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Multi-sensor data fusion calibration in IoT air
pollution platforms

Pau Ferrer-Cid, Jose M. Barcelo-Ordinas, Jorge Garcia-Vidal, Anna Ripoll, Mar Viana

Abstract—This paper investigates the calibration of low-cost
sensors for air pollution. The sensors were deployed on three
IoT (Internet of Things) platforms in Spain, Austria, and Italy
during the summers of 2017, 2018, and 2019. One of the biggest
challenges in the operation of an IoT platform, which has a
great impact on the quality of the reported pollution values,
is the calibration of the sensors in an uncontrolled environ-
ment. This calibration is performed using arrays of sensors
that measure cross sensitivities and therefore compensate for
both interfering contaminants and environmental conditions. The
paper investigates how the fusion of data taken by sensor arrays
can improve the calibration process. In particular, calibration
with sensor arrays, multi-sensor data fusion calibration with
weighted averages, and multi-sensor data fusion calibration with
machine learning models are compared. Calibration is evaluated
by combining data from various sensors with linear and nonlinear
regression models.

Index Terms—IoT platform, sensor calibration, multi-sensor
data fusion, low-cost sensors, uncontrolled environments, ma-
chine learning models, correlated errors.

I. INTRODUCTION

IN recent years there has been a growing interest in de-
ploying Internet of Things (IoT) platforms in various fields

such as agriculture, wildlife tracking, tracking people or air
pollution monitoring [1], [2], [3], [4]. A large part of the re-
search and published literature has focused on communication
protocols and the reduction of energy consumption, as well as
the transmission of data to repositories where this information
is analyzed [5], [6], [7], while less attention has been paid to
the quality of the data received [4], [8].

One of the biggest challenges in these platforms is to guar-
antee the quality of the information they collect. Depending
on the field of application, the low-cost sensors that are incor-
porated into the wireless nodes that make up the network have
better or worse quality. One of the fields in which low-cost
sensors have a quality that is still being tested is the sensors
that measure air pollution [4], [8]. Sensors for nitrogen dioxide
(NO2), nitrogen monoxide (NO), tropospheric ozone (O3) or
particle matter (PM2.5, PM5), among others, are generally not
calibrated by the manufacturer, and if they have been, they
have not been calibrated in the environmental conditions in
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which they will provide measurement data. This is the cause
of major issues for air quality managers because sensor data
quality cannot be assessed and, despite this, the data are often
communicated through citizen science initiatives and reported
as reference values. This lack of quality control has led to
the negative perception of sensor data by regulatory bodies,
and driven their use with extreme caution by the scientific
community. As a result, there is a major need for strategies to
test and validate sensor data for air quality monitoring [9].

In the European H2020 CAPTOR project (2016-2018), three
testbeds in Spain, Italy and Austria were deployed for tro-
pospheric ozone monitoring using low-cost sensors mounted
on wireless nodes [10]. Tropospheric ozone (O3) is produced
by the reaction of NOx and volatile components with solar
radiation. Although O3 is produced in large cities, it tends
to spread with the wind and affect non-urban areas, having
a major impact on agriculture and people. The deployed
wireless nodes included sensors of O3, NO2, temperature and
relative humidity. In addition, the sensors deployed included
metal-oxide (MOX) and electro-chemical (EC) based sensor
technologies. A total of sixty-one nodes were deployed, one
hundred and sixty-six sensors of O3, twenty-six of NO2,
sixty-one of temperature and relative humidity. The sensors
underwent a three-week calibration process followed by a
three-month deployment in volunteer homes. The data has
been sent to a cloud platform, where it has been processed
and made accessible to citizens through a mobile application.
Thus, one of the objectives of the project was to make
citizens aware of the impact of pollution, and in particular
tropospheric ozone, on people. Several nodes were deployed
at reference stations at all times to perform theoretical studies
to better understand the calibration process, and thus improve
the accuracy of contaminant concentration measurements with
low-cost sensors.

