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Intelligent Adaptation Of Hardware Knobs For
Improving Performance and Power Consumption
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Abstract—Current microprocessors include several knobs to modify the hardware behavior in order to improve performance, power,
and energy under different workload demands. An impractical and time consuming offline profiling is needed to evaluate the design
space to find the optimal knob configuration. Different knobs are typically configured in a decoupled manner to avoid the
time-consuming offline profiling process. This can often lead to underperforming configurations and conflicting decisions that
jeopardize system power-performance efficiency. Thus, a dynamic management of the different hardware knobs is necessary to find
the knob configuration that maximizes system power-performance efficiency without the burden of offline profiling.

In this paper, we propose libPRISM, an infrastructure that enables the transparent management of multiple hardware knobs in order to
adapt the system to the evolving demands of hardware resources in different workloads. libPRISM can minimize execution time,
energy-delay product or power consumption by dynamically managing the SMT level, the data prefetcher, and the DVFS hardware
knobs. Overall, the proposed solutions increase performance up to 130% (16.9% on average), reduce energy-delay product up to 80%,
and reduce power consumption up to 33% depending on the target metric compared to the default knob configuration of the system.

Index Terms—HPC, Parallel Programming, Runtime, SMT, Data Prefetcher, DVFS
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that can run within the same core (i.e. Simultaneous Multi-
threading or SMT). As a result, processor shared resources
experience contention, which might lead to performance
degradation. Processors have several hardware knobs to

1.6
50% EDP

g- 1.4 prevent performance degradation by adapting its behavior
T, 5% £Dp to workloads demands, such as the SMT, dynamic voltage
8 woeeoe  and frequency scaling (DVFES) levels, the thread priorities or
% L 1oweopr  the data prefetcher settings. These knobs allow the user to

tune the hardware to adapt it to workload demands.

Multiple policies have been proposed to derive suit-
11 able configurations for the hardware knobs, but these
policies have always treated them independently of each
other [5], [13], [39], [62], [63]. This independent actuation can
lead to conflicting decisions that jeopardize system power-
performance efficiency [57]. For example, a higher SMT level
allows to increase the overall system throughput, but it
reduces the effective bandwidth and last level cache size
per thread. As a result, coordinating these decisions with
other knobs that also contend for the memory bandwidth,
such as the data prefetcher or DVFS, is required to optimize
the overall system power-performance efficiency.

To illustrate the need for a coordinated adaptive sys-
tem, Figure 1 shows the performance, the average power

Fig. 1: CG behavior under different hardware knob config-
urations. The Y axis shows speedup with respect to the de-
fault hardware configuration. The X axis shows power con-
sumption normalized to the default hardware configuration.
Energy-Delay Product (EDP) normalized with respect to the
default hardware configuration is represented with isolines.
For power and EDP, lower is better. Default configuration is
SMTS, default data prefetcher, and highest frequency.

1 INTRODUCTION

Multicore architecture is the main trend in processors devel-
opment nowadays. Every new generation of processors is
increasing the number of cores and the number of threads
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consumption, and the Energy-Delay Product (EDP) iso-
lines of the CG benchmark from the NAS Parallel Bench-
marks (NPB) [40] suite with different hardware knob con-
figurations' with respect to the default hardware knob
configuration (SMT8 level, default data prefetcher, and
highest frequency). EDP is calculated as POWER X
EXECUTIONTIME x EXECUTION TIME. We re-
port EDP instead of energy since degrading execution time

1. Section 6 describes the experimental setup in detail.



of the application has a higher penalty with this metric.

In Figure 1, configurations that are above the 100%
EDP isoline have a higher efficiency due to reduced power
consumption or execution time with respect to the default
configuration of the system. There are multiple configura-
tions that have a really low power consumption with respect
to the default configuration. Yet, those configurations are
inefficient due to a higher execution time (configurations
below the 100% EDP line).

Other configurations have different tradeoffs within the
same EDP lines. For instance, the best hardware knob
configuration in terms of performance achieves an EDP of
41.4% with respect to the default hardware configuration
due to a 1.6x speedup and the 10% increase in power
consumption. While the best configuration in terms of EDP
(37.5% with respect to the default hardware configuration)
can achieve a 1.4x speedup while reducing 25% of the power
consumption. The best speedup in performance is achieved
with a configuration with the highest frequency, a SMT8
level and the prefetcher disabled. While the best EDP is
achieved with a medium level of frequency by sacrificing
execution time and reducing power consumption.

The previous experiment shows that different knob con-
figurations yield a wide range of speedup and power con-
sumption tradeoffs depending on resource demands from
applications. Furthermore, applications can have different
intra resources demands, increasing even more the vari-
ety of optimal hardware knob configurations. Therefore,
hardware knobs must be tightly coordinated to achieve the
maximum performance or the minimum EDP.

Performing an exhaustive profiling of each possible con-
figuration (more than 350 possible configurations in our
evaluated system) for each application (and each parallel
region inside the application) and input data size is a time
consuming process. Thus, we believe that using an adaptive
online coordinated management of related hardware knobs
is a more robust and practical approach to performance
tuning than exhaustive offline profiling.

In this paper, we propose libPRISM?, an infrastructure
for shared memory parallel programming models that trans-
parently configures the different hardware knobs avail-
able.At execution time, libPRISM discovers the best hard-
ware configuration for different fine-grained regions of the
application without user intervention and without modify-
ing the original source code of the application.

Overall, the main contributions of this paper are:

o We present a detailed power/performance characteriza-
tion of the NPB suite [40] on an IBM POWERS platform.
Results show that the best hardware knob configuration
depends on the end goal; the best performing config-
uration found with an offline profiling has a speedup
of up to 2.65x with respect to the default configuration,
while setting a different hardware knob configuration can
reduce power consumption up to 33% with respect to the
default configuration and still improve performance.

¢ We introduce libPRISM, an infrastructure to dynamically
manage hardware resources for OpenMP parallel appli-
cations in a transparent way to the user, without the need
to recompile applications or runtime systems. libPRISM

2. libPRISM code available at: https:/ /github.com/criort/libPRISM
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can be extended to support different runtime systems,
support hardware architectures, and add more hardware
knobs to coordinate.

o We demonstrate speedups of up to 2.3x in execution
time (1.69x on average), up to 33% reduction in power
consumption (18.0% on average) and up to 80% reduc-
tion in EDP (32% on average) when using libPRISM to
dynamically find the best hardware knob configuration
for these metrics without any prior information of the
benchmark. With respect to the static default knob con-
figuration, libPRISM does not introduce any significant
slowdown across the benchmarks.

This paper is organized as follows: Section 2 provides the
required background for this work and Section 3 motivates
this work. Section 4 introduces libPRISM and Section 5 in-
troduces our different adaptive policies. Section 6 describes
the experimental setup and Section 7 shows the evaluation
of our framework. Next, Section 8 discusses the related work
and Section 9 presents the conclusions of this paper.

2 BACKGROUND

This section provides the required background about the
SMT, data prefetch and DVFS hardware knobs targeted in
this work. The runtime systems for shared memory pro-
gramming models that we leverage to manage these knobs
are also described.

2.1 Simultaneous Multithreading

SMT increases the number of running threads within the
same core, which can be very useful to hide memory latency
and exploit more instruction level parallelism (ILP). In a
processor with different SMT levels (i.e. the number of
running threads within the same core), the processor fetches
instructions from different threads and puts them on a
shared instruction queue. Then, in the execution stage, all
threads share the hardware resources of the core where they
run, increasing the overall resource utilization and through-
put. However, individual thread performance may degrade
due the contention on the shared hardware resources.

Multi-programmed workloads can significantly benefit
from higher SMT levels, since the different threads stress
different functional units or have different memory access
patterns. Therefore, the usage of the hardware resources is
higher [23], [26], [48], [54]. In contrast, parallel applications
that follow a traditional fork-join parallelization scheme
execute the very same code on the different threads. In
that scenario, all threads are competing for the same hard-
ware resources, leading to a higher contention on shared
hardware resources, which might degrade overall system
performance [16], [32].

