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Abstract

Optical networks are a critical infrastructure subjected to attacks at its physical layer.

Different methods have been presented to prevent, detect and solve these attacks. The

work in this thesis attempts to offer an alternative to the detection task.

The current systems in charge of detecting intrusions in optical networks rely on the met-

rics obtained from OPM equipment. This equipment has a high cost, making the massive

deployment through the optical network unfeasible. Photonic reservoir computing is a

technology that has been able to solve tasks as header recognition, channel equalization,

etc. with a good performance and a cost that allows it to be deployed over all the network.

In this thesis, it is designed and assessed a photonic reservoir computing system able to

detect and classify attacks in optical networks. All the work has been done by means of

software simulation.
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Abstract—Optical networks are a critical infrastructure sub-
jected to attacks at its physical layer. Different methods have been
presented to prevent, detect and solve these attacks. The current
systems in charge of detecting intrusions in optical networks rely
on the metrics obtained from OPM equipment. This equipment
has a high cost, making the massive deployment through the
optical network unfeasible. Photonic reservoir computing is a
technology that has been able to solve tasks as header recognition,
channel equalization, etc. with a good performance and a cost
that allows it to be deployed over all the network. In this thesis
it is designed and assessed by simulation a photonic reservoir
computing system able to detect and classify attacks in optical
networks.
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I. INTRODUCTION

Due to their data transmission capacity, optical networks
are a fundamental part of the communication systems of a
wide range of services. As a consequence, they have become
a target of malicious attacks against the services they support.
As it has been reported [1], the intrusions focus the physical
layer due to its easy access and the cascade effect on the upper
layers.

The most reported and one of the harmful attacks of
the physical layer is the insertion of harmful signals to the
fibre. This insertion can be done accessing the patch-panel
or by means of creating a temporal coupler as described in
[2]. If the signal overlaps the spectrum of the channel it is
considered in-band jamming and unfilterable noise is added
to the signal. An out-band jamming occurs when the signal
is placed outside the used spectrum increasing the nonlinear
effects of the optical network, and also reducing the gain of
the amplifiers. Other types of attacks have been reported like
a polarization modulation attack [3]: a polarization scrambling
is introduced that is fast enough to make the polarization
recovery algorithms unable to restore polarization state.

The efforts for protecting the optical physical layer can be
classified in three tasks: (i) assurance by means of modelling
the consequences of the attacks and minimizing its effects;
(ii) assessment through the detection, classification, and local-
ization of the attacks; and (iii) recovery using attack source
neutralization, and network reconfigurations.

The assessment of the attacks has taken different approaches
along time. Initially, it was based on power detection, spectrum
analysis, reflectometry methods, and even manual detection,
but due the heterogeneity of the networks and the attacks they

presented a bad performance. Lately, machine learning algo-
rithms that use metrics from optical performance monitoring
(OPM) equipment have shown a high accuracy detecting the
signature and intensity of attacks [3]–[5]. Although the good
performance of these systems, OPM equipment is too costly
to be deployed massively in the network.

Reservoir computing has been used to solve similar prob-
lems in other fields like the detection of attacks in electrical
smart grids [6]. Also, photonic reservoir computing networks
have state of the art performance solving problems such
as speech recognition, time series forecasting and, Boolean
logic operation [7]–[10]. In view of the above and taking
into account that the cost of photonic reservoir computing
makes possible to deploy it massively in the network, an
attack detection for jamming attacks using this technology is
presented.

II. LITERATURE OVERVIEW

The current methods to detect intrusions in optical networks
rely on applying machine learning to the OPM equipment
metrics. In [3] a supervised approach is studied, obtaining
artificial neural networks (ANN) as the optimal algorithm.
Also, the importance of the parameters that are fed to the are
studied, concluding that, with seven parameters, the system
is able to detect with almost a 100% of accuracy polariza-
tion scrambling, in-band and out-band jamming attacks. An
unsupervised approach [4] has also been postulated in order
to create a truly autonomous system that does not rely on
previous information of the network, but its performance is
still far to match its supervised counterpart.

Reservoir computing is a framework that derives from
recurrent neural networks with the particularity that the part
that allows having a temporal dynamic behaviour remains
fixed, the reservoir. This allows the system to have an analog
system as a reservoir. Photonics offers inherent parallelism
and huge bandwidth making them very useful to exploit this
advantage. Originally, a non-linearity was needed in each node
of the reservoir but in [11] it was demonstrated that passive
linear optical networks can act as a reservoir and the non-
linearity can be added at the readout with the photodetector.

