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Abstract. Since time-domain simulations of wave energy converters are computationally ex-
pensive, how can we analyse their dynamics and test wide ranges of design variables, without
simplifying the physics involved? One possible solution is the use of General Polynomial Chaos
(gPC). GPC provides computationally efficient surrogate models for partial differential equation
based models, which are particularly useful for sensitivity analysis and uncertainty quantifica-
tion. We demonstrate the application of gPC to study the dynamics of a wave energy converter
in an operational sea-state, when there is uncertainty in the values of the stiffness and damping
coefficient of the power take-off.

1 INTRODUCTION

In wave energy, time-domain simulations are unappealing because of the complexity of non-
linear effects and the long computational time required. Even the most simple simulations
resorting to linear potential flow theory can be time consuming. To complicate this situation,
in uncertainty quantification traditional Monte-Carlo (MC) based methods require thousands
upon thousands of time-domain simulations to obtain statistical distributions of the quantities
of interest. However, this situation can be overcome using General Polynomial Chaos (gPC),
and we will demonstrate its application to study the operation of a wave energy converter.

Our case study, described in Section 3, will be a simple two-body heaving point absorber,
with a quadratic power take-off, and a three-leg catenary mooring system. In this example, the
stiffness and the damping coefficient of the power take-off (PTO) will be the variables subjected
to uncertainty, and we will study how the mooring tension, the body motions and the absorbed
power is influenced by the uncertainty (Section 4).

General Polynomial Chaos, briefly explained in Section 2.1, provides a polynomial expansion
surrogate model for partial differential equation (PDE)-based numerical models with random
inputs [1]. Its application to study random processes and uncertainty quantification has several
advantages over traditional MC-based methods. Unlike MC methods, gPC does not require
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thousands of simulations to obtain stable values for the mean and variance. Using gPC, depend-
ing on the specific method, chosen the mean and variance can be obtained with only tens of
simulations. Another advantage is that the statistical distributions of the quantities of interest
can be obtained by running very large samples of the random inputs through the gPC surrogate
model, which can be orders of magnitude faster to run than the PDE-based numerical model.

Polynomial Chaos was first described in 1938 by Norbert Wiener [2], for expansions using
only Gauss’s distribution. In 2002 it was expanded by Xiu and Karniadakis [3] to expansions
using other statistical distributions, for improved convergence in cases where the quantities of
interest do not have a gaussian distribution. Since then it has been used in a wide range of
applications. One expected application, which drives many of the publications regarding gPC
is uncertainty quantification in CFD [4, 5, 6]. Other applications are the study of the dynamics
of train wagons [7], electronic circuits [8], particle physics [9], among many more. In ocean and
coastal engineering, gPC has been applied in the analys wave scattering from an ice floe [10],
propagation of water waves over uneven bottoms [11], to study a heaving buoy in irregular waves
[12], just to name a few. More interestingly, in 2018 Lim et al [13] applied gPC to determine
the extreme loads on the power take-off of a heaving wave energy converter.

2 THEORY

2.1 General polynomial chaos

Consider a process with both deterministic and uncertain inputs:

f = f(x,Z) (1)

where f is a general function, x is the vector of deterministic inputs and Z is the vector of
uncertain inputs (or random variables) with dimension d. The gPC surrogate model of f is
given by a polynomial expansion of the form [1]:

fgPC(x,Z) =
∞∑

|k|=0

f̂k(x)Ψk(Z) =

∞∑

|k|=0

f̂k(x)ψk1(Z1)ψk2(Z2)...ψkd(Zd) (2)

where f̂k are the polynomial coefficients, k = (k1, k2, ..., kd) ∈ N0 is a multi-index, |k| = k1+k2+
... + kd, and ψki(Zi) is the polynomial basis function of the variable Zi, of degree ki. Because
the expansion in Eq. (2) is an infinite series, it needs to be truncated to a chosen polynomial
degree p for practical use, becoming:

fgPC(x,Z) ≈
p

∑

|k|=0

f̂k(x)Ψk(Z) =

p
∑

|k|=0

f̂k(x)ψk1(Z1)ψk2(Z2)...ψkd(Zd) (3)

The degree p of the polynomial expansion must be selected depending on the needs of each
particular case study. It can be chosen by trial and error, until a sufficiently accurate represen-
tation of the model is achieved, or by examining the value of the polynomial coefficients which,
for smooth solutions, decay quickly with increasing p. For the selection of the polynomial family
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ψki(Zi), the Weiner-Askey scheme provides the polynomials that converge optimally to solution
of some of the most common statistical distributions [3].

