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Abstract. Maritime transport is responsible for an annual emission of around 1000 million tonnes of
CO2, which is around 2.5% of the global greenhouse gas emissions. Nowadays, ships are designed using
simplified operational profiles representing the expected operational profile during the lifetime of the
ship. However, there is a discrepancy between these simplified profiles used for design and the actual
full operational profile of a ship during its lifetime. This discrepancy leads to inefficient hydrodynamic
ship design resulting in a waste of fuel and an increase of greenhouse gas emissions.

The amount of available data on actual operational conditions of ships is rapidly increasing. The
Automatic Identification System (AIS) and onboard monitoring systems produce a huge amount of his-
torical data on ship operations. These developments call for efficient data-driven methods that account
for this data. Knowledge of operational conditions can be used for Computational Fluids Dynamics
(CFD) -based probabilistic uncertainty quantification leading to robust design: A hull shape that is op-
timal with respect to uncertain operational conditions. Robust design is a promising approach since it
makes ships energy efficient for the real usage situation.

Three UQ-methods are discussed: The perturbation method, the Polynomial Chaos Expansion (PCE)
method and the multi-fidelity PCE method. The methods are applied to a simple one-dimensional test
case to compute the stochastic moments of the effective power. The multi-fidelity Polynomial Chaos
Method is found to be the most efficient UQ method. Moreover, the multi-fidelity PCE can be used as
a surrogate for efficient Monte Carlo integration. This makes the method suitable for an Optimisation
Under Uncertainty (OUU) algorithm leading to robust design.

1 INTRODUCTION

Greenhouse gas emissions from the combustion of oil-based fuels are directly proportional to fuel
consumption. Some options to reduce fuel consumption are, amongst others, hull optimisation, weather
routing, propeller polishing, slow steaming and trim optimisation, see [1]. Here, we will focus on im-
proving hull optimisation techniques to reduce fuel consumption. By including realistic operational
conditions in the hull form optimisation process it is expected that ships can be made more robust with
respect to these conditions, leading to an improved energy efficiency.
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Robust design optimisation is a promising technique that enables the ship designer to optimise the
hull for the actual usage situation [2, 3]. When operational data is available of comparable ships and
missions, new ships can be optimised to account for exactly these conditions. The resulting ship designs
will be more energy efficient than designs resulting from optimisation using only a few representative
design conditions.

In order for robust design optimisation to be useful it is critical to have reliable operational data rele-
vant to the ship and mission to be designed. Sources of data are for example the Automatic Identification
System (AIS) [2] and onboard monitoring systems [1]. Using AIS data, speed is recorded during the
voyage and displacement at the beginning of the voyage. AIS signals are detected by satellites which
provide a capability for monitoring all vessels with AIS equipment. When operational data is collected
onboard, the ship has a data logging system which processes the data from on board sensors.

Robust design optimisation requires efficient Uncertainty Quantification (UQ) methods to propagate
the uncertain operational conditions to the uncertain design objectives. This contribution will focus on
UQ using Polynomial Chaos Expansions (PCE). The methods are ranked on computational efficiency
and the capability to predict uncertainty for large input data. A simple one-dimensional test case is
defined in Section 1.1 involving a container ship sailing at random speed. Two deterministic solvers are
used: a cheap to evaluate low fidelity solver and an expensive high fidelity solver.

1.1 Numerical test case: 22000 TEU container vessel

The particulars of the containership are summerized in Table 1. The speed is assumed to be a random

Table 1: Main particulars

Parameter Symbol Value Units

Ship Lpp 383 m
Beam B 61.2 m
Draft T 14.5 m

Froude number Fn N(0.1847,008397) [-]

variable which can be decomposed in m standard independent random variables:

V =V (ξi) ξi = i, ...,m (1)

For simplicity, here the speed is assumed to be a function of a single standard Gaussian random variable

V =V0 +σV ·ξ, (2)

where the speed V0 and σV are chosen to represent a ’realistic’ operational profile. Here, we choose
V0 = 22 knots and σV = 1 knot which leads to a random Froude number Fn = N(0.1847,0.008397). The
deterministic design objective is the effective power of the ship

PE = R ·V, (3)

where R is the total resistance of the ship. The total resistance can be predicted using the low fidelity
potential flow solver RAPID in order to compute a quick and rough estimate and using the viscous high
fidelity solver ReFRESCO to compute a reliable value.
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1.1.1 Low fidelity solver: free-surface potential code RAPID

The fully nonlinear free-surface potential flow solver Raised-Panel Iterative Dawson (RAPID) [4] is a
panel method neglecting viscous effects. Using RAPID, the total (viscous) resistance is estimated using

R = (1+ k)R f0 +Rw, (4)

where R f0 is the frictional resistance of a flat plate with a surface equal to the wetted surface area S
moving at speed V , the factor k is an estimated form factor and Rw is the wave resistance computed from
integration of the pressure resistance along the hull. Expression (4) yields a Low Fidelity (LF) prediction
of the total resistance which is computed in a few minutes on a desktop PC.