III. SYSTEM DEFINITION

A. Optical network attack simulation

VPI software has been used to simulate the optical-fiber
link and asset the effects of the jamming intrusions. The same



system has been used to simulate the in-band and out-band
jamming using different parameterizations of the components.
An overview of the system can be seen on Figure 1

Fig. 1. Scheme of the optical fibre transmission link.

The transmitter is a WDM system with nine 4QAM at 25
GBauds carriers. The carrier central frequencies are equally
spaced 100 GHz with an initial central at 192.9 THz. The
signal is transmitted through a dispersion-managed fibre span
with two-stage EDFAs before (Booster) and after (Line Am-
plifier) and also x-polarizer at its input. The length of the fibre
is 100Km with an attenuation of 0.2dB/Km. The receiver is
formed by a Gaussian band-pass filter, a costume module that
saves the electric field of the signal and a coherent receiver
that analyses the BER of the signal.

For both jammings, the intrusion signal it is multiplexed
at the transmitter simulating access to the patch panel. In the
case of in-band jamming, it is centred at 192.9 THz with a
bandwidth of 100GHz (Figure 2) and in outband jamming, it is
centred at 193.8 THz with a bandwidth of 25GHz (Figure 2).

Fig. 2. Inband jamming in a WDM optical link.

The effects of the jamming signal have been studied by
means on how the BER of the signal under test varies and it
has been observed that it gets more affected when the intrusion
is done inband (Figure 4 and Figure 5). Taking into account
this study it has been decided to use a power of 1 mW for the
inband jamming and of 10 mW for the outband jamming to
train the photonic reservoir computing network.

B. Photonic reservoir computing simulation

For designing and optimizing the photonic reservoir com-
puting system, the Photontorch platform has been used [12].

Fig. 3. Outband jamming in a WDM optical link.

Fig. 4. BER versus the power of the inband jamming signal.

Fig. 5. BER versus the power of the outband jamming signal.

As previously mentioned the system is formed by a passive
linear photonic network that acts as a reservoir and readout
that adds the non-linearity.

For the reservoir, a passive photonic integrated circuit with
a four-port architecture with sixteen nodes has been used
(Figure 6) and the readout consists in a photodetector that
combines the complex-valued states of the nodes into real-
valued intensities.

In order to train the reservoir computing network, the
complex fields from the different VPI simulations (inband
jamming, outband jamming or without jamming) are loaded.



Fig. 6. Representation of the four-port reservoir architecture..

Then the cases are concatenated in pairs and a target tensor
identifying each one is created to train and test the system.
Finally, the signal and the target samples are shuffled in blocks.

With the tensors previously created the readout is trained
using a binary cross-entropy loss preceded by a sigmoid and
an AdamW optimizer. When doing the testing of the system,
it was observed that the samples that tend to be classified
incorrectly were placed after a changing of the scenario. In
order to solve this problem, and taking into account that it is
not necessary to detect the intrusion at the rate of the input
samples, the outputs were grouped in groups and its mean was
assigned to each of them.

IV. RESULTS

The photonic reservoir computing system was tested for
all the pairs of scenarios (inband jamming with no jamming,
outband jamming with no jamming, and inband jamming with
outband jamming) using different jamming signals (modulated
ones and lasers). In all of them, the system was able to classify
the scenario without any error.

After it was validated that the system worked correctly,
different scenarios with lower jamming powers than the one
used to train the reservoir computing network were tested.
The limit of correct detection was found when the inband
jamming power was under 1e-06, but in that scenario, the BER
was under 1e-10 (in normal conditions operates with a BER
around 1e-11) so it was considered a reasonable assumption
that there was no jamming. In order to validate the results a
transient analysis was also done, where a jamming signal was
turned on and off.

Comparing the results with other approaches, the same
accuracy is achieved as in the system using OEM metrics
and supervised training of the algorithm [3] and a better
performance when it is compared to the system unsupervised
trained [4]. Although, the system is only able to classify
between two cases while the other ones are able to classify
until 7 different cases.

V. CONCLUSIONS

An attack detection system using photonic reservoir com-
puting that is able to detect jamming attacks has been demon-
strated. Even though it is not able to classify more than two

scenarios simultaneously, its lower cost compared to OEM
equimpent based methods allows it to be deployed massively
in the network.

The following steps regarding this topic should be validating
the simulated results in a real scenario. Also, the intrusion
signal was only studied when it is added at the patch panel,
but it can be also placed along the fibre making use of a
temporal coupler. Another extension of the work is improving
the system in order that it is able to classify and detect
more than two scenarios at the same time and introducing
the polarization scrambling attacks.
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Chapter 1

Introduction

1.1 Introduction

Due to their data transmission capacity, optical networks are a fundamental part of the

communication systems of a wide range of services. As a consequence, they have become

a target of malicious attacks against the services they support. As it has been reported

[1, 2], the intrusions focus the physical layer due to its easy access and the cascade effect

on the upper layers.