2.2 Hardware Data Prefetching

Hardware data prefetching reduces memory latency by
bringing data to the processor caches before it is needed.
This reduces stalls due to memory accesses. Almost all
current processors include multiple hardware data prefetch
engines as it is a powerful technique to improve the overall
system performance.



Applications with predictable (e.g. regular) memory ac-
cess patterns and spatial locality significantly benefit from
data prefetching. Other workloads with unpredictable (e.g.
random) memory patterns do not benefit at all from it.
Also, under certain circumstances, the prefetcher can even
degrade performance and energy efficiency. This is because
useless prefetches waste memory bandwidth (increase in
power consumption) and pollute the cache hierarchy (de-
crease in performance).

The data prefetching algorithm is usually hardcoded in
the processor design and it is not possible to modify it.
Vendors often add instructions to let the programmer or the
compiler do software prefetching; these instructions need to
be used consciously by the programmer, who should invest
more time in the optimization process of the code. Also,
some processors allow the user to configure different param-
eters of the hardware data prefetcher to match the workload
characteristics by selecting the number of lines to bring
ahead of time, prefetch data on load and/or store instruc-
tions, etc. Overall, a correctly configured data prefetcher can
speed up the execution time, save memory bandwidth and
reduce power consumption significantly [38], [39].

2.3 Dynamic Voltage and Frequency Scaling

DVEFES provides a mechanism to adjust voltage and fre-
quency dynamically on commodity hardware [19], [41].

Nowadays, processors have different DVFS levels (mul-
tiple possible combinations of voltage and frequency) in
which they can safely operate. Modern operating systems
(OS) use the different DVFS levels based on a policy. The
most used policy in modern Linux kernels is the ondemand
policy, which periodically calculates the CPU utilization
(non-idle cycles) and sets a corresponding frequency [1],
[51]. A small increase on the processor load can increase the
frequency to the highest available configuration, diminish-
ing possible power gains and degrading the overall system
power-performance efficiency.

DVFS benefits mainly from idle/stall periods of non-
critical regions, where frequency can be lowered to save
power while achieving the same performance obtained with
a higher frequency. For instance, memory bound applica-
tions benefit from a lower frequency in terms of EDP, so
a user could tune the DVFS hardware knob accordingly to
increase energy efficiency [58].

2.4 Runtime Systems and Shared Memory Program-
ming Models

With the increasing number of cores, orchestrating the par-
allel execution of an application is becoming more difficult.
The usage of a runtime system to manage this complexity is
a common practice to exploit the parallelism of multi-core
systems. Runtime systems are used as an abstract layer in
the software stack to parallelize codes. Usually, they need
compiler support to translate from directives to real code
that will be executed: the programmer needs to use a specific
directive to spawn all the threads, share the data among
them, or synchronize them. This method reduces the burden
of developing parallel applications and drives the design of
future architectures [9], [25], [56].
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Specifically, Open Multi-Processing (OpenMP) [50] has
become the de-facto programming model for shared memory
systems. OpenMP is based on directives that are translated
to parallel code at compile time. Directives delimit the parts
of the source code that are executed in parallel. We refer to
this code executed in parallel as parallel region.

Typical HPC applications consist of a set of phases that
are iteratively executed [49], [60]. In OpenMP programs,
each phase is usually composed of one or more parallel
regions that present a regular behavior over time. This pro-
gram structure allows us to take advantage of the runtime
system of parallel programming models to automatically
manage hardware knobs during the execution.

In particular, the repetitive behavior of parallel regions
across iterations can be exploted to learn the best hardware
knob configuration in the first iterations, and apply this one
during the rest of the execution.

In addition, the parallel regions naturally delimit the
different application phases, so they provide a great op-
portunity to manage hardware knobs at intra-application
granularity by setting the configuration that better suits the
characteristic of each application phase.

3 MOTIVATION FOR MULTIPLE HARDWARE KNOB
COORDINATION AT RUNTIME

The main goal of this work is to reconfigure the different
hardware knobs at a parallel region level in order to achieve
a better performance in terms of execution time, power, or
energy for each application phase.

The hardware knobs need to be configured according to
the resource demands of each parallel region and having
into account possible interactions among other hardware
knobs to avoid underperforming configurations. For exam-
ple, a parallel region running with a low frequency could
use a higher SMT level to hide memory latency, and the
prefetcher should be set accordingly to the access data
patterns in order to not waste bandwidth or pollute the
cache. On the other hand, a parallel region running with
a high frequency, a high SMT level and the most aggressive
prefetcher could saturate bandwidth, which could translate
to stalled threads and degrade the overall performance.

In addition, our goal is to manage the hardware knobs
in a completely transparent manner. To do so, we use
library interposition with the runtime system to capture and
reconfigure the hardware at the beginning and at the end of
each parallel region of the application, without requiring
any user intervention, nor modifications to the runtime or
application source code, nor recompiling, nor impractical
offline profiling.

Next section introduces 1libPRISM, an infrastructure that
leverages these properties to adapt the hardware knobs in
runtime systems for shared memory programming models.

4 LIBPRISM

libPRISM is located on top of the runtime system, as shown
in Figure 2, and is composed of several components: (1) the
interposition mechanism, (2) monitoring, (3) hardware knob
settings, and (4) the policy. libPRISM uses a library inter-
position mechanism to intercept calls from the application
to the runtime. The monitoring components is used to
gather data from different sensors of the system such as
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Fig. 2: libPRISM execution stack and work flow.

performance counters, timing, and power consumption. The
monitoring is performed by the master thread of the appli-
cation in order to reduce possible overheads. The hardware
knob settings are used to configure the underlying hardware
in the system. Finally, the policy leverages the gathered
information to configure the hardware knobs in the system
aiming to minimize a target metric at a parallel region level.
libPRISM takes care of communicating configuration
changes to the runtime system through the master thread
and to the underlying hardware. The software stack shown
in Figure 2 allows libPRISM to: (1) indicate to the runtime
system the available threads for the incoming parallel region
and set the hardware knob configuration; (2) gather profil-
ing data from the runtime and hardware; and (3) avoid the
need to change code nor recompile the application or the
runtime. In this scenario, the application executes as usual
without being aware that libPRISM is dynamically adapting
the hardware resources based on a custom defined policy.

When a parallel region starts or ends, the application
calls our library instead of the runtime system. At compile
time, parallel regions are transformed into functions that are
called by the application. Parallel regions can be identified
by their next program counter (PC) in the program stack of
the intercepted runtime function calls. libPRISM identifies a
parallel region using its PC, as shown in Figure 2.

Whenever a parallel region starts or ends, libPRISM
intercepts the call and informs the policy about the incoming
event (call parallel region start and parallel region stop in
Figure 2).

For every parallel region that is executed, the policy
records a performance profile under different knob config-
urations (Set up and start sensors and Stop and read sensors
in Figure 2). The policy builds this performance profile for
each parallel region using different performance counters
(executed instructions and cycles), the power consumption,
and the number of times the region has been executed.

HPC parallel applications consist of a set of phases
that are iteratively executed, and each phase is usually
composed of one or more parallel regions. Therefore, a
given parallel region will be executed multiple times. The
policy takes advantage of this repetitive behavior of parallel
applications to find the best knob configuration for each
parallel region. To do this, the policy uses an iterative
learning approach. In the first iterations of each parallel
region, the policy explores several possible configurations to
build a performance profile and uses it to determine the best
hardware knob configuration. Once the policy finds the best
hardware knob configuration, libPRISM tracks the behavior
of a parallel region and, in case the behavior changes, it
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Phase 2 | Knob Configuration Optimization

Phase 3 [Optimal Knob Configuration Tracking

If pe;ormance
profile changes

Fig. 3: Phases of the generic policy.

starts the knob configuration optimization phase again.

We implement different policies using the libPRISM
infrastructure to tune the SMT, the data prefetcher, and
the DVES knobs in order to exploit the optimization op-
portunities to minimize execution time, EDP and power
consumption. In the next section, we explain in detail the
algorithm of our proposed policies.