1.1.2 High fidelity solver: free surface RANS code ReFRESO

The free surface RANS code ReFRESCO solves incompressible viscous flows using the Navier-Stokes
equations, see [5]. ReFRESCO is used for High Fidelity (HF) predictions of the resistance. ReFRESCO
is an unstructured finite volume code based on the volume-of-fluid formulation. To assess the prediction
accuracy, the numerical uncertainty needs to be estimated using a grid refinement study. Richardson
extrapolation is used in the least square sense since scatter in the solution may deteriorate the observed
order of convergence p. The goal is to obtain the discretisation uncertainty U of prediction R̂ such that
with 95% confidence: R̂−U ≤ R∗ ≤ R̂+U , where R∗ denotes the exact solution. Equivalently, this can
be written as

P
[

|εR| ≥ U
R∗

]

≤ 1−C with εR =
R̂−R∗

R∗ , (5)

where εR is the discretisation error and C = 0.95. The uncertainty U is obtained using the method
described in [6]. Four solutions on geometrically similar grids with sizes N = 2.7,4.6,7.4 and 10.8
million cells are used to fit δRE = Ri −R∗ = αhp

i . When the observed order p satisfies 1.0 ≤ p ≤ 2.1 and
the standard deviation of the fit σ̂ is smaller than the mean change in the data, the value for U is estimated
using

U = FsδRE + σ̂+ |R̂−Rfit|, (6)

with a safety factor Fs = 1.25. A distinction is made between the friction resistance and the pressure
resistance, see Figure 1.
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(a) Friction resistance [kN] (b) Pressure resistance [kN]

Figure 1: Grid convergence of the friction and pressure resistance.

The results for the finest grid with N = 10.8 million cells are summarized in Table 2.

Table 2: Errors and uncertainties of the finest grid (N=10.8 million cells)

Friction Pressure Total

Approximation (R̂) 2512 kN 496 kN 3007 kN
Uncertainty (U/R̂) 5.90×10−3 2.77×10−1 4.60×10−2

The uncertainty of the total resistance is obtained using UT =
√

U2
f +U2

p , which assumes independent
convergence of pressure and friction. Note that the numerical uncertainty of the pressure is much higher
than the uncertainty of the friction and that the total uncertainty is almost 5% of the estimated resistance.
However, grid convergence is observed such that this uncertainty can always be reduced when more grid
cells are used for the computation. To limit computational costs, we use N = 10.8 million cells in the
remainder of the paper.

1.1.3 Quantities of Interest

The Quantities of Interest (QoI) are the stochastic moments of the effective power with respect to the
uncertain operational conditions. The effective power depends on the random variable as

PE(ξ) = R(V (ξ)) ·V (ξ). (7)

The statistical moments of the effective power are then defined by

μPE =
∫

PE(ξ)pξdξ

σ2
PE

=
∫

(PE(ξ)−μPE)
2 pξdξ,

(8)
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where pξ denotes the probability density function of random variable ξ. Computing the integrals in (8)
efficiently is required in order to be able to optimise the hull shape for minimal expected power. Efficient
UQ methods are the subject of Section 2.

2 Uncertainty Quantification Methods

The Monte Carlo method is the most general and reliable method to propagate uncertainty to the ob-
jectives. Unfortunately, it is also the most expensive method which makes it not suitable for robust
optimisation. More efficient UQ methods exploit the smoothness of the objectives with respect to the
uncertain variables. Three UQ methods are applied: The perturbation method, the Polynomial Chaos
Expansion method and the multi-fidelity Polynomial Chaos Expansion method. To this end, Sandia
National Laboratories open-source DAKOTA tool is used, see [7].