The efforts against these attacks can be classified depending on their aim: prevention,

detection or recovery. This thesis focuses in the detection problem when the attacks are

done by means of an intrusion signal, this signal can be used to disrupt communication

and also to listen to the information carried by means of cross-talk.

Different approaches have been presented to solve that problematic. The first ones were

based on power detection, spectrum analysis, reflectometry methods, and even manual

detection. They presented problems of generalization due the heterogeneity of optical

networks and the attacks, also their performance decreased when the signal was nosy.
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Recently, machine learning algorithms that use metrics from optical performance moni-

toring (OPM) equipment have shown a high accuracy detecting the signature and intensity

of attacks [3, 4, 5]. Although the good performance of these systems, OPM equipment

cost makes the massive deployment of this systems unfeasible.

In this thesis, a new technique to solve the detection problem is presented using reser-

voir computing (RC). This technology is very suitable for photonic networks because their

inherent parallelism and huge bandwidth. Also, its performance has been validated achiev-

ing state of the art in tasks as speech recognition, time series forecasting and, Boolean

logic operation [11, 12, 13, 14]. The advantages over previous systems is a lower energy

consumption and a lower cost of deployment. Furthermore, outside the photonics field,

RC has already been used in similar tasks like the detection of false data injection in

electrical smart grids [10].

1.2 Optical networks attacks

As previously mentioned, the attacks in optical networks usually aim its physical layer

to affect in cascade the upper layers. Even though the disturbances of the physical layer

affect the current Wavelength Division Multiplexed (WDM) systems, they become even

more remarkable with new physical-layer paradigms like quantum key distribution (QKD)

and space division multiplexing (SDM). This, combined with the huge data-rates carried

today and its tight requirements, make the managing of the security at the optical physical

layer a key issue on optical networks.

The managing of the security in optical networks can be divided into three main tasks:

• The security assurance by means of modelling the consequences of the attacks and

minimize its effects by means of data encryption and scrambling techniques [6, 7, 8,

9].
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• The security assessment through the detection, classification, and localization of the

attacks [3, 4, 5].

• The attack recovery using attack source neutralization, and network reconfigurations

[15, 16].

The system presented in this project aims to offer an alternative to the current security

assessment systems.

1.2.1 Types of attacks

The most reported and one of the harmful attacks in the optical physical layer is the

insertion of intrusion signals to the fibre. These signals increase the nonlinear effects of

the system, reduce the gain of the amplifiers and add unfiltrable noise at the spectrum

they use. The consequences are a degradation of the quality of the channel that can even

make it useless.

The insertion of the intrusion signal can be done accessing the patch-panel and also

by means of creating a temporal coupler as described in [17].

The jamming attacks can also be classified depending if the spectrum used matches

the transmitted channel:

• Inband jamming: The harmful signal overlaps the spectrum of the channel adding

unfiltrable noise that reduces the optical signal-to-noise ration (OSNR). In this case,

normally, the intrusion signal has a higher bandwidth than the useful signal in order

to affect a broader spectrum. As a consequence, the power spectral density (PSD)

of the intrusion signal is lower compared to the useful signal. An example of the

received optical spectrum of a system suffering inband jamming can be seen in

figure 1.1.
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Figure 1.1: Inband jamming in a WDM optical link.

• Outband jamming: The harmful signal is placed outside the used spectrum and

reduces the quality of the other channels by means of power reduction and increase

of non-linearities due to the limitations of erbium-doped fibre amplifiers (EDFA). In

this jamming, the harmful signal usually has the same bandwidth than the useful

signal and equal or higher power. An example of the received optical spectrum of a

system suffering outband jamming can be seen in figure 1.2.

Apart from the insertion of harmful signals, there are attacks that do not require fiber

intrusion. One of them is the application of a fast polarization scrambling, whose effect

is making polarization recovery algorithm unable to restore polarization state [3].

The system presented in this thesis is only able to identify and classify the jamming

attacks due to the fact that the photonic reservoir computing systems used is not sensitive

to the polarization of the signal.
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Figure 1.2: Outband jamming in a WDM optical link.

1.2.2 Attack detection approaches

The recent approaches in the assessment of the network attacks have been done by means

of processing the metrics obtained form OPM equipment, usually by means of machine

learning (ML) algorithms.