5 LIBPRISM POLICIES

Policies leverage the gathered data by libPRISM to find the
optimal knob configuration for a certain target metric (e.g.
execution time, power consumption, or EDP). To reach their
goal, policies can manage several hardware knobs such as
the SMT level, the data prefetcher and the DVFS knobs.

In this work, we propose a novel policy that minimizes
a specified metric. This novel policy is implemented as a
generic policy to allow its extension with hardware knobs
and metrics (execution time, EDP, or power consumption
in this work). Our generic policy uses a vector of hard-
ware knob configurations for each hardware knob to be
optimized. This vector contains the different possible con-
figurations a hardware knob can use as an input for our
algorithm. The knob vector is useful to reduce the time spent
building the performance profile of each parallel region for
hardware knobs such as the data prefetcher or the DVFS
knobs, which can have hundreds of possible configurations.
Users can change the hardware knob vector to better suit
their needs. Short vectors converge in the best hardware
knob configuration faster than longer vectors, while longer
vectors can have more fine-grained configurations than
short vectors.

In order to find the best hardware knob configuration
per parallel region, our policy goes through the three phases
shown in Figure 3.

The first phase is the knob priority exploration shown
in Listing 1, which decides the hardware knobs with the
most impact on performance. This phase uses the N first
iterations of a parallel region, where N is the number of
hardware knobs available in the system.

The hardware knobs with a higher boost on performance
are explored first in order to improve performance as soon
as possible and achieve a closer performance to the best



1 // Call to parallel_region_begin intercepted
2 function parallel_region_begin_wrapper {

3 //Select HW KNOB to measure

4 HW_KNOB = VECTOR_HW_KNOBS[iteration]

5 set_CONF_NO_AGGRESSIVE (HW_KNOB)

6 ++iteration

7

8

start_measurement ()

O

10 // Return control to runtime

11 parallel_region_begin_real ()

12

13 end_measurement ()

14 measure_performance (HW_CONF_DEFAULT,
HW_CONF_NO_AGGRESSIVE)

15

16 if iteration == len (VECTOR_HW_KNOBS) :

17 //From highest performance to lowest
performance

18 sort_vector (VECTOR_HW_KNOBS)

19

20 //This phase is completed

21 next_phase ()

22}

Listing 1: Knob priority exploration phase (phase 1) of
the proposed generic policy.

performance earlier. Our generic policy learns which hard-
ware knobs have more impact on performance by testing
each hardware knob and their performance boost when
going from a default configuration to a less aggressive
configuration (lines 5 to 14 of Listing 1).

For instance, we have measured that the best performing
SMT level can lead to a performance boost larger than 10%
(with respect to the default SMT level), while the best per-
forming data prefetcher setting boosts performance around
5% (with respect to the default data prefetcher). Depending
on the application running, our policies will explore first
the different SMT configurations, the different prefetcher ag-
gressiveness or the different DVFS configurations. Usually,
the DVFES knob is explored last due to the SMT level and the
prefetcher aggressiveness reporting a higher boost in terms
of speedup®. In our experiments, the DVFS knob does not
lead to any speedup in terms of execution time but it does
lead to a reduction on power consumption. This is because
the default configuration for the DVFS knob is the highest
frequency in the system. Therefore, reducing it can lead to a
performance degradation.

Once our policy knows the best order to explore the
hardware knobs, it enters in the knob configuration opti-
mization phase (shown Figure 3 and its pseudocode in List-
ing 2). In this phase, the policy explores different hardware
knob configurations specified in the hardware knob vector
seeking to minimize a specified metric with respect to the
best hardware knob configuration.

In this phase, a hierarchical search algorithm is used
as a global algorithm to explore different hardware knobs
individually. The algorithm in this phase tunes first the
hardware resources that have more impact on the final
performance of the application based on the results obtained
in the previous phase (line 18 from Listing 1 and line 21
from Listing 2.) Our heuristic-based search allows converg-
ing faster to a hardware knob configuration that provides
a better performance by taking into account inter-knobs

3. Turbo boost is not enabled in our experiments

1 // Call to parallel_region_begin intercepted

2 function parallel_region_begin_wrapper {

3 if targetMetric[PC] > min_time_threshold:

4 executions[PC] + 1

5 if executions[PC] == repetitions:

6 previousMetricPerformance =
currentMetricPerformance

7 currentMetricPerformance =
avgMetricPerformance ()

9 module_HW_knob ()

11 // Return control to runtime
12 parallel_region_begin_real ()
13 }

15 /+ Hardware knob module =/

16 function module_HW_knob () {

17 if previousMetricPerformance >
currentMetricPerformance

18 && time > bestTimex (l+Degradation):

19 best_configuration = current_configuration

20 bestMetricPerformance =
currentMetricPerformance

21 next_HW_knob ()

22 if performance_current_knob >>
performance_previous_knobs

23 reset_previous_knobs ()

24 else:

25 move_next_configuration_current_knob ()

26 set_current_knob_configuration ()

27 }

Listing 2: Knob configuration optimization phase
(phase 2) of the proposed generic policy.

effects. This reduces the overheads associated to exploring
hardware knob configurations.

For each hardware knob, the generic policy implements
a greedy search through the different configurations in the
vector of configurations of that knob. The use of a greedy al-
gorithm instead of an exhaustive one is needed to reduce the
overhead cost of exploring all the possible configurations of
the hardware knobs.

The first time a parallel region is executed, libPRISM
sets the available hardware knobs to the first hardware
knob configuration specified in the vector of hardware knob
configurations and records its performance profile. This
measurement is repeated a number of repetitions in order to
avoid measurement noise due to new knob configuration.
For instance, the first parallel region execution after chang-
ing the SMT level might suffer from increased number of
cache misses (cold cache effects).

If the duration of the parallel region is too short (i.e.
below a threshold), libPRISM stops the knob configuration
optimization phase as the cost of reconfiguring the available
hardware knobs would neglect the potential performance
benefits of an optimized hardware configuration (Line 3 in
Listing 2). Therefore, short parallel regions (as well as serial
regions) run with the hardware knob configuration already
set in the system. Short parallel regions are not aggregated
into a larger parallel region due to the possible execution
paths and order of execution of the parallel regions, which
can change during the execution of the application. Since
the time spent changing the specific hardware knobs is paid
at least once per parallel region, this threshold needs to be
an upper-bound of the worst case scenario when changing
all the hardware knobs. We present a detailed overhead



1 metric = readCurrentMetric ()

2

3 if metric > avgBestMetricx (l+threshold) :
4 increase_repetitions ()

5 reset_exploration ()

6 else:

7 set_best_HW_knob_configuration ()
8 execute_parallel_region()

Listing 3: Optimal knob configuration tracking phase
(phase 3) of the proposed generic policy.

analysis in Section 7.4.

Next time the same parallel region is executed, libPRISM
sets the hardware knob configuration to the next possible
hardware knob configuration and measures its performance
profile again. If setting the next hardware knob configura-
tion leads to a degradation in terms of the target metric, the
knob configuration optimization phase for the current knob
stops and the previous configuration is selected as the best
found performing configuration for this knob (Lines from
17 to 20 in Listing 2). Notice that this mechanism avoids
achieving worse performance than the default hardware
knob configuration of the system. Then, the policy continues
the knob configuration optimization phase with the next
knob to configure (Line 21 in Listing 2).

The maximum number of iterations for the knob config-
uration optimization phase without taking into account re-
entering in the phase is: Zi\;l length_vector_HW _knob;,
where N is the number of hardware knobs to configure.
Vectors of hardware knob configurations can have different
lengths. Depending on the application and the selected
policy in libPRISM, the number of iterations to find the
best hardware knob configuration can vary. For instance,
when maximizing performance, libPRISM stops exploring
as soon as the performance is degraded, using less iterations
for the tuning phase. When minimizing power, libPRISM
can explore more configurations as long as the power is
reduced, using more iterations for the tuning phase. In
our experiments, we observe that the maximum number of
iterations is never reached. We measured the number of it-
erations needed to achieve a steady hardware configuration
with libPRISM in our experimental setup*, our observations
show that less than 10 iterations (6.1 on average) are enough
to tune non-variable parallel regions when the DVFS knob is
not involved. For the DVFS knob there are 22 possible power
levels in our infrastructure, and the different policies require
different number of iteration to tune it. When minimizing
execution time, the maximum observed number of iterations
to tune the DVFS knobs is 5. On the other hand, when
minimizing power consumption, the number of iterations
can reach up to 20 iterations. These typically are a small
fraction of the total number of iterations of a parallel region,
338.6 on average in our experimental setup.

