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Deep	Neural	Network	for	Super-Resolution	of	

Multitemporal	Remote	Sensing	Images	

Abstract	
Since	few	years	ago,	artificial	intelligence	(AI)	has	become	a	spotlight	technology	in	which	a	

lot	of	people	are	interested	in.	Most	of	them	want	to	do	research	and	use	it	to	solve	a	huge	

variety	of	modern	and	difficult	computing	problems	which	could	be	associated	with	a	wide	

variety	of	interesting	fields.	As	soon	as	AI	has	improved,	convolutional	neural	networks	(CNN)	

have	taken	an	excellent	role	in	the	world	of	image	processing,	in	particular,	for	Remote	Sensing	

applications.		Nevertheless,	artificial	intelligence	for	multi-image	superresolution	from	multi-

temporal	imagery	has	received	little	attention	so	far.		

In	this	work,	it	is	proposed	a	CNN,	which	exploits	both	spatial	and	temporal	correlations	in	the	

low-resolution	images	by	using	two	different	convolutional	layers	(2D	and	3D	convolutions)	

to	 combine	 multiple	 satellite	 images	 from	 the	 same	 scene	 which	 are	 taken	 in	 different	

temporal	moments.		

The	experiments	have	been	carried	out	using	a	dataset	generated	by	Sentinel-2	(European	

Space	Agency	satellite)	images	captured	over	2	different	places	over	the	world,	New	York	and	

El	Cairo.	This	model	aims	to	obtain	super-resolution	images	from	five	low-resolution	images,	

or	less,	being	aware	of	the	number	of	input	images	that	the	CNN	has.	

	

Key	 words--Multi-temporal	 images,	 convolutional	 neural	 networks,	 multi-image	

superresolution,	artificial	intelligence	
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Xarxa	Neuronal	Profunda	per	Super-Resolució	

d’Imatges	de	Teledetecció	Multitemporal	

Resum	
Des	de	fa	uns	anys,	la	intel·ligència	artificial	(IA)	s’ha	convertit	en	una	tecnologia	destacada	en	

la	 qual	moltes	 persones	 estan	 interessades.	 La	majoria	 volen	 fer	 recerca	 i	 utilitzar-la	 amb	

l’objectiu	de	resoldre	una	gran	varietat	de	problemes	 informàtics	moderns	 i	difícils	que	es	

poden	associar	en	una	àmplia	varietat	de	camps	interessants.	Tan	aviat	com	l’IA	va	millorar,	

les	xarxes	neuronals	convolucionals	(CNN)	van	desenvolupar	un	paper	fonamental	en	el	món	

del	processament	d’imatges,	en	particular,	per	aplicacions	de	Teledetecció.	Malgrat	això,	 la	

intel·ligència	artificial	per	a	la	superresolució	d’imatges	capturades	des	de	satèl·lits	a	partir	

d’imatges	multitemporals	ha	rebut	poca	atenció	fins	ara.		

En	aquest	treball,	es	proposa	una	CNN,	que	explota	correlacions	tant	espacials	com	temporals	

en	imatges	de	baixa	resolució	mitjançant	dues	capes	convolucionals	diferents	(convolucions	

2D	 i	3D)	amb	 l’objectiu	de	combinar	diverses	 imatges	d’una	mateixa	escena	capturades	en	

diferents	instants	temporals.		

Els	experiments	s’han	realitzat	mitjançant	un	conjunt	de	dades	generades	amb	imatges	del	

Sentinel-2	(satèl·lit	de	l’Agència	Espacial	Europea),	les	quals	han	estat	obtingudes	en	2	llocs	

diferents	del	món,	Nova	York	i	El	Caire.	L’objectiu	d’aquest	experiment	és	obtenir	imatges	de	

gran	resolució	a	partir	de	cinc	imatges	de	baixa	resolució,	o	menys,	de	la	mateixa	escena,	tenint	

en	compte	el	nombre	d’imatges	que	es	tenen	com	a	input	de	la		CNN.	

	

Paraules	 clau--Imatges	multi-temporals,	 xarxes	 neuronals	 convolucionals,	 superresolució	 de	

múltiples	imatges,	intel·ligència	artificial	
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Red	Neuronal	Profunda	para	la	Súper	Resolución	de	

Imágenes	de	Teledetección	Multitemporal	

Resumen	
Desde	 hace	 unos	 años,	 la	 inteligencia	 artificial	 (IA)	 se	 ha	 convertido	 en	 una	 tecnología	

destacada	en	la	que	mucha	gente	está	interesada.	La	mayoría	de	ellos	quiere	investigar	y	usarla	

con	el	objetivo	de	resolver	una	gran	variedad	de	problemas	informáticos	modernos	y	difíciles	

que	podrían	asociarse	en	una	amplia	variedad	de	campos	interesantes.	Tan	pronto	como	la	IA	

ha	 mejorado,	 las	 redes	 neuronales	 convolucionales	 (CNN)	 han	 desempeñado	 un	 papel	

fundamental	en	el	mundo	del	procesamiento	de	imágenes,	en	particular,	para	aplicaciones	de	

Teledetección.	 Sin	 embargo,	 la	 inteligencia	 artificial	 para	 la	 superresolución	 de	 imágenes	

satelitales	a	partir	de	imágenes	multitemporales	ha	recibido	poca	atención	hasta	ahora.		

En	este	trabajo,	se	propone	una	CNN,	que	explota	las	correlaciones	espaciales	y	temporales	en	

imágenes	satelitales	de	baja	resolución	mediante	el	uso	de	dos	tipos	de	capas	convolucionales	

diferentes	(convolución	2D	y	3D)	para	combinar	múltiples	imágenes	de	la	misma	escena	que	

se	toman	en	diferentes	instantes	temporales.		

Los	 experimentos	 se	 han	 llevado	 a	 cabo	 utilizando	 un	 conjunto	 de	 datos	 generados	 con	

imágenes	 del	 Sentinel-2	 (satélite	 de	 la	 Agencia	 Espacial	 Europea),	 las	 cuales	 han	 sido	

capturadas	 en	 2	 lugares	 diferentes	 del	mundo,	 Nueva	 York	 y	 El	 Cairo.	 El	 objetivo	 de	 este	

experimento	 es	 obtener	 una	 imagen	 de	 superresolución	 a	 partir	 cinco	 imágenes	 de	 baja	

resolución,	o	menos,	de	la	misma	escena,	teniendo	en	cuenta	el	número	de	imágenes	que	se	

tienen	como	input	en	la	CNN.		

	

	

Palabras	clave--Imágenes	multitemporales,	redes	neuronales	convolucionales,	superresolución	

de	múltiples	imágenes,	inteligencia	artificial	
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1. Introduction	

The	project	was	carried	out	in	the	Image	and	Video	Processing	Group	(GPI)	from	the	Signal	

Theory	and	Communications	Department	(TSC)	at	the	Technical	University	of	Catalonia	(UPC).	

This	project	consists	of	the	design	and	the	implementation	of	a	Deep	Neural	Network	with	the	

aim	 of	 generating	 a	 super-resolution	 remote	 sensing	 image	 from	 a	 set	 of	 low-resolution	

images	captured	by	European	Space	Agency	(ESA)	Sentinel-2	satellite.		

1.1. Statement	of	purpose	

Deep	learning	is	a	recent	technology	that	is	evolving	very	quickly.	Within	the	world	of	Deep	

Learning	 we	 find	 the	 Convolutional	 Neural	 Networks	 (CNN),	 that	 have	 been	 successfully	

applied	 to	 image	processing	and	 in	particular	 to	enhance	 the	resolution	of	 remote	sensing	

imagery.	 However,	 deep	 learning	 techniques	 for	 multi-image	 super-resolution	 from	

multitemporal	imagery	(MISR)	have	received	little	attention	so	far	due	to	the	lack	of	datasets.	

For	this	reason,	in	this	thesis	a	CNN	model	that	address	the	MISR	problem	is	presented.	The	

model	was	trained	using	Sentinel-2	imagery	from	ESA.	The	objective	of	the	experiment	is	to	

obtain	a	super-resolved	image	from	a	set	of	low-resolution	(LR)	versions	of	the	same	scene.	

The	original	high-resolution	(HR)	images	came	from	Sentinel-2	and	are	used	as	target,	that	is,	

images	 which	 are	 used	 to	 compare	 the	 results	 obtained	 by	 the	 proposed	 deep	 learning	

architecture.	The	LR	images	were	artificially	down-scaled	when	the	dataset	was	created.	We	

used	the	temporal	availability	 feature	of	sentinel	 imagery,	choosing	LR	 images	which	were	

taken	in	different	temporal	instants	and	use	them	as	input	for	the	CNN.	Some	pre-processing	

steps	like	the	selection	of	images	with	low	percentage	of	cloud	coverage	and	the	elimination	

of	dark	zones	in	images	were	necessary	to	form	the	dataset,	the	SNAP	software	[24]	was	used	

for	that	purpose.		

The	 main	 contribution	 of	 this	 project	 is	 a	 CNN-based	 architecture	 to	 combine	 multiple	

registered	 images	 from	the	same	scene	exploiting	both	temporal	and	spatial	correlations.	 I	

also	 discuss	 how	 a	 variable	 number	 of	 LR	 inputs	 images	 can	 modify	 the	 super-resolved	

obtained	image	using	the	same	hyperparameters	in	each	training	process.	

The	starting	point	of	this	work	is	a	system	that	won	a	challenge	in	2019	[2]	called	DeepSUM.	