In [5] the OPM equipment used is a WDM analyzer that obtains the power and

OSNR for all the channels. Using these metrics, different ML algorithms have been tested

concluding that ANN is the one that offers better performance, with an accuracy of 100%

in outband jamming attack detection and an accuracy of 99% when it also locates the

attack by identifying the channel jammed. Additionally, a novel resource reallocation

scheme that utilizes the statistical information of attack detection accuracy to lower the

probability of successful jamming of lightpaths while minimizing lightpaths’ reallocations

is proposed.
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In [3, 4] the metrics that are fed to the ML algorithms are obtained from the coherent

receiver. These can be seen in Table 1.1.

Acronym Unit Description

CD ps/nm Chromatic Dispersion

DGD ps Diferential Group Delay

OSNR dB Optical Signal to Noise Ratio

PDL dB Polarization Dependent Loss

Q-factor dB Q factor

BE-FEC Bits Block Errors before FEC

BER-FEC Bps Bit Error Rate before FEC

UBE-FEC Blocks Uncorrected Block

BER-POST-FEC Bps Bit Error Rate after FEC

OPR dBm Optical Power Received

OPT dBm Optical Power Transmitted

OFT MHz Optical Frequency Transmitted

OFR MHz Optical Frequency Received

Table 1.1: Metrics obtained from the OPM equipment [4].

In [3] different supervised learning algorithms are tested in order to identify the type of

attack between inband jamming, outband jamming and polarization scrambling. Another

classification is done depending if the intensity of the attack is high or low. It is revealed

that the optimum machine learning algorithm for detecting attacks is ANN with a 99.9%

of accuracy. Finally, the importance of the different metrics that the coherent receiver

facilitates is studied, revealing that with only seven of them is enough to achieve the same

performance as using all of them. In Figure 1.3 it is shown the evolution of the accuracy

of the ANN in function of the numbers of parameters it uses, ordering them in function

of its impact.
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Figure 1.3: ANN classification error in function of parametrs used [3]

An unsupervised ML approach is described in [4] to detect insertions of harmful signals

in the system without prior knowledge of the attacks in order to have a truly autonomous

system that does not rely on previous information of the network. Although it defines a

system that offers an accuracy of 92% (with a false negative rate of 7,69%), its performance

is still far from the supervised methods [3].

1.3 Reservoir computing

Reservoir Computing (RC) is an artificial intelligence framework that derives from Re-

current Neural Networks (RNN), which in turn are a class of Artificial Neural Networks

(ANN). The main characteristic of this system is that the part that allows having a tem-

poral dynamic behaviour remains fixed.

Having a part of the network fixed presents advantages in front of other RNN ap-

proaches like reducing the time of convergence time and consuming less power due to the
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fact the fewer parameters are trained. Furthermore, these networks allow the use of an

analogue system for the fixed part. This last advantage has been exploited in photonics

because of its inherent parallelism and its huge bandwidth.

1.3.1 Machine learning

Machine Learning is the study of algorithms that are able to learn to solve tasks without

being expressly programmed to do so. Depending on the approach they take in learning,

they can be classified in the following:

• Reinforcement learning: The algorithm interacts with the environment and improves

using the feedback of its actions.

• Supervised learning: The algorithm uses the input data and the expected output to

learn the correspondence between them.

• Unsupervised learning: The algorithm uses only input data and learns their struc-

ture.

Various machine learning models have been defined and improved along time in order

to adapt to the needs and the technology available, but lately, the one that is catching

more attention is ANN because of its performance and customization. These networks are

based on a primitive scheme of how the brain works, consisting of interconnected nodes,

also called neurons, which compute an output from the inputs they receive (similar to the

neurons and the synapses in biology).

The most common node and the one that give a better overview of ANN are the

perceptrons. Its basic structure consists of applying an activation function, in order to

add a nonlinearity in the system, to a weighted sum of the inputs plus the bias as can be

seen in Figure 1.4.



1.3 Reservoir computing 9

Figure 1.4: Scheme of the model of the perceptron.

The equation (1.1) represents the mathematical operation of the perceptron. Being x

the vector representing the inputs, w the vector of weights, x·w the dot product, b the

bias, f() the activation function and y the output.

y = f(w · x + b) (1.1)

An activation function need to present a nonlinearity in order that the system is able

to detect nonlinear patterns. Apart of this, the following properties are desirable: smooth,

continuous, derivable and almost linear. In order to get an overview of them the following

three of the most significant functions are presented:

sigmoid(x) =
1

1 + ex
(1.2)

tanh(x) =
ex − e−x

ex + e−x
(1.3)
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ReLU(x) = max(0, x) (1.4)

Figure 1.5: Sigmoid function.

Figure 1.6: Tanh function.

Figure 1.7: ReLU function.

The learning takes place by adapting the network to solve a particular task based on

particular samples. This adaptation is done by means of adjusting the weights of the
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network and the threshold (bias parameter) in order that the output minimizes the error

perceived.

