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Abstract: Stomach cancer is a complex disease and one of the leading causes of cancer mortality in 
the world. With the view to improve patient diagnosis and prognosis, it has been stratified into four 
molecular subtypes. In this work, we compare the results of multiple machine learning algorithms 
for the prediction of stomach cancer molecular subtypes from gene expression data. Moreover, we 
show the importance of decorrelating clinical and technical covariates. 
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1. Introduction 

Several large-scale projects, such as TCGA (The Cancer Genome Atlas) or ICGC (International 
Cancer Genome Consortium), have studied dozens of tumor types through the analysis of hundreds 
of samples with several molecular assays of the genome, epigenome, proteome, transcriptome and 
the respective clinical data. One such example is stomach adenocarcinoma (STAD), representing 
nearly 5% of new cancer cases worldwide [1]. STAD is a complex disease, with a mortality rate almost 
equivalent to its incidence. 

The molecular profiling of more than four hundred tumor cells with five different assays has 
allowed for the identification of four novel STAD sub-types with different diagnostic and prognostic 
value [2]. However, extensive characterization of tumor samples is not always possible due to clinical, 
technical or budget limitations. 

Previous studies have shown that strong outcome predictor signatures can be derived from RNA 
data in cancer [3]. These studies indicate that gene expression carries sufficient signal for the accurate 
prediction of phenotypes. For this reason, we believe that the genetic alterations observed in different 
STAD molecular subtypes should be reflected in differential tissue gene expression 

Here, we set to investigate if it is to possible to develop a predictive tool that, based on 
transcriptome profiling with RNA-seq, can predict stomach cancer samples according to the 
proposed stratification. In order to minimize the effect of possible unwanted sources of variation in 
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the data, we have analyzed the impact of pre-processing the data, taking into account the effect of the 
available covariate information. 

2. Materials and Methods 

STAD-specific transcriptome data were obtained from the TCGA Research Network 
(https://www.cancer.gov/tcga). Samples with insufficient clinical information were excluded. As 
features, only coding genes with a median Fragments per Kilobase per Million (FPKM) value higher 
than 1 were retained (Figure 1) and their values were log2 transformed. 

 
Figure 1. Diagram of the pipelines used in this work. Steps with a dashed line were only performed 
on pipelines with hyper-parameter optimization. 

Technical or clinical factors may correlate with both the features and the target STAD molecular 
subtypes, possibly confounding machine learning (ML) predictions. Without a decorrelation step, the 
model may thus over- or under-estimate the effect of the features on the target variable. As a data 
pre-processing step, we regressed out the possible confounding effects of the covariates on the gene 
expression data through a multiple linear model: 

gi = 𝛃0 + 𝛃1age + 𝛃2gender + 𝛃3race + 𝛃4age_diagnosis + 𝛃5distant_metastasis + 𝛃6primary_tumor + 𝛃7icd-10 + 𝛃8morphology + 𝛃9diagnosis + 𝛃10prior_malignancy + 𝛃11tissue + 𝛃12tumor_stage + � 
where gi represents the gene expression for gene i, 𝛃0 is the intercept, 𝛃i i ∈ (1, ..., 12) is the regression 
coefficients for the covariates, and � is the noise term. 

The residuals of the model, obtained as the difference between the real gene expression value 
(gi) and the predicted expression (ĝi), were used as the expression phenotype. 

After this step, several ML pipelines were devised with the goal of predicting STAD molecular 
subtypes from RNA-seq data (chromosomal instability (CIN) 61.45%, Epstein–Barr virus (EBV) 
7.54%, genomically stable (GS) 12.85%, microsatellite instability (MSI) 18.16%; see Figure 2a). First, 
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the dataset was split into stratified training (n = 250) and test (n = 108) sets. Each algorithm learned 
from the training set’s features to build prediction models, with or without hyper-parameter 
optimization. Cross-validation was performed to test the model’s performance on sampled portions 
of the training data, with subsequent validation using the unseen test set. 

 
Figure 2. (a) Distribution of STAD molecular subtypes in the data (N = 358). (b,c) Correlation heatmap 
between clinical covariates and the top 10 gene expression principal components. (b) Before covariate 
decorrelation. (c) After covariate decorrelation. (d) Distribution of test f1-scores across methods, as 
compared to the dummy estimator’s (which always predict most frequent class) score. (e) Test metrics 
obtained using LightGBM with default settings, stratified by class. (f) The top 10 gene features by 
their importance for the LightGBM default model. 

3. Results 

Several covariates possessed significant correlation (ranging from -0.14 to 0.17) with the top 10 
principal components for gene expression (Figure 2b). As expected, all covariate correlation was lost 
after gene-wide covariate decorrelation (Figure 2c). 

Despite a heavy class imbalance (Figure 2a), all machine learning models outperformed a 
dummy estimator that always predicted the most frequent class, with an average 8% improvement 
across methods (Figure 2d). There were also notable differences in performance between algorithms, 
with the best performer, LightGBM, having a test F1-score 5.6% better than the second best, logistic 
regression. By contrast, there was no significant difference between results of models using default 
algorithm hyper-parameters and those obtained following hyper-parameter optimization. On a per 
class basis, the CIN sub-type exhibits the best results (Figure 2e). The top 10 most informative gene 
features for the best performing model (LightGBM default) are shown in Figure 2f. Of special interest, 
the second most contributing gene, ENSG00000076242 (MLH1), is a tumor suppressor gene whose 
epigenetic silencing is associated to MSI tumors. 

4. Discussion 

Machine learning methods show promise for the prediction of molecular subtypes in STAD, 
with even the simplest methods performing better than random chance. However, perhaps due to 
the small sample size and/or imbalance of the data, hyper-parameter optimization offered no 
performance improvements. 
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