2.1 Perturbation method

If the objective function is smooth, the effective power can be expanded in a multi-dimensional second-
order Taylor expansion around a point α (see [8])

PE(ξ) = PE

∣
∣
∣
∣
α
+∇PE

∣
∣
∣
∣
α
(ξ−α)+

1
2
(ξ−α)T ∇(2)PE

∣
∣
∣
∣
α
(ξ−α)

= a+bT ξ+
1
2

ξT Cξ,
(9)

where a, b and C are given by

a = PE

∣
∣
∣
∣
α
−∇PE

∣
∣
∣
∣
α

α

bT = ∇PE

∣
∣
∣
∣
α
−αT ∇(2)PE

∣
∣
∣
∣
α

C = ∇(2)PE

∣
∣
∣
∣
α
.

(10)

Here, ∇PE denotes the gradient of the effective power with respect to the uncertain variables and ∇(2)PE

the Hessian of the effective power. From equation (7), the gradient and Hesssian are computed as

dPE

dξi
=

(
∂R
∂V

·V +R
)

· ∂V
∂ξi

for i = 1, ...,m (11)

and

d2PE

dξidξ j
=

(
∂2R
∂V 2

∂V
∂ξ j

V +2
∂R
∂V

∂V
∂ξ j

)

· ∂V
∂ξi

+

(
∂R
∂V

·V +R
)

· ∂2V
∂ξi∂ξ j

for i, j = 1, ...,m. (12)

If the random variables are independent and Gaussian distributed, the statistical moments follow from

μPE = a+
1
2

Tr[C]

σ2
PE

= bT b+
1
2

Tr[C2],

(13)

where Tr[] is the trace operator. The mean-centred perturbation method results when the center of expan-
sion α equals the mean of the input random variables: α = 0 in case of Gaussian distributed variables.
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2.2 Polynomial Chaos Expansion Method

A (truncated) polynomial chaos expansion is an expansion in a finite number of basis functions. The
basis functions ψi with i = 0...P are chosen such that

�ψi(ξ)ψ j(ξ)�=
∫

ψi(ξ)ψ j(ξ)pξ(ξ)dξ = δi j, (14)

where δi j = 1 if i = j and δi j = 0 if i �= j. The effective power is expanded in the basis functions

PE(ξ) = a0B0 +
∞

∑
i1=1

ai1B1(ξi1)+
∞

∑
i1=1

i1

∑
i2=1

ai1i2B2(ξi1,ξi2)+ ...

≈
P

∑
i=0

αiψi(ξ),

(15)

where P is the expansion order. Standard Hermite functions are used for the (Askey) polynomial basis
which satisfy (14) in case pξ is normally distributed. Two options are available to compute the expansion
coefficients: the spectral method and the regression method ([9]). Once the coefficients are computed,
the statistical moments of the effective power are determined using

μPE = α0

σ2
PE

=
P

∑
i=1

α2
i �Ψ2

i �.
(16)

Using the spectral method, Equation (15) is multiplied with basisfunctions ψi and integrated over the
random variable space to obtain

αi =
�PE(ξ),ψi(ξ)�

�ψ2
i (ξ)�

=
1

�ψ2
i (ξ)�

∫
PE(ξ)ψi(ξ)ρ(ξ)dξ, (17)

where use has been made of the orthogonality of the basis functions with respect to the inner product �·�.
To evaluate the integrals in (17) sparse grid integration can be used. So called Genz-Keister ([10])
quadrature results in a number of quadrature points and corresponding expansion orders that depend on
the dimension of the problem and the level of the grid. For example, in one dimension, the number of
required quadrature points is given in Table 3. For higher dimensions, tables can be found in [10, 11].

Table 3: Number of quadrature points (samples) for a 1-dimensional Genz-Keister quadrature

Level Nt P Number of samples

0 1 0 1
1 3 2 3
2 7 6 9
3 15 14 19

As can be seen in Figure 2 the quadrature rule is nested which means there is an overlap between the
quadrature points on different grid levels. The advantage of nested quadrature rules is the possibility of
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Level 0

Level 1

Level 2

Level 3

Figure 2: Genz Keister quadrature points in 1 dimension. The dashed lines indicate the overlap/nesting.

reusing results from one grid to the other and the possibility of combining high and low fidelity results
on different grid levels in a multi-fidelity method. Using Genz-Keister quadrature, the PCE coefficients
can be computed from (17) and substituted in (16) to compute the stochastic moments.