Practically, this is done by defining a cost function that is evaluated periodically and

whose gradient allows the backpropagation to update the weights.

The cost function measures the quality of a particular set of parameters based on how

well the output of the network agrees with the ground truth labels in the training data.

Depending on the task different loss functions are used:

• In regression the network predicts continuous,numeric variables. Absolute loss (L1

distance), square loss (L2 distance) and Hubber Loss are among the most popular.

• In classification the network predicts categorical variables. Hinge loss, Cross-entropy

loss and Focal loss are the most used.

Once defined the loss function, the gradient is computed and then backpropagated

through the network to obtain gradients for each parameter. With these gradients an

optimizer updates the weights. The optimizers that have shown better performance are

the ones with an adaptative learning rate as root mean square propagation (RMSProp)

and adaptive moments (Adam).

The neurons are usually aggregated to form layers and depending on its position in the

information flow are called input layers (the ones that receive the input signal), hidden

layers (the intermediate layers) and output layers (the ones that display the output).

Two main types of networks can be defined in function on how the nodes are connected:

• The feed-forward neural networks (FFNN) where the information flows only forward,

from the input layer to the output layer through the hidden ones.

• The RNN where the connections are also recursive (the state of the nodes is used in

future iterations) allowing the system to exhibit a temporal behaviour.



1.3 Reservoir computing 12

Figure 1.8: Architecture of a FFNN (left) and a RNN (right).

1.3.2 Reservoir computing

Reservoir computing, originally appeared as a solution to decrease the complexity of the

training in an RNN and its computational cost by reducing the parameters of the network

that need to be trained. Even though the actual RNN have solved most of these issues,

RC is still relevant due to its use in analogue computation.

The first approach in Reservoir Computing was done by Buonomano [18] and it was

reinvented independently by Jaeger with echo state machines (ESM) [19] and Maass with

liquid state machines (LSM) [20]. These systems are composed of three sections:

• An input layer where the signal is decoupled in order to be fed to the system.

• A reservoir that transforms the input signal to a higher dimensional space using

recurrent connections, it remains fixed and needs to be made up of non-linear units
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and be able to store information.

• A readout that combines the outputs of the Reservoir as an artificial neural network.

Figure 1.9: Schematic representation of a reservoir computing system.

1.3.3 Photonic reservoir computing.

As previously mentioned RC has found its place with analogue systems and photonics is

presented as an interesting candidate because of its huge bandwidth, inherent parallelism,

low computational and energy consumption and time-depend non-linearities.

In photonic RC we can differentiate between two approaches, the delay-based [21] and

the spatially distributed. On the first one, the reservoir is formed by only a hardware node

with a feedback loop and different virtual nodes are created by means of time multiplexing

using a masking signal.

The systems usually use Mach-Zehnder modulators and the feedback loop can be

done by means of an optoelectronic system or in the optical domain using couplers and

circulators. An scheme can be observed in Figure 1.10
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Figure 1.10: Structure of a delay-based reservoir computing.

The second approach is more intuitive and it is composed of different physical nodes

interconnected in the optical domain that are fed to the readout. Some of the nodes

that have been studied are semiconductor optical amplifiers (SOAs) [22], photonic crystal

cavities [23] and microring resonators [24]. The previous nodes present nonlinearities

that mimic the activation function, but it has been also demonstrated that passive linear

optical networks can act as a reservoir and the nonlinearity can be added at the readout

[25].

In passive photonic reservoir computing the reservoir is a linear network formed by

passive photonic integrated circuit (PIC) components like combiners, splitters and long

waveguides (spirals) that interconnect the nodes. The nonlinearity is introduced through

the use of a photodetector that combines the complex-valued states of the nodes to real-

valued intensities.
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Even though these networks don’t offer the same performance in highly nonlinear

tasks in comparison with non-linear photonic networks, they offer benefits as simplicity of

production and operation with less power requirements, which in turn makes that the tem-

peratures of the system more stable allowing an easy thermal management control. These

advantages made them a good choice when mass production and operation is needed.

Some of the tasks where these systems have demonstrated to be an important alternative

are bit-sequence processing tasks, header recognition and equalization.

1.4 Objectives

As mentioned in this introduction, optical networks are vulnerable to attacks in the phys-

ical layer that can derive in affections to the infrastructures that they support. One of

the most important part in order to overcome these attacks is to detect and classify them

to take the appropriate measures, but this is no trivial due to the heterogeneity of the

attacks and the network.

The current methods to solve that task offer a very good performance detecting and

classifying the attacks, but they relay in metrics obtined from high cost equipment that

makes non-viable to deploy them massively in the network.