One	 of	 the	main	 goals	 of	 this	 project	was	 to	 replicate	 this	model	with	 the	 addition	 of	 the	

necessary	modifications	to	deal	with	Sentinel-2	images.	Moreover,	the	programming	language	

used	 to	 implement	 the	 Deep	Neural	 Network	 is	 also	 a	 different	 from	 the	 one	 used	 in	 the	



 

11 
 

DeepSUM	project,	specifically,	I	have	used	Python	as	the	programming	language	and	Pytorch	

as	framework.		

Other	software	used	was	ENVI,	for	visualizing	and	processing	the	images.		

Based	on	the	above-mentioned	motivation,	the	main	objectives	of	this	project	are:	

- Learning	 about	 Phyton	 programming	 language	 and	 Pytorch	 framework	 for	 the	

implementation	of	Deep	Neural	Networks.	

- Learning	 the	 basics	 of	 Deep	 Learning	 and	models	 for	 super-resolution	 of	 satellite	

images.	

- Getting	familiar	with	one	of	the	frameworks	used	for	Convolutional	Neural	Networks	

(CNN)	and	using	it	to	create	an	entire	deep	network.	

- Learning	how	to	manage	a	big	dataset	of	images	to	use	it	to	train	and	test	the	Deep	

Neural	Network	developed.	

- Implementing	 a	 Deep	 Neural	 Network	 which	 processes	 low-resolution	 images	 to	

obtain	a	super-resolution	image.	

- Analyzing	the	results	obtained	while	different	number	of	LR	multitemporal	images	are	

used	as	input	to	train	the	Deep	Neural	Network.		

1.2. Work	�rganization	

Work	Packages,	Milestones	and	Gantt	Diagram	tables	followed	during	the	project	can	be	found	

at	Appendix	A.	

1.3. Project	structure	

In	this	first	chapter,	a	brief	introduction	of	Multi-image	Super-Resolution	(MISR)	was	done.	

Chapter	2	presents	the	state	of	the	art	of	SISR	and	MISR	models.	

Chapter	3	gives	an	introduction	about	the	methodology	and	the	experimental	development	of	

the	project.	Moreover,	 chapter	5	 and	6	present	 the	budget,	 project	 conclusions	 and	 future	

development	respectively.	

Finally,	the	Appendix	contains	additional	content	about	the	Final	Thesis.		
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2. State	of	the	art:	

Monitoring	and	mapping	 the	Earth	play	a	 very	 important	 role	while	using	 remote	 sensing	

techniques.	 Augmenting	 the	 accessibility	 of	 high	 spatial	 resolution,	 remote	 sensing	data	 is	

useful	for	a	lot	of	applications,	among	others,	urban	mapping,	vegetation	growth	monitoring,	

intelligence	 gathering	 and	 military	 surveillance.	 Nevertheless,	 the	 augmenting	 quality	 of	

spatial	 and	 spectral	 resolution	 of	 the	 instruments	 which	 are	 onboarded	 on	 the	 satellites	

generates	a	large	amount	of	data	that	complicates	compression	algorithms	[25]-[26]	to	meet	

the	 disponible	 downlink	 bandwidth.	 This	 usually	 causes	 the	 reduction	 availability	 of	 HR	

products.	This	problem	combined	with	the	high	cost	of	small	missions	is	a	potential	incentive	

of	needing	to	develop	a	new	generation	of	post-processing	instruments	to	enhance	the	spatial	

resolution	of	remote	sensing	imagery.		

Techniques	based	on	super-resolution	(SR)	are	useful	to	achieve	the	reconstruction	of	high	

resolution	(HR)	pictures	from	some	low	resolution	(LR)	images.		

There	are	two	main	methods	used	to	obtain	super-resolution	images:	single-image	SR	(SISR)	

and	multiple-image	SR	(MISR).	SISR	exploits	spatial	correlations	in	a	single	image	with	the	aim	

to	obtain	the	HR	version.	Nevertheless,	the	information	available	in	a	single	image	is	limited	

as	some	information	is	lost	during	the	image	formation	process.	Moreover,	due	to	the	use	of	

only	one	specific	LR	input	image,	it	requires	a	longer	training	process	to	achieve	the	objective	

of	making	the	correct	correspondence	of	the	LR	image	with	the	high-resolution	one.	

Other	applications	use	multiple	images	of	the	same	scene	in	different	time	frameworks	to	be	

fused	by	means	of	MISR	techniques,	in	which	the	obtention	of	the	super-resolution	image	takes	

benefit	of	high	spatial-frequency	details	given	by	the	different	observations	of	the	same	scene.		

In	terms	of	remote	sensing,	multiple	images	could	be	obtained	by	multiple	satellites	capturing	

the	same	scene	at	different	times,	by	a	spacecraft	during	multiple	orbits,	or	may	be	acquired	

at	the	same	time	using	different	sensors	on	the	same	satellite.	 	However,	using	a	technique	

based	in	MISR	is	not	as	easy	as	it	looks.	There	are	relevant	problems	which	have	to	be	taken	

into	 account	 and	 have	 to	 be	 solved	 when	 these	 methods	 are	 used.	 The	 most	 usual	 are:	

invariance	to	absolute	brightness	variability,	image	registration,	time-varying	scene	content	

and	unreliable	data	(e.g.,	due	to	cloud	coverage).	
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Deep	learning	methods	have	been	applied	successfully	in	SISR,	but	not	a	lot	of	work	has	been	

done	for	the	MISR	problem	with	remote	sensing	data.	

SISR	 techniques	 can	 be	 grouped	 into	 three	 main	 classes:	 optimization-based	 methods,	

learning	based	methods	and	interpolation-based	methods.	Optimization-based	methods	are	

mainly	used	to	model	prior	knowledge	about	natural	images	and	include	small	variation	priors	

[6],	 gradient-profile	 prior	 [7]-[8]	 and	 non-local	 similarity	 [9]-[10].	 The	 addition	 of	 prior	

knowledge	 restricts	 the	 potential	 solution	 space	 performing	 higher	 quality	 solutions.	

Nevertheless,	when	the	upscaling	factor	increases,	the	results	degrade	promptly.	Moreover,	

these	methods	are	computationally	expensive.		

Learning-based	 methods	 work	 modelling	 the	 concurrence	 between	 LR	 and	 HR	 images	 to	

obtain	the	SR	predicted	 image.	Some	methods	related	to	 learning-based	are:	sparse-coding	

[27]-[28],	anchored	neighbourhood	regression	[29],	random	forest	[30],	k-nearest	neighbours	

[31],	among	others.	These	techniques	have	a	high	capability	of	extracting	high-level	features	

from	images.		

More	recently,	Convolutional	Neural	Networks	(CNN)	have	been	exploited	for	remote	sensing	

imagery.	CNN	takes	benefit	of	the	fact	that	the	input	is	composed	of	images	and	they	constrain	

the	model	in	a	more	sensible	way.	Particularly,	the	layers	of	a	CNN	have	neurons	arranged	in	

3	dimensions:	width,	height	 and	depth	 (the	word	depth	 refers	 to	 the	 third	dimension	of	 a	

volume,	not	the	depth	of	the	full	Neural	Network,	this	is	the	number	of	layers	in	a	network).	

Each	 layer	 of	 a	 CNN	 transforms	 the	 3D	 input	 volume	 to	 a	 3D	 output	 volume	 of	 neuron	

activations.		

	

	
	
	
	

	
Figure	2.1.	Simple	example	of	a	Convolutional	Neural	Network.	(2020).	[Photo].	CS231n	Convolutional	Neural	

Networks	for	Visual	Recognition.	https://cs231n.github.io/convolutional-networks/#overview	
	

On	the	other	hand,	the	first	work	about	MISR	was	proposed	by	Tsai	and	Huang	[12],	in	which	

a	 frequency-domain	 technique	 to	 fuse	 multiple	 under-sampled	 images	 with	 sub-pixels	

displacements	 to	 improve	 Landsat	 TM	 spatial	 resolution	 images	 was	 used.	 Despite	 its	

difficulty,	other	MISR	methods	related	to	spatial-domain	techniques	were	proposed	over	the	
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years.	 Some	 of	 them	 are:	 iterative	 back	 projection	 (IBP)	 [13],	 projection	 onto	 convex	 sets	

(POCS)	[14]-[15],	regularized	methods	[16]-[17],	etc.		

The	IBP	[13]	attempts	to	improve	an	initial	conjecture	of	the	super-resolved	image	by	back	

projecting	the	difference	between	an	artificial	LR	picture	and	real	LR	pictures	to	the	SR	image.	

The	cons	are	coming	from	the	difficulty	of	 the	model	 image	degradation	processes	and	the	

awkwardness	in	including	image	priors.	

POCS	[14]-[15]	tries	to	estimate	the	SR	images	below	meticulous	motion	compensations	while	

restoration	 and	 interpolation	 problems	 are	 solved.	 This	 method	 is	 affected	 by	 high	

computational	cost	and	slow	convergence.		

Regularized	 methods	 [16]-[17]	 are	 the	 most	 efficient	 multi-frame	 SR	 reconstruction	

approximation.	They	preserve	edge	information	while	eliminating	image	noise.		

A	 few	 years	 ago,	 convolutional	 neural	 networks	 which	 use	 MISR	 methods	 started	 to	 be	

employed	to	solve	problems	in	the	context	of	video	super-resolution	[32]-[33].	Two	steps	are	

used	to	complete	this	work:	motion	estimation	and	compensation	followed	by	an	up-sampling	

process.	A	CNN	is	trained	to	decipher	both	motion	estimation	and	HR	image	reconstruction	

tasks	by	setting	up	a	number	of	pixels-dependent	filters	and	residual	correction.	

