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Abstract—We address the evaluation of dynamic (estimation-
based) user-decoding order in successive interference cancellation
(SIC) in a proof-of-concept multiple access satellite setting in
which many code-division multiple access users employ non-
orthogonal spreading codes and the same encoder. We consider
the practical setting where user symbol energies, unknown
to the receiver, are estimated by preamble cross-correlations.
Thereafter, SIC proceeds in non-increasing order of the former
estimates. In contrast with small networks evaluated in the
literature, we analyze the large-user regime and derive a simple
system model to analyze the asymptotic network performance.
Monte Carlo simulations validate our infinite-user analysis for
hundreds of users and report the benefits of their application.

Index Terms—Non-orthogonal multiple access, successive in-
terference cancellation, large-user analysis, user-decoding order.

I. INTRODUCTION

IN the latter years, several interference management tech-
niques to mitigate multiple access interference (MAI) have

been devised. Among them, SIC is a computationally afford-
able technique that operates sequentially over all users [1].
Likewise sequential algorithms, the order in which the system
operates is a critical factor. With regard to SIC, however,
setting the user-decoding order (UO) requires some knowledge
of the received user strengths (powers or symbol energies) [2].

Theoretical analyses have revealed that SIC benefits from
setting the UO in non-increasing order of received strengths.
Thus, SIC always proceeds with the most powerful user at
every stage [3], [4]. However, the practical application of the
theoretical UO to machine-type communications is usually
unachievable and needs some discussion. Firstly, energies of
all users must be estimated and used to set the UO before
SIC proceeds [5]. Secondly, the use of short packets may pose
limitations: to setting the UO from short preamble lengths; and
to network performance due to non-ideal encoding systems [6].

SIC has been simulated in many scenarios with successful
results. In [7], SIC under different UO criteria is investigated.
Closed-form expressions for the outage probability are derived
for only two and three users by averaging results over all
possible decode orderings [8], [9]. However, the previous
analyses are infeasible when a large number of packets  

are ranked since the number of possible UOs grows as the
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factorial  !. Analytical findings for large-user satellite settings
under perfect UO are reported in [10], [11]. Notwithstanding,
a simple and accurate system model for dynamically ordered
SIC handling a large number of users still remains to be found.

This letter concentrates on understanding the large-system
structure of SIC under dynamic UO, rather than evaluating a
small few-user network [7], [8], [9]. In lieu of the perfectly
ordered SIC in [10], [11], we opted for an imperfectly ordered
SIC that proceeds in non-increasing order of user-energy
estimates. We consider non-ideal SIC operation for decoding
and cancellation of users. In this respect, we adopt a general
form to characterize both effects by taking their characteristics
versus SINR after symbol despreading so that, our analysis
remains valid regardless of the adopted encoding and cancella-
tion systems. We tackle the yet unsolved performance analysis
of dynamically ordered SIC through a deterministic model.
We show that, when the number of users is large, we may
adopt an average system model that weights the contributions
of all users by the probabilities that each user is ordered at
each position. In the large-user limit, their analytic closed
forms are derived. Monte Carlo simulations have assessed our
asymptotic system analysis for about a hundred of users.

For notation: The dot notation is used to indicate differen-
tiation. Symbol ∼ denotes “statistically distributed as”.

II. SYSTEM SET-UP

We envisage a packet access satellite network where  users
transmit towards a common destination. Slotted time division
is utilized to analyze the former scenario. At time slot =, 1 ≤
: ≤  users transmit independent =?-symbol packets B: [0 ≤
3 < =?] made up of a known =>-symbol preamble and a
=4-symbol payload, with =? = => + =4. Payload is generated
by encoding information plus cyclic redundancy check (CRC)
using the same channel encoder [4]. Users operate under power
amplifiers with limited peak-to-average-power ratios. This may
be achieved with code-division-multiple-access, and, to allow
the simultaneous connection of many users, non-orthogonal
spreading codes with the pseudonoise-like behavior described
in [12] and period spanning many symbols are chosen. 2:,3 (C)
denotes the spreading waveform of symbol 3 for user : .