Passive photonic reservoir computing systems have demonstrated to be able to perform

state of the art tasks in optical networks and also reservoir computing has been used in

a similar problem in another field. Moreover, they are able to be mass-produced and

deployed with little power consumption.

At the light of the previously mentioned, in this thesis is intended to design and

evaluate an alternative to the actual attack detection methods based on the use of passive

photonic reservoir computing systems in order to allow the deployment of these systems

throw all the network.
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All the work will be done by means of simulation, first modelling the optical network

and the attacks with VPI and then feeding the complex electric field obtained to a passive

photonic reservoir network designed and optimized with Photontorch.
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Chapter 2

Optical network attack simulation

2.1 VPI Software

In order to model a complete optical link and the jamming attacks, different components

with different characteristics and effects need to be modeled. With the aim to overcome

this difficulty, there are software that offer predefined components and allow the user to

connect and configure them.

VPI is one of the most complete optical transmission simulators by having a wide

range of predefined components and optical systems that can be interconnected and pa-

rameterized. It is worth mentioning that it also includes demos of optical links that can

be used as a foundation for similar links.

Regarding the customization of the optical network, it offers the possibility to define

custom components using Python or Matlab that can operate over the optical domain

and the electric one.

Finally, it allows the assessment of the performance of the link by checking character-

istics of the signal as the spectrum or the eye diagram and also quality measures like the
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bit error rate (BER).

2.2 Jamming attacks set-up

In order to study the effects of the jamming attacks, we have designed a complete optical-

fibre transmission link that can be divided into three stages: the transmitter, the fibre

and the receiver.

Figure 2.1: Scheme of the optical fibre transmission link.

The transmitter represents a WDM system that multiplexes nine 4QAM carriers at 25

GBauds with a transmission power of 0dBm. The carrier central frequencies are equally

spaced 100 GHz with an initial central frequency at 192.9 THz.

The number of carriers, its central frequency and the bandwidth used was decided

based on previous studies, like [3] in order to make the results obtained comparable. The

4QAM modulation was chosen in order to represent a system with a coherent modulation

and the fact that the signal is not polarization multiplexed like in previous works is

because the passive photonic reservoir network used is not sensitive to the polarization of

the signal.
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As we can see in figure 2.2 the transmitter transmits three signals:

• The signal under test whose central frequency is placed at 192.9 THz. It will be the

carrier that will be fed to the reservoir so the BER for the different scenarios will

be monitored.

• The multiplexed signals that is composed for eight carriers equally spaced at 100

GHz starting at 193 THz.

• The jamming signal that will simulate an intrusion on the patch panel and whose

parameters will be specified in the next section.

The transmitters of the signal under test and the multiplexed signals are VPI modules

based on Mach-Zehnder modulators.

Figure 2.2: Signals multiplexed in the transmitter.
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The VPI module used as the fibre is a dispersion-managed fibre span with two-stage

EDFAs before (Booster) and after (Line Amplifier) and also x-polarizer at its input. The

length of the fibre is 100Km with an attenuation of 0.2dB/Km. A scheme of it can be

seen in figure 2.3.

Figure 2.3: Scheme of the fibre module.

The receiver is formed by a Gaussian band-pass filter centered at the central frequency

of the signal under test, a costume module that saves the electric field of the signal and a

coherent receiver that analyses the BER of the signal as can be seen in figure 2.4.

Figure 2.4: Scheme of the fibre module.

Finally, the general parameters used in the simulations are a sampling rate of 200 GHz
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during 40.96 ns. Furthermore, a transient analysis has been done to validate the results

using the same sampling rate and introducing a jamming signal that is turning on and off

every 8 ns during 8 cycles (128 ns).

2.3 Outband and inband jamming parametrization

As explained in previous sections, two types of jamming will be analyzed: the inband,

when the signal overlaps the frequency of the signal under test, and the outband, when an

extra carrier is added to the system. Both intrusion signals are added to the multiplexer,

simulating an access in the patch-panel. In order to model the intrusion signal two ap-

proaches have been taken into account: when the jamming signal is a modulated signal

(Figures 1.1 and 1.2) and when it is a CW laser (Figures 2.5 and 2.6).

In the case of in-band jamming, an intrusion signal centred at 192.9 THz is added,

being a 4QAM transmitter at 100 GBauds when the signal is modulated and a laser with

100GHz of linewidth when a CW laser is used.

Figure 2.5: Inband jamming in a WDM optical link with a CW laser.
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In outband jamming, the intrusion signal is centred at 193.8 THz and the intrusion

signal can be a 4QAM modulated signal at 25 GBauds or a CW laser with a 25GHz of

linewidth.

Figure 2.6: Outband jamming in a WDM optical link with a CW laser.

