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Abstract. For convection dominated two-phase flow, velocity components tangential to the
interface can become discontinuous when interface boundary layers are numerically underre-
solved. When sharp interface tracking methods are used it is essential that such discontinuities
are captured in an equally sharp way.

In this paper we propose to model the velocity component tangential to the interface as dis-
continuous using an appropriate interface jump condition on the normal component of the pres-
sure gradient. We achieve this numerically using a novel combination of a Multi-dimensional
Ghost Fluid Method for the gradient and the Cut Cell Method for the divergence operator. The
resulting model is able to accurately and sharply capture discontinuities at large density ratios.

The model is applied to an inviscid dam-break problem. Here we observe that our proposed
model accurately captures the shear layer at the interface with the tangential velocity disconti-
nuity.

In future work we will apply this discretization approach to the modeling of viscous two-
phase sloshing problems with LNG and its compressible vapour, with a particular interest in
studying the development of free surface instabilities.

1 Introduction

Sloshing of fluids in a container is a complex physical phenomena which is present in many
engineering problems. For instance the transport of Liquefied Natural Gas (LNG) in LNG
carriers. In particular the role of free surface instabilities in measured impact pressures during
breaking wave impacts, which may occur during sloshing, is not well understood [2]. Numerical
modeling can facilitate this understanding.

The numerical modeling of two-phase flow involves dealing with a multitude of jumps (dis-
continuities) of fluid properties across the interface separating the fluids. Additional challenges
arise when shear layers develop at the fluid-fluid interface, resulting in an interface boundary
layer. When such an interface boundary layer is underresolved this can result in unphysical
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interaction between the two fluids at the interface. Numerically such an underresolved inter-
face boundary layer effectively results in a velocity field which has a (contact) discontinuity
in the tangential direction. We therefore propose to model the underresolved velocity field as
being discontinuous in the direction tangential to the interface. As a starting point we consider
inviscid two-phase flow modeled by the Euler equations.

In this paper we explore the numerical modeling, in a Finite Volume setting, of contact
discontinuities for incompressible and inviscid two-phase flow. To this end we describe the
governing equations in Section 2, followed by our proposed discretization at the interface in
Section 3. In Section 4 we demonstrate the accuracy of our discretization when applied to a
Poisson problem as well as a time-dependent Euler problem in which we model a dam-break.
Concluding remarks are made in Section 5.

For simplicity in notation we consider a two-dimensional setting.

2 Mathematical model

Here we briefly describe the underlying mathematical model we use, which are the incom-
pressible Euler equations for each of the two phases π = l,g (liquid and gas).

2.1 Primary equations

The primary equations describe the conservation of mass and momentum in each of the
phases in an arbitrary control volume ω = ωl ∪ωg

d
dt

∫

ωπ
ρπ dV +

∫

∂ωπ\I
ρπuπ

η dS = 0 (1)

d
dt

∫

ωπ
ρπuπ dV +

∫

∂ωπ\I
ρπuπuπ

η dS =−
∫

∂ωπ
(pπ −ρπg ·x)η dS, (2)

where η denotes the face normal, uπ
η the face normal velocity component, pπ the pressure, g

the gravitational acceleration and ρπ the density per phase. We consider incompressible flow
for which the mass conservation equations result in a volume constraint on the evolution of the
interface

d
dt
|ωl|+

∫

∂ωl\I
ul

η dS = 0, (3)

where |ωπ| denotes the volume of ωπ.
The influence of surface tension is of interest in our application and we therefore include it

via Laplace’s law
−�p� = σκ. (4)

Here κ denotes the interface mean curvature and �ϕ� denotes jump of some flow variable ϕ

�ϕ� := ϕg −ϕl. (5)

We assume immiscible fluids without phase change, and therefore

�uη� = η · (ug −ul) = 0. (6)

2
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Together with appropriate boundary conditions on uπ and a contact angle boundary condition
on κ this results in a closed system of equations. Note that this model does not impose any
smoothness on the tangential velocity component uτ = τ ·u, where τ denotes the interface tan-
gent.