Notice that the vector hardware knobs are configured
by the user with all the configurations to be tested for
each knob. An user could reduce the number of iterations
spent tuning different configurations by selecting a reduced
number of configurations for each vector hardware knob.

After the knob configuration optimization phase, the
policy identifies a competitive performing knob configura-

4. This includes all the benchmarks used in our evaluation. Our
experimental setup and benchmarks are described in Section 6
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tion for a particular parallel region and reaches the optimal
knob configuration tracking phase where tracks the perfor-
mance profile of each parallel region as shown in Figure 3.
The pseudocode of this phase is shown in Listing 3. Every
time the parallel region is executed, the knobs are set to
the identified best found performing knob configuration. In
order to identify phase changes in the application, the per-
formance profile of the parallel region is compared against
the average performance profile found during the knob
configuration optimization phase.

If the last measured performance of a parallel region
differs more than a configurable threshold (Line 3 in List-
ing 3) from the average performance of that parallel region,
the knob configuration optimization phase is restarted with
an increased number of repetitions to obtain a new average
performance, which minimizes continuous reconfiguration
overheads and takes into account different control flow
paths (Line 4 in Listing 3). This threshold needs to take
into account the possible variability in the execution time
of a parallel region. If the execution time of a parallel
region presents a large variability (e.g. because of shared
environments or different behavior in different iterations)
this threshold needs to be larger. In our experiments, we
configure this threshold as 5.0%.

We configure our generic policy with different hardware
knobs, metrics, and optimization goals. Table Table 1 shows
the policies derived from the different configurations that
are evaluated in this work. For each policy, we show the
possible knob configuration that a hardware knob can use
and the inputs metrics and optimization goal of the metric.

The following sections explain in detail how we config-
ured our generic policy to optimize different target metrics.

5.1 MAXPERF Policy

The MAXPERF policy seeks to maximize performance by
minimizing the execution time. To that end, we define a
metric to minimize execution time of the parallel regions
and the hardware knob configuration vectors for hardware
knobs: SMT level, data prefetcher and DVFS.

o For the SMT level, MAXPERF explores four SMT levels:
SMTS8, SMT4, SMT2 and ST.

o For the data prefetcher, MAXPERF explores four con-
figurations: most aggressive, aggressive, default aggres-
siveness and disabled configurations (shown in Table 1
as 3,2,1,0, respectively).

o For the DVFS knob, MAXPERF only selects the high-
est frequency, which is the default configuration. In
our experiments, lowering frequency only increases the
execution time. Therefore, if we seek to minimize the
execution time, frequency needs to be set to the highest
available configuration.

5.2 MINEDP Policy

The MINEDP policy seeks to minimize the EDP, i.e. maxi-
mize speed up while reducing the power consumption. In
the MINEDP policy, execution time and EDP are used as
input metrics with the constraint that execution time cannot
be degraded.
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TABLE 1: Summary of policies used in this work. SMT can be configured as SMT8, SMT4, SMT?2, or ST. Prefetcher can be
set to the most aggressive (3), aggressive (2), default (1), or disabled (0). DVES is explored in steps of 0.06 GHz.

Policy Knob configurations Input metrics Optimization goal
SMT  Prefetcher DVFS
MAXPERF 84,21 32,10 349 GHz  Execution time Minimize execution time
MINEDP 84,21 32,10 349 GHzto2.06 GHz Execution time and power consumption =~ Minimize execution time and power consumption
MINPOWER 84,21 32,10 349 GHzto2.06 GHz Execution time and power consumption ~ Minimize power consumption with a maximum configurable performance degradation

The MINEDP policy uses 3 hardware knobs and their
corresponding hardware knob configuration vectors are the
following;:

e For the SMT level, the MINEDP policy explores all
the SMT levels available in our platform: SMT8, SMT4,
SMT?2, and ST.

e For the data prefetcher, the MINEDP policy ex-
plores four configurations: most aggressive, aggres-
sive, default aggressiveness and disabled configura-
tions (shown in Table 1 as 3,2,1,0, respectively).

o For the DVFS, the MINEDP policy explores 22 con-
figurations, from the highest (3.49 GHz) to the lowest
frequency (2.06 GHz) by steps of 0.06 GHz.

Based on the knob priority exploration phase, the DVFS
knob is explored the last because the default configuration
for the DVFS knob is set to the highest available frequency
in the system. Therefore, reducing the frequency can only
lead to a performance degradation. The SMT level and the
data prefetcher knobs have a higher beneficial impact on
performance than the DVES knob. Therefore, SMT level and
the data prefetcher are explored first. This method allows
us to achieve a similar performance than the MAXPERF
policy and then use the DVFES knob to reduce the power
consumption without affecting the performance. As a result,
increasing the energy efficiency of the system.

5.3 MINPOWER Policy

The MINPOWER policy seeks to minimize the overall
power consumption of the platform with respect to the
optimal hardware knob configuration for execution time.

To achieve the optimal configuration, the MINPOWER
policy allows changes in the hardware configuration knobs
if execution time is improved. In the second phase of our
algorithm, libPRISM uses the optimal hardware knob con-
figuration as starting point to reduce power consumption.

This policy allows a performance degradation in terms
of execution time with respect to the best hardware configu-
ration to achieve greater savings on power consumption.
The performance degradation in terms of execution time
can be controlled with a degradation threshold defined by
the user (Line 18 in Listing 2). The higher the value of this
threshold, higher performance degradations are allowed
and higher savings in power consumption can be achieved.
The user needs to set this threshold according to its needs.
The input metrics for this policy are power consumption
and execution time.

This policy explores different hardware knob configura-
tions defined in the hardware knob configuration vectors,
which are:

o For the SMT level, MINPOWER explores all the SMT
levels available in our platform: SMT8, SMT4, SMT2
and ST.

o For the data prefetcher, the MINPOWER policy ex-
plores four configurations: most aggressive, aggres-
sive, default aggressiveness and disabled configura-
tions (shown in Table 1 as 3,2,1,0, respectively).

« For the DVEFS knob, the MINPOWER policy explores 22
configurations, from the highest frequency (3.49GHz)
to the lowest frequency (2.06GHz) by steps of 0.06GHz.

5.4 Case Study: MINPOWER Policy

In this section we illustrate the detailed behavior of the
MINPOWER policy to select the best hardware knob con-
figuration for the CG application.

The MINPOWER policy minimizes power consumption
while performance is not degraded more than a certain
threshold with respect to the maximum performance achiev-
able (10% in this example). For clarification in this example,
the MINPOWER policy just explores default aggressiveness
and disabled prefetcher configurations for the prefetcher
knob and for the DVFS knob it explores from the highest
to the lowest frequency by steps of 0.1 GHz. SMT level is
explored as explained in Section 5.3.

Figure 4 shows how the knob configuration optimzation
phase (shown in Listing 2) is performed on the longest
parallel region of CG benchmark. This figure shows the
selected SMT level, the prefetcher, and frequency config-
uration in a particular iteration of the parallel region, as
well as the execution time of the parallel region under this
configuration. The first iteration of a parallel region runs
in the default hardware knob configuration in order to use
it as a reference for the knob priority exploration phase.
The knob priority exploration phase (shown in Listing 1)
is realized from iteration 1 to iteration 3, which detects what
are the knobs impacting most the performance. The policy
measures speedup in execution time for a lower aggressive
configuration of each hardware knob.

