 0 −1 5 −4 −3 0
−1 1 5 0 −1 2 1 −14 −1 5 −4 −3

0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0 0 0 0
−1 0 3 0 0 0 0 −7 1 0 0 0

4 0 0 0 0 0 0 −4 0 0 0 0
5 4 0 0 0 0 0 −3 −4 0 0 0
−1 5 4 0 0 0 0 −10 −3 −4 0 0



Λ =



0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −3 0 0 0 0
0 0 0 0 0 0 0 2 −3 0 0 0
0 0 0 0 0 0 0 0 2 −3 0 0
0 0 0 0 0 0 0 0 0 2 −3 0
0 0 0 0 0 0 0 0 0 0 2 −3

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



,K′H =



0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
−1 2 1 0 0 0 0 0 0 0 0 0
0 −1 2 1 0 0 0 0 0 0 0 0
5 0 −1 2 1 0 0 −2 0 0 0 0
1 5 0 −1 2 1 0 1 −2 0 0 0
−1 1 5 0 −1 2 1 1 1 −2 0 0

0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0 0 0 0
−1 0 3 0 0 0 0 2 1 0 0 0

4 0 0 0 0 0 0 −4 0 0 0 0
5 4 0 0 0 0 0 −3 −4 0 0 0
−1 5 4 0 0 0 0 2 −3 −4 0 0
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U +X =



0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 −1 0 0 0 0
0 1 0 0 0 0 0 0 −1 0 0 0
0 0 1 0 0 0 0 0 0 −1 0 0



, BMG =



0 0
1 0
0 0
0 −3
0 2
0 0
0 0
0 0

0 0
0 0
0 1
0 0

1 −1
0 0
0 −3



For more general X 6= 0, some (non trivial) reductions are possible but not always MG canonical
forms are attempted. Let us consider m = 2, in which case Theorem 6.1 says:

Corollary 8.3 Let J ∈MN (C) be a nilpotent lower Jordan matrix with Segre characteristic p =
(p1, ..., pn), B = (b1, b2) ∈MN×2, (h1, h2) be its Hermite indices, and BMG = (U+X)(I−Λ)−1E
be its MG reduced form (see Definition 6.4). More explicitly,

• U +X is characterized as follows:

(1) For j = 1, 2:

Uij = 0 if i 6= ij(1), ..., ij(rj)

Uij(s),j = I
kj(s)

ij(s),j
, 1 ≤ s ≤ rj

where the finite sequences of block indices ij(1), . . . , ij(rj) and diagonal indices kj(1), . . . , kj(rj)
satisfy:

{i1(1), ..., i1(r1)} ∩ {i2(1), ..., i2(r2)} = ∅

1 ≤ ij(1) < ... < ij(rj) ≤ n

hj = kj(1) > ... > kj(rj) ≥ 1

pij(s) ≥ kj(s), 1 ≤ s ≤ rj

pij(s+1) − kj(s+ 1) < pij(s) − kj(s), for 1 ≤ s < rj

(2) X∗1 = 0; Xi2 = 0 if i 6= i1(s) for 1 ≤ s ≤ r1.

If Xi1(s),2 =
∑li1(s)

l=1 xli1(s)I
l
i1(s),2

6= 0, its height li1(s) satisfies

pi1(s) − li1(s) < pi2(t) − k2(t) or li1(s) > k2(t) for all 1 ≤ t ≤ r2

• BMG = (U +X)(I + Λ)H because Λ2 = 0 and then (I − Λ)−1 = I + Λ.

Let us see when a non-zero block Xi(s),2 can be cancelled by means of additional BLD-ETs
preserving the unitary blocks.
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Lemma 8.4 Let J ∈ MN (C) be a nilpotent lower Jordan matrix, B = (b1, b2) ∈ MN×2 and
BMG = (U + X)(I + Λ)E be its MG reduced form. Let i = i1(s), j = i1(t), s 6= t for any
1 ≤ s, t ≤ r1.

Then, we can make Xj,2 = 0 (without modifying the other blocks) by means of row BLD-ETs

using xlii if
lj ≤ min(li, li + pj − pi, li + kj − ki − 1)

and it is not possible if lj > li + kj − ki.