2.2 The pressure Poisson problem

Addition of the mass conservation equations, when divided by their respective densities,
yields ∫

∂ω
uη dS =

∫

∂ωl\I
ul

η dS+
∫

∂ωg\I
ug

η dS = 0, (7)

thus showing that the mixture velocity field is divergence free. Taking the time derivative of
the divergence constraint, substituting the momentum equation and using �uη� = 0, yields an
equation for the pressure

∫

∂ω

1
ρ

∂η p dS =−
∫

∂ω
η · (u ·∇)u dS. (8)

We supplement the aforementioned equation with Laplace’s law (4), an homogeneous Neumann
boundary condition on the pressure and the following jump condition on the normal derivative
of the pressure gradient �

1
ρ

∂η p
�
=−

�
η · Du

Dt

�
, (9)

which follows directly from the strong form of the Euler equations. The latter condition (9) is
necessary for having a well-posed coupled Poisson problem.

3 Numerical model

We consider a staggered variable arrangement (Arakawa C grid) on a rectilinear grid. The
grid cells are denoted by the set C , with faces F (c) for c ∈ C . The set of all faces is denoted
by F . A subset of the faces are cut by the interface I(t) ⊂ Ω, we denote this time-dependent
set by FI . Every interface face is split into its liquid and gaseous part f = f g ∪ f l . This leads to
the definition of F̂ π containing all the (possibly cut) faces which are entirely contained in the
π-phase. Moreover let F̂ = F̂ l ∪ F̂ g, see Figure 1.

The space of functions defined on C is denoted by Ch, with e.g. p ∈ Ch : c �→ pc ≈ p(xc),
where xc is the center of cell c. Similarly we have the function space Fh, where the approxima-
tions are located at x f , the center of the face f . We denote by η f the normal of the face f .The
function α : C ×F → {1,−1} encodes the orientation of the face normals such that αc, f η f
points out of cell c.

3.1 Interface advection

The interface is represented using the volume fraction field χ̄ = |cl|/|c| ∈ Ch as per the
Volume-of-Fluid method. Advection of the interface is performed using the Lagrangian-Eulerian
Advection Scheme (LEAS) [9].

3
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3.2 Momentum equations

In the interior of each of the phases the momentum equations are discretized using the
symmetry-preserving finite-volume discretization by Verstappen and Veldman [8]. Near the
interface we choose to discretize the momentum equations in strong form, thereby sacrificing
exact momentum conservation at the interface but alleviating difficulties faced with having ar-
bitrarily small cells |cπ|(t) and non-smooth in time face areas | f π|(t). At the interface we use
a first-order upwind convection scheme per phase, which relies on constant extrapolation of
velocities.

The time integration is performed under a CFL constraint of 0.5 using a second-order accu-
rate explicit method, followed by a pressure correction step

u∗f −u(n)f

∆t
= R

(
3
2

u(n)f − 1
2

u(n−1)
f

)

f
, u(n+1)

f = u∗f −
∆t
ρ
(Gp) f , ∀ f ∈ F̂ . (10)

Here R denotes the convection and gravity terms, and G : Ch → F̂h is the gradient operator.

3.3 Pressure Poisson problem

The solution of the Poisson problem plays a central role in the numerical model, since this
is where the two phases are implicitly coupled. The gradient of the resulting pressure is used
to make the mixture velocity field divergence free and it is therefore important that the Laplace
operator can be decomposed in a divergence D̄ : F̂h →Ch and a gradient G.

Given D̄ and G we may write the Poisson problem as (for notational convenience we let
∆t = 1)

D̄
(

1
ρ

Gp
)

c
= D̄(u∗)c , ∀c ∈ C (11)

where the gradient operator G contains the value jump due to surface tension as well as the
jump in the normal derivative. We will now precisely define the divergence D̄ and the gradient
G.