Then, libPRISM goes to the knob configuration opti-
mization phase. Since in this application, the prefetcher
is the hardware knob with most impact it starts explore
the prefetcher aggressiveness from iteration 3, which has
no more possible configurations. Therefore, MINPOWER
decides to turn it off. Then, in the next iteration 4, the
MINPOWER policy lowers the SMT from SMT8 to SMT4
just to realize that it slowdowns the execution time and
power consumption is not improved. After exploring the
prefetcher aggressiveness and the SMT level, the policy
explores the DVFS knob vector. From iteration 5 to 10,
the MINPOWER policy lowers frequency until it sees a
performance degradation of the specified threshold of 10%.
Therefore, it stops the exploration and goes to the optimal
knob configuration tracking phase (shown in Listing 3).

In the case that a hardware knob has a performance
interaction with other hardware knob that has been previ-
ously explored, libPRISM can reset the exploration of all



Exploration

Pre-exploration ;ZIﬁSthd
SMT level 8 /4,8 .8 ./4,8,8.8.8.:8.:8:8,38
Prefetcher Def :Def JOFF): Def :0FF :OFF :0FF 10FF ! OFF !0FF : OFF:OFF: OFF
Frequency 3.5'3.5'3.513.4'3.5'3.4:3.3:3.2:3.1:3.0:2.9' 3.0' 3.0
' T ' ' ' ] ' ' R ! Steddy phase
:Keﬁ

' configuration
' '

18
17

Execution 16
time (s)

14
13
12

819110111 -~

Fig. 4: MINPOWER policy with a 10% threshold in libPRISM
to select a competitive performing configuration for SMT
level, data prefetcher and DVFS for the CG application.
Details on the hardware knob configuration are explained
in Section 6. Repetitions is set to 1 (Line 5 in Listing 2).

the hardware knobs in order to consider the interaction, as
shown in Lines 22 and 23 in Listing 2.

When an important change in performance during the
optimal knob configuration tracking phase happens, the
MINPOWER policy starts again the knob configuration
optimization. For this case study, the policy does not detect
any phase change during the rest of the execution in CG of
this parallel region.

In this specific application, we can observe that it is
better to use a high SMT level (SMT8), moderately high
frequency (3.0GHz), and disable the prefetcher. The largest
parallel region of CG does random memory accesses and
uses the read data in a simple calculation. Disabling the
prefetcher allows to reduce memory bandwidth and, thus,
reduce the latency for useful memory accesses, which al-
lows the application to exploit a higher SMT level. As the
memory accesses are slow and the computation depends on
them, it is possible to run all the threads with a lower DVFS
level. This reduces power consumption while not degrading
performance more than a given threshold (10%).

6 EXPERIMENTAL SETUP

We evaluate our solutions on an IBM POWERS based
system (8335-GTA model) [47]. This system has an IBM
POWERS processor that runs at 3.49GHz with 512GB of
DDR3 CDIMM memory running at 1.6GHz. The POWERS
processor in this system is packaged as a single-chip module
with 20 cores. Each core has 64KB L1 data and 32KB L1
instruction caches, a 512KB L2 cache and an 8MB L3 cache.

The system runs Ubuntu 14.10 operating system with
the kernel version 3.16. We compile all the benchmarks with
GCC version 4.9.3, which supports OpenMP 4.0.

6.1 Simultaneous Multithreading

The POWERS processor has a maximum SMT level of 8:
each core can run simultaneously up to eight threads. It
also supports running 1, 2 and 4 threads (ST, SMT2 and
SMT4 levels). The OS sees a physical core as a group of 8
virtual cores. When the machine boots, it automatically sets
the SMT level to 8. If no application is running, the SMT
level is adjusted automatically by the hypervisor based on
the utilization of the system. For example, when the system
is in SMT8 level, the OS exposes 8 virtual cores per each
physical core. When just one of those virtual cores is used,
the system lowers the SMT level to ST level automatically.
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TABLE 2: Voltage used when running a benchmark de-
signed to stress the power consumption of the processor
with different frequencies. Voltage is normalized to the
highest voltage observed.

Frequency (GHz) | 2.06 | 2.5 2.8 3.1 3.3 3.49
Voltage 0.8 0.86 | 0.89 [ 094 | 097 | 1

To set the SMT level, we need to specify the number of
threads running in a physical core. In OpenMP, the required
number of threads can be defined through an environment
variable or directly from the application code with specific
calls to the runtime. By default, the parallel applications
evaluated use all the threads available in SMTS level.

6.2 Data Prefetcher

The data prefetcher can be controlled at the core level

by a special purpose register called Data Streams Control

Register (DSCR) [30], which is exposed by the OS. The DSCR

has 12 different fields with 25 bits in total. The most relevant

fields are the following ones:

o LDS: Enables data prefetching for load instructions.

o SNSE: Enables data prefetching for load and store instruc-
tions that have a stride bigger than a cache block.

¢ URG: Number of cache blocks that will be prefetched,
from 1 cache block up to 7 cache blocks.

When the machine boots, it automatically sets the
prefetcher to the default configuration: LDS activated, URG
set to 4, and all the other options disabled. libPRISM
considers this default configuration, as well as three
more prefetcher configurations. When disabling the data
prefetcher, we disable all of its available options. The
medium configuration has URG set 7, LDS activated and
all the other options disabled. The aggressive configuration
has URG set to 4, LDS and SNSE activated, and all the other
options disabled.

In our experimental setup, we observe that the aggres-
sive prefetcher configuration performs better or equal than
the medium configuration in most of the cases. However,
in a small amount of cases, we observe that the aggressive
prefetcher configuration reduces the hit ratio of the last level
cache because it replaces useful blocks to make room for
inaccurately prefetched blocks.

6.3 DVFS

The DVFES hardware knob is controlled at the physical core
level through an exposed file by the OS. Therefore, libPRISM
sets the frequency of the 10 physical cores.

The POWERS system has 44 possible frequency config-
urations from 2.0 GHz to 3.49GHz by steps of 0.03GHz
and 0.04 GHz as reported by the OS. Each frequency has
a determined voltage associated. We run a maximum power
stressmark [3] in order to measure the upper voltage limit
associated with each frequency. Table 2 shows the processor
voltage when executing the benchmark to stress power
consumption with a specified frequency. The difference be-
tween running the benchmark to stress power consumption
at the highest and lowest frequency in terms of voltage is
20%. By default, DVFS selects the highest frequency when
running any benchmark we evaluated. Maximum power
consumption of the evaluated benchmarks achieves only



42% of the maximum power consumption observed when
running the benchmark to stress power consumption.

6.4 Benchmarks

To evaluate the effectiveness of the policies implemented
in 1ibPRISM, we use the NAS Parallel Benchmarks (NPB)
suite [40] with the class D inputs. The NPB suite is com-
posed of five kernels (CG, EP, FT, IS, and MG) and three
pseudo-applications (BT, LU, and SP), which are derived
from computational fluid dynamics (CFD).

Benchmarks are executed on 20 cores and pinned to them
to avoid thread migration. We pin threads to cores using
the environment variable OMP_PLACES. Benchmarks run
in isolation with 20, 40, 80, or 160 threads for ST, SMT2,
SMT4, and SMTS, respectively.

6.5 Metrics

In Section 7, we report speed up in execution time,
power consumption and energy-delay product (EDP) for
all the benchmarks. We report EDP instead of energy
since degrading execution time of the application has a
higher penalty with this metric. If energy (POWER x
EXECUTION TIME) were reported instead of EDP,
hardware configurations with a lower power consumption
would be reported as efficient hardware configurations,
even if those hardware configurations are highly degrading
execution time. Therefore, EDP reflects that our dynamic
mechanisms have minimal penalties in terms of execution
time while reducing power consumption.

We measure wall time for the entire application. When
running with libPRISM infrastructure, we also read the
timebase register from the POWERS processor for fine-
grained analysis of parallel regions and multiple perfor-
mance counters (executed instructions and cycles) are col-
lected using perf [17].