Even	though,	not	a	lot	of	work	has	been	done	on	deep	learning	MISR	techniques	in	the	context	

of	remote	sensing.	For	this	reason,	an	end-to-end	trainable	CNN	and	using	MISR	method	in	

satellite	images	is	aimed	to	be	tackled	in	this	thesis	by	converting	the	LR	input	images	in	a	

single	SR	image.	
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3. Methodology:		

3.1. The	Sentinel-2	Dataset	

European	 Sentinel-2	 satellite	 [3]-[4],	 is	 an	 Earth	 observation	 satellite	which	 is	 part	 of	 the	

group	of	missions	from	European	Space	Agency	(ESA)	inside	the	Copernicus	special	program.	

It	was	launched	in	two	stages.	Sentinel-2A	was	launched	in	2015	into	a	Sun-synchronous	orbit	

at	an	altitude	of	786km.	Moreover,	its	cufflink,	Sentinel-2B,	was	launched	one	year	after,	 in	

2016	in	the	same	orbit,	but	with	a	lag	of	180º,	giving	a	high	revisit	frequency.	Specifically,	the	

revisit	time	between	the	two	satellites	is	5	days	and	each	satellite	has	a	revisit	itself	time	of	10	

days.		

The	table	3.1	contains	a	summary	of	the	orbital	information	of	Sentinel-2A	and	2B:	

ALTITUDE	 INCLINATION	 PERIOD	 CYCLE	

GROUND-

TRACK	

DEVIATION	

LOCAL	TIME	

AT	

DESCENDING	

NODE	

786	km	 98.62	deg	 100.6	min	 10	days	 +-	2	km	 10:30	hours	

Table	3.1.	Orbital	information	of	Sentinel-2	satellites.	

Sentinel-2	 brings	 a	multispectral	 high-resolution	 camera	with	 12	 spectral	 bands	which	 is	

designed	to	map	land	cover	and	vegetation	growth	across	the	entire	globe.	It	uses	a	sweeping	

system	along	the	path	(push-broom)	to	generate	an	 image	290km	wide	with	the	benefit	of	

being	able	to	offer	a	very	high	geometric	and	spectral	performance	in	its	data.	The	camera	has	

two	large	focal	planes,	one	in	the	visible	(VIS)	and	near-infrared	(NIR)	bands	and	the	other	in	

the	mid-infrared	(SWIR).	

Nowadays,	it	is	difficult	to	find	a	dataset	which	contains	both	LR	images	and	the	corresponding	

HR	observation	of	the	same	scene,	as	captured	from	the	same	platform.	This	is	the	main	reason	

of	having	to	generate	a	new	dataset	using	HR	images	captured	by	Sentinel-2	satellite	of	ESA	

where	LR	observations	for	each	specific	scene	are	obtained	through	a	down-sampling	process	

of	the	HR	image	by	assuming	a	sensor	imaging	model.		

To	create	the	dataset,	I	have	acquired	HR	images	with	a	resolution	of	10m	(bands	2,	3,	4	and	

8).	 Images	 correspond	 to	 two	 different	 regions,	 New	 York	 and	 El	 Cairo,	 from	 Sentinel-2	

mission,	with	a	revisit	time	of	5	days.	At	the	beginning,	images	from	Spain	were	also	planned	

to	be	used	but,	finally	and	with	the	purpose	of	using	a	dataset	as	different	as	possible	in	terms	
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of	image	characteristics	(buildings,	vegetation,	fields,	desert,	etc.),	only	New	York	and	El	Cairo	

images	were	used.		

Images	 are	 provided	 as	 level	 2A	 products	 composed	 of	 radiometrically	 and	 geometrically	

corrected	Top-of-Atmosphere	reflectance	in	Plate	Carre	projection	for	the	visible	(VIS)	and	

near-infrared	(NIR)	spectral	bands.	

Once	these	images	are	collected,	a	pre-processing	image	treatment	has	been	done	using	SNAP	

and	ENVI	software.	The	size	of	the	HR	collected	images	is	10980	x	10980	pixels.	Each	image	

has	been	cropped	in	smaller	parts	(128	x	128)	and	the	dark	zones	have	been	removed	because	

they	do	not	give	relevant	information	and	also	introduce	errors	while	training	the	Deep	Neural	

Network.	The	images	have	four	channels	with	a	bit-depth	of	16	bits.	

Each	sample	consists	of	five	LR	images	of	the	same	scene,	but	captured	in	a	different	time	and	

a	HR	 image	used	 as	 the	 target.	 To	 obtain	 the	 LR	 images,	 a	 down	 sampling	 pre-processing	

transformation	 has	 been	 applied	 when	 images	 acquired	 from	 Seninel-2	 have	 been	 down	

sampled	to	images	of	size	64x64.		

In	total,	the	dataset	contains	13700	samples,	that	corresponds	to	68500	LR	images	and	13700	

HR	images.	The	images	of	a	specific	sample	are	captured	in	different	times	over	a	maximum	

period	 of	 two	months,	 during	 July	 and	August	 2019.	 Changes	 and	weather	 (clouds,	water,	

shadows,	missing	regions,	agricultural	activities,	human	activity,	etc.)	generate	a	problem	in	

the	 similarity	 of	 the	 images	 and	 give	 a	 major	 challenge	 in	 the	 fusion	 of	 the	 images	 and	

reconstruction	of	the	super-resolution	one.		

Figure	3.1.	Example	of	one	scene	of	five	down-scaled	input	images.		

An	interesting	application	of	MISR	is	the	development	of	this	SR	product	from	multiple	and	

more	 frequent	LR	 images	which	 could	provide	augmented	 resolution	and	higher	 temporal	

availability	among	LR	images.	
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3.2. Proposed	Method	

The	proposed	method	attempts	to	reconstruct	a	super-resolution	image	ISR	given	a	set	of	N	LR	

images	ILR[0,	N-1]	which	are	from	the	same,	scene	but	captured	in	different	temporal	instants.	

The	output	of	the	Deep	Neural	Network	is	formulated	as:	

ISR	=	f	(ILR[0,	N-1],	j)	

where j	 corresponds	to	the	model	parameters	and	f	refers	 to	the	mapping	 function	which	

reconstructs	 the	 SR	 image	 using	 LR	 images	 as	 input.	 In	 order	 to	 use	 PyCharm	 as	 the	

programming	framework,	the	input	down-scaled	images	ILR[0,	N-1]	and	the	target	IHR	image	used	

to	compare	the	result	obtained	from	the	Deep	Neural	Network	are	depicted	as	tensors	with	

shape	B	x	N	x	C	x	H	x	W	and	B	x	C	x	rH	x	rW.	B,	represents	the	batch	size;	N,	the	number	of	

images;	C,	the	number	of	channels,	in	particular,	as	bands	2	(blue),	3	(green),	4	(red)	and	8	

(NIR)	are	used,	the	number	of	channels	in	each	picture	is	4.	H	and	W	represent	the	height	and	

width	of	the	input	pictures	respectively	and	r	is	the	upscaling	factor	(equals	to	2).	Assuming	

that	 the	HR	 image	corresponds	to	 the	same	region	as	 the	LR	 input	 images,	 there	are	some	

points	to	take	into	account.	

- The	LR	images	are	all	registered	with	each	other.	

- The	LR	images	and	the	HR	image	are	registered	among	them.		

- The	 brightness	 of	 the	HR	 image	 could	 be	 slightly	 different	 compared	with	 the	 LR	

images.	

- The	presence	of	clouds,	shadows	and	corrupted	pixels	is	possible	in	both	HR	and	LR	

images.	

- The	HR	image	is	the	result	of	not	down-sampling	randomly	one	of	the	LR	images.	

To	address	these	issues,	I	took	as	starting	point	the	DeepSUM	model	[1],	which	proposes	a	

supervised	deep	learning	technique	where	a	CNN	learns	the	residual	between	ground	truth	

and	the	bicubic	interpolation	of	the	input.	

Before	the	introduction	of	the	images	inside	the	CNN,	a	bicubic	interpolation	preprocessing	

step	with	scaling	factor	equal	to	2	has	been	applied	in	all	the	input	pictures	with	the	aim	to	

obtain	a	128	x	128	size	in	all	of	them.		

The	CNN	is	composed	of	two	main	blocks.	A	schematic	overview	of	the	network	is	being	able	

to	be	visualized	in	the	Figure	3.2.	
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Figure	3.2.	CNN	model	taken	as	reference	from	DeepSUM	project	[1]	and	used	as	scheme	to	develop	this	project	CNN.	

The	N	input	bicubic-upsampled	and	registered	images	are	independently	treated	by	a	SISRNet	

subnetwork.	 Then,	 FusionNet	 subnetwork	 is	 used	 to	 fuse	 all	 the	 features	 of	 the	 images	

obtained	by	the	SISRNet	to	produce	a	residual	image.	The	obtained	residual	image	is	added	

element-wise	to	the	average	of	the	bicubic-upsampled	and	registered	images	to	obtain	the	SR	

image.	

3.2.1. SISRNet	Architecture	

The	main	block,	called	SISRNet,	is	a	feature	extractor	which	works	as	a	SISR	network,	but	with	

the	difference	that,	in	this	case,	an	output	projection	in	multiple	channels	is	acquired.	Every	

single	N	input	bicubic-upsampled	and	registered	image	is	processed	independently	in	each	

branch	of	the	subnetwork.		

The	purpose	of	using	a	SISRNet	as	the	first	block	is	because	of	the	high	capability	of	this	type	

of	networks	 to	 exploit	 spatial	 correlations	aimed	 to	 improve	 the	 initial	 bicubic-upsampled	

image	 and	 the	 learning	 skill	 which	 it	 has	 to	 extract	 visual	 features	 that	 can	 be	 used	 by	

subsequent	network	blocks.		