2.2.1 Multi-fidelity Polynomial Chaos Expansion

In case of an additive multifidelity correction model, the model discrepancy is defined as

Δ(ξ) = PHF
E (ξ)−PLF

E (ξ), (18)

which can be expanded in the polynomial basis as

Δ(ξ) =
PHF

∑
i=0

δiψi(ξ). (19)

If the HF-solver is used at a certain grid level and the LF-solver at a higher grid level, the model dis-
crepancy can only be computed on the overlapping points, see Figure 2. The discrepancy expansion is
therefore constructed on the lower grid level. Once the model discrepancy expansion is constructed it
can be evaluated at the higher grid level to correct the LF prediction:

PE ≈
PHF

∑
i=0

δiψi(ξ)+
PLF

∑
i=0

αLF
i ψi(ξ) (20)

= ∑
i∈CB

(αLF
i +δi)ψi(ξ)+ ∑

i∈BLF\CB
αLF

i ψi(ξ). (21)

Here, Brapid is the polynomial basis for the LF expansion and CB the Common polynomial Basis of the
HF and LF expansion, see [12, 13]. The stochastic moments μPE and σ2

PE
are then computed in the same

way as in Equation (16)

μPE = αLF
0 +δ0

σ2
PE

= ∑
i∈CB\0

(αLF
i +δi)

2�Ψ2
i �+ ∑

i∈BLF\CB
(αLF

i )2�Ψ2
i �. (22)
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3 Robust optimisation using data driven UQ

An Optimisation Under Uncertainty (OUU) procedure allows to account for the uncertainties in the
operational conditions during the hull form optimisation. The challenge is to efficiently and reliably
include the uncertainties in the analysis such that the result will be a hull design which is robust with
respect to given representative operational conditions.

(a) Multifidelity Uncertainty Quantification of the ex-
pexted required power for reprentative operational data

(b) Robust Optimisation of the expected required power.
Optimisation Under Uncertainty (OUU), see [14].

Figure 3: Data driven design methodology: (a) Prediction (b) Optimisation.

Figure 3a shows the procedure to predict the expected required power using a multifidelity UQ
method. When for example a PCE surrogate is constructed from multifidelity simulations it is possi-
ble to predict the expected required power in a very cheap and efficient way since the surrogate can be
evaluated at a negligible cost. Any operational data can be used as long as the surrogate represents the
high fidelity objective in the range of conditions.

Figure 3b shows the procedure to optimise a hull form for expected required power given representa-
tive operational data. Here, the operational data drives the design which means that representative opera-
tional conditons will determine the optimal hull shape from the design space. Different formulations exist
to perform the optimisation: Nested, Layered/Nested, Nested/Layered and Layered/Nested/Layered, see
[14]. The latter constructs a surrogate at the UQ level and at the optimisation level. In other words,
each point (hull shape) of the Design of Experiment at the optimisation level contains an entire surro-
gate based UQ analysis to predict the expected required power. This is the most attractive option from a
computational point of view but only works if the quality of the surrogates are verified.
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4 Results and discussion

In this section we examine the quality of the UQ methods from section 2. Assuming converged moments
μ∗PE

,σ∗
PE

at grid level 3, the errors in the predicted moments μ̂PE , σ̂PE are defined as

εμPE
=

μ̂PE −μ∗PE

μ∗PE

and εσPE
=

σ̂PE −σ∗
PE

σ∗
PE

(23)

As can be seen from Table 3 and Figure 2, 19 high fidelity calculations (samples) were required to
compute μ∗PE

and σ∗
PE

. Figure 4a and 4b show the convergence of the mean and standard deviation of the
effective power with respect to the number of required samples for each method from section 2.

1 102 3 4 5 6 7 8 9

# ReFRESCO samples
10−5

10−4

10−3

10−2

10−1

|� μ
P
E
|

Perturbation method
Polynomial Chaos Expansion
Multifidelity Polynomial Chaos Expansion

(a) Convergence of the mean μPE

1 102 3 4 5 6 7 8 9

# ReFRESCO samples
10−4

10−3

10−2

10−1

100

|� σ
P
E
|

Perturbation method
Polynomial Chaos Expansion
Multifidelity Polynomial Chaos Expansion

(b) Convergence of the standard deviation σPE

Figure 4: Convergence of statistical moments with the number of required ReFRESCO samples