We center our analysis on reception of a satellite return
link [4], [5], [10], wherein the aggregate received signal in a
quasi-static channel with sufficiently long coherence time is,
accounting for the :-th user received symbol energy �r [:],
the end-to-end delay g[:], and F(C) Gaussian noise:

H(C) =
 ∑
:=1

√
�r [:]

=?−1∑
3=0

B: [3]2:,3 (C − g[:]) + F(C). (1)
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A. User-Energy Estimation

The energies of all users are estimated at every time slot
through a bank of single-user energy estimators that compute
the cross-correlation of the known =>-symbol preambles with
the received (noisy) signal. Since users are superposed in the
code domain, energy estimates are noisy and subject to MAI.
In that respect, adopting long spreading codes with per-symbol
processing gain # entails that MAI be close to Gaussian at the
despreader output [12], contributing thus as additional noise.

The accuracy of such estimates strongly depends on the
SINR affecting each estimator, expressed respectively by each
user’s SINR after symbol despreading at the initial SIC stage:

Λ[:] , �r [:]
#0
C ,= [:]

=
�r [:]

#0 + \
#

∑
8≠: �r [8]

. (2)

#0
C ,= [:] is the noise plus MAI term on user : with #0 the noise

power spectral density. Regarding MAI, \
#

is the average inter-
user per-symbol spreading code decorrelation factor, with 1

#

that of slotted random binary spreading codes [11] (\ is also
an ad-hoc decorrelation parameter used in unslotted systems
with relevant g[1 ≤ : ≤  ] dispersion [5]).

We assume that the channel of each user is stationary or
varies sufficiently slow, so that, if users transmit the same
energy during different time slots, the energy distribution
�r [1 ≤ : ≤  ] stays practically constant. In this case, energy
estimates can be further improved by averaging estimates over
< time slots. At each time slot, we assume the user-energy
estimations are affected by statistically independent noise plus
MAI. Specifically, we consider the overall contribution of
interfering users to user-preamble cross-correlations Gaussian
and statistically independent between different time slots. Such
is the case if, at each slot, users are received with different
time variations (at least, in the order of chips), or if users
randomize the carrier phase of each transmitted packet on a
per-slot basis. Then, it is straightforward to prove, using [13],
that the estimated symbol energy �̂r [:] follows a scaled non-
central chi-squared distribution with 2< degrees of freedom
and non-centrality parameter 2<=>Λ[:]:

�̂r [:] ∼ #0
C ,= [:] (2<=>)−1 · X2

2< (2<=>Λ[:]). (3)

B. The User-Decoding Order

For the sake of clarity, we define the user-index 1 ≤ : ≤
 , established in non-increasing order of the received user
energies (4), and the user-order 1 ≤ : ′ ≤  , set as a function
of the estimated energies at time slot = (5):

�r [1] ≥ · · · ≥ �r [:] ≥ · · · ≥ �r [ ], (4)
�̂r [1] ≥ · · · ≥ �̂r [: ′] ≥ · · · ≥ �̂r [ ] . (5)

Note that 1≤:≤ (4) is fixed whereas 1≤: ′≤ (5) depends on
= (dynamic). : ′ and : can be related through the permutation

q= : : ′ ∈ {1, ...,  } ←→ : ∈ {1, ...,  }, (6)

such that, : = q= [: ′] is used to obtain the index of the : ′-th
ordered user, and vice-versa, : ′ = q−1

= [:]. Once the UO is
set, SIC performance depends on the user-energy distribution
�̃r [1 ≤ : ′ ≤  ] = �r [q= [: ′]].

C. SIC Operation
After setting the UO, SIC performs  stages starting from

the user estimated with highest energy : ′ = 1. We adopt a
SIC policy that, at the : ′-th stage, demodulates and decodes
the : ′-th ordered user. After channel decoding, the CRC is
used to determine packet success/error, after which, the user
signal is regenerated and canceled only if successful decoding
occurs. Then, for the obtained UO at time slot =, the SINR at
the : ′-th SIC stage after symbol despreading is [11],

Γ= [: ′] =
�̃r [: ′]
#C ,= [: ′]

=
�̃r [: ′]