Each	of	the	N	branches	of	the	SISRNet	is	divided	in	a	sequence	of	8	subblocks	which	follow	the	

same	structure:	2D	convolution	layer,	Instance	Normalization	layer	and	LeakyRelu	layer.		

The	 64	 filters	 in	 each	 of	 the	 8	 convolutional	 layers	 of	 the	 SISRNet	 are	 shared	 along	 the	

temporal	dimension.	It	means	that	all	the	N	input	images	go	through	the	same	set	of	filters.	

They	use	a	kernel	size	of	3x3,	with	a	padding	and	stride	equal	to	1.		

The	Instance	Normalization	layer	is	used	to	execute	the	network	training	as	independent	as	

possible	of	the	brightness	differences	and	contrast	among	the	input	images.		
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Finally,	the	LeakyRelu	as	activation	function	[20]	is	implemented	in	each	layer	of	the	SISRNet	

subnetwork	 to	 speeds	up	 training.	Having	 the	mean	activation	 closest	 to	0	makes	 training	

faster.	In	the	Figure	3.3.	the	LeakyRelu	activation	function	is	shown.	

 
	

	

	
	
	
	
	
Figure	3.3.	Graphic	of	the	Leaky	ReLU	activation	function.	(2019).	[Photo].	Activation	Functions:	Sigmoid,	ReLU,	

Leaky	ReLU	and	Softmax	basics	for	Neural	Networks	and	Deep	Learning.	
https://medium.com/@himanshuxd/activation-functions-sigmoid-relu-leaky-relu-and-softmax-basics-for-

neural-networks-and-deep-8d9c70eed91e	
 

3.2.2. FusionNet	Architecture	

Replicating	 the	 DeepSUM	 [1]	 model,	 the	 featured	 images	 obtained	 from	 the	 SISRNet	 are	

successively	 fused	 in	 the	 FusionNet	 subnetwork	 which	 is	 composed	 by	 4	 3D	 convolution	

layers	with	kernel	size	of	2x3x3	and	no	padding	in	the	temporal	dimension.	It	aims	to	reduce	

temporal	 depth	 to	 1.	Moreover,	 a	 last	 2D	 convolution	 layer	 is	 used	 to	 obtain	 the	 residual	

subnetwork	 output	 image.	 This	 architecture	 is	 useful	 because	 it	 carries	 out	 a	 slow	 fusion	

method	in	the	feature	space.	It	allows	the	network	to	learn	how	to	decouple	image	features	

that	are	relevant	to	the	fusion	from	the	irrelevant	changes	and	to	create	the	residual	image.			

The	high	frequency	details	indispensable	to	correct	the	bicubically-upsampled	inputs	are	the	

only	features	which	are	estimated	by	the	network.	This	technique	is	used	in	remote	sensing	

for	solving	image	restoration	problems	using	deep	learning.		

Finally,	the	residual	image	obtained	on	the	FusionNet	is	element-wise	added	to	a	basic	merge	

of	the	N	input	bicubically-upsampled	and	registered	images	in	the	form	of	their	average.		

The	output	of	the	Deep	Neural	Network	is:	

𝐼!" = (
1
𝑁

& 𝐼#$"%"
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	) + 𝑅	



 

20 
 

being	 𝐼$"%" 	the	 input	 bicubically	 interpolated	 and	 registered	 images	 and	 R	 the	 residual	

estimated	by	the	CNN.	

3.3. Loss	Function	

The	Euclidean	distance	between	the	HR	target	and	the	SR	image	obtained	from	the	CNN	is	

computed	to	calculate	the	loss	function	used	to	optimize	the	model	parameters.		

The	Sentinel-2	satellite	does	not	capture	HR	images	from	the	same	scene	simultaneously,	so	

there	might	be	differences	among	these	pictures	because	of	weather	conditions,	modifications	

in	 the	 landscape	 and	 variable	 absolute	 brightness	 due	 to	 the	 revisit	 time	which	 takes	 the	

satellite	to	capture	one	image	from	another.	For	this	fact,	the	images	for	each	sample	of	the	

dataset	 have	 been	 chosen	 as	 invariant	 as	 possible	with	 the	 aim	 to	 solve	 these	 differences	

between	 the	 compared	 images,	 that	 is,	 choosing	 the	 temporal	 images	 for	 each	 sample	 as	

similar	as	possible	and	with	the	minimum	percentage	of	cloud	coverage.	

To	calculate	the	 loss,	all	Euclidean	distances	between	the	IHR	(target)	and	the	ISR	(predicted	

image)	in	each	batch	are	computed	independently.	Then,	the	average	of	all	Euclidean	distances	

of	each	batch	is	obtained	to	minimize	the	loss	function.	To	sum	up,	the	loss	computed	is	as	

follows:	

𝐿 = 𝑚𝑒𝑎𝑛$./0123	||	𝐼4" − 𝐼!" 	||5	

The	HR	image	used	as	target	and	also	to	compute	the	loss	was	chosen	in	relation	of	the	cloud	

coverage	which	had	in	it,	trying	to	choose	the	image	in	each	sample	that	had	a	less	percentage	

of	cloud	coverage.	The	aim	of	doing	that	is	because	it	is	tried	to	minimize	the	number	of	targets	

with	 areas	 covered	 by	 clouds	 or	 shadows	with	 the	 aim	 to	 get	 better	 results	 and	 train	 the	

network	more	efficiently.	The	most	 interested	areas	 to	 train	 the	model	are	 land	areas;	not	

weather	conditions	neither	temporal	distortions	which	could	appear	in	some	pictures	if	a	bad	

selection	was	done.		

3.4. Metrics	

In	this	project,	Peak	Signal	Noise	Ratio	(PSNR)	and	Structural	Similarity	Image	(SSIM)	are	the	

metrics	utilized	to	quantitatively	evaluate	the	results.			



 

21 
 

3.4.1. Peak	Signal	Noise	Ratio	(PSNR)	

The	aim	of	using	the	PSNR	[22]	evaluation	metric	in	this	thesis	is	to	obtain	a	quantitative	value	

to	know	if	the	SR	image	has	been	improved	or	not	during	the	training	process.	To	tackle	this,	

PSNR	 metric	 between	 the	 HR	 target	 and	 the	 averaged	 N	 input	 bicubic-upsampled	 and	

registered	images	is	computed.	Then,	this	result	is	compared	to	the	PSNR	metric	between	the	

HR	target	and	the	SR	output	image.	A	higher	result	in	this	last	calculus	means	that	the	SR	image	

has	a	better	quality	and	its	improvements	are	due	to	the	training	process.	

The	theoretical	formula	of	the	PSNR	computed	between	the	target	and	the	SR	output	image	is:	

𝑃𝑆𝑁𝑅 = 20 log
265 − 	1

||𝐼4" − 𝐼!"||5
	

The	PSNR	computation	is	meant	only	for	pixels	that	are	not	concealed	both	in	the	target	HR	

image	and	in	the	reconstructed	image.	To	deal	with	that,	dark	areas	were	removed	during	the	

preprocessing	process	and	the	cloud	coverage	in	pictures	was	as	minimum	as	it	was	able.		

3.4.2. Structural	Similarity	Image	(SSIM)	

SSIM	[23]	is	a	metric	which	quantifies	image	quality	degradation	due	to	some	losses	during	

data	processing	and	it	also	measures,	as	its	name	shows,	the	difference	between	two	similar	

images.	It	cannot	decide	or	know	which	of	the	two	images	is	better.	The	potential	relevance	of	

this	metric	is	that	using	it,	we	are	available	to	quantify	in	a	0	to	1	scale	how	similar	the	two	

images	are.			

The	theoretical	formula	of	the	SSIM	computed	between	the	target	and	the	SR	output	image	is:	

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 	
(2𝜇7𝜇8 + 𝑐,)(2𝜎78 + 𝑐5)

(𝜇75 + 𝜇85 + 𝑐,)(𝜎75 + 𝜎85 + 𝑐5)
	

where:	

- 𝜇7	𝑎𝑛𝑑	𝜇8	𝑎𝑟𝑒	𝑡ℎ𝑒	𝑎𝑣𝑒𝑟𝑎𝑔𝑒	𝑜𝑓	𝑥	𝑎𝑛𝑑	𝑦	𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.	

- 𝜎75	𝑎𝑛𝑑	𝜎85	𝑎𝑟𝑒	𝑡ℎ𝑒	𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑜𝑓	𝑥	𝑎𝑛𝑑	𝑦	𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.	

- 𝜎78	𝑖𝑠	𝑡ℎ𝑒	𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑜𝑓	𝑥	𝑎𝑛𝑑	𝑦.	

- 𝑐, = (𝑘,𝐿)5, 𝑐5 = (𝑘5𝐿)5	 are	 two	 variables	 to	 stabilize	 the	 division	 with	 weak	
denominator.	
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- L	the	dynamic	range	of	the	pixel-values	(in	this	project,	the	dynamic	range	to	calculate	
the	SSIM	between	the	predicted	image	and	the	target	is	the	difference	between	the	
maximum	value	and	the	minimum	value	of	the	target	pixels)..	

- 𝑘, = 0.01	𝑎𝑛𝑑	𝑘5 = 0.03	𝑏𝑦	𝑑𝑒𝑓𝑎𝑢𝑙𝑡.	

In	this	project,	we	use	it	to	estimate	how	much	has	improved	the	final	output	SR	image	during	

the	 training	 process,	 computing	 the	 SSIM	 metric	 between	 the	 averaged	 N	 input	 bicubic-

upsampled	and	registered	images	and	the	HR	target	image.	Then,	this	result	is	compared	to	

the	SSIM	metric	between	the	HR	target	and	the	SR	output	image.	A	higher	result	in	this	last	

calculus	means	that	the	SR	image	has	a	better	quality.	