In recent years, there has been a growing interest in com-
paring and evaluating various calibration algorithms such as
multiple linear regression [11], [12], [13], [14], K-nearest
neighbors [14], [15], support vector regression [13], [16] or
random forest [13], [15], [17]. Most of these papers use nodes
that mount an array of sensors since many air pollutants are
directly or inversely related to other pollutants (e.g. ozone
is inversely related to nitrogen oxide due to titration) or to
environmental parameters (temperature and relative humidity)
[11], [18], [19]. The results of these studies indicate that the
air pollution sensor technology is still not mature enough for
the sensors to give results with high accuracy. On the other
hand, since the cost of the sensors is low, it is possible to
mount several sensors that measure the same pollutant in the
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same node to add robustness and fault tolerance [10]. This
approach adds redundancy to the data captured by the sensor,
which can improve the quality of the observations taken.

The aim of this paper is to study calibration mechanisms
that take advantage of this redundancy to improve the quality
of the final observations. These mechanisms will contribute to
improving sensor data quality and facilitate their deployment
for citizen communication and awareness purposes with regard
to air quality. To this end, we study the use of multi-sensor
data fusion techniques for calibrating air pollution sensors. In
particular, in this paper, we:

• describe the data set taken by the IoT platform deployed
with nodes mounting array of sensors, including O3,
NO2, temperature and relative humidity sensors,

• determine multi-array sensor calibration for metal-oxide
and electro-chemical O3 sensors taking into account envi-
ronmental conditions (temperature and relative humidity),

• define a multi-sensor data fusion framework. In particular,
we will compare calibration with array of sensors, multi-
sensor data fusion calibration with weighted averages,
and multi-sensor data fusion calibration with machine
learning models,

• compare the multi-sensor data fusion approach using
several regression algorithms such as multiple linear
regression, K-nearest neighbors, support vector regression
and random forest,

• analyse the multi-fusion schemes for calibrating O3 using
a set of O3 of the same or different sensor technologies:
multi-sensor data fusion with only metal-oxide sensor
technologies and multi-sensor data fusion with metal-
oxide and electro-chemical sensor technologies.

The paper is organized as follows: in section II the related
work is mentioned. Section III describes the data collection
platform, including the collection nodes, the sensor technolo-
gies and the data sets obtained for calibration. Section IV
discusses the calibration methods used and how the multi-
sensor data fusion approach works, while section V shows
the results of the multi-sensor data fusion calibration. Finally,
section VI concludes the paper.

II. RELATED WORK

Sensor fusion, defined as data aggregation [20], in wireless
sensor networks (WSN) has been studied in great detail
in the literature. In this context, the aim is to summarize
sensor measurement data to reduce the amount of messages
transmitted, and the energy consumption [21]. In the context
of using inertial units of measurement (IMU) sensors for
orientation or activity detection, it has been proposed to fuse
sensors using complementary filters or Kalman filters in order
to obtain complementary information provided by different
types of sensors [22]. Wu et al. [23] presents a hierarchical
architecture of a system for estimating the activity of daily
living of individuals from the fusion of different smartphone
sensors, where the fusion of sensors by time-series is exploited
in several stages of the system. In other contexts, the goal
of using data fusion in multi-sensor environments [24], [25]
is to obtain a lower detection error probability and a higher
reliability by using data from multiple distributed sources.

In a survey paper focused on calibration in uncontrolled
environments, Barcelo-Ordinas et al. [8] define the term of
multi-sensor data fusion in the calibration context as the
”combination of information from two or more data sources
(sensors) into a single one that provides a more accurate
description than that of any of the individual data sources”.
The concept is that in this context of calibration, a number of
sensors (called array of sensors) participate in the calibration
of the target sensor to reduce calibration errors. The sensor
array principle is widely used [4], [11], [13], [17], [18], [19],
[26] in the calibration of air pollution sensors, where the sensor
calibration consists of measuring all cross sensitivities of the
sensor array to compensate for all interfering contaminants
and environmental conditions. Different calibration methods
covering linear and non-linear models have been used with
arrays of sensors depending on the type of contaminant and
cross sensitivities. Multiple linear regression [11], [12], [13],
[14] is used for calibration of O3, NO2, CO and PM sensors
among others. In other cases, because the sensor does not
behave linearly, non-linear models have been investigated for
the calibration of low-cost sensors: K-nearest neighbors [14],
[15], support vector regression [13], [16] or random forest
[13], [15], [17].