The effects of the intrusion signals have been studied by means of the analysis of the

evolution of the signal under test BER when different jamming powers are used. This has

been done for both scenarios, inband and outband jamming. The conclusions were that

the BER of the signal under test is more affected by the inband intrusions (Figure 2.7)

than by the outband ones (Figure 2.8). Taking into account these results it has been

decided to use a jamming power of 1 mW for inband intrusion and one of 10 mW for the

outband intrusion for the training of the network.

In order to train the photonic reservoir computing network it is also necessary to have

samples when there is no jamming to represent the normal conditions of the optical link

(Figure 2.9). A simulation has been done and it has been found that the BER in that

case is 1.73e-12 a value that is achieved when the inband intrusion power is below 1e-5

mW and when it is lower than 1e-3 mW for outband intrusion .
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Figure 2.7: BER versus the power of the inband jamming signal.

Figure 2.8: BER versus the power of the outband jamming signal.
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Figure 2.9: Spectrum of WDM optical link

Finally, a transient analysis where the jamming signal is turned on and off in time has

been performed in order to verify the performance of the system (Figure 2.10).
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Figure 2.10: Evolution of the BER in the transient analysis.
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Chapter 3

Photonic reservoir computing

simulation

3.1 Photontorch

Once we have obtained the complex electric field from VPI, we need to feed it to the

system that will be in charge of simulating the photonic reservoir computing system. The

platform used to design and optimize this system is Photontorch [26].

Photontorch is a photonic circuit simulation software written in Python that relays

in PyTorch, a machine learning framework. The PyTorch tensors, which are used to

define the S-matrices of the components of the circuit, are arrays that can be placed on

the Graphical Processing Unit (GPU) enabling high parallelization of the simulations.

Because PyTorch is a tool designed to perform machine learning, the tensors are able to

save the gradient enabling backpropagation that is the default optimization method for

ANN.

In Photontorch the main building block is the component, it contains its ports and
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the relation to the other ports by means of the scattering matrix. It also keeps track of

which of its ports are active, which means that the action depends also on an the internal

state. Also networks can also be seen as a component whose S-matrix is composed by the

joined S-matrices of each component and its connectivity allowing hierarchical structures.

3.2 Configuration and training

In this section, the procedure of defining, training and testing the attack detection pho-

tonic reservoir computing system is explained. The system has been based on an example

of PT central repository developed by the photonics research group at Ghent University.

First of all, the complex electric fields obtained from the different VPI simulations

(inband jamming, outband jamming or without jamming) are loaded. As previously men-

tioned, the system is only able to detect two different scenarios, so these are concatenated.

Also, a target array describing the type of scenario (1 or 0) is created. It has been tested

that using 1 for the scenario that is expected to have more power and 0 for the one with

less power in the target tensor improves the performance of the system.

In order to perform machine learning, it is better to have the two scenarios interspersed,

so the concatenated signal and the target array are jointly randomly shuffled in blocks

of 256 samples. After that, the signals and their targets are divided into train and test

having a size of 98304 and 32768 respectively.

From the previous data, PyTorch tensors from the signal and the target are created

matching the architecture of the network. In our case, the architecture used will have

sixteen nodes and the electric field will be fed to the inputs 5,6,13 and,14.

After defining the input tensors, the reservoir architecture that will process the tensor

to simulate the states need to be created. In our case, a four-port architecture with sixteen

nodes that is predefined in the PT central repository has been used. A representation of
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the architecture used can be seen in Figure 3.1

Figure 3.1: Representation of the four-port reservoir architecture.

Now that the signals and the architecture have been defined one can finally simulate

the states that will be used for the machine learning. In order to do this the simula-

tion environment is created defining the time of simulation and the wavelength of the

signal. After that the tensor is processed with the reservoir architecture and the states

are obtained. The output power of these states can be seen in Figure 3.2.

Figure 3.2: Mean output power of the states of the reservoir.
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The only remaining part of the system is the readout and it is created also using a

model included in PT central repository. Once loaded, its parameters (weights and bias)

are initialized with random values between 0 and 1. The amplitude and the phase of this

random initialized reservoir can be seen in Figures 3.3 and 3.4.

Figure 3.3: Amplitude of the weights of the reservoir.

Figure 3.4: Phase of the weights of the reservoir.

It should be noted that the readout weights on their own are not necessarily an indica-

tion of node importance. Due to losses, power over the nodes varies. A better indication

is to look at the output signal strength of the various nodes, the node amplitude weight

times the node power that can be seen in Figure 3.5.
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Figure 3.5: Mean output signal strength of nodes after readout.