#0 + bprv,= [: ′] + brem,= [: ′]
(7)

with the noise plus interference term at time slot = #C ,= [: ′]
written as the noise spectral density #0 plus the sum of
interference generated by users at stage : ′. bprv,= [: ′] denotes
the aggregate interference of (previous) processed users 8 < : ′

and brem,= [: ′] that of remaining unprocessed users 8 > : ′.
To determine bprv,= [: ′] and brem,= [: ′], we follow the Γ-

based model in [5], [11] for decoding and cancellation.
Therein, channel decoding is modeled with the known packet
error rate (PER) vs. SNR curve PER[Γ], while 0 ≤ Y(Γ) ≤ 1
models the residual energy fraction after successful cancella-
tion. Both effects are jointly analyzed in (8) by introducing
one random variable n8 (Γ) for the (8<: ′)-th user. That is, user
8 with SINR Γ = Γ= [8] is either unsuccessfully decoded with
probability PER[Γ], for which, no cancellation occurs and
n8 (Γ) = 1; or successfully decoded with probability PSR[Γ] ,
1 − PER[Γ] and imperfectly canceled with n8 (Γ) = Y(Γ)
(wherefore Y(Γ)�r [8] uncanceled energy still remains). Then,

Γ= [: ′] =
�̃r [: ′]

#0 + \
#

∑
8<:′ n8 (Γ= [8])�̃r [8] + \

#

∑
8>:′ �̃r [8]

. (8)

Since the UO depends on energy estimates, the empirical
evaluation of the average SIC performance needs exhaustive
Monte Carlo simulations. Particularly, we are interested in two
performance metrics. Firstly, the average number of packet
errors user : experiences over time computed using the long-
term expression (9). Secondly, the average result over all users
(10), namely the network PER:

perLT [:] = lim
"→∞

"−1
"∑
==1

PER[Γ= [q−1
= [:]], (9)

perLT =  −1
 ∑
:=1

perLT [:] . (10)

III. LARGE-USER ANALYSIS

To gain further insight on SIC operation under dynamic UO,
we assume the user-energy distribution �r [1 ≤ : ≤  ] and
the associated probability distribution of q= stay practically
constant provided that the channel of each user is stationary.
Then, equivalent expressions based on statistical rather than on
the empirical averages (9) and (10) can be derived. Hereinafter,
instead of considering the probability that a given UO (out of
 ! UOs) occurs, we consider that of user : being ordered the
: ′-th, computed detailedly in the Appendix and denoted from
this point onwards user-order probability,

?:,:′ , Pr[q−1
= [:] = : ′] . (11)
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Moreover, when we focus on large networks for which the
number of users  and the spreading gain # increase at a
constant rate U ,  /# , some simplifications such as the SINR
affecting the :-th user-energy estimator (2) can be performed:

Λ[:] = �r [:]
#0 + U\�̄ − O( 1

#
)
≈ �r [:]

#0 + U\�̄
. (12)

�̄ , 1
 

∑ 
:=1 �r [:] is the average energy of all users, and

O( 1
#
) an infinitesimal term neglected at large  (see the right

part of (12)). Thus, since the denominator of (12) converges
to a known value independently of : , the distribution of �̂r [:]
in (3) can be simplified using V , 2<=> (#0 + U\�̄)−1 as

�̂r [:] ∼ V−1X2
2< (V�r [:]). (13)

Note that �̂r [1≤:≤ ] follow independent non-identical non-
central chi-squared distributions with 2< degrees of freedom.
The validity of previous results is subject to having �̄ finite
(equivalently, finite �∞, according to [14, Ch. 2]).

A. Large-User SIC Operation

Herein, we determine an average system model for the
system behavior described in Section II-C making use of the
user-order probabilities first defined in (11).

The selection of such an average model follows from the
large-system analysis of #C ,= [: ′] (8). Firstly, as analyzed in
Section II-C for a fixed distribution �̃r [1≤: ′≤ ], #C ,= [: ′] is
random due to non-ideal channel decoding. The law of large
numbers, though, can be applied if �r [1≤:≤ ] < ∞ to show
that #C ,= [: ′] in (8) turns out to be deterministic as  →
+∞. Secondly, we have also empirically assessed, for several
distributions �̃r [1≤: ′≤ ], that the noise term that the user
ordered at position : ′ experiences, #C ,= [: ′], does not depend
(as  → +∞) on the positions other users occupy. This means
that #C ,= [: ′] converges to an average utility as  grows.

This has motivated the adoption of a bivariate analysis
where the proposed system model only depends on both user
: and its position : ′, and not on the time slot index =. The
validation of the adopted system model is addressed in Section
V. Hence, we may consider, instead of the SINR in (7), an
average SINR utility, denoted Γ̄[:, : ′], and computed as

Γ̄[:, : ′] = �r [:]
#̄C [:, : ′]

=
�r [:]

#0 + b̄prv [:, : ′] + b̄rem [:, : ′]
. (14)

b̄prv [:, : ′] and b̄rem [:, : ′] are the corresponding previous and
remaining interferences specified in (15) and (16).