Multi-sensor data fusion techniques are well known in many
applications [27], [28], and specifically the use of multi-sensor
data fusion techniques with weighted averages in ultrasonic
and infrared sensors [29] with uncorrelated errors or in target
tracking applications [30] with correlated errors. P. Avery [31]
obtains the optimal weights for the special case of having
sensors with correlated errors. Another different approach to
multi-sensor data fusion in air pollution sensors is presented
in [12], where the use of a multi-sensor data fusion using
machine learning between the same family of sensors is
introduced to improve the performance of a multiple linear
regression model. Thus, it is observed that the inclusion of
four O3 sensors can improve the quality of the model that
only comprises one sensor. This is the topic that is studied in
more detail in this work; if the use of several sensors in a node
that measure the same phenomenon can result in a significant
improvement in the calibration model.

III. TESTBEDS AND DATA SET

The H2020 Captor project arose from the need to raise
awareness about ground-level ozone pollution and its con-
sequences for people. Three IoT testbeds were installed in
Spain, Italy and Austria [10]. The data collection campaigns
lasted all summer, from May to October, as O3 is a seasonal
pollutant in Europe that is formed as a reaction of NOx
and solar irradiation. The deployed wireless sensor network
consisted of thirty-five nodes with a total of one-hundred-
forty O3 (4 per node) MICS 2614 metal oxide sensors, thirty-
five temperature and relative humidity sensors. In addition,
twenty-six other nodes were deployed with a total of twenty-
six electro-chemical sensors O3 Alphasense OX-B431 and
twenty-six temperature and relative humidity sensors. As the
OX-B431 sensors measure O3 plus NO2, it was necessary to
add to each of these nodes an electro-chemical Alphasense
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NO2-B43F sensor to compensate the measurement of NO2.
The data taken by the nodes deployed in the testbeds were
sent to a repository using a cellular connection. The nodes
transmitted the sensor data with a time stamp and a node
identifier every half hour, therefore there were no bandwidth
or latency restrictions.

Twenty-five nodes with MOX sensors and one with EC
sensors were deployed on the Spanish platform, ten nodes with
MOX and another ten nodes with EC sensors on the Italian
platform and fifteen nodes with EC sensors on the Austrian
platform. Areas with high ozone concentrations were chosen
and which had at least one reference station managed by a
government organization with which to compare and calibrate
the sensors. The nodes were divided into two groups that
produced two types of data sets1. The first group is composed
of those nodes that were deployed all summer in volunteer
houses. The sensors were calibrated for at least two weeks
by placing them in a reference station near the volunteers’
homes. Therefore this data set has corresponding samples
between two or three weeks of measurements. The second
group of nodes were placed in a reference station throughout
the campaign. Therefore the data set produced is composed of
samples corresponding to between eighteen and twenty weeks
depending on the node.

To perform the multi-sensor data fusion calibration study,
we need sensors that have been in the same location during
the same period. Therefore, we built five data sets, Table
I, extracted from the original data sets organized by having
sensor samples at the same times at the same reference
station. Data sets 1 and 2 correspond to nodes characterized
by having a large number of sensors with MOX technology
placed in the same reference station. Data sets 3, 4 and 5
correspond to reference station locations where nodes with
different technologies, MOX and EC, coincided.

IV. SENSOR CALIBRATION

Calibration techniques in air pollution include linear and
non-linear methods. The simpler one is multiple linear regres-
sion while the non-linear include instance-based methods such
as K-nearest neighbors, ensemble methods such as random
forest and kernel methods such as support vector regression.

Multiple linear regression (MLR) is the extension of the
simple linear regression when dealing with more than one
feature. It approximates the real function with a linear approxi-
mation where the regression coefficients are obtained from the
normal equations. K-nearest neighbors (KNN) is based on all
the training data. The output for a new observation will be the
average of the outputs for the k closest training observations
in feature space to the new observation. Random forest (RF)
combines several decision trees which have been de-correlated
by using bootstrap sampling. Then, the response for a new
observation will be the average of the outputs of the different
decision trees. Support vector regression (SVR) makes use of
the ”kernel trick” to perform a regression problem in a feature
space of larger dimension than the input space.