3.5. Network	Training	

The	training	process	is	used	to	define	and	calculate	the	weights,	bias	and	activation	function	

parameters	of	the	CNN	with	the	aim	to	achieve	the	desired	network	behavior	and	to	well-fit	

the	network.		

During	training,	the	model	training	loss	is	computed	in	each	epoch.	From	this	prediction,	the	

parameters	and	weights	are	adjusted	with	the	aim	to	minimize	the	error.	The	desired	network	

training	behavior	is	accomplished	when	the	acquired	parameters	minimize	the	loss	function.	

The	algorithm	used	in	the	training	process	is	called	Backpropagation.	It	is	the	method	in	which	

the	parameters	are	updated	before	starting	a	new	epoch	to	minimize	the	loss.		

Adaptative	Momentum	Estimation	Algorithm	(Adam)	[19]	has	been	the	optimizer	chosen	for	

the	 CNN	 training	 process.	 It	 is	 a	 combination	 of	 the	 gradient	 descent	 with	 momentum	

algorithm	 and	 the	 Root	 Mean	 Square	 (RMS)	 Prop	 algorithm.	 It	 calculates	 an	 exponential	

weighted	moving	average	of	the	gradient	and	then	squares	the	calculated	gradient.	Two	decay	

parameters	which	control	the	decay	rates	of	the	moving	averages	are	used	by	this	algorithm.	

The	main	arguments	used	to	calculate	the	Adam	optimizer	are	the	loss	function,	the	model	

parameters	and	the	learning	rate	which	will	be	reduced	during	the	training	process.		

The	Adam	Optimization	algorithm	is	employed	for	training,	with	momentum	parameters	b1	=	

0.9,	b2	=	0.999,	and	e	=	10-8.		

While	training,	hyperparameters	are	used.	These	are	the	parameters	which	are	defined	before	

the	network	training	process	and	its	main	function	is	to	help	the	algorithm	to	converge	and	

find	the	minimum	quicker.	
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The	most	 important	hyperparameter	while	 the	network	 is	 training	 is	called	Learning	Rate.	

Learning	Rate	is	the	step	taken	in	the	gradient	method	after	each	backpropagations	step.	It	is	

crucial	to	define	well	the	Learning	Rate	to	achieve	the	convergence	of	the	problem.	If	a	low	

Learning	 Rate	 is	 used,	 it	 will	 take	 a	 lot	 of	 iterations	 to	 achieve	 the	 minimum	 loss	

(convergence),	 if	 it	 is	 finally	 achieved.	 A	 Learning	Rate	 very	 high	will	 finalize	with	 a	 non-

convergence	of	the	problem.	These	differences	are	shown	in	Figure	3.4.		

 
Figure	3.4.	Representation	of	the	chosen	LR	during	training	process.	(2019).	[Photo].	Learning	Rate	Scheduling.	

https://www.deeplearningwizard.com/deep_learning/boosting_models_pytorch/lr_scheduling/	
	

Another	 hyperparameter	 to	 take	 into	 account	while	 setting	 up	 the	 training	 process	 is	 the	

number	of	Epochs.	This	parameter	 reflects	 the	number	of	 times	 the	whole	 training	data	 is	

shown	to	the	network	while	training.		

The	Batch	Size	is	the	hyperparameter	which	reflects	the	number	of	data	sub	samples	given	to	

the	network	after	which	parameter	update	happens.	The	bigger	the	batch	size	is,	the	higher	

will	be	the	computational	cost,	but	the	easier	will	be	the	acquisition	of	the	loss	convergence	to	

obtain	the	optimal	solution.		

While	the	training	process	is	running,	a	validation	process	is	simultaneously	done	with	the	

aim	to	prove	and	identify	if	the	training	is	being	successful	or	not.	The	validation	dataset	is	

made	from	a	10%	of	the	images	used	in	the	training	process.		

It	is	useful	to	see	the	evolution	of	the	loss	and	the	metrics	used	to	define	if	the	training	process	

is	underfitted,	overfitted	or	good	fitted.		

Underfitting	may	happen	when	the	CNN	is	being	trained	with	less	data	than	the	required	to	

achieve	good	results.	When	a	new	type	of	 input	data	is	used,	the	network	is	not	capable	to	

recognize	it.	It	is	not	able	to	generalize	the	knowledge	and	also	performs	poorly	on	the	training	

set.		
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Overfitting	may	happen	when	the	CNN	is	only	learning	specific	cases	and	it	will	be	incapable	

to	recognize	new	input	dates.	To	solve	it,	it	is	useful	to	introduce	while	training,	corrupted,	

noisy	or	non-common	data.		

Figure	3.5.	Left	to	right,	underfitting,	well-fitted	and	overfitting	models.	(2019).	[Photo].	Underfitting	and	
Overfitting	in	Machine	Learning.	https://geeksforgeeks.org/underfitting-and-overfitting-in-machine-learning/	

When	 the	 training	 process	 is	 finalized,	 the	 network	 is	 tested	 to	 prove	 and	 validate	 its	

functionality.	During	this	process,	a	new	dataset	which	the	network	has	not	seen	before	is	used	

as	input.	Moreover,	to	check	the	correct	operation	of	the	network,	PSNR	and	SSIM	metrics	are	

computed	during	this	last	step,	called	network	testing.	They	are	compared	with	the	results	of	

these	metrics	obtained	in	the	validation	process	during	the	training	to	see	if	the	Deep	Neural	

Network	has	been	well	trained	or	not.		

3.6. Data	Normalization	and	Standardization	

Techniques	such	as	Data	Normalization	[34]	and	Standardization	[35]	are	often	used	while	

imagery	datasets	are	being	prepared	with	the	aim	to	improve	the	network	learning	process.		

Data	Normalization	[34]	means	to	change	the	values	of	each	pixel	of	the	images	with	the	aim	

to	use	a	known	scale,	without	distorting	the	difference	between	the	interval	of	values	or	losing	

information.	In	this	project,	Data	Normalization	in	a	scale	between	0	and	1	was	available	to	be	

applied.	In	particular,	the	value	of	each	image	pixel	was	divided	by	the	215	-1,	which	was	the	

maximum	possible	value	acquired	by	a	pixel,	since	each	pixel	of	the	images	has	a	depth	of	16	

bits.		

Data	Standardization	[35]	is	the	process	of	rescaling	the	imagery	pixels	values,	so,	the	images	

have	a	mean	value	of	0	and	a	standard	deviation	of	1.	Standardization	assumes	that	data	has	a	

Gaussian	distribution,	which	will	make	the	technique	more	effective.	Standardization	is	useful	

when	data	has	varying	scales	and	the	algorithm	used	does	make	assumptions	about	the	data	

is	having	a	Gaussian	distribution.	
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3.7. Software	and	hardware	specifications	

The	computer	used	to	perform	all	the	experiments	was	the	server	provided	by	GPI	(gpu	and	

cpu),	a	regular	laptop	(just	cpu)	and	Google	Colab	(gpu).	Tensorboard	software	was	used	in	

Google	Colab.		
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4. Experimental	Results	

In	this	section	we	will	present	the	results	of	our	MISR	model	with	5	LR	input	images.	Then	we	

will	compare	these	results	with	other	configurations	of	the	model	using	less	LR	input	images	

(3	and	4).	

4.1. Calibration	Process	

To	obtain	the	final	results,	a	network	calibration	process	was	done	with	the	aim	of	choosing	

the	hyperparameters	which	perform	better,	using	a	small	dataset	generated	with	part	of	the	

images	that	were	included	into	the	final	dataset.	The	number	of	input	images	was	five	as	it	was	

the	amount	of	 initial	LR	 input	 images	which	were	used	 in	 the	base	model	during	 the	 final	

training	process.	

The	first	experiment	was	a	comparison	between	using	a	standardized,	normalized	or	both,	

standardized	 and	 normalized	 dataset	with	 the	 adjusted	 hyperparameters.	 For	 all	 of	 these	

methods	 the	 same	 steps	 were	 followed:	 bicubically-upsampled	 interpolation,	 SISRNet	

subnetwork,	 FusionNet	 subnetwork,	 and	 finally,	 addition	 of	 the	 averaged	 registered	 and	

bicubically-upsampled	interpolation	image	with	the	residual	image	which	the	FusionNet	gives	

as	output.		

To	perform	 this	 study,	 a	 large	variety	of	hyperparameters	 combinations	were	proved,	and	

finally	the	best	option	was	a	dynamic	Learning	Rate	=	5e-4	which	was	reduced	to	the	half	each	

10	epochs.	The	batch	size	used	was	set	to	16	and	the	number	of	epochs	computed	was	equal	

to	100.	

When	the	results	were	obtained,	PSNR	and	SISR	metrics	were	computed	to	obtain	quantitative	

results.		
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In	the	Table	4.1.,	the	main	results	of	the	experiment	are	shown:	

DATASET/RESULTS	 TEST	INPUT	PSNR	 TEST	OUTPUT	PSNR	 TEST	SSIM	

NORMALIZED	DATASET	 25.96	dB	 23.68	dB	 0.73	

STANDARDIZED	

DATASET	
31.24	dB	 31.89	dB	 0.67	

NORMALIZED	AND	

STANDARDIZED	

DATASET	

31.24	dB	 31.89	dB	 0.68	

	

Table	4.1.	Calibration	Test	Results	for	Normalized,	Standardized	and	Normalized+Standardized	Dataset.	(Test	Input	

PSNR:	averaged	input	images,	target;	Test	Output	PSNR:	predicted	SR	image,	target;	Test	SSIM:	predicted	SR	image,	

target).			