1) Firstly, the average interference from processed users that
user : experiences when ordered the : ′-th is computed as

b̄prv [:, : ′] =
U\

 

∑
8<:′

∑
D≠:

A (Γ̄[D, 8])�r [D]?D,8 , (15)

where A (Γ) , 1 − (1 − Y(Γ))PSR[Γ] is the expectation of the
random variable n . Specifically, we consider that b̄prv [:, : ′]
is given by the contribution of processing all users D ≠ :

weighted by their user-order probabilities (11). That is, the
interference contributed at every 1 ≤ 8 < : ′ SIC stage by
user D ≠ : is the addition of: (i) PER[Γ̄[D, 8]]�r [D]?D,8
corresponding to a decoding failure of user :; plus (ii)

PSR[Γ̄[D, 8]]Y(Γ̄[D, 8])�r [D]?D,8 for successful decoding. Af-
ter a straightforward re-arrangement of terms, we get (15).

2) Secondly, the average remaining interference on user :
when ordered the : ′-th (third term of #̄C [:, : ′]) is given by
the weighted sum of energies of users D ≠ : . This is,

b̄rem [:, : ′] =
U\

 

∑
8>:′

∑
D≠:

�r [D]?D,8 . (16)

Then, as argued at the beginning of Section III, equations
(9)-(10) can be equivalently expressed by the expectations

per[:] =
 ∑
:′=1

PER[Γ̄[:, : ′]]?:,:′ , per =
1
 

 ∑
:=1

per[:] . (17)

IV. USER-ASYMPTOTIC ANALYSIS

We analyze the asymptotic case in which both the number
of users and the spreading gain go to infinity [3]. As usual, it
is convenient to turn :, : ′ to the asymptotic variables

C , lim
 →+∞

 −1: , C ′ , lim
 →+∞

 −1: ′, (18)

where, likewise, as in (4)–(5), 0 ≤ C ≤ 1 is the user-index and
0 ≤ C ′ ≤ 1 the user-order. To proceed, we apply the trans-
formations {:, : ′}→{ C,  C ′} on the previous variables to
work with continuous functions (profiles) rather than with :, : ′

indexed variables. For instance, the received energy profile is

�r (C) , lim
 →+∞

�r [ C] . (19)

The rest of profiles will be defined as they appear. Moreover,
the probability user : being ordered the : ′-th, now that of user
C =  −1: being ordered C ′ =  −1: ′, is an infinitesimal quantity
since the number of possible order positions increase with  
in the same order. As computed in the Appendix, d?(C, C ′) is
asymptotically given, using 0(C, C ′) in (35), by the differential

d?(C, C ′) = 0(C, C ′)dC ′. (20)

The asymptotic average SINR utility of user C when ordered
the C ′-th is expressed, in comparison with Γ̄[:, : ′] in (14), as

Γ̄(C, C ′) = �r (C)
#̄C (C ′)

=
�r (C)

#0 + b̄prv (C ′) + b̄rem (C ′)
. (21)

Note therein that #̄C [:, : ′] = #̄C [ C,  C ′] → #̄C (C ′). That is,
the corresponding noise plus interference term only depends
on C ′ and not on C. This occurs because the contribution
of the target user-energy �r [ C] to (15)–(16) vanishes as  
increases. In this case, the MAI terms in the denominator of
(21) are obtained by substituting the summations in (15)-(16)
by integrals, with the differential 1

 
→ dD, and dC ′ in (20) as

dg. Thus, both terms become the double integrals

b̄prv (C ′) = U\

∫ C′

0

∫ 1

0
A (Γ̄(D, g))�r (D)0(D, g)dDdg, (22)

b̄rem (C ′) = U\

∫ 1

C′

∫ 1

0
�r (D)0(D, g)dDdg. (23)

Finally, the user-asymptotic behavior of (17) results

per(C) =
∫ 1

0
PER[Γ̄(C, g)]0(C, g)dg , per =

∫ 1

0
per(C)dC (24)
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Fig. 1. Network PER versus traffic load U. The asymptotic computations
(circles) evaluate (24) and the empirical computations (diamond) (10). The
asymptotic SIC behavior under perfect UO is taken from [11].
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Fig. 2. User-PER versus user-index C at U = 1.50. In black, the user-
asymptotic PER profile in the left part of (24). The long-term average PER
in (9) is depicted for different numbers of users.