Proof.

We can remove x
lj
j using xlii , provided that the heights and depths comply lj ≤ li, pj − lj ≥

pi − li: by adding the first pi − li + lj rows of (U +X)i∗ multiplied by α = −xljj /x
li
i to the last

rows of (U +X)j∗. The obtained block (U +X)j∗(1) will be:

• Uj,1(1) = Uj,1 + αI
ki−li+lj
j,1 or Uj,1(1) = Uj,1 if lj ≤ li − ki

• xsj(1) = xsj + αx
s+li−lj
i if s ≤ pi − li + lj

• xsj(1) = xsj otherwise

Notice that xsj(1) = xsj if s > lj because s+ li − lj > li. Then, the height of Xj,2(1) is less than
lj .

If lj ≤ li − ki we have that Uj,1(1) = Uj,1, the height of Xj,2(1) is less than lj and the other
blocks do not change.

If li− ki < lj < kj + li− ki, in order to remove α in Uj,1(1), we add the first pj − kj + ki− li + lj
rows of (U+X)j∗(1) multiplied by −α to the last rows of itself. The obtained block (U+X)j∗(2)
will be:

• Uj,1(2) = Uj,1 − α2I
2(ki−li+lj)−kj
j,1 or Uj,1(2) = Uj,1 if 2(ki − li + lj) ≤ kj

• xsj(2) = xsj(1)− αxs+kj−ki+li−ljj (1) if s ≤ pj − kj + ki − li + lj

• xsj(2) = xsj(1) otherwise.

Notice that s + kj − ki + li − lj > lj if s ≥ lj , so that xsj(2) = xsj(1) = 0. Then, this second

reduction does not increase the height of Xj,2(1) and the height of −α2 in Uj,1(2) is less than
the height of α in Uj,1(1).

By recurrence, after a finite number of steps, the non-zero entry (−1)k+1αk of the unit block
will disappear.

Also, by recurrence, in a finite number of steps Xj,2 becomes 0.

Finally, if lj > kj + li − ki, the height of the entry α in the block Uj,1(1) obtained in the first
step will be greater than kj and it can only be eliminated by returning to the initial situation.
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By using the above lemma recurrently as in the MG-algorithm, we reduce the number of non-zero
blocks of X preserving the other ones and we obtain a matrix X ′.

Proposition 8.5 Let J ∈ MN (C) be a nilpotent lower Jordan matrix, B = (b1, b2) ∈ MN×2
and let BMG = (U +X)(I + Λ)E be its MG reduced form.

Let Xi1(s),2, 1 ≤ s ≤ r1, be the possible non-zero blocks of X. Then, by means of row BLD-ETs
preserving U , we can reduce the non-zero blocs of X to the ones which correspond to indices
1 ≤ s1 < · · · < sr′1 characterized by:

(1) i1(1) ≤ i1(s1) < ... < i1(sr′1) ≤ i1(r1)

(2) li1(s1) > ... > li1(sr′1
) ≥ 1

(3) pi1(sj+1) − li1(sj+1) < pi1(sj) − li1(sj), 1 ≤ j < r′1

We recall that pi1(sj) − li1(sj) < pi2(t) − k2(t) or li1(sj) > k2(t) for all 1 ≤ t ≤ r2.

The block indices i1(sj), 1 ≤ j ≤ r′1, as well as the heights li1(sj) and the highest coefficients

x
li1 (sj)

i1(sj)
, are invariant with regard to row BLD-ETs preserving U .

Proof.

Let L1 = max{li1(s) : 1 ≤ s ≤ r1} and s1 = max{s : li1(s) = L1, 1 ≤ s ≤ r1}.

If s < s1, li1(s) ≤ min(li1(s1), li1(s1) + pi1(s) − pi1(s1), li1(s1) + k1(s)− k1(s1)− 1) and from Lemma
8.4, by using xi1(s1), Xi(s) becomes 0.