To	make	 a	 better	 normalization	method	 selection,	 it	 is	worthen	 to	 study	 the	 training	 and	

validation	 process	 of	 each	 experiment.	 With	 the	 aid	 of	 the	 Tensorboard	 software,	 it	 was	

possible	 to	plot	 the	 train	 and	validation	 losses	 and	 the	metrics	 studied	during	 training.	 In	

Figure	4.1.,	Figure	4.2.,	Figure	4.3.,	results	are	shown.	

	

Figure	4.1.	Left	to	right,	upon	to	bottom;	Normalized	Dataset	Training	Loss,	Validation	Loss,	PSNR	and	SSIM	graphs.	
(horizontal	axis	represents	epochs	/	vertical	axis	represents	dB	for	the	loss	graphs).	
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Figure	4.2.	Left	to	right,	upon	to	bottom;	Standardized	Dataset	Training	Loss,	Validation	Loss,	PSNR	and	SSIM	

graphs.	(horizontal	axis	represents	epochs	/	vertical	axis	represents	dB	for	the	loss	graphs).	

	

	
Figure	4.3.	Left	to	right,	upon	to	bottom;	Normalized+Standardized	Dataset	Training	Loss,	Validation	Loss,	PSNR	

and	SSIM	graphs.	(horizontal	axis	represents	epochs	/	vertical	axis	represents	dB	for	the	loss	graphs).	
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The	first	thing	which	was	reflected	in	this	first	study	was	that	the	worst	normalization	method	

was	when	the	network	used	a	Normalized	Dataset	due	to	a	lower	PSNR	test	metric	compared	

to	the	ones	obtained	by	the	other	two	methods.		

Comparing	the	last	two	datasets	initializations,	it	was	seen	that	while	testing	the	network,	both	

results	were	similar.	However,	taking	a	close	look	onto	the	validation	process,	we	could	see	a	

slight	improvement	in	the	validation	loss	when	a	standardized	dataset	was	used.	Validation	

metrics	were	also	similar	for	both	cases.		Moreover,	taking	a	look	at	the	visual	results,	it	was	

seen	that	when	the	dataset	was	only	standardized,	images	presented	a	good	appearance.	

So,	 finally,	we	decided	to	use	the	standardized	dataset	to	tackle	the	main	project	goals	and	

train	the	final	Deep	Neural	Networks.		

	Figure	4.4.	shows	one	scene	of	the	results	obtained	with	the	last	network	calibration	with	a	

standardized	dataset	and	its	relative	PSNR	and	SSIM	metrics.		

Figure	4.4.	Left	to	right	per	rows,	First	Row:		Five	multitemporal	low-resolution	input	images,	Second	Row:	HR	

target,	False	Color	target,	SR	output	image,	False	Color	SR	image,	Bicubically	interpolated+Mean	of	the	five	LR	

inputs,	Third	Row:	Fusion	Net	output	images	in	different	spectral	bands.	
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Once	achieved	this	first	objective,	 it	was	time	to	set	up	the	final	dataset	and	make	the	final	

experiments.	 The	 final	 training	was	 run	with	 the	 hyperparameters	 used	 in	 the	 calibration	

process.		

HYPERPAREMETER	 VALUE	

DYNAMIC	LEARNING	RATE	 5e-4	with	a	decrease	to	the	half	each	10	epochs	

EPOCHS	 100	

BATCH	SIZE	 16	

	

Table	4.2.	Setting	up	of	the	calibration	training	hyperparameters.	

Despite	 using	 the	 hyperparameters	 which	 performed	 better	 in	 the	 calibration	 training	

process,	a	large	and	iterative	process	to	achieve	better	results	and	improve	the	functionality	

of	the	CNN	had	to	be	done	when	the	final	dataset	was	used.	These	initial	hyperparameters	had	

to	be	 resized,	 in	particular,	 the	 learning	 rate	was	 changed	 several	 times	until	 the	network	

achieved	the	desired	results.		

To	tackle	one	of	the	objectives	of	this	project,	which	was	to	compare	the	results	obtained	when	

different	number	of	LR	input	images	were	used	to	train	Deep	Neural	Networks	using	Sentinel-

2	imagery,	the	training	experiments	for	5,	4	and	3	multitemporal	LR	input	images	were	done.		

In	the	chapters	4.2,	4.3	and	4.4,	the	results	of	these	experiments	are	shown.	

4.2. Deep	Neural	Network	for	Super-Resolution	of	5	Multitemporal	
Remote	Sensing	Images	

As	 it	 was	 mentioned	 in	 the	 previous	 chapter,	 to	 achieve	 the	 final	 results,	 some	

hyperparameters	were	modified	to	achieve	better	quantitative	and	qualitative	results.		

The	hyperparameters	used	to	train	the	final	5	LR	input	images	network	are	shown	in	the	Table.	

4.3.	

Table	4.3.	Setting	up	of	the	hyperparameters	when	5	input	LR	images	are	used	to	train	the	network.	

HYPERPAREMETER	 VALUE	

DYNAMIC	LEARNING	RATE	 5e-1	with	a	decrease	to	the	half	each	20	epochs	

EPOCHS	 100	

BATCH	SIZE	 16	
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Visually,	obtained	results	when	5	multitemporal	remote	sensing	LR	images	were	used	as	input	

of	the	CNN	are	shown	in	Figure	4.5.	

Figure	4.5.	Left	to	right	per	rows,	First	Row:		Five	multitemporal	low-resolution	input	images,	Second	Row:	HR	

target,	False	Color	target,	SR	output	image,	False	Color	SR	image,	Bicubically	interpolated+Mean	of	the	five	LR	

inputs,	Third	Row:	Fusion	Net	output	images	in	different	spectral	bands.		

Taking	a	look	at	the	SR	predicted	image	and	comparing	it	with	the	average	input	bicubically-

upsampled	and	registered	image,	we	can	notice	an	increase	of	resolution	and	also	a	higher	

value	of	the	PSNR	and	SSIM	metrics.	That	means	that	a	higher	qualitative	predicted	SR	image	

was	obtained	because	of	a	well-fitted	training	process.	Moreover,	the	predicted	SR	image	is	

sharper	 and	 with	 more	 quality	 than	 the	 LR	 input	 images.	 Furthermore,	 visualizing	 the	

FusionNet	output	 image,	we	are	able	to	know	what	the	CNN	was	exactly	 learning	from	the	

input	LR	images.	

In	 addition,	 with	 the	 Tensorboard	 software,	 it	 is	 possible	 to	 plot	 the	 validation	 training	

process.	 In	Figure	4.6.	 the	correspondent	graphs	of	 the	 training	and	validation	process	are	

shown.	
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Figure	4.6.	Left	to	right,	upon	to	bottom;	Training	Loss,	Validation	Loss,	PSNR	and	SSIM	graphs.	(horizontal	axis	
represents	epochs	/	vertical	axis	represents	dB	for	the	loss	graphs).	

In	 these	 pictures,	 it	 is	 possible	 to	 observe	 that	 the	 Deep	 Neural	 Network	 was	 training	

adequately	but	from	epoch	60,	the	network	starts	to	overfit.	That	means	that	maybe	better	

hyperparameters	could	have	been	set	to	better	fit	the	network	during	the	training	process	and	

a	higher	number	of	epochs	should	have	been.	Moreover,	a	higher	number	of	images	should	

have	been	used	to	train	the	CNN.	Nevertheless,	at	this	point	of	the	project,	this	is	the	best	result	

achieved.	

4.3. Deep	Neural	Network	for	Super-Resolution	of	4	Multitemporal	
Remote	Sensing	Images	

In	this	chapter,	the	results	obtained	when	4	LR	input	images	were	used	during	the	network	

training	process	are	presented.	

We	have	to	keep	in	mind	that	hyperparameters	used	were	the	ones	which	had	given	better	

results	while	training	the	Deep	Neural	Network	with	5	LR	input	images.	It	meant	that	in	this	

second	experiment,	the	hyperparameters	had	not	been	modified.	The	purpose	of	doing	that	

was	to	be	able	to	find	dependences	between	networks	training	process	and	knowing	how	they	

will	react	when	a	different	amount	of	LR	input	images	were	used.		

The	visual	results	obtained	when	4	multitemporal	remote	sensing	LR	input	images	were	used	

are	shown	in	Figure	4.7.	
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Figure	4.7.	Left	to	right	per	rows,	First	Row:		Four	multitemporal	low-resolution	input	images,	Second	Row:	HR	

target,	False	Color	target,	SR	output	image,	False	Color	SR	image,	Bicubically	interpolated+Mean	of	the	four	LR	

inputs,	Third	Row:	Fusion	Net	output	images	in	different	spectral	bands.		

Apparently,	 the	 predicted	 SR	 image	 seems	 to	 have	 a	 better	 quality	 compared	 with	 the	

averaged	 bicubically-upsampled	 and	 registered	 image.	Moreover,	 when	 the	 PSNR	 and	 the	

SSIM	 metrics	 between	 these	 two	 pictures	 are	 compared,	 a	 qualitative	 improvement	 was	

observed.	 These	metrics	were	 better	 in	 the	 predicted	 SR	 image.	 It	meant	 that	 using	 4	 LR	

images	 as	 input	 and	 the	 same	 hyperparameters	 and	 configuration	 used	when	 5	 LR	 input	

images	are	used,	the	Deep	Neural	Network	was	still	working	well	and	it	also	produced	output	

good	results.		

Despite	that,	it	was	also	important	to	take	care	of	the	training	and	validation	process	to	see	

exactly	 the	 behavior	 of	 the	 network	 during	 training.	 In	 the	 Figure	 4.8.	 the	 training	 and	

validation	curves	are	shown.	