1The raw data and calibration software is available at http://sans.ac.upc.
edu/?q=node/231

A. Sensor array calibration

The calibration system of an array of sensors for calibrating
an ozone sensor, Figure 1, consists of feeding the model
with the raw data obtained by the ozone, temperature and
relative humidity sensors {s, sTemp, sRH} and by the reference
station yRefStat value over a training set. This training phase
produces a set of calibration coefficients or hyper-parameters.
Temperature and relative humidity sensors are used in the
calibration model to correct the ozone sensor signal [4].
Each calibration model (MLR, KNN, RF, SVR) produces a
set of calibration coefficients or hyper-parameters that allow
calibrated data to be obtained on new tuples {s, sTemp, sRH}
of raw data that we call uncalibrated or test data. In the case
of nonlinear models, a 10-fold cross-validation procedure is
applied with the training data to select the best set of hyper-
parameters for each nonlinear method. Finally, a hold-out test
set is used to see the performance of the different models. The
outcome of the process, applied to new tuples of raw data, is
an ozone value, ycal, that represents the ozone sensor involved
in the calibration process.

Fig. 1. Sensor array calibration model for ozone sensors.

B. Multi-sensor data fusion calibration with weighted aver-
ages

Fusion with weighted averages consists of finding a linear
estimator that aggregates the measurements of all the sensors.
To do this, a weight wi such that

∑
i wi=1, is assigned to each

calibrated individual ycal i sensor and the fusion is the result
of the sum of each calibrated individual value ycal i weighted
by its corresponding weight wi:

ycal =

n∑
i

wi ycal i (1)

In the case that the measurements are independent, and there-
fore the errors εi between the sensors are independent, it is
easy to check that the optimal weights are [31]:

wi =
(σ2
i )

−1∑n
j (σ

2
j )

−1
(2)

Where σ2
i is the variance of the sensor error i, with i=1 . . . n,

and n the number of air pollution sensors involved. This linear
estimator is the best in the sense that it is unbiased and
efficient [31]. However, in the general case that the sensor
measurements are correlated, the errors will be correlated and
we have to include these correlations in the model. Define
V as the covariance matrix between the εi errors in each

http://sans.ac.upc.edu/?q=node/231
http://sans.ac.upc.edu/?q=node/231
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TABLE I
DATA SETS USED IN THE MULTI-SENSOR DATA FUSION CALIBRATION.

Data Set Reference St. Year Node Labels Technologies # Sensors # of Samples
Label Name

1 Manlleu 2017 C17001, C17002, C17003, C17005, MOX 28x MICS 2614 918
C17010, C17011, C17013

2 Tona 2017 C17006, C17007, C17012, C17014, MOX 24x MICS 2614 1395
C17017, C17027

3 Tona 2017 R69-17 EC 1x OX-B431 + 1x NO2-B43F 2366
C17017 MOX 4x MICS 2614

4 Tona 2018 R69-18 EC 1x OX-B431 + 1x NO2-B43F 933
C18017 MOX 4x MICS 2614

5 Palau Real 2019 C19000 EC 1x OX-B431 + 1x NO2-B43F 1179
C19027 MOX 4x MICS 2614

sensor. If yRefStat is the reference value and ycal i is the
calibrated value in sensor i, εi=yRefStat - ycal i. We call Vij
the covariance between the errors at sensor i and the errors at
sensor j, and Vii=σ2

i as the error variance at sensor i. Then,
it can be shown that the optimal weights are [31]:

wi =

∑n
j (Vij)

−1∑n
j

∑n
k (Vjk)

−1
(3)

If we apply this model to our case, first, we train each
sensor as if it were a calibration with sensor arrays, Figure
2. The outputs of each of these modules are (i) ytrainingi ,
with i=1,. . . ,n, of the training data, and (ii) the coefficients
that will allow the values of the test data set to be obtained.
Second, get the covariance matrix V of the errors εi=y

training
i

- yRefStat between the data calibrated with the training set and
the reference values and calculate the weights wi. Finally, after
obtaining the calibrated values over the test data set ycal i,
weight them with weights wi to derive the ozone value ycal.
We have to observe that if the machine learning model used in
the training produces bias, the estimation of the method with
weighted averages will also have bias, so that the weights used
are not optimal in this sense.