If s > s1, li1(s) < li1(s1) and, pi1(s) − li1(s) ≥ pi1(s1) − li1(s1) together with pi1(s1) − k1(s1) >
pi1(s)−k1(s) implies that k1(s1)−li1(s1) < k1(s)−li1(s). Then, the condition of Lemma 8.4 in order
to do that Xi(s) becomes 0 using xi1(s1) is given except for the case pi1(s)− li1(s) < pi1(s1)− li1(s1).

By recurrence, we obtain the announced finite sequence.

Finally, let us eliminate some entries in the matrix X ′ obtained above:

Lemma 8.6 Let J ∈MN (C) be a nilpotent lower Jordan matrix, B = (b1, b2) ∈MN×2, BMG =
(U +X)(I + Λ)E be its MG reduced form, and X ′ be as in Proposition 8.5.

Let us consider i1(sj), 1 ≤ sj ≤ r′1, and l < li1(sj).

(1) Let us assume that there is si ∈ {s1, . . . , sr′1} such that some of the following conditions is
satisfied

(i) l ≤ min(li1(si) − k1(si), li1(si) + pi1(sj) − pi1(si))
(ii) li1(si) − k1(si) < l ≤ min(li1(si), li1(si) + pi1(sj) − pi1(si), li1(si) + k1(sj) − k1(si) − 1) if

li1(sj) − k1(sj) < li1(si) − k1(si) ≤ pi1(sj) − k1(sj)
(iii) pi1(sj)−k1(sj) < li1(si)−k1(si) < l ≤ min(li1(si), li1(si) +pi1(sj)−pi1(si), li1(si) +k1(sj)−

k1(si)− 1).
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Then, we can make xli1(sj),2 = 0, preserving U and the blocks in X other than Xi1(sj),2, by

means row BLD-ETs.

(2) Let us assume that there is t ∈ {1, . . . , r2} such that

l ≤ min(k2(t), k2(t) + pi1(sj) − pi2(t)).

Then, we can make xli1(sj),2 = 0 by means of (i2(t), 2)-row BLD-ETs preserving U and the blocks

in X other than Xi1(sj),2.

Proof.

This proof is very similar to the proof of Lemma 8.4.

For simplification, we write j ≡ i1(sj), i ≡ i1(si), kj ≡ k1(sj), ki ≡ k1(si).

(1) We can remove xlj using xlii , provided that the heights and depths comply l ≤ li, pj − l ≥
pi − li: by adding the first pi − li + l rows of (U + X)i∗ multiplied by α = −xlj/x

li
i to the

last rows of (U +X)j∗. The obtained block (U +X)j∗(1) will be:

• Uj,1(1) = Uj,1 + αIki−li+lj,1 or Uj,1(1) = Uj,1 if l ≤ li − ki

• xsj(1) = xsj + αxs+li−li if s ≤ pi − li + l

• xsj(1) = xsj otherwise

Notice that xsj(1) = xsj if s > l because s+ li − l > li.

If l ≤ li − ki then, xsj(1) = xsj if s > l, xlj(1) = 0 and Uj,1(1) = Uj,1.

If li−ki < l < kj+li−ki, in order to remove α in Uj,1(1), we will add the first pj−kj+ki−li+l
rows of (U + X)j∗(1) multiplied by −α to the last rows of itself. The obtained block
(U +X)j∗(2) will be:

• Uj,1(2) = Uj,1 − α2I
2(ki−li+l)−kj
j,1 or Uj,1(2) = Uj,1 if 2(ki − li + l) ≤ kj

• xsj(2) = xsj(1)− αxs+kj−ki+li−lj (1) if s ≤ pj − kj + ki − li + l

• xsj(2) = xsj(1) otherwise.

Then, to guarantee that xsj(2) = xsj(1) = 0 if s ≥ l it is necessary that lj − kj < li − ki if
li − ki ≤ pj − kj . Then, this second reduction does not increase the height of Xj,2(1) and
the height of −α2 in Uj,1(2) is less than the height of α in Uj,1(1).

By recurrence, after a finite number of steps, the non-zero entry (−1)k+1αk of the unit block
will disappear.

Also, by recurrence, in a finite number of steps Xj,2 becomes 0.

Finally, if l ≥ kj + li− ki, the height of the entry α in the block Uj,1(1) obtained in the first
step will be greater than or equal to kj and it can only be eliminated by returning to the
initial situation.