 



 

34 
 

Figure	4.8.	Left	to	right,	upon	to	bottom;	Training	Loss,	Validation	Loss,	PSNR	and	SSIM	graphs.	
	(horizontal	axis	represents	epochs	/	vertical	axis	represents	dB	for	the	loss	graphs). 

During	the	training	process,	the	training	loss	was	decreasing	until	epoch	50	approximately,	

and	then	this	value	increased	progressively	but	not	a	lot.	So,	it	seems	that	the	network	was	

working	well	because	the	training	loss	was	decreasing	in	each	step.	In	the	validation	process,	

we	observe	the	opposite	behavior.	Validation	loss	and	metrics	seemed	to	do	not	work	well,	

but,	 from	 epoch	 50	 all	 of	 them	made	 a	 turn	 in	 their	 trajectories	 going	 towards	 the	 good	

direction.	

4.4. Deep	Neural	Network	for	Super-Resolution	of	3	Multitemporal	
Remote	Sensing	Images	

In	this	section,	the	results	obtained	with	3	LR	input	images	are	presented.	

One	example	of	the	results	obtained	with	3	multitemporal	images	is	shown	in	the	Figure	4.9.	
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Figure	4.9.	Left	to	right	per	rows,	First	Row:		Three	multitemporal	low-resolution	input	images,	Second	Row:	HR	

target,	False	Color	target,	SR	output	image,	False	Color	SR	image,	Bicubically	interpolated+Mean	of	the	three	LR	

inputs,	Third	Row:	Fusion	Net	output	images	in	different	spectral	bands.	

Definitely,	this	 last	experiment,	 in	which	3	LR	images	were	used	as	input,	was	the	one	that	

produced	the	worst	results.	It	has	to	be	taken	into	account	that	the	CNN	was	trained	using	the	

same	configuration	and	hyperparameters	which	were	used	to	train	the	base	model	(the	one	

with	5	LR	input	images).	As	it	is	shown	in	the	Figure	4.9.,	the	SR	predicted	image	has	worse	

PSNR	and	SSIM	metrics	 than	the	averaged	bicubically-upasampled	and	registered	one.	The	

predicted	SR	image	obtained	PSNR	and	SSIM	metrics	approximately	equal	to	half	of	the	values	

that	the	averaged	image,	which	has	not	been	processed	by	the	CNN,	got.	Moreover,	the	quality	

of	the	predicted	SR	image	was	visually	worse	than	the	input	images	used	to	train	the	Deep	

Neural	Network.	The	obtained	SR	image	is	blurrier	than	the	input	ones.		

The	training	and	validation	curves	were	used	to	finally	understand	the	bad	behavior	of	the	

network	in	this	particular	experiment.	In	the	Figure	4.10.	this	behavior	is	shown.	
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Figure	4.10.	Left	to	right,	upon	to	bottom;	Training	Loss,	Validation	Loss,	PSNR	and	SSIM	graphs.	
(horizontal	axis	represents	epochs	/	vertical	axis	represents	dB	for	the	loss	graphs). 

	

At	first,	looking	only	at	the	training	loss	curve,	it	might	seem	that	the	CNN	was	training	well	

but	when	the	validation	process	is	observed,	it	is	possible	to	appreciate	that	the	network	had	

a	very	bad	training	process.	Validation	loss	was	increasing	rapidly	and	PSNR	and	SSIM	metrics	

were	reducing	their	values.	This	meant	that,	on	the	one	hand,	the	hyperparameters	chosen	to	

run	this	experiment	were	not	the	appropriates	and,	on	the	other	hand,	it	also	meant	that	the	

behavior	 of	 the	 network	 was	 not	 the	 desired	 and	 it	 was	 doing	 a	 very	 bad	 training.	

Unfortunately,	 we	 did	 not	 have	 more	 time	 to	 retrain	 the	 model	 with	 a	 different	 set	 of	

hyperparameters. 

To	sum	up,	we	can	compare	the	test	results	for	all	the	experiments	to	be	able	to	reach	the	final	

conclusions.	In	Table	4.4.	these	test	results	are	shown. 

DATASET/RESULTS	 TEST	INPUT	PSNR	
TEST	OUTPUT	

PSNR	
TEST	INPUT	SSIM	

TEST	OUTPUT	

SSIM	

5	LR	INPUT	IMAGES	 29.75		dB	 30.31	dB	 0.73	 0.78	

4	LR	INPUT	IMAGES	 30.45	dB	 30.55	dB	 0.77	 0.78	

3	LR	INPUT	IMAGES	 30.43	dB	 16.62	dB	 0.77	 0.74	

Table	4.4.	Comparative	table	of	the	test	results	when	a	different	amount	of	input	images	were	used.	(Test	Input	

PSNR:	averaged	input	images,	target;	Test	Output	PSNR:	predicted	SR	image,	target;	Test	Input	SSIM:	averaged	

input	images,	target;	Test	Output	SSIM:	predicted	SR	image,	target).			
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Test	 results	 clearly	demonstrate	 that	with	5	LR	 input	 images,	 the	network	acquires	better	

qualitative	results.	In	this	case,	the	difference	between	output	and	input	metrics	is	higher	than	

the	 difference	 between	 these	metrics	 when	 4	 and	 3	 LR	 images	 are	 used.	 It	 means	 that	 a	

qualitative	improvement	is	achieved	using	5	LR	input	images.		

When	 4	 LR	 images	 are	 used,	 the	 Deep	 Neural	 Network	 also	 works	 well,	 acquiring	 an	

improvement	in	the	output	metrics.	Nevertheless,	the	quantitative	and	qualitative	results	are	

not	as	good	as	the	ones	obtained	in	the	5	LR	input	images	case.	

The	worst	case	is	produced	with	3	LR	input	images.	Taking	a	look	in	the	test	results,	it	is	being	

able	to	see	that	output	metrics	are	worse	than	input	metrics.	It	means	that	the	network	does	

not	work	correctly.	To	solve	this	bad	functionality	of	the	Deep	Neural	Network,	when	3	LR	

input	images	are	used,	a	different	configuration	and	hyperparameters	have	to	be	set	to	fit	well	

the	CNN.	
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5. Budget	

The	main	goal	of	this	section	is	to	estimate	the	budget	of	the	project	taking	into	account	that	

it	is	a	research	project	and	therefore,	it	does	not	involve	a	service	or	a	product	to	be	sold.		

The	SNAP	software	from	ESA	used	to	develop	and	visualize	data	is	open-source.	Nevertheless,	

the	software	used	to	manage	data	(ENVI)	is	not	free.	The	annual	licence	fee	is	approximately	

220	€.	

The	hardware	needed	for	the	development	of	this	project	was	the	computational	resources	

provided	 by	 the	 GPI	 and	 the	 personal	 laptop	 used	 to	 work	 on	 the	 final	 thesis.	 The	 total	

estimation	of	the	hardware	is	the	cost	of	using	the	server	and	the	purchase	of	the	personal	

computer	which	is	mandatory	needed	to	work	in	the	project.	The	monthly	server	use	license	

has	a	cost	of	50	€	monthly	and	the	laptop	has	a	market	price	of	2500€.	

Moreover,	 it	 has	 to	 be	 taken	 into	 account	 the	 salary	 of	 the	member	which	will	work	 and	

develop	the	project.	Doing	an	estimation	of	the	amount	of	time	that	each	member	of	the	project	

has	destinated	to	do	it	and	the	standard	salary	for	 junior	engineers	(15€/hour,	20	hours	a	

week),	 and	 two	 technical	 advisors	 (30€/hour,	 2	 hours	 a	 week);	 the	 costs	 are	 able	 to	 be	

computed	as	follows:	

ITEM	 PRICE	 TIME	 TOTAL	(4	MONTHS)	

SOFTWARE	

ENVI	SOFTWARE	

	

50€/month	

	

all	

	

200€	

HARDWARE	

SERVER	COMPUTATION	

COMPUTER	

	

50€/month	

2500€	

	

all	

all	

	

200€	

2500€	

WORKERS	

JUNIOR	ENGINEER	

2	TECHNICAL	ADVISORS	

	

15€/hour	

30€/hour	

	

20	hours/week	

2	hours/week	

	

4800€	

2	x	960€	=	1920€	

Table	5.1.	Budget.	

The	final	budget	is:	
	

200€	+	200€	+	2500€	+	4800€	+	1920€	=	9620€	
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6. Conclusions	and	future	development:		

This	work	presents	a	Deep	Neural	Network	architecture,	 in	particular,	 a	CNN	 to	deal	with	

super-resolution	applied	to	multi-temporal	images.		

The	results	obtained	with	the	base	Deep	Neural	Network,	the	one	which	had	as	input	5	LR	

images,	were	successful	but	not	optimal	at	all.	 It	demonstrated	that	 fusing	multiple	 images	

from	the	same	ground	scene	permits	acquiring	images	with	higher	spatial	resolution,	despite	

the	presence	of	relevant	temporal	variations.	

In	this	work,	it	was	not	necessary	to	deal	with	images	registration	because	during	the	selection	

of	 the	 dataset	 images,	 we	 choose	 the	 ones	 that	 each	 pixel	 of	 the	 images	 approximately	

corresponds	to	the	same	pixels	of	the	other	temporal	images.	The	fact	that	the	images	in	the	

dataset	were	as	different	as	possible,	in	visual	terms,	made	the	training	process	more	complex	

and	complicated.	Nevertheless,	it	leaves	more	room	for	improvement.		