We use AMESTER (Automated Measurement of Systems
for Energy and Temperature Reporting) [29] to measure the
power consumption of the processor and memory chips.
The tool remotely collects power, thermal and performance
metrics from the system using the Intelligent Platform Man-
agement Interface (IPMI). The IPMI allows reading different
hardware sensors without using any of the processing cycles
of the system. Therefore, it has no impact on the perfor-
mance of the running benchmarks.

In Section 7, we report the average power consumption
for the total execution and energy-delay product (EDP).
Power consumption includes the idle power of the system.

7 EVALUATION

In this section we evaluate the behavior of different policies:
Best Static per Application (BSA), MAXPERF, MINEDP,
MINPOWER (10%), and MINPOWER (20%).

BSA is the best performing hardware configuration
found for each application after an offline profiling (352
configurations: 4 SMT levels x 4 prefetcher aggressiveness
x 22 frequency levels). Notice that the BSA configuration
achieves the best possible performance with a static hard-
ware knob configuration and can only be outperformed
with a dynamic hardware knob configuration.
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Fig. 5: Results with respect to default configuration (SMTS,
default prefetcher and the highest frequency of 3.5GHz).
Best Static per Application (BSA): best SMT level, prefetch
aggressiveness and frequency configuration for all the ex-
ecution found after an offline profiling. libPRISM is run-
ning with the MAXPERF, MINEDP, MINPOWER 10% and
MINPOWER 20% policies that select the hardware knob
configuration for a certain metric per parallel region at
execution time.

MAXPERF dynamically sets the hardware knob config-
uration for every parallel region based on the MAXPERF
policy, which seeks the maximum performance in terms of
execution time.

MINEDP dynamically sets the hardware knob config-
uration for every parallel region based on the MINEDP
policy, which seeks the minimum EDP within the maximum
performance achievable in terms of execution time.

MINPOWER (10%): dynamically sets the hardware knob
configuration for every parallel region based on the MIN-
POWER policy with a threshold of 10%, which seeks the
minimum power consumption while sacrificing up to 10%
execution time with respect to the execution time of BSA.

MINPOWER (20%): dynamically sets the hardware knob
configuration for every parallel region based on the MIN-
POWER policy with a threshold of 20%, which seeks the
minimum power consumption while sacrificing up to 20%
execution time with respect to the execution time of BSA.

Figure 5(a) shows the speedup results in execution
time with respect to the default hardware configuration
(SMTS, default data prefetcher and the highest frequency
of 3.5GHz) for the Best Static for Application hardware
Configuration (BSA) and all our policies. By comparing
the results with respect to BSA, we can observe how the
performance degradations introduced by our policies affect
performance, power consumption, and EDP.

Figure 5(b) shows the power consumption normalized
to the default hardware configuration for the BSA configu-
ration and all our policies on top of libPRISM.

Figure 5(c) shows the EDP normalized to the default
hardware configuration for the BSA configuration and all
our policies on top of libPRISM.



In the next sections we comment the results for each of
our policies: MAXPERF, MINEDP and MINPOWER.

7.1 MAXPERF Policy
7.1.1 Performance

. SMT8

. SMT4

3 sMT2

— st

m Aggressive
B Medium

3 Default

~| =3 Off

N 3.49GHz

BN [3.43,3.25]GHz

time
o =
Ny o
o o

ion
breakdown

0.50

Parallel regions
execut

e ©°
o N
S w

[ [3.24,2.75)GHz
[ [2.74,2.06]GHz

Fig. 6: Final hardware configuration for the different parallel
regions when running with libPRISM and MAXPEREF policy.

Figure 5(a) shows that the default hardware configu-
ration is already the best performing configuration for 2
out of 8 evaluated benchmarks. For the remaining 6 bench-
marks, 5 benchmarks can reach performance improvements
above 20% illustrating the need for an adaptive system
that manages shared hardware resources. On average, BSA
reaches a 35.5% performance improvement over the default
configuration. The policy MAXPERF almost achieves the
same performance improvement as the BSA (31.6%).

Figure 6 shows the final hardware configuration in terms
of SMT level, data prefetcher aggressiveness and frequency
for all parallel regions. As we can see, most of the bench-
marks run with 1 or 2 different configurations (frequency
is set to the highest frequency). For instance, IS runs with
SMT4 and the prefetcher disabled for the 13% of the time
and with SMT2 and the prefetcher with the default configu-
ration for the remaining 87% of the execution. The difference
in the average performance between the MAXPERF policy
and the BSA comes mainly from the benchmark FT and IS.

The benchmark FT is composed of several parallel re-
gions, and FT iterates through these parallel regions from
1 to 27 times. In the case of executing a parallel region
once, libPRISM cannot improve performance. In the cases
of executing a parallel region 27 times, libPRISM spends
several iterations to explore and set the hardware knob
configuration. This exploration overhead accounts for the
difference in execution time.

In the case of IS, the MAXPEREF policy improvement over
the BSA is due to the dynamic behavior of libPRISM. As we
can see in Figure 6, IS runs 13% of the time in SMT8 and
87% of the time in SMT4 and the prefetcher is disabled for
13.3% of the time.

In EP, we observe that all the policies have the same
behavior. EP is composed of some time consuming parallel
regions that are only executed once and some very short
parallel regions that are executed multiple times. In this
scenario, libPRISM is not able to tune the knobs for the time
consuming parallel regions, so they are executed with the
default hardware knob configuration. In addition, libPRISM
does not tune the hardware knobs for the short parallel
regions because the overhead of reconfiguring the knobs
is higher than their execution time. In contrast, BSA has
slightly worse performance than the default hardware con-
figuration due to the overheads when setting the hardware
knob configuration for the short parallel regions.
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The other benchmarks can run with the highest speedup
with a static configuration, which is found after an ex-
haustive offline profiling. The MAXPERF policy is able to
dynamically match at runtime the same performance as the
BSA configuration without requiring any offline profiling.

7.1.2 Energy Efficiency

Next, we discuss the energy efficiency results obtained with
libPRISM using the MAXPEREF policy. Figure 5(b) shows the
power consumption of the processor when running with the
BSA configuration and our policies. Power results are nor-
malized to the default configuration. In the MAXPERF pol-
icy, power consumption on average is the same as the BSA
configuration (81.6% and 81.4%, respectively). MAXPERF
can slightly reduce power consumption on some bench-
marks or slightly increase it. The differences come from
parallel region that are executed once, therefore, MAXPERF
runs those parallel regions with the default hardware knob
configuration, which can differ from the BSA configuration.

In terms of EDP, Figure 5(c) shows EDP normalized to
the default configuration. Results show that the MAXPERF
policy is able to reduce it by 30% with respect to the default
hardware knob configuration.

We can appreciate differences between the MAXPERF
policy and the BSA configuration in several benchmarks
such as FT and IS. In the case of IS, the MAXPERF policy
can reduce the EDP up to 5% with respect to the BSA
configuration. The difference comes from a better execution
time and better power consumption with respect to the BSA
configuration. For several parallel regions of these bench-
marks, libPRISM adapts the hardware knob configuration
to different intra application requirements by lowering the
level of different hardware knobs as shown in Figure 6.

7.2 MINEDP Policy
7.2.1 Performance
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Fig. 7: Final hardware configuration for the different parallel
regions when running with libPRISM and MINEDP policy.

In Figure 5(a) we can see that MINEDP achieves a similar
performance to BSA and MAXPERF (30.8% on average). Yet,
Figure 7 shows that the MINEDP policy is able to reduce
frequency in several parallel regions from benchmarks such
as FT, LU and SP while achieving the same performance.

In the case of BT and FT, the MINEDP policy is able to
reduce frequency to 3.43GHz for 20% of execution time of
BT and 85% of execution time of FT. In the case of SP, fre-
quency can be lowered to 3.19GHz for 33% of the execution
time. In the case of the other five benchmarks, the MINEDP
policy is not able to lower the frequency and keep the same
performance due to requirements of the parallel regions. In
the case of CG, Figure 5(a) shows that the configuration
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Fig. 8: Final hardware configuration for the different parallel
regions when running with libPRISM and MINPOWER
policy with thresholds of 10% and 20%.

selected by MINEDP achieves the same performance as
MAXPEREF. This is caused by the constraint to not reduce
performance with respect to the best performing hardware
configuration. As shown in Section 7.3, CG can achieve a
lower EDP and power consumption if a higher performance
degradation is allowed.