V. SIMULATION RESULTS

This Section presents some numerical results. A modulation
and coding scheme of rate 1 bps/Hz with preamble and
payload lengths of => = 50 and =4 = 450 symbols is chosen.
The PER vs. SNR characteristic is taken from [6] under rate
' = 1 and blocklength 450. Results can be extended to other
blocklengths, or to different modulations and error correcting
codes as long as perfect knowledge of their PER vs. SNR
curves is available. A simple Γ-independent model for the
uncancelled energy Y(Γ) = 0.01 is evaluated as in [4], [10].
The decorrelation factor \ is set to 1 [4]. Exponential user-
energies are evaluated with �r [:] = 10 exp(−1.5 ·  −1:).

A. Network and Individual Performances

We validate the asymptotic system model in Section IV with
the empirical model in Section II, by studying two magnitudes:
the network PER and the user-PER.

We study in Fig. 1 the network PER versus the traffic load
U. As shown, severe performance degradation (black) w.r.t.
perfect UO (dark blue) occurs for < = 1. This is because, at
the initial SIC stage, energy estimators operate at poor SINRs,
especially so for the last users in 0 ≤ C ≤ 1. It is shown that
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Fig. 3. Asymptotic order probabilities of users C1 = 0.25 and C2 = 0.75 when
ordered at C′, for several < and U = 1.50. Empirical probabilities (black dots)
are computed under 105 averaged Monte Carlo runs and  = 64 users.

for increasing <, the performance of SIC with perfect UO
is approached. Empirical results under the system model in
Section II evidence that the asymptotic PER in the right part
of (24) is validated through (9) for about 100 users.

Secondly, we select the traffic load U = 1.50 and validate
the asymptotic user-PER under different numbers of users. As
shown in Fig. 2, the behavior of the empirical PER profile
(markers) is accurately predicted by the asymptotic profile
(black), especially for strong users (left-hand side of the C-
interval [0, 1]). It can also be observed that the degree of
accuracy of the asymptotic user-PER prediction w.r.t. the
empirical PER that weak users display (right-hand side of the
C-interval [0, 1]) increases as  grows larger. This fact is well
represented in Fig. 2 for the case < = 10. Although the user-
PER needs more users to validate the asymptotic equations,
this causes negligible degradation of the network PER.

B. User-Order Probabilities

In Fig. 3, we show the asymptotic probabilities, computed
using 103 equally-spaced samples of C ′ with dC ′ = 10−3, partic-
ularized for the user indices C1 = 0.25 and C2 = 0.75. As shown,
for users C1, C2, their most probable UO values tend to C1≤8≤2
almost surely as < → +∞. Specifically, when user-energies
are estimated without taking into account previous estimations,
that is, < = 1 depicted in blue, ?(C1≤8≤2, C

′) appear under a
wide range (A8 , |C ′1−C

′
2 | such that ?(C8 , C ′1) = ?(C8 , C

′
2) = ?). At

the cutoff probability ? = 10−3, {A1, A2} = {0.42, 0.48}. This
is because the last users are estimated under worse SINRs,
and their estimations are improved as more estimations are
averaged, viz: {A1, A2} = {0.20, 0.26} at < = 10 (red), and
{A1, A2} = {0.08, 0.11} at < = 100 (orange). Moreover, the
empirical probabilities scaled by  dC ′ (black circles) validate
our asymptotic computation for only 64 users.

An additional simulation, not included for lack of space,
validates that the asymptotic  -independent kernel 0(C, C ′) in
(35) contains around the bisection C ′ = C the most probable
UO position (C ′) user C occupies. The derivation of 0(C, C ′) is
of relevant interest because it allows the fast computation of
empirical probabilities regardless of the network size  . Thus,
for a  -user network, ?:,:′ ≈ 0( −1:,  −1: ′) ·  −1.
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VI. CONCLUSION

We have analyzed the dynamic decoding order of a SIC
receiver in terms of its average PER and individual user-
PER performances in a large-user non-orthogonal multiple
access scenario where users share the same encoding system.
A practical SIC that sets the decoding order according to
instantaneous energy estimations has been adopted. We show
that the impact of user-decoding order on network performance
can be assessed by deriving a system model that averages
PER magnitudes according to the probabilities that each user
be ordered at any position. Analytic expressions for these
probabilities are obtained in the infinite-user case, and have
revealed a decay with respect to the number of users  

with order O( −1). Moreover, large- and asymptotic-system
expressions are derived and validated using exhaustive Monte
Carlo simulations for hundreds of users. A very accurate
approximation to real SIC’s performance at large  is obtained
from their asymptotic behavior.