Fig. 2. Multi-sensor data fusion calibration model with weighted averages.

C. Multi-sensor data fusion calibration with machine learning

The idea of multi-sensor data fusion calibration with ma-
chine learning is to employ more than one sensor (s1, . . . ,
sn) of the same pollutant at the machine learning module. The
outcome of the process, applied to new tuples of data captured
by the set of sensors, is an ozone value, ycal, that represents all
ozone sensors involved in the calibration process. The goal is
for sensors that are highly correlated with the reference values
to potentially improve model’s performance. However, if the
different sensors used in fusion are highly correlated with each
other, the multi-collinearity phenomenon, that causes problems
in the learning algorithms, may appear.

TABLE II
CORRELATION VALUES FOR SOME SENSORS OF DATA SET 1.

ref s1 s2 s3 s4 s5 s6 s7 s8 Temp RH
ref
s1 0.92
s2 0.89 0.98
s3 0.92 0.99 0.97
s4 0.92 0.98 0.95 0.98
s5 0.68 0.87 0.84 0.85 0.87
s6 0.48 0.63 0.6 0.63 0.58 0.59
s7 0.87 0.96 0.96 0.97 0.93 0.82 0.73
s8 0.88 0.98 0.98 0.97 0.95 0.87 0.64 0.97

Temp 0.77 0.59 0.52 0.6 0.64 0.37 0.17 0.52 0.5
RH -0.66 -0.54 -0.49 -0.57 -0.57 -0.39 -0.32 -0.52 -0.49 -0.82

Table II shows the correlation values between eight of the
twenty-eight sensors in data set 1. The first column indicates
the correlation of each sensor with the reference values. It can
be seen that all ozone sensors are correlated to the reference
value in varying degrees, indicating that some sensors will
produce better calibrated results than others. In addition, it
can be observed that the sensors are also correlated to different
degrees to each other. This can lead to a problem of multi-
collinearity between sensors if we use them in the multi-sensor
fusion process, i.e. the measurements of one sensor are a linear
combination of the measurements of the other sensors. The
Variance Inflation Factor (VIF) indicates whether a variable
has multi-collinearity, and is defined as follows:

V IF (xj) =
1

1−R2(xj)
(4)

Where the coefficient of determination R2 is obtained by
regressing xj over the rest of features. In Figure 3, you can
see the percentage of sensors with multi-collinearity given the
fusion of different numbers of sensors and several combina-
tions of the same number of sensors, with a confidence interval
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Fig. 3. Mean number of sensors with VIF larger than 10 with different number
of sensors fusion. Confidence interval (shaded area) calculated as a t-student
with 95% confidence level.

(shaded area) calculated as a t-student with 95% confidence
level. It is observed that when dealing with a fusion of six
sensors or more, almost all sensors participating in fusion have
multi-collinearity (VIF greater than 10). To overcome multi-
collinearity, we use the partial least squares (PLS) method to
perform feature extraction. PLS is a supervised learning task,
so it makes use of response values (Y ∈RN ) to find orthogonal
directions that maximize the variance and the correlation
between the response values and the directions. It uses an
iterative algorithm to find the different directions of the partial
least squares. In fact, the m-th PLS component φ̂m solves:

maximize
α

Corr2(y,Xα)V ar(Xα) (5a)

subject to ‖α‖= 1 (5b)

αTSφ̂l = 0, l = 1, ..,m− 1 (5c)

Where the S matrix is the sample covariance matrix of variable
xj . Thus, at each step, we are maximizing the correlation
with the response and the component’s variance. In this case,
we take advantage of the fact that the components found are
orthogonal, so that, multi-collinearity is eliminated. The data
projected into the components are used as features instead of
employing the raw sensors’ measures as features.