3.3.1 Divergence operator

At the interface our velocity field is discontinuous, and therefore the divergence operator
needs to be modified. A finite difference approach such as the Ghost Fluid Method (GFM) [4]
will result in an incompatible discretization of the Poisson problem

∃u ∈ F̂h
0 s.t. ∑

c∈C
D̄(u)c �= 0, (12)

where F̂h
0 is the set of velocity fields which vanish at the boundary. A consequence of this in-

compatibility is that the resulting linear system of equations, resulting from the pressure Poisson
equation, has no solution.

4
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f l

f g

xc xc′

Figure 1: Illustration of the CCM. Each face is split into
its liquid and gaseous part f = f l ∪ f g. Shaded region
corresponds to the liquid parts cl ,c′l . Solid nodes cor-
respond to the liquid phase and open nodes to the gas
phase.

p

x
xc xc +dl

f
xc′

pl
c

pg
c′

p̃l
c′

p̃g
c

a f

Figure 2: Illustration of the GFM. The pressure values
denoted by p̃ are ‘ghost’ pressures and not actually part
of the solution.

A finite-volume approach however naturally preserves the flux cancellation property which
a divergence operator should satisfy, and therefore we propose to use the cut-cell method [6]
for discretization of the divergence operator. To this end we define the face apertures A f ∈ Fh

(computed from the PLIC reconstruction) as the fraction of the face f ∈ F contained in the
reference fluid l, so A f = | f l|/| f |. This results in the following divergence operator

|c|D̄(u)c = ∑
f∈F (c)

αc, f | f |ū f , (13)

where we define the mixture velocity ū f = A f ul
f +(1−A f )ug

f . See also Figure 1. This diver-
gence operator satisfies the discrete equivalent to Gauss’s theorem exactly, and therefore the
term in (12) vanishes exactly for all u ∈ F̂h

0 .

3.3.2 The gradient operator

In the interior of the phases we define the gradient G as the standard finite difference operator

(Gp) f =− ∑
c∈C ( f )

αc, f
pc

h f
, (14)

where h f is the distance between the nodes xc,xc′ . Near the interface the gradient needs modi-
fication to sharply capture the imposed jumps.

The Ghost Fluid Method
We consider a finite-difference approximation for the gradient at a face f ∈ FI near the inter-

face. The pressure p ∈Ch is defined point-wise according to the liquid indicator χ ∈Ch

χc =

{
1 if xc ∈ Ωl

0 if xc ∈ Ωg . (15)

5
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Consider a face f which connects two nodes C ( f ) = {c,c′} from different phases (so χc �= χc′).
Hence we know the liquid pressure pl

c on one side of the face and the gas pressure pg
c′ on the

other side of the face. Moreover we are given the value jump1 a f = −σκ f and gradient jump
b f . The unkown scaled gradients are denoted by gπ

f . See also Figure 2.
The scaled mixture gradients, as per the Ghost Fluid Method [4], are then given by

ḡ f =
1

ρ̄ f
(Ḡp) f =

1
ρ̄ f

(Gp) f +
δ f a f

ρ̄ f h f
−b f

ρ̂ f

ρ̄ f
, (16)

where ρ̄ f , ρ̂ f are average densities depending on the face aperture A f and the distance to the
interface. The difference between the liquid indicators at opposite sides of the face f is denoted
by δ f = h f (Gχ) f ∈ {−1,0,1}. We recognize contributions from the standard finite difference
operator, the pressure value jump and the pressure gradient jump respectively. If the value jump
a f is known at second order accuracy, it follows that the resulting gradient will be at most first
order accurate in h f .

One-dimensional GFM
From the discussion in Section 2.2 we know that we should not impose a jump on the full

pressure gradient, but rather only on the component normal to the interface. In Liu et al. [4] it
is assumed that the jump component tangential to the interface vanishes, resulting in

b f = αi f , f
�

u∗η
�
, (17)

where αi f , f = ηi f
·η f is the face normal component of the interface normal ηi f

. We refer to this
approach as the ‘one-dimensional’ GFM (1d-GFM).