7.2.2 Energy Efficiency

As we can see in Figure 5(b), power consumption is slightly
reduced due the MINEDP policy lowers the frequency for
several parallel regions in different benchmarks. In the case
of SP, MINEDP policy can reduce power consumption by
4.3% with respect to the BSA configuration while lowering
the frequency 2.1% with respect to the BSA configuration.

In terms of EDP (see Figure 5(c)), the MINEDP policy
achieves the same EDP as the BSA configuration and the
MAXPEREF policy since in EDP calculation execution time
has more weight than power consumption. The slightly
reduced power consumption caused by a lower frequency
is not highly reflected in this metric.

From Table 2, we see that the highest drop on voltage
is 20%, which happens from the highest frequency to the
lowest frequency in an ideal scenario. The MINEDP policy
is not able to reduce frequency to the lowest frequency due
to the performance constraint and power consumption is
not lowered more due to serial regions of the code, over-
heads of reconfiguring the hardware knobs, and total power
consumption from the parallel region. Therefore, in our next
evaluated policy we relax the performance constraint.

7.3 MINPOWER Policy
7.3.1 Performance

In Figure 5(a), we show two configurations with different
thresholds of the MINPOWER policy (10% and 20% maxi-
mum execution time degradation).

On average, the MINPOWER policy is still able to signif-
icantly improve execution time with respect to the default
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hardware configuration more than 20%: with a 10% thresh-
old, execution time is improved by 24% and with a 20%
threshold, execution time is improved by 17%. With respect
to BSA, the MINPOWER policy degrades execution time by
7% and 15% with a 10% and 20% threshold, respectively.

The main difference on execution time comes from a
lowered frequency as we can see in the breakdown of
the parallel execution time for 10% and 20% thresholds in
Figures 8(a) and 8(b), respectively. As we can see in these
figures, there are several sections of the code where fre-
quency cannot be lowered in order to not degrade execution
time. On the other hand, several parallel regions can run
at the lowest frequency with only the 10% execution time
degradation threshold.

7.3.2 Energy Efficiency

The MINPOWER policy is able to reduce power consump-
tion as we can see in Figure 5(b). This reduction in some
cases is greater than the execution time degradation. For
instance, in BT we can reduce power consumption up to 30%
while execution time is increased by 20% with respect to the
default hardware configuration. For CG, MINPOWER can
reduce power consumption up to 29% while still achieving
a speedup of 47% with respect to the default hardware con-
figuration with a 20% threshold. Notice that MINPOWER
can achieve a 2% lower EDP than MINEDP in CG when
allowing a higher performance degradation of 10%

In contrast, for FT and MG, increasing the execution time
threshold does not achieve the same power consumption
reduction, as seen in Figures 8(a) and 8(b).

Figure 5(c) shows the results for the EDP metric. The
MINPOWER policy is able to significantly decrease power
consumption and improve the average EDP. When the MIN-
POWER policy uses a 10% threshold can improve EDP up
to 1.5% with respect to the BSA configuration. On the other
hand, allowing a 20% execution time degradation achieves
a worse EDP than the BSA configuration by 3.0%.

In the case of CG, the MINPOWER policy lowers EDP
an extra 2.1% with respect to the MINEDP policy and an
extra 3.5% with respect to the BSA configuration. In contrast,
benchmarks such as BT or SP see a worse EDP only when
we allow a higher execution time degradation (going from
a 10% threshold to a 20% threshold).

7.4 Overhead Analysis

In this section, we study in detail the overheads introduced
by libPRISM and how we mitigate them.



Benchmark Smallest PR Largest PR  Most representative PR
BT 0.0025 1.26 1.06

CcG 0.0029 6.87 6.87

EP 0.0067 82.29 82.29

FT 0.0047 7.43 7.43

IS 0.0049 17.78 17.78

LU 0.0022 4.02 4.02
MG 0.0021 0.14 0.09

SP 0.0019 1.53 0.83

TABLE 3: Execution time in seconds of the benchmarks
from the NPB suite of the shortest, largest, and most rep-
resentative parallel region in benchmarks from NPB. The
most representative parallel region is the parallel region that
contributes the most to the total execution time taking into
account the number of iterations of all the parallel regions.

libPRISM overheads are mainly introduced by reading
different sensors, compute the selected policy, and configur-
ing the different hardware knobs at a parallel region level:
(1) Reading performance: as mentioned earlier, we use perf
to read several performance counters such as instructions
and cycles; (2) reading power consumption: AMESTER up-
dates the power consumption every 250 microseconds and
it is read at the end of a parallel region; (3) reconfiguring
SMT, prefetcher, and DVES knobs: as explained in Section 6,
libPRISM needs to modify several registers exposed to the
OS; and (4) Policy Computation: 1ibPRISM needs to process
the available information to configure the hardware knobs
according to an user-selected policy.

These overheads have a magnitude of microseconds and
their weights are shown in Figure 9. From these overheads,
5 of them are unavoidable: measuring performance, power
consumption, reconfiguring SMT, prefetcher, and DVFS
knobs. The only overhead we can mitigate is the policy com-
putation, which is defined by the algorithm implemented.

We need to keep a lightweight policy computation due
to the nature of the benchmarks. Several benchmarks used
in this work have thousands of short parallel regions (exe-
cution time of a single iteration is shorter than a second) as
shown in Figure 10 , that can represent a large percentage
of the total execution of the benchmark (e.g. LU, MG, and
SP). Therefore, unavoidable overheads from libPRISM can
represent a considerable percentage of the total execution of
a parallel region.

Also, in Table 3 we measure the execution time of a single
iteration of the shortest, longest, and most representative
parallel regions in the benchmarks from the NPB suite.
The shortest parallel regions are usually executed within
microseconds, while the largest parallel regions can take
seconds to complete. Several short parallel regions have a
shorter time than the unavoidable overheads of libPRISM.
Notice that in MG and SP the most representative parallel
region is a short parallel region. Therefore, possible over-
heads can degrade performance in parallel regions that are
representative of the overall performance of the benchmark.

In order to mitigate these overheads, libPRISM relies on
2 mechanisms configurable by the user: (1) policies and (2)
filtering of parallel regions with short duration.
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Fig. 10: Percentage of short parallel regions (execution
time of a single iteration is shorter than 1 second) of the
benchmarks from NPB suite. Percentage on top of each bar
represents the total time spent in short parallel regions with
respect to the total time spent in parallel regions.

Policies described in this paper implement a greedy
search for the decision algorithm. This decision algorithm
achieves the best hardware knob configuration while min-
imizing the policy computation overhead. Figure 9 shows
the breakdown of all overheads introduced by libPRISM in a
single iteration of a parallel region. As we can see, the policy
computation is the smallest overhead. Also, notice that other
overheads are unavoidable and cannot be reduced.

Since several overheads are unavoidable, libPRISM im-
plements an user-specified threshold to not explore paral-
lel regions that are shorter than a threshold. This mecha-
nism avoids introducing overheads to short parallel regions
where the overheads are larger than the parallel region itself.

Finally, we measure the total overhead introduced by
running the benchmarks with and without libPRISM in-
frastructure. In this experiment, libPRISM only tracks and
profiles the different parallel regions without reconfiguring
the hardware knobs. The measured overhead in terms of
execution time is always below 2.3% (1.0% on average),
mainly because of monitoring short parallel regions. After
selecting an appropriate threshold to control which parallel
regions are explored, the exploration overhead is effectively
reduced to less than 1.0%, which makes the energy overhead
negligible as well.

7.5 Discussion

In this section we discuss potential applicability of libPRISM
together with its limitations.