For illustrative purposes, Figure 4.a) shows the correlation
of the sensors with the two first PLS components for data
set 1 and a fusion of four MOX sensors. It is observed that
the different ozone sensors are highly correlated with the
first component, i.e. the first component represents mainly
ozone sensors. In contrast, the second component has more
correlation with the temperature and relative humidity sensors.
Therefore, this second component will encode information
about temperature and relative humidity. Also, Figure 4.b)
shows the same results when fusion is performed with eight
MOX sensors. The same pattern is observed, the ozone sensors
are grouped and highly correlated with the first component.

The model in Figure 5 works as follows: the data from the
{s1,. . . , sn, sTemp, sRH} sensors and the reference yRefStat
values belonging to the training set are used to find the PLS
components (PLS box in the training phase). Afterwards, the
machine learning model is fed with the reference values and
all training data projected to the PLS components found to
train the model (MLR, KNN, RF or SVR box in the training
phase). Finally, once the new uncalibrated data (test data) is
acquired, these sensor values are transformed into the step

(a) Data set 1 with 4 MOX fusion. (b) Data set 1 with 8 MOX fusion.

Fig. 4. Variables’ correlation with the first PLS components.

PLS-Transform in the directions found with the training data,
and the prediction is made with the learning model of the
trained machine model (MLR, KNN, RF or SVR box in the
test phase).

Fig. 5. Multi-sensor data fusion calibration model with machine learning.

V. RESULTS

To evaluate multi-sensor data fusion we perform two types
of experiments: (i) fusion with only sensors of the same MOX
family, and (ii) fusion of metal-oxide (MOX) sensors with
one electro-chemical (EC) sensor. Each MOX sensor costs no
more than twenty Euros and therefore up to four sensors per
node were placed. On the other hand, the cost of a pair of
EC sensors with their electronics is close to three hundred
Euros, which makes putting more than one EC sensor per
node excessively expensive in a low-cost deployment. When
only one sensor has been calibrated, MOX or EC, the model
in Figure 1 has been used, while when one sensor has been
calibrated using the fusion of several MOX or EC, the model
in Figure 2 or Figure 5 has been used. In both cases, 75% of a
data set is randomly sampled for training and model selection
purposes and the remaining 25% of the same data set is used
to validate the performance of the different machine learning
models, where the data sets are those described in Table I.

A. Multi-sensor data fusion calibration with MOX sensors

Ferrer-Cid et. al. [26] show that identical ozone MOX
sensors behave with large variability given the same calibration



6

model. Thus, we will first investigate the fusion of multi-sensor
data between sensors of the same family. For this purpose,
we will use data sets 1 and 2, each containing twenty-eight
and twenty-four MOX sensors placed in the same location.
Manlleu reference station for data set 1 and Tona reference
station for data set 2 are used.

Figures 6.a) and 6.c) show the RMSE as we add a sensor
to the fusion model. To do this, we choose the sensor that
has the best RMSE, let’s call it s1, obtained using Figure 1.
To calculate the fusion with two ozone sensors, we randomly
choose ten sensors and form ten groups of two sensors in
which each group always contains the sensor s1. We use the
calibration model in Figure 5 for each of the ten groups, and
calculate the average RMSE over the ten groups of sensors and
a confidence interval (shaded area) calculated as a t-student
with 95% confidence level. To calculate the fusion with three
sensors, we proceed in the same way. We keep sensor s1,
and form ten groups with three sensors, where the other two
sensors are chosen randomly. We apply the calibration model
in Figure 5 for each group, and calculate the average RMSE
with its confidence interval over the ten groups of sensors. We
repeat the process for the fusion of n-sensors.

(a) Data set 1, fusion via machine
learning.

(b) Data set 1, fusion via weighted
averages.

(c) Data set 2, fusion via machine
learning.

(d) Data set 2, fusion via weighted
averages.

Fig. 6. Mean validation RMSE with confidence intervals (shaded area) of
95% for data sets 1 and 2.