Multi-dimensional GFM
Whenever the interface is not aligned with the face f (hence |αi f , f | �= 1), the 1d-GFM is in-
consistent. We propose to replace (17) by a formula which consistently imposes the normal
derivative jump condition on the gradient (9). Note that (9) involves the dot product of the
full gradient with the interface normal, and therefore interpolation to the face f of interface
tangential pressure derivatives will be required.

The interface configuration, defined by the indicator χ as well as the face apertures A ∈ Fh,
defines two types of interface faces where the gradient will be modified:

• If a face f connects two nodes C ( f ) = {c,c′} from different phases (so χc �= χc′) then we
call this an interface normal face. See also Figure 3. The set of all interface normal faces
is denoted by FIη .

• On the other hand, if a face f connects two nodes from the same phase, but with a non-
trivial aperture (so A f �∈ {0,1}) then we call this an interface tangential face. See also
Figure 4. The set of all interface tangential faces is denoted by FIτ .

1The curvature κ f is interpolated from a cell-based curvature κ ∈ Ch which in turn is computed using local
height functions, which are generalized [5] if needed.

6
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f

f̂ g

f̂ l

xc

xc′

Figure 3: Example Md-GFM gradient stencil for an in-
terface normal face f ∈ FIη .

f = f̂ l
f̂ g

xc

xc′

Figure 4: Example Md-GFM gradient stencil for an in-
terface tangential face f ∈ FIτ .

The discretization of the gradient operator for an interface normal face is as follows. We
define a jump interpolant J which given u ∈ F̂h yields a consistent approximation to the jump
of the vector-valued function u

J : F̂h → Fh ×Fh, u f �→ (Ju) f ≈ �u�(x f ). (18)

We choose two faces f̂ g ∈ F̂ g, f̂ l ∈ F̂ l whose face normals are orthogonal to η f , from which
we define the jump interpolant as

(Ju) f = η f
�

u f
�
+η f̂ gug

f̂ g −η f̂ l ul
f̂ l , (19)

see also Figure 3. Using this jump interpolant we can consistently impose (9)

ηi f
· [(Jg) f − (Ju∗) f

]
= 0. (20)

Combining (19) & (20), and solving for
�

g f
�

yields the jump across the face f

bη
f =

ηi f
· (Ju∗) f

αi f , f
−

αi f , f̂ g

αi f , f
gg

f̂ g +
αi f , f̂ l

αi f , f
gl

f̂ l . (21)

The faces f̂ g, f̂ l should be chosen such that the evaluation of the interpolant can be done ex-
plicitly, hence f̂ π �∈ F̂Iη . Moreover the interpolant should result in a compact stencil and we
therefore restrict ourselves to a 6-point stencil for the Md-GFM gradient.

We found that ensuring
∣
∣
∣
∣

αi f , f̂
π

αi f , f

∣
∣
∣
∣
≤ 1 greatly improves the quality of the Md-GFM operator in

time-dependent problems (this requires further investigation). For faces f ∈ FIη for which this
ratio exceeds 1 we interpret the face as an interface tangential face instead.

For an interface tangential face f ∈ FIτ we do not impose the gradient jump condition (9).
Instead we select two faces f̂ g, f̂ l (one of which coincides with f itself) with the same face
normal direction but each in a different phase, which we use for computing the gradient jump.
See also Figure 4. This results in the following gradient jump

bτ
f =

1
ρg (Gp) f̂ g − 1

ρl (Gp) f̂ l . (22)

7
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Composition of the CCM divergence operator with the aforementioned modifications to the
gradient operator defines our Laplace operator. The stencil is no larger than 3× 3, and the
Laplace operator is no longer self-adjoint but can still be shown to be negative semi-definite
with only the constant pressure in the null-space.

4 Validation

Here we consider the validation of the proposed discretization. We first assess the accuracy
of the discretized Poisson problem and then consider the more exciting dam-break problem.

4.1 Poisson problem

We compare our proposed method to the Immersed Interface Method (IIM) [3] which sharply
imposes jump conditions directly on the Laplacian. The 1d-GFM [4], implemented as described
in Section 3.3.2, is also included in the comparison. Whenever the methods 1d-GFM or Md-
GFM are referred to in the context of a Laplace operator, the composition with the CCM diver-
gence operator (13) is implied.