Although we only demonstrated the usage of libPRISM
for coordinating the management of SMT, prefetcher and
DVEFS knobs for OpenMP applications on a POWERS8-based
system, the infrastructure can be leveraged for other pur-
poses. For instance, other shared memory programming
models that mark parallel regions or serial regions can be
supported by libPRISM using the same library interposition
mechanism. Also, other hardware knobs and sensors can
be used by the policies implemented within libPRISM.
This is enabled by the generic, modular, extensible and
architecture-agnostic design of libPRISM. Using libPRISM
on a different architecture or system only requires changing
the way that the hardware knob configurations are passed to
the architecture, and the way the power measurements are
obtained from the system. All the other parts of libPRISM,
including the algorithms, are independent of the architec-
ture. However, the potential of 1ibPRISM can change de-
pending on the system. In particular, the most common case
for x86 architectures is to offer only up to SMT2 level, the
data prefetcher knobs are limited to enabling or disabling



the individual prefetchers present in the architecture [35],
and the power-performance efficiency of DVFS can change
depending on the processor implementation.

8 RELATED WORK

As far as we know, this is the first work to combine multiple
hardware knobs such as the SMT level, the data prefetching,
and the DVFS hardware knobs of a real system, evaluate
the interaction between each other, and achieve a jointly-
optimized configuration in runtime.

Previous work has looked at reconfiguring the hard-
ware structures of a processor. Petrica et al. dynamically
adapt the number of lanes in the front end, execute, and
memory stages of a multicore processor to achieve a higher
performance in a power-constrained system [36], [52]. At
intervals of 100ms, they evaluate different configurations
and run with the best configuration until the next interval.
Jha et al. coordinate several hardware structures, cache size,
and DVFS level to increase the performance under a given
power budget [36]. They sample statistics from every core of
a multicore processor to calculate a subset of possible config-
urations, and then they test different configurations of this
subset to find the best configuration for the execution until a
new application phase is encountered. These works need to
add hardware support, while libPRISM relies on a runtime
process that is able to identify phases. Therefore, libPRISM
does not need any hardware support nor to continuously
sample the application, reducing possible overheads.

8.1 Simultaneous Multi-threading

Previous work on SMT is focused to achieve fairness [5], [6],
[7], [11], [12], [55]. Other authors predict IPC when running
in a SMT processor and schedule serial applications on
virtual cores in order to boost the overall performance of the
system [26], [27], [28], [48], [54]. And other authors use SMT
to achieve bet These works focus on multi-programmed
workloads. This is in contrast to this work, which targets
parallel workloads.

There is work on dynamically choosing the best SMT
level for parallel workloads. Zhang et al. [62], [63] and
Heirman et al. [32] propose a dynamic algorithm inside the
OMP runtime in order to choose the best number of threads.
Jia et al. [37] propose a machine learning model to predict
the best SMT level with the aim to boost performance. Their
solution considers only a very small search space, since the
SMT level has only 4 possible configurations. Increasing
the amount of hardware knobs to be predicted would also
increase the training set and the training time to predict the
best performing hardware knob configuration.

8.2 Data Prefetching

There are previous works that propose hardware modifica-
tions of the prefetcher implementations in order to improve
performance on multicore chips [2], [20], [21], [22], [59], [61],
[64]. Heirman et al. [31] track late prefetches in serial and
parallel applications with the hardware. Then, using this
information, they tune the hardware prefetcher aggressive-
ness in order to reduce late prefetches and increase useful
prefetches. Our proposal benefits from already implemented
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data prefetchers, therefore there is no extra cost and it can be
used in current existing hardware to improve performance.
These works do not take into account possible effects with
other hardware knobs such as the SMT or the DVFS.

In terms of software, most of the previous work has been
developed for serial applications or multi-programmed
workloads [34], [43], [44], [46]. Using similar workloads,
Jimenez et al. detects phases of applications at runtime
and changes the data prefetch configuration according to
the overall demands of the applications running on the
system [38], [39]. These phases are not explicitly defined in
the workloads, therefore, the algorithm constantly iterates
through the different data prefetch configurations.

In this work, we use the already annotated parallel
regions as phases. Phases are re-explored only when their
behavior change, reducing exploration time and minimizing
possible slowdowns due to low performing hardware knob
configurations. Also, we take into account possible inter-
effects between several hardware knobs (i.e. the SMT level,
data prefetcher and DVFS knobs). In addition, in [38], [39],
the operating system needs to be modified. Our solution
works without any modification on the software stack.

Also, Chilimbi et al. make use of software prefetching
to speedup applications at execution time [15]. Wang et
al. uses information at compile time to correctly set the
data prefetcher aggressiveness [59]. In contrast, in this work
we focus on parallel workloads that are common in high
performance computing.

Few research has been done when referring to parallel
workloads. Li et al. [45] apply a machine learning model to
predict the best settings for the data prefetcher in different
parallel workloads. Their search space is small compared
to our work and they do not consider possible interactions
between knobs. Prat et al. added intelligence to a task-based
runtime to automatically manage the aggressiveness of the
data prefetcher for parallel workloads [53]. These works lack
the control of the number of threads working in the same
task. Therefore, the possible interaction with the SMT level,
the data prefetcher and the DVES knobs is missing.

8.3 Dynamic Voltage and Frequency Scaling

Previous work on DVEFS are focused to achieve a better
energy-efficient system with serial applications or multi-
programmed workloads.

DVFEFS is usually used to reduce power consumption in
program phases where the highest frequency is not needed
to achieve the best performance. Hsu et al. determines theses
phases at compile time [33], while Keramidas et al. [42]
and Eyerman et al. [24] determine these phases at runtime
with support of performance counters. In this work, we
determine phases dynamically at runtime with support of
a standard runtime such as OpenMP while coordinating the
DVES with multiple hardware knobs.

Some other work coordinates DVFS with other tech-
niques to save energy. Vega et al. uses DVFS and core folding
in order to reduce power consumption of the system [57].
Deng et al. uses DVFS to coordinate CPU and memory
power management to reduce power consumption while
remaining within some performance bounds [18]. Bitirgen
et al. manage multiple hardware resources (cache partition-
ing, memory bandwidth, and DVES level) in a coordinated



fashion to enforce a higher-level performance objective for
serial applications [4]. This approach is not applicable for
parallel applications, since all the threads of the application
have very similar hardware demands and, thus, it would
lead to an equal partition of the hardware resources. In
addition, this approach is not able to tune hardware knobs
that impact the behavior of multiple threads at the same
time such as the SMT level. In this work, our solutions are
aimed to parallel workloads common in high performance
computing and using a standard runtime such as OpenMP
while using several hardware knobs.

Research on DVFS with parallel workloads has focused
on using DVEFS to accelerate the critical path in applica-
tions [8], [10] or to improve the overall energy efficiency of a
system when running big data workloads [14]. In this work,
we focus on parallel workloads in a widely-used runtime
such as OpenMP and with several goals: reduce execution
time, reduce EDP, and reduce power consumption.

9 CONCLUSIONS

Because of the potential resource contentions among threads
in the memory subsystem, current processors offer the
user a wide range of configurable knobs such as the SMT
level, the data prefetcher aggressiveness or the DVFS knob.
Unfortunately, finding the optimal settings of these knobs
is difficult because of the large search space, the strong
interactions between different architectural knobs and the
different hardware demands of application phases.

In this work we introduce 1ibPRISM, an infrastructure for
parallel applications to dynamically adapt the architectural
knobs based on a custom policy. On top of 1ibPRISM we
develop several policies for managing the SMT level, the
data prefetcher and the DVFS hardware knobs: the MAX-
PERF policy with the goal of increasing performance; the
MINEDP policy with the goal of reducing the overall EDP,
and the MINPOWER policy with the goal of reducing power
consumption at the cost of execution time.

We evaluate our solution for a wide set of OpenMP
benchmarks running on an IBM POWERS system. Results
show a boost in performance of up to 2.3x (1.69x on aver-
age), a power consumption reduction of up to 33% (18% on
average) and an energy-delay product reduction of up to
80% (32% on average) when compared to the default static
system configuration with our proposed policies.
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