The first thing we can observe in Figures 6.a) (data set
1) and 6.c) (data set 2) is that linear methods (MLR) have
worse RMSE than non-linear methods (KNN, RF and SVR).
In data set 2, choosing the best of the sensors s1, we obtain an
RMSE of 8.5 µgr/m3 for MLR, of 7.0 µgr/m3 and 6.6 µgr/m3

for KNN and RF and of 5.3 µgr/m3 for SVR. In the case of
data set 1, the best sensor has a very similar RMSE for the
four calibration methods, but we have observed the same trend
that in data set 2 if we compare the different methods: MLR
the worst, KNN and RF similar, and SVR the best. When it
comes to fusion by weighted averages, Figures 6.b) and 6d),

the improvement is smaller. This is because we are far from
optimal conditions for fusion with weighted averages, since
MOX sensors are highly correlated with each other, Table II.
It is also observed that this fusion has the same behavior as
fusion with machine learning for the MLR case.

In multi-sensor data fusion with machine learning, adding
between four and six sensors considerably reduces the RMSE
on all models. The one that less reduces the RMSE is the
MLR and needs more sensors in the fusion to decrease the
RMSE. On the other hand, non-linear models reduce the
RMSE between 20% and 40% with four sensors. In the data
set 2, whose best sensor has an RMSE between 5 and 8
µgr/m3 depending on the model used, the reduction is smaller.
However, by using three or four sensors in the fusion, the result
of having only one sensor is improved. On the other hand, the
use of more than five or six sensors in fusion does not improve
too much the RMSE in average.

B. Multi-sensor data fusion calibration with MOX and EC
sensors

We have seen in the previous section that the fusion of
multi-sensor data with the same technology with low-cost
sensors improves the quality of the data calibrated in terms
of RMSE when we use fusion with machine learning. In this
section, we investigate what happens if we merge sensor data
from different technologies. To do this, we will use data sets 3,
4 and 5, which include a node with four ozone MOX sensors
and a node with an ozone EC sensor. To obtain the mean
validation RMSE and the confidence interval, we will use
the same procedure followed in the previous subsection. The
amount of shaded area due to the confidence interval depends
on the data collected.

We note, Figure 7.a), c) and e), that MOX sensors in data
set 3 perform much better, lower RMSE, than MOX sensors
in data sets 4 and 5. For example, the best of the C17017
node sensors in the 2017 summer campaign, Figure 7.a), has
an RMSE of of 12.5 µgr/m3 for MLR, of 10.3 µgr/m3 and
10.0 µgr/m3 for KNN and RF and of 9.7 µgr/m3 for SVR,
while the best of the C18017 node sensors in the 2018 summer
campaign, Figure 7.c), has an RMSE of 31.8 µgr/m3 for
MLR, of 27.8 µgr/m3 and 27.5 µgr/m3 for KNN and RF and
of 27.2 µgr/m3 for SVR. One of the reasons for the very
different behaviour between the two campaigns is that the
environmental conditions, with higher heat episodes in 2018
compared to 2017, led to higher ozone concentrations in 2018,
and therefore the behaviour of the ozone sensors, especially in
their capacity to measure very high ozone values, was lower
than with lower ozone conditions. This effect makes us have a
data set with sensors that behave well (data set 3), and another
with sensors that behave badly (data set 4), allowing us to
investigate two extreme cases of each other.

The EC sensor gives better RMSE values than any of the
MOX sensors in data sets 3 and 4, Figures 7.a) and c), while
in data set 5, Figure 7.e), the MOX sensors outperform the
EC sensor. We also observe that the fusion of only MOX
sensors does not improve the result of having an EC sensor
on average, Figures 7.a) and c). In the case of the fusion with
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machine learning of an EC sensor with MOX sensors with
good performance (data set 3), we can observe in the four
calibration models, Figure 7.a), that the RMSE obtained is
better than having only the EC sensor. Adding more than one
MOX sensor to the fusion with the EC sensor improves slightly
in the case of MLR, does not improve or worsen in the case
of KNN and RF, and improves when we use SVR.