The predictions are collected in Table 4 and ranked in performance for predicting the expected ef-
fective power μPE . It can be seen that the UQ methods all converge rapidly to μ∗PE

and σ∗
PE

and that the
multifidelity PCE method is the most efficient UQ technique. Multi-fidelity PCE at levels 1,2 is even
more accurate in predicting the expected effective power than PCE at level 2. However, note that this is
not true for the standard deviations of the effective power. The accuracy of multi-fidelity PCE at levels
0,1 falls exactly between the accuracy of the first and second order perturbation method: a constant cor-
rection to the LF data performs better than linearisation but worse than a curved approximation . Due to
the uncertain speed (σV = 1 knot), the expected power is about 1.4% higher than the power at V0 = 22
knots.
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Resistance Effective power
Method μR (εμ) [kN] σR (εσ) [kN] μPE (εμ) [kW] σPE (εσ) [kW]

PCE, level = 3, ’truth’ 3035.0 (0.00%) 306.1 (0.00%) 34505.6 (0.00%) 5069.3 (0.00%)
Multi-fi PCE, levels = 1,2 3035.5 (0.01%) 307.5 (0.47%) 34506.7 (0.00%) 5090.8 (0.42%)
PCE, level = 2 3035.4 (0.01%) 305.5 (-0.18%) 34509.3 (0.01%) 5064.3 (-0.10%)
PCE, level = 1 3036.4 (0.05%) 309.5 (1.11%) 34518.8 (0.04%) 5110.3 (0.81%)
Second order perturbation 3034.1 (-0.03%) 299.8 (-2.04%) 34488.7 (-0.05%) 5001.2 (-1.34%)
Multi-fi PCE, levels = 0,1 3020.1 (-0.49%) 276.4 (-9.71%) 34316.5 (-0.55%) 4660.1 (-8.07%)
First order perturbation 3007.2 (-0.91%) 290.6 (-5.06%) 34035.4 (-1.36%) 4843.5 (-4.46%)
PCE, level = 0 3007.2 (-0.91%) - 34035.4 (-1.36%) -
Zeroth order perturbation 3007.2 (-0.91%) - 34035.4 (-1.36%) -

Table 4: Comparison of UQ methods

PCE can also be used as a surrogate for the high fidelity solver in order to estimate the effective power.
Using Monte Carlo integration, stochastic moments can be computed for arbitrary input data at almost
negligible cost. This is the subject of section 4.1.

4.1 Comparison of surrogates and Monte Carlo integration

The surrogates of each UQ method from section 2 are shown in Figure 5a together with the high fidelity
evaluations at grid level 1 and the low fidelity evaluations at grid level 2. The conclusions of the previous
section are now visualised: Multi-fidelity PCE at grid levels 1,2 performs best and and the multi-fidelity
PCE at grid levels 0,1 falls exactly between the first and second order perturbation curves. Figure 5b
shows the model discrepancy expansions of the multi-fidelity PCEs. The discrepancies are small such
that the multi-fidelity approach works well in this case.

(a) Surrogate predictions vs speed (b) Multifidelity discrepancy predictions vs speed

Figure 5: UQ Surrogate comparison
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Monte Carlo integration is now applied to the multi-fidelity PCE surrogate at grid levels 1,2 using
100,000 samples drawn from three Gaussian distributions with σV = 1,2,3 knots, see Figure 6. A rapid
increase in expected effective power is observed due to the stretched tail which is a consequence of
increased effective power at high speeds. The entire computation takes only a few seconds.

(a) Input uncertainty: speed (b) Output uncertainty: effective power

Figure 6: Monte Carlo on the multi-fidelity PCE surrogate constructed at grid levels 1,2. Nmc = 100,000.

5 Conclusions

Greenhouse gas emissions are directly proportional to fuel consumption. One option to mitigate fuel
consumption is to optimise the ship hull with respect to realistic operational conditions leading to a so
called ’robust design’.

Robust design optimisation requires efficient Uncertainty Quantification in order to propagate the
uncertainty to the objectives. In addition to efficiency, the UQ method should also be able to deal with
large (measured) input data. Three UQ methods are discussed: the perturbation method, the Polynomial
Chaos Expansion method and the multi-fidelity Polynomial Chaos Expansion method. The methods are
applied to a simple one-dimensional test case: a container ship sailing at random speed.

The multi-fidelity Polynomial Chaos Expansion is found to be the most efficient UQ method for this
test case. Moreover, the PCE method can be used as a surrogate for efficient Monte Carlo integration in
case large input data of arbitrary distribution is available. Since surrogate evaluations are computationally
cheap, they are well suited for an Optimization Under Uncertainty (OUU) algorithm leading to robust
design. Such a data-driven hull optimisation approach will be the subject of future work.
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