There are two ways to apply gPC to a PDE-based model: the Stochastic Galerkin method
and the Stochastic collocation method. The Stochast Galerkin method is classified as intrusive
because its needs the underlying equations of the numerical model be to be reformulated. This
can be complicated, and sometimes impossible, either because of mathematical complexity, or
simply because there is no access to the code of the numerical model. The Stochastic collation
method is much simpler to apply because it does not depend on the numerical model, it does
not need access to the code, nor re-casting of the differential equations. All that is needed is to
run simulations on a selected number of collocation nodes zj , and post-process the results.

In our analysis we will be studying a process with only two random variables, d = 2. In this
case, the gPC coefficients can be efficiently computed using the projection method. This is the
inner product of the process f(x,Z) and the polynomial basis functions Ψk(Z), with respect to
the probability density function of the random variables, ρ(Z) Eq. (4):

〈f̂k(x),Ψk(z)〉 =
∫
f(x, z)Ψk(z)ρ(z)dz
∫
Ψ2

k(z)ρ(z)dz
(4)

The integration of Eq. (4) is done using quadrature rules, such as Gauss quadrature, which
provide the points z(j) where the model is to be evaluated, and the quadrature weights, w(j).

The interaction between the different univariate polynomials in the tensor product can be
controlled through the q-norm. A q-norm of 1 allows the tensor product of any set of univariate
polynomials to reach the maximum selected polynomial order; decreasing the q-norm, until
the minimum value of zero, decreases the maximum polynomial order allowed for products of
univariate polynomials, reducing the total number of polynomial terms.

For smooth solutions, gPC shows exponential convergence. It is because of this, and because
the mean and variance are encoded in the gPC coefficients, that it is possible to obtain stable
values of the mean and variance using fewer simulations than in MC-based methods. Depending
on the normalization used for the polynomials ψki(Zi), the mean is f̂0, while the variance is the
sum of the squares of {f̂k(x)}pk=1} (or scaled values of these).

For the computation of the gPC model we used UQLab’s version 1.0.0, Polynomial Chaos
Expansions Module [14].

2.2 Hydrodynamic, cable, and PTO models

The dynamics of the wave energy converter were modelled in WEC-Sim [15, 16], a time-
domain solver for wave energy converters based on Cummins’s equation [17]. The PTO selected
for the wave energy converter was an hydraulic one, represented by the following model [18]:

fpto(u, v) = ku+ chydv|v| (5)

where fpto if the force applied by the PTO, k is the linear stiffness of the PTO, u and v are,
respectively, the relative displacement and velocity between the bodies driving the PTO, and
chyd is the hydraulic damping coefficient of the PTO.
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The mooring system was modelled in MooDy [19]. MooDy is an hp-adaptive discontinuous
Galerkin (DG) numerical model for mooring cables, based on the equation of motion of cables
with neither bending nor torsional stiffness. WEC-Sim and MooDy were coupled for the simul-
taneous simulation of dynamics of the wave energy converter and of the mooring systems; this
coupling has been validated and demonstrated in [20].

2.3 Model equations with random inputs

Because of the uncertainty in the inputs, the model equations describing the dynamics of
a moored wave energy converter become stochastic equations, with some variables becoming
dependent on the uncertain inputs, Z. In our analysis, the uncertain inputs are the stiffness, k,
and damping coefficient, chyd of the PTO:

Z = (k, d) (6)

As presented in [21], Cummins’s equation is now written as:

M+A∞ẍ (t,Z) +

∫ t

−∞
K (t− τ) ẋ(t,Z) d τ+

Cx (t,Z) = fext (t) + fmoor (t,Z) + fpto (t,Z) (7)

where M is the generalised mass matrix, A∞ is the matrix of added mass at infinity, K is the
radiation impulse response function, C is the stiffness matrix, ẍ, ẋ, and x are, respectively,
the acceleration, velocity, and position vectors of the floating bodies, fmoor (t,Z) is the mooring
force, fpto (t,Z) is the PTO force, fext (t) is the vector of remaining external forces non-dependent
on the uncertain input Z, and t is time. In its turn, the equation of motion of mooring cables
becomes [21]:

ml(s)
∂2r(s, t,Z)