The	comparison	of	the	results	obtained	when	the	CNN	had	5	LR	input	images	with	the	other	

two	that	had	4	and	3	LR	input	images,	using	in	all	cases	the	same	network	configuration	and	

hyperparameters,	have	been	useful	to	understand	the	importance	of	having	a	certain	amount	

of	 temporal	 input	 data	 and	 also	 to	 get	 conscious	 of	 the	 importance	 of	well	 calibrating	 the	

model.		

When	4	LR	input	images	were	used,	it	was	seen	that	the	network	did	not	train	as	well	as	in	the	

5	 images	 case,	 but	 the	 test	 results	 obtained	 during	 the	 network	 test	 were	 very	 similar.		

Nevertheless,	this	is	not	accomplished	when	3	LR	input	images	were	used	to	train	the	network.	

In	this	case,	an	 important	deterioration	 in	the	training	process	and	 in	the	test	results	have	

been	occurred.	To	sum	up,	to	get	good	accuracy	and	better	CNN	results,	each	network	has	to	

be	trained	independently	with	a	particular	configuration	and	hyperparameters.	

Future	work	 could	 investigate	 an	 enhanced	 solution	 in	which	 the	 images	were	 registered	

inside	the	CNN	architecture	in	order	to	be	able	to	use	datasets	which	have	not	been	created	

taking	into	account	the	registration	task	among	images.	Moreover,	several	experiments	using	

Adversarial	Approach	[36]	or	RRDB	blocks	can	be	proved	with	the	aim	of	improving	the	final	

Deep	Neural	Network.	 	
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Appendices:	

Appendix	A:	Work	Packages	

	
Project:	Project	proposal	and	workplan	 WP	ref:	WP	1	
Major	constituent:	Documentation	 Sheet	1	of	8	
Short	description:	
	
Documentation	of	the	first	document	of	the	Final	
Degree	Project.	This	document	consists	on	the	basis,	
project	goals,	project	organization,	relevant	
information…	
	

Planned	start	date:	09/03/2020	
Planned	end	date:	12/03/2020	

Start	event:	T1	
End	event:	T3	

Internal	task	T1:	Project	definition	and	description	
	
Internal	task	T2:	Project	development	plan	
	
Internal	task	T3:	Document	review	and	approval	

Deliverables:	
Project_Proposal_	
And_Workplan_TFG_	
PolMasóAyats.doc	

Dates:	
12/03/2020	

	 	 	

Project:	Information	research	and	documentation	 WP	ref:	WP	2	
Major	constituent:	Information	research	 Sheet	2	of	8	
Short	description:	
	
Learn	about	the	basic	recourses	which	I	will	have	to	use	
to	implement	the	project.	
	

Planned	start	date:	17/02/2020	
Planned	end	date:	27/03/2020	

Start	event:	T1	
End	event:	T4	

Internal	task	T1:	Do	CS231n	Stanford	course	about	
deep	learning	and	machine	learning	and	the	Andrew	Ng	
course	about	deep	learning	and	CNN	from	Coursera.	
	
Internal	task	T2:	Familiarization	with	Python	and	the	
library	Pytorch.	
	
Internal	task	T3:	Familiarization	with	ENVI/SNAP	
	
Internal	task	T4:	Do	research	of	Deep	neural	network	
for	Super-resolution	of	multitemporal	Remote	Sensing	
Images	

Deliverables:	
	

Dates:	
	

Project:	Download	images	to	create	the	images	dataset	 WP	ref:	WP	3	

Major	constituent:	Image	dataset	 Sheet	3	of	8	

Short	description:	
	

Planned	start	date:	16/03/2020	
Planned	end	date:	20/03/2020	
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Downloading	images	captured	by	Sentinel-2	and	create	
subsets	with	the	bands	2,	3,	4	and	8,	corresponding	with	
the	10	meters	spatial	resolution.	

Start	event:	T1	
End	event:	T1	

Internal	task	T1:	Check	the	images	to	create	the	dataset.	 Deliverables:	
	

Dates:	
	

Project:	Software	development	 WP	ref:	WP	4	

Major	constituent:	Software	 Sheet	4	of	8	

Short	description:	
	
Learning	how	to	use	the	appropriate	software	and	start	its	
implementation.	
	

Planned	start	date:	18/03/2020	
Planned	end	date:	22/05/2020	

Start	event:	T1	
End	event:	T2	

Internal	task	T1:	Use	transfer	learning	and	internet	
resources	to	build	an	adequate	CNN	for	this	project.	
	
Internal	task	T2:	Use	the	images	in	the	Sentinel-2	dataset	
to	test	the	Software	developed.	

Deliverables:	
	

Dates:	
	

Project:	Critical	Review	 WP	ref:	WP	5	

Major	constituent:	Document	 Sheet	5	of	8	

Short	description:	
	
Documentation	of	the	second	document	of	the	Final	
Degree	Project.	This	document	consists	in	a	review	of	
the	initial	work	plan	and	the	actual	state	of	the	project.	
Including	modifications	and	reviews	according	to	the	
real	project	evaluation.	

Planned	start	date:	10/04/2020	
Planned	end	date:	14/04/2020	

Start	event:	T1	
End	event:	T2	

Internal	task	T1:	Analyze	and	review	the	project	state	
and	compare	it	with	the	initial	work	plan.	
	
Internal	task	T2:	Write	and	deliver	the	document.	

Deliverables:	
Project_Critical_Review	
_TFG_PolMasóAyats.doc	

Dates:	
14/04/2020	
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Project:	Test	and	results	assessment	 WP	ref:	WP	6	

Major	constituent:	Documentation	and	software	 Sheet	6	of	8	

Short	description:	
	
Get	the	final	results	and	make	upgrades	and	modifications	
in	the	software	where	it	is	needed.	
Compare	these	results	to	other	approaches	done	in	other	
Sentinel-2	Projects	if	it	is	possible.	

Planned	start	date:	15/05/2020	
Planned	end	date:	05/06/2020	

Start	event:	T1	
End	event:	T3	

Internal	task	T1:	Test	the	performance	of	the	system	with	
the	test	images.	
	
Internal	task	T2:	Fine-tune	the	results	and	look	for	
improvements.	
	
Internal	task	T3:	Get	results.	

Deliverables:	
	

Dates:	
	

 
 

 

 

Project:	Final	report	 WP	ref:	WP	7	

Major	constituent:	Documentation	 Sheet	7	of	8	

Short	description:	
	
Documentation	of	the	third	document	of	the	Final	
Degree	Project.	This	document	consists	on	the	final	
results	and	conclusions.	It	reflects	all	the	main	work	
done	during	the	project.	

Planned	start	date:	18/05/2020	
Planned	end	date:	20/06/2020	

Start	event:	T1	
End	event:	T1	

Internal	task	T1:	Write	the	document.	
	

Deliverables:	
Final_Report_	
TFG_PolMasóAyats.doc	
	

Dates:	
29/06/2020	

Project:	Oral	Presentation	 WP	ref:	WP	8	

Major	constituent:	Documentation	 Sheet	8	of	8	

Short	description:	
	
Oral	Presentation	of	the	project.		
	

Planned	start	date:	20/06/2020	
Planned	end	date:	10/07/2020	

Start	event:	T1	
End	event:	T1	

Internal	task	T1:	Prepare	the	slides	and	the	speech.	 Deliverables:	
Presentation_TFG_	
PolMasóAyats.pdf	

Dates:	
13/07/2020-
17/07/2020	
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Milestones 

WP#	 Task#	 Short	title	 Milestone	/	deliverable	 Date	(week)	
1	 1	 Project	definition	and	description	 Documentation	 4	
1	 2	 Project	development	plan	 Draft	 4	
1	 3	 Document	review	and	approval	 Project_Proposal_	

And_Workplan_TFG_	
PolMasóAyats.doc	

4	

2	 1-3	 Learning	how	to	use	the	principal	
tools	(Python,	Pytorch,	ENVI…)	

-	 1-6	

2	 4	 Do	research	of	Deep	neural	network	
for	Super-resolution	of	multitemporal	
Remote	Sensing	Images	

Software	 4-6	

3	 1	 Download	images	captured	by	
Sentinel-2	and	create	subsets	using	
the	bands	2,	3,	4	and	8.	

-	 5	

4	 1	 Use	transfer	learning	and	internet	
resources	to	build	an	adequate	CNN	
for	this	project	

Software	 5-12	

4	 2	 Use	the	images	in	the	Sentinel-2	
dataset	to	test	the	Software	developed	

Software	 10-14	

5	 1	 Analyze	and	review	the	project	state	
and	compare	it	with	the	initial	work	
plan	

Review/Draft	 8	

5	 2	 Write	and	deliver	the	document	 Critical_Review	
_TFG_PolMasóAyats.doc	

9	

6	 1	 Test	the	performance	of	the	system	
with	the	test	images	

Software	 13-14	

6	 2	 Fine-tune	the	results	and	look	for	
improvements	

Software	 14-15	

6	 3	 Get	results	 Review	 16	
7	 1	 Write	the	document	 Final_Report_	

TFG_PolMasóAyats.doc	
	

14-18	

8	 1	 Prepare	the	slides	and	the	speech	 	 18-21	
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Gantt	Diagram	
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Appendix	B:	GitHub	Code	Link	

 
 
https://github.com/pmaso98/TFG_SR 
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Glossary	
GPI Image and Video Processing Group 

TSC Signal Theory and Communication Department 

UPC Universitat Politècnica de Catalunya 

ESA European Space Agency 

DL Deep Learning 

CNN Convolutional Neural Network 

AI Artificial Intelligence 

LR Low Resolution 

HR Hight Resolution 

SR Super Resolution 

SISR Single Image Super Resolution 

MISR Multiple Image Super Resolution 

VIS visible spectrum 

NIR near-infrared 

SWIR mid-infrared 

 