In the case of the fusion with machine learning of an EC
sensor with MOX sensors with worse performance (data set
4), we can observe in the four calibration models, Figure 7.c),
that the RMSE obtained does not improve or worsen having
only one EC sensor. It is observed that sometimes, e.g., MLR
case, if more MOX sensors are added, the fusion can lead
to a slight increase in errors. This is because in this case
of fusion, one technology is clearly performing worse than
the other, thus fusion does not improve the calibration model
with sensor array by choosing the best sensor. In other words,
the worst performing sensors are worse correlated with the
concentration value of the reference station. These results show
that when there is a large performance difference between
sensor technologies, sensor fusion does not produce a large
gain, as is also the case for data set 5, Figure 7.e). In the
latter case, where MOX sensors behave better than the EC
sensor, the improvement of merging both technologies is very
small. We can conclude that when both technologies measure
in the same range, improvements are observed, while when
one technology behaves better than the other, fusing slightly
improves results, especially with non-linear methods.

In the case of using fusion with weighted averages, we can
observe that the results deviate from the optimal theoretical
improvement. In the practical case, we are merging biased
estimators obtained from the machine learning methods (MLR,
KNN, RF or SVR) and highly correlated sensors between
sensors of the same technology. In the three data sets, Figures
7.b), d), f), we can see that fusion between only MOX sensors
produces the same trends as with the fusion with machine
learning, but with fewer RMSE improvement. In one case,
Figure 7.f) (data set 5) RF and KNN worsen using weighted
averages. These results are not as good as those obtained by
merging the sensors into the machine’s learning model, but the
results show a similar trend, even when conditions differ from
optimal. The reason for not having as good a performance
as the machine learning approach is due to the high level of
correlation between the MOX sensor errors, while the optimal
conditions for fusion would be to have independent errors. On
the other hand, in the case of fusion between technologies,
a MOX sensor plus an EC sensor, these fusion methods can
introduce an improvement when the technologies do not differ
much in performance.

VI. CONCLUSIONS

We have investigated the fusion of multi-sensor data in
an IoT deployment with metal-oxide (MOX) and electro-
chemical (EC) ozone sensors. Multi-sensor data fusion consists
of giving a calibrated value of an ozone sensor using a set
of ozone sensors. We have shown the basic architecture,
sensor array calibration, to calibrate an air pollution sensor

with environmental sensors such as temperature and relative
humidity. In addition, we have described two other calibration
systems used for the fusion of data from multiple sensors. The
first is based on obtaining the mean weighted value, where
the optimum weights are obtained from the covariance matrix
of the errors, since it assumes that the errors between the
pollution sensors used are correlated. The second method is
based on fusing raw data into the machine learning model. In
this system, because there can be a multi-collinearity effect, we
perform a PLS on the data before using the machine learning
models. This reduces the effect of highly correlated sensors.

First we have shown how multi-sensor data fusion improves
RMSE using ozone sensors with MOX technology. In fact, the
average RMSE is improved with four or six MOX sensors.
This technique is feasible since MOX sensors have a reduced
cost and their electronics, a voltage divider, is simple, so the
cost of having a small set of sensors, for example, four sensors
on a board is not large. We have also seen that using two
complementary technologies can reduce the RMSE. In this
case, we have tested data sets with different behaviors. In two
data sets, the individual EC sensor behaved better than the best
of the array’s MOX sensors, in another vice versa. In general,
it is when both technologies have similar behaviors that multi-
sensor fusion behaves best. In this case, the complementarity
of technologies improves the final value obtained. On the
other hand, when one technology behaves much better than
the other, there is no substantial improvement in the fusion
result. This is due to the fact that the fusion result is basically
the result of the sensor with very good behaviour, while the
sensors that behave much worse are poorly correlated with the
reference ozone concentrations.

Another important conclusion is that from the methodologi-
cal point of view, we have seen that when it comes to real data
sets, the machine learning approach of sensor fusion works
better than the weighted average approach. This is because
the optimal conditions (e.g. uncorrelated errors) for sensor
fusion are difficult to meet in a real data set case. As future
work, we think that the fusion of multi-sensor data can also be
interesting in case there is aging in the sensors. EC sensors are
known to age before MOX. This means that the fusion between
EC and MOX could get better results than only EC when
the EC sensor starts to age and MOX does not. Moreover,
we believe that the estimation of concentration values can be
improved if we take into account the information from sensors
located in the vicinity of the sensor to be calibrated exploiting
the spatial correlation of ozone concentrations.
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