Finally, the readout is trained using an optimizer based on gradient descent. As can

be seen in Figure 3.6. the importance of the nodes has changed due to the training.

Figure 3.6: Mean output signal strength of nodes after readout after training.

The parameters used in the training are the following:

• The loss function used is the combination of a sigmoid layer with binary cross-

entropy.

• The optimizer used was AdamW with decoupled weight decay. In PyTorch the

regularization it is done by the optimizer using a L2 penalty.

• One batch was used and the training lasted 10000 training steps for outband jamming
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and 20000 for inband jamming.

Figure 3.7: Evolution of the cross entropy loss in the readout training.

As previously mentioned a sigmoid is used in traing because cross entropy loss need

to have the values of between 0 and 1. Due to that, another sigmoid function needs to be

placed on testing to offer the same performance.

3.3 Results

When doing the testing of the system, it was observed that the samples that tend to be

classified incorrectly were placed after a changing of the scenario. In order to solve this

problem, and taking into account that it is not necessary to detect the intrusion at the

rate of the input samples, the outputs were grouped in groups of 256 samples and its

mean was assigned to each of them. Also, originally it was used the mean square error

(MSE) as a loss function but for classification is better to use the binary cross-entropy

and it showed a better performance. That improvements of the system can be seen in

Figuree 3.8
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Figure 3.8: Accuracy of the system in function of the loss function and output grouping.

The photonic reservoir computing system was tested for all the pairs of scenarios

(inband jamming with no jamming, outband jamming with no jamming, and inband

jamming with outband jamming) using different jamming signals (modulated ones and

lasers). In all of them, the system was able to classify the scenario without any error.

After the validation of the system for a fixed jamming power, different scenarios with

lower jamming powers than the ones used to train the reservoir computing network were

tested. The limit of correct detection was found when the inband jamming power was

under 1e-06, but in that scenario, the BER was under 1e-10 (in normal conditions operates

with a BER around 1e-11) so it was considered a reasonable assumption that there was

no jamming.

In order to validate the results a transient analysis was also done, where a jamming

signal was turned on and off as shown in figure 2.10 and also the system was able to

classify it without errors.
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Comparing the results with other approaches, the same accuracy is achieved as other

systems using OEM metrics and supervised learning [3, 5] and a better performance when

it is compared to the unsupervised learning system [4]. However, the system presented

is only able to classify between two cases instead of the seven that is able to detect the

system presented at [3]. Also is not able to locate the jamming signal as it was done in

[5].
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Chapter 4

Conclusions

4.1 Summary

The objective of this thesis was to design a system using photonic reservoir computing

that was able to detect jamming attacks in an optical link with a similar performance

than the current systems based in OEM equipment. The reasoning behind that was to

offer a cheaper solution that could be deployed massively in the network.

The project consisted in two parts:

• Simulating the inband and outband jamming attacks in an optical link with VPI

software and studying its effects by means of the BER. And from this study, selecting

and obtaining the signals for feeding the reservoir computing system.

• Simulating and training a photonic reservoir computing system in order to detect

different jamming attacks. It was done using the Photontorch and PyTorch libraries.

Different approaches for the training and testing were taken into account until the

desired performance was obtained.
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From the first part, it was observed that the inband jamming had more effect on the

BER due to noise was added to the signal. Also, it was observed that outband jamming

reduced the power of the channel. Because of that channel power difference it was decided

to use a high target signal (1) for the inband case and a low target signal (0) for the outband

case.

From the simulation of the photonic reservoir computing network, it was observed

that taking the mean of various outputs increased the performance and because it is not

necessary to know if there is a jamming at sample rate speed it was decided to use it.

Also, it was checked that instead of using the MSE as a loss function, binary cross-entropy

works better for classification.

In conclusion, the results obtained showed that it is possible to use a four-port reservoir

photonic integrated circuit with a photodetector as a readout for detecting and classifying

jamming attacks in optical links without errors when only two scenarios are taken into

account.

4.2 Perspective

This thesis was a first approach to demonstrate the viability of photonic reservoir comput-

ing networks to solve the attack detection problem so there is still lots of future research

related to this topic.

In my opinion, due to the fact that all the work was done by simulation the next step

should be validating the results obtained in a real scenario.

Also, the intrusion signal was only studied when it is added at the patch panel, but

it can be also placed along the fibre making use of a temporal coupler. This case should

also be taken into account and check if the system is able to detect them or modifications

need to be done.
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As previously mentioned, the system is only able to differentiate between two attacks

at the same time while other approaches have shown the capacity to differentiate until

seven. An improvement of the network could be done in order to increase this number.

Finally, the polarization attacks have not been taken into account, so designing a

photonic reservoir computing system which can detect them will be another interesting

approach.
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