∂t2
=

(
T (ε(s, t,Z))

1 + ε(s, t,Z)

∂r(s, t,Z)

∂s

)

+

+
∂

∂s
+ fe(s, t,Z) , (8a)

ε(s, t,Z) =

∣
∣
∣
∣

∂r(s, t,Z)

∂s

∣
∣
∣
∣
− 1 (8b)

where ml is the mass per unit length of the cable, r is the position vector of a point s of the cable,
where s is measured along the unstretched length of the cable, T is the tension magnitude, ε is
the extension, and fe is the vector of external forces acting on the cable. Finally, the equation
of the hydraulic PTO, Eq. (5) becomes

fpto(u, v,Z) = fpto(u, v, k, chyd) = ku+ chydv|v| (9)

where k and chyd are now random variables.
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3 CASE STUDY

Our case study is based on the moored RM3 device tutorial distributed with WEC-Sim,
Figure 1. The RM3 device is an axisymmetric two-body heaving point-absorber, using the
relative motion between the two bodies to generate energy. The mooring system has been
simplified from its original set-up, and here it is composed only of simple chains without floaters,
Figure 1 and Table 1.

Wave direction

Body 2

Cable 1 Cable 2

Body 1

Figure 1: The RM3 case device and set-up.

Table 1: Parameters of the mooring cables.

Quantity Value

Diameter (Dc) 0.144m

Density (γc) 7736 kg/m3

Stiffness (EA) 583.376MN

Normal drag coefficient (Cdn) 1.6

Tangential drag coefficient (Cdt) 0.5

Normal added mass coefficient (Can) 1

Cable length 280m

We attributed to the PTO’s stiffness, k, and damping coefficient, chyd, uniform distributions
with the parameters presented in Table 2. The uniform distribution, attributing equal probabil-
ity to all values, can both represent uncertainty and be used for sensitivity analisys. In WEC-
Sim, the device was modelled using the one-hour irregular wave time-series umpqua46229 6 2008
provided with the tutorial, and a time-step of 0.01 s. The mooring systems was simulated in
MooDy [19], using, for each cable, 10 elements of order 5, with an adaptive time-step to ensure
the Courant-Friedrichs-Lewy condition did not exceed 0.9.

To create the gPC model we used the quadrature method, testing increasing polynomial
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Table 2: Probabilistic distributions for the parameters of the PTO.

Parameter Deterministic Distribution Lower Upper
value bound bound

k 1.0× 104N/m Uniform 7.0× 103N/m 1.3× 104N/m

chyd 1.20× 106Ns2/m2 Uniform 4.80× 105Ns2/m2 1.92× 106Ns2/m2

orders until we achieved convergence of the probability distribution functions (PDF). The PDFs
where created, for each time-step and for each output variable, by first running 3000 random
sample pairs of k and chyd trough the gPC model; then, using kernel density estimation, the
probability density functions were smoothed. The final polynomial order selected for the gPC
model was 9, requiring 100 simulations in total to determine the gPC coefficients.

4 RESULTS

In Figure 2 we show the time-series of the rigid body motions, power absorbed, and tension
in the mooring cables of the RM3 device, for the simulation using the deterministic values of k
and chyd. In Figure 3 we show the evolution of the PDFs of the same variables at t = 3000 s,
as we increase the polynomial order of the gPC model. We can see that, for a polynomial order
of 9, all the PDFs have converged. However, some PDFs converged much earlier: the PDF of
the heave motion of body 2 had already converged for order 1, presenting an almost uniform
distribution of its values.