We consider the following Poisson problem given by Leveque and Li [3] (therein refered to
as ‘Problem 3’ with β = ρ−1)

∇ ·
(

1
ρ

∇p
)

= f , x ∈ Ω = (−1,1)2. (23)

The right-hand side f , the Dirichlet boundary conditions, as well as the jump conditions at the
interface are such the exact solution is given by

p =

{
exp(x)cos(y) if x ∈ Ωl

0 if x ∈ Ωg , (24)

where Ωl is the interior of a circle with radius 1
2 centered at the origin. Note that p is discontin-

uous and has a jump in the normal as well as tangential derivative.

4.1.1 Mesh refinement

We let ρl = ρg = 1 and vary the mesh-width as h = 2/N where N = 10×2l for l = 1, . . . ,5.
The resulting L∞ errors in the pressure are shown in Table 1. As expected, the 1d-GFM is first-
order accurate, whereas the Md-GFM is second-order accurate, and of comparable accuracy to
the IIM. The main advantage of using the Md-GFM is that the Laplace operator itself follows
from the composition of a divergence operator and a gradient operator which is required in the
context of solving incompressible two-phase problems.

4.1.2 Varying the density ratio

To asses the dependence of the errors on the density ratio we fix the mesh-width h = 2/80,
and vary the density ratio. The resulting gradient errors are shown in Table 2. We note that the

8
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N IIM 1d-GFM Md-GFM
20 4.38×10−4 7.78×10−3 2.67×10−3

40 1.08×10−4 6.48×10−3 6.15×10−4

80 2.78×10−5 6.47×10−3 1.56×10−4

160 7.50×10−6 3.20×10−3 3.36×10−5

320 1.74×10−6 1.49×10−3 9.11×10−6

Table 1: The resulting error ‖p− ph‖L∞ for the Poisson problem
defined by (24). Results for IIM are taken from Leveque and Li
[3].

ρg/ρl ‖ 1
ρ∇p− 1

ρGph‖L∞

106 3.14×10−2

103 3.14×10−2

100 3.24×10−2

10−3 2.14×10−2

10−6 2.14×10−2

Table 2: Dependence of the scaled
gradient error on the density ratio
ρg/ρl for the Md-GFM.

accuracy of the gradient is independent of the density ratio. Hence the proposed method can be
used to accurately simulate near the one-phase limit ρg → 0.

4.2 A dam-break problem

The proposed discretization has been implemented in our in-house free-surface Navier-
Stokes solver ComFLOW. Local and adaptive mesh refinement is used, as detailed in Van der
Plas [7]. We validate our model using a smooth version of the classic dam-break problem.

4.2.1 Problem description

The domain is a rectangle of size 20×12m with an elliptic bathymetry of half lengths 18 and
2.8m whose center lies in the left-hand side bottom corner. Slip boundary conditions are im-
posed on the velocity field. The liquid density is given by ρl = 103kg/m3, the gas density varies
and will always be indicated. Both fluids are initially at rest and separated by the following
interface profile

y(x) = 7.6+3.6tanh(0.36(x−12.5)) , (25)

which will result in a flip-through impact (FTI) [1] in which the wave trough and crest reach the
wall at the same time instance, resulting a violent impact. The gravitational acceleration is set
to g =−9.81m/s2 and the surface energy coefficient is that of the combination of water and air
at 25◦C: σ = 7.2×10−2J/m2. A static contact angle boundary condition of 90◦ is imposed on
the curvature.

Our base mesh is uniform with Nx = 80 and Ny = 48 cells in the x- and y-direction re-
spectively. We consider several levels of mesh refinement, where we refine the mesh near the
interface using blocks of size 16× 16. The refinement level at the interface l ∈ {2,3,4} will
always be indicated, the resulting interface mesh-width is given by h = 2−(l+2)m.

9
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Figure 5: Standard two-phase model. Absolute velocity
|u| at t = 0.75. Interface is shown at t = 0 & 1.47.