APPENDIX: COMPUTATION OF USER-ORDER PROBABILITY

We seek an explicit equation for the probability user : is
ordered the : ′-th

?:,:′ = Pr[q−1
= [:] = : ′] . (25)

Since energy estimations are mutually independent, we focus
on the computation of the user-order probabilities for a single
user and extend the result to all users later on.

We first compute the distribution of q−1
= [:] when �̂r [:] = G

is given, and denote it by q−1
= [:] |{�̂r [:]=G}. In this case, the

index of user : in the UO can be computed as a function of
the number of users estimated with energies higher than that
of user : . Mathematically,

q−1
= [:] |{�̂r [:]=G} , 1 +

∑
8≠:

B8 , (26)

with B8 ∀8 ≠ : independent Bernoulli random variables with
success probabilities @8 , Pr[�̂r [8] > G], actually, equal to 1 if
user 8 is estimated with higher energy than user : . @8 is the tail
distribution of a noncentral chi-squared distribution expressed
using the Marcum Q-function &< (0, 1) as

@8 |{�̂r [:] = G} , &<

(√
V�r [8],

√
VG

)
. (27)

In this case, since (26) is the sum of independent non-
identically-distributed Bernoulli random variables, it follows
a Poisson Binomial distribution. If  is large enough, we can
invoke the Lyapunov central limit theorem to conclude that
q−1
= [:] |{�̂r [:] = G} ∼ N(`: , f2

:
), with

`: , 1 +
∑
8≠:

@8 , f
2
: ,

∑
8≠:

@8 (1 − @8). (28)

Therefore, Pr[q−1
= [:] |{�̂r [:]=G} = : ′] ≈ 5N (: ′), with 5N (G)

the Gaussian density of mean `: and variance f2
:
.

Finally, we recover the initial case where �̂r [:] is random.
Then, ?:,:′ in (25) is computed by the expectation

?:,:′ =

∫ ∞

0
5N (: ′; `: (G), f2

: (G)) · 5�̂r [: ] (G) dG. (29)

5�̂r [: ] (G), G ≥ 0 is the density of (13), and �̄�̂r [: ] (G) is the
associated tail distribution used in the following subsection.

A. Asymptotic User-Order Probability
In the infinite-user case, we may define

q−1
= (C) = lim

 →+∞
 −1q−1

= [ C] . (30)

q−1
= (C) |{�̂r (C) = G}, 0 ≤ C ≤ 1 are identically distributed Gaus-

sian distributions with the same mean ¯̀ , lim →∞  −1` C
and variance f̄2 , lim →∞  −2f2

 C
= 0. Then,

q−1
= (C) |{�̂r (C) = G} ∼ X(C − ¯̀(G)), (31)

with X(G) the Dirac delta function, and

¯̀(G) =
∫ 1

0
&<

(√
V�r (g),

√
VG

)
dg. (32)

In the user-asymptotic case, we may compute the probability
that user C is ordered the C ′-th turned to the differential

d?(C, C ′) , Pr[C ′ − dC ′/2 ≤ q−1
= (C) ≤ C ′ + dC ′/2] (33)

= dC ′
∫ ∞

0
X(C ′ − ¯̀(G)) 5�̂r (C) (G) dG, (34)

which can be simplified after some manipulations, and then,
(34) obeys d?(C, C ′) = 0(C, C ′)dC ′, with

0(C, C ′) , ∇C′ �̄�̂r (C) ( ¯̀−1 (C ′)) = −
5�̂r (C) (G)
¤̀̄ (G)

���
G= ¯̀−1 (C′)

. (35)

¯̀−1 (C ′) is the G∗ solution of ¯̀(G∗) = C ′. Note that (35) remains
constant with  whereas d?(C, C ′) vanishes as  −1 → dC ′.
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