(2) It is obvious because the (i2(t), 2)-row BLD-ETs affect only the block Xi1(sj),2.
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Summarizing the above results, one obtains a more reduced form, but not always it is a canonical
form (see Remark 8.8 and Example 8.9):

Theorem 8.7 Let J ∈ MN (C) be a nilpotent lower Jordan matrix with Segre characteristic
p = (p1, ..., pn), B = (b1, b2) ∈ MN×2 and BMG = (U + X)(I + Λ)E be its MG reduced form.
Then, B is p-equivalent to the simplified matrix

(U + X̄)(I + Λ)E

where:

(1) There only non-zero blocks of X̄ are X̄i1(sj), 1 ≤ j ≤ r′1, corresponding to block indices i1(sj)
characterized by:

(i) i1(1) ≤ i1(s1) < ... < i1(sr′1) ≤ i1(r1)
(ii) li1(s1) > ... > li1(sr′1

) ≥ 1

(iii) pi1(sj+1) − li1(sj+1) < pi1(sj) − li1(sj), for 1 ≤ j < r′1

where li1(sj) is the height of the corresponding block.

Both i1(sj) and li1(sj), 1 ≤ j ≤ r′1, are invariant with regard to row BLD-ETs preserving U .

(2) Their highest coefficients x
li1 (sj)

i1(sj)
, 1 ≤ j ≤ r′1, are also invariant with regard to row BLD-ETs

preserving U .

(3) For l < li1(sj), 1 ≤ j ≤ r′1 one has xli1(sj) = 0 if some of the following conditions is satisfied:

(i) l ≤ min(li1(si) − k1(si), li1(si) + pi1(sj) − pi1(si)) for some i ∈ r′1
(ii) li1(si) − k1(si) < l ≤ min(li1(si), li1(si) + pi1(sj) − pi1(si), li1(si) + k1(sj) − k1(si) − 1) if

li1(sj) − k1(sj) < li1(si) − k1(si) ≤ pi1(sj) − k1(sj) for some i ∈ r′1
(iii) pi1(sj)−k1(sj) < li1(si)−k1(si) < l ≤ min(li1(si), li1(si) +pi1(sj)−pi1(si), li1(si) +k1(sj)−

k1(si)− 1) for some i ∈ r′1
(iv) l ≤ min(k2(t), k2(t) + pi1(sj) − pi2(t)) for some t ∈ r2

Remark 8.8 The coefficients xli1(sj), l < li1(sj), 1 ≤ j ≤ r′1, which do not satisfy any of the

conditions in (3) above, can not be invariant with regard to row BLD-ETs preserving U . So, the
reduced form (U + X̄)(I + Λ)E in Theorem 8.7 is not canonical. See the following example:

Example 8.9 Let J ∈ MN (C) be a nilpotent lower Jordan matrix with Segre characteristic
(p1, p2) = (5, 3), B = (b1, b2) ∈MN×2 and reduced form (U + X̄)(I+ Λ)E. Let us consider some
blocks of U and X: U11, U21, X12, X22 with the indices (k1, k2) = (3, 2), (l1, l2) = (4, 3). This
is to say that the first matrix below (writing only the first columns of each block) is a submatrix
of U +X.

From Theorem 8.7, using x32 6= 0 and x41 6= 0, only x11 and x12 can become 0. We can assume that
they are always 0.
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We will try that x31 become 0 using x32 because they meet the conditions of heights and depths:



0 0
0 x41
1 x31
0 x21
0 0

0 x32
1 x22
0 0


−→



0 0
0 x41
1 0
α x21(1)
0 0

0 x32
1 x22
0 0


−→



0 0
0 x41
1 −αx41
0 x21(1)
−α2 0

0 x32
1 x22
0 0


−→



0 0
0 x41
1 −αx41
0 x21(2)
0 0

0 x32
1 x22
0 0


where α = −x31/x32, x21(1) = x21 + αx22, x21(2) = x21(1) + α2x41 = x21 + αx22 + α2x41.

We see that we have not succeeded and, on the other hand, we have obtained a different reduced
form with the same number of parameters.
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