Figure 6: Proposed two-phase model. Absolute veloc-
ity |u| at t = 0.75. Interface is shown at t = 0 & 1.47.

4.2.2 Comparison to standard two-phase method

Here we demonstrate the efficacy of the proposed model when compared to the standard
two-phase model2. We let ρg = 1 and l = 3.

In Figures 5 & 6 we show the resulting absolute velocity. We also show the initial interface
profile (dashed) and at a later time t = 1.47 (solid). Note that the standard two-phase model has
a thin region at the interface in which the velocity transitions from gas to liquid. Our proposed
model captures this transition in a discontinuity, which allows the breaking wave to develop
properly, as seen by the interface profile at t = 1.47.

4.2.3 Mesh refinement

We let the gas density be 1 and we consider three levels of refinement l = 2,3,4. In Figure
7 we show a close-up of the resulting interface profiles, as well as the tangential velocity jump
�uτ� along the interface. Results by the CADYF code3[1] are included.

Except for the highest level of refinement, l = 4, we observe convergence towards the ref-
erence solution. For the highest refinement level, we observe a small fragmentation of the
interface at the location where the velocity discontinuity is largest. Whether this is physical,
and occurs only at the finest level because it is underresolved at the coarse level, or a numerical
artifact, is unclear. The reference solution clearly does not exhibit this behavior, but this could
be attributed to numerical damping.

4.2.4 Varying the density ratio

Furthermore we consider the dependence of the solution on the gas density. To this end we
fix the refinement level at l = 3, and vary the gas density as ρg = 10−3,1,3 and 5kg/m3. For the

2The numerical scheme was identical except for the condition �uτ� = 0 and the use of first-order upwind
throughout the entire domain. For our proposed model the symmetry-preserving central discretization was ad-
equate.

3CADYF is a PSPG-SUPG FEM code which implements the two-phase Navier-Stokes equations using the
ALE formulation.

10
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�u
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�

Figure 7: Interface profiles (top) and velocity discon-
tinuity (bottom) for ρg = 1kg/m3 at two time-instances
t = 1.47,1.67. Refinement levels are l = 2 (blue), 3 (red)
and 4 (yellow). Reference solution by CADYF (black
markers) [1].
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−40

−20
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�u
τ
�

Figure 8: Interface profiles (top) and velocity discon-
tinuity (bottom) for gas densities ρg = 10−3 (black), 1
(blue), 3 (red) and 5kg/m3 (yellow) at t = 1.47,1.67.
The refinement level was l = 3. Reference solutions by
CADYF (colored markers) [1].

latter three we have a reference solution by CADYF [1].
We find fairly good agreement in terms of the interface profile. The maximum tangential

velocity jump increases as the gas density decreases, which may be expected. Moreover, for
the larger gas densities, oscillations in the tangential velocity jump can be observed just before
impact. This suggests that free surface instabilities are about to develop. The fact that such
oscillations are not present for ρg = 10−3 means that we successfully approach the one-phase
limit in which no free surface instabilities due to shearing gas flow are present.

5 Conclusion

We presented a discretization approach for capturing contact discontinuities in two-phase
flow. The discretization of the pressure Poisson problem plays a central role since it implicitly
couples the phases using a gradient jump condition which corresponds to imposing smoothness
of the velocity field only in the interface normal direction. A novel combination of our pro-
posed Md-GFM and the CCM was used to achieve this. Using the dam-break problem we then

11
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demonstrated that this approach is able to capture contact discontinuities sharply and accurately,
even at high density ratios (demonstrated up to 10−6) close to the one-phase limit.

For the discretization presented in this paper there are several aspects that need further in-
vestigation: uniquely defining the Md-GFM jump interpolant to improve the properties of the
Laplace operator as well as thorough analysis of the convection scheme near the interface.

The model will be extended with gas compressibility and the effects of viscosity will be
included. When modeling viscous flow, the velocity jump condition becomes a closure model
for underresolved boundary layers. Eventually we want to use this model to study the effects of
free surface instabilities in sloshing of LNG and its vapor.
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