In Figure 4 we show the 95% confidence intervals for the different output variables. We plot
only a small portion of the whole time-series, centred around t = 3000 s, because otherwise it
was not possible to visualise the confidence intervals. For comparison, this figure shows also
simulation results using the deterministic values of k and chyd. Although k has a variation of
30% around its deterministic value, and chyd has a variation of 60%, the confidence intervals are
quite narrow. The only exception is the confidence interval for the absorbed power, which shows
a wide confidence interval at highest power peaks. This means that, to some extent, the power
extracted by the device can be increased, without significantly changing motions of the floating
WEC or the loads on the mooring cables. One possible explanation for narrow confidence
intervals is the small value of the PTO’s damping coefficient, associated with small velocities
induced by the waves. For the RM3 device equipped with a linear PTO, values of linear damping
coefficient up to around 2.5× 106Ns/m correspond to very under-damped motions [22]. In our
case, the PTO depends on the square of the velocity and the maximum value is 1.92× 106Ns/m,
which, when motions are small, place it in the under-damped region. In this range of operation,
even the relatively large variations of k and chyd generate only relatively small perturbations of
the dynamics of the device.

Other reason for the narrow confidence intervals is the possibility that the WEC might not
be operating in its most favourable sea-state (or the relatively small amplitude of the waves in
the tested sea-state) which might not induce large enough motions. Finally, because WEC-Sim
does not account for second order drift forces, the loads in the mooring cables are somewhat
smaller than they would be if second order loads where accounted for, which might also help to
explain the narrow confidence intervals.
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(g) Absorbed Power.
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(h) Tension in cable 1.
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(i) Tension in cables 2 and 3.

Figure 2: Time-series of displacement in surge, heave and pitch, absorbed power, and tension
in the mooring cables for the RM3 device.

In Figure 4 we did not plot mean values of the simulation results, because they are almost
the same as the simulation results using the deterministic values of k and chyd. Since the
deterministic values of k and chyd are also their mean, this shows that the mean of the outputs
is similar to the outputs computed using the mean inputs. In other other words, the simulations
are almost linear. This is probably due to the device having only small motions in the tested
sea-state, that do not generate large velocities in the power take-off, nor fast motions of the
mooring cables, which are the major non-linear components.
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(i) Tension in cables 2 and 3.

Figure 3: Convergence of the probability density function of displacement, power, and tension
in the cables at time instant t = 3000 s.
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Looking at the confidence interval for heave of body 2, Figure 4e, we can see that both the
mean and the deterministic value lie almost in the center of the confidence interval. This, and
its almost uniform PDF at t = 3000 s, Figure 3e, point to heave in body 2 being a linear function
of k and chyd.
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(h) Tension in cable 1.
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Figure 4: 95% confidence interval and deterministic value of of displacement, power, and tension
in the cables of the RM3 device.
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5 CONCLUSIONS

We presented a case study of the dynamics of moored a wave energy converter, when the
stiffness and damping coefficient of its quadratic hydraulic power take-off are uncertain. The
wave energy converter analysed was the RM3 two-body heaving point absorber developed by
NREL and Sandia. To propagate the uncertainty in the parameters of the PTO to the dynamics
of the converter, we used general Polynomial Chaos, in its Stochastic Collocation formulation.
Our general Polynomial Chaos model used 9th order polynomials to represent surge, heave,
pitch, mooring cable tension, and extracted power as a function of PTO stiffness and damping
coefficient.

By applying general Polynomial Chaos, were were to obtain the equivalent of 3000 time-
domain simulations of the RM3 device with as many different values of PTO stiffness and
damping coefficients, when in fact we ran only 100 simulations in the numerical model. General
Polynomial Chaos allows a fast and efficient analysis of non-linear processes and time-consuming
simulations. For the particular case of wave energy, general Polynomial Chaos is useful even for
devices with a linear PTO, as, for a large number of test cases, or when modelling non-linear
mooring systems, the simulations will take considerable time.

The results we obtained showed that, for the case analysed, even though there was a signifi-
cant uncertainty attributed to the stiffness and damping coefficient of the power take-off (30%
and 60%, respectively), the motions and tensions in the mooring cables did not show a wide
variability. This might be due to the damping coefficient of the power take-off being too low,
even at the maximum value of the uncertainty interval, to have a significant influence on the
dynamics of the wave energy converter. It can also be due to the wave amplitude and periods
of the sea-state not inducing large enough motions on the device.

Because what we presented was a relatively simple application case of general Polynomial
Chaos, future work on this topic should focus on testing a wider range of PTO stiffness and
damping coefficient values, different distributions, a larger variety of sea-states, as well as longer
sea-states.
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