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Abstract 

Great progress has been achieved in computer vision tasks within image and video, how-
ever technological advances in LiDAR sensors have created a whole new area of computer 
vision research devoted to it. With applications in many industries, such as transportation, 
agriculture or healthcare.  

This thesis studies object tracking in 3D point clouds. Pairs of point cloud observations 
are feed to a neural network to estimate pose and translation between the observations. 
Then this estimations, together with external features, are processed with Kalman Filter and 
RNN to extract spatial-temporal redundancies and improve the results. 

The system has been tested in the KITTI dataset, with pre-segmented observations, on 
different types of objects and paths. The results show that the neural network estimated 
pose gives a very accurate tracking, but the best results are achieved when combining the 
estimated pose and translations with a recurrent neural network. 
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Resum 

     S’han aconseguit grans avenços en problemes de visió per ordenador en imatge i vide, 
tot i així  els avenços tecnologics en sensors LiDAR han creat una nova área de recerca en 
visió per ordenador dedicada a ella. Amb aplicacions en varies industries, per exemple 
transport, agricultura o sanitat. 

     Aquesta tesis estudia tracking d’objectes en nuvols de punts 3D. Parelles 
d’observacions de nuvols de punts és processen amb una red neuronal per a estimar posició i 
translació entre les observacions. Després aquestes estimacions, juntament amb ‘features’ 
externes, són processades amb filtres de Kalman i RNN per a extraure redundancies espai-
temporals i millorar els resultats.  

      El sistema s’ha testejat amb la base de dades KITTI, amb observacions pre-
segmentades, en diferents tipus d’objectes i rutes. Els resultats mostren que l’estimació de 
posició amb la red neuronal dona molt bons resultats, pero els millors resultats 
s’aconsegueixen quan és combina les estimacions de posició amb reds neuronals recurrents. 
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Resumen 

      Se han conseguido grandes avances en problemas de visión por ordenador en imagen 
y video, aun así los avances tecnológicos en sensores LiDAR han creado una nueva área de 
investigación en visión por ordenador dedicada a ella. Con aplicaciones en varias industrias, 
por ejemplo transporte, agricultura o sanidad.  

      Esta tesis estudio tracking de objetos en nubes de puntos 3D. Parejas de observacio-
nes de nubes de puntos se procesan con una red neuronal para estimar posición y traslación 
entra las observaciones. Después estas estimaciones, junto con ‘features’ externas, son pro-
cesadas con filtros Kalman y RNN para extraer redundancias espaciotemporales y mejorar 
resultados.  

      El sistema se ha testeado con la base de datos KITTI, con observaciones pre-
segmentadas, en diferentes tipos de objetos y rutas. Los resultados muestran que la estima-
ción de posición con la red neural ya da muy buenos resultados, pero los mejores resultados 
se consiguen cuando se combinan estimación de posición con redes neuronales recurrentes. 
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1.Introduction 

Recently there has been an increase of interest in 3D perception, fuelled by the recent 
developments of LiDAR sensors [1]. Due to increased availability, reduction of price and in-
creased performance, LiDAR sensors have been gaining popularity in many applications, be-
ing robotics and more specifically self-driving cars the star application. 

This has driven a scientific movement to solve a myriad of new problems in the context 
of 3D computer vision, for self-driving cars it means object classification, object tracking, 
SLAM among others. Other relevant areas of research are object reconstruction [2], neural 
rendering [3], semantic segmentation [4], image generation [5] or pose estimation [6]. These 
technologies have a wide range of applications (retail, automotive, healthcare or agriculture) 
and are still a subject of research. 

Deep learning has revolutionised machine learning and computer vision. In the last years 
we have seen great increases in the performance of traditional computer vision problems 
such as object recognition [7] or detection. The availability of large datasets [8] together 
with the computing power needed for training big enough models has brought deep learning 
at the forefront of research in computer science. 

This project will start from the AlignNet [9] publication from Gross et al. , analyze it, and 
extend it to multiple time-step prediction. This publication proposes a novel approach to 
point cloud registration, instead of using a classical algorithm it uses a learned approach. It 
outperforms the classical, computationally expensive methods both in accuracy and compu-
tation time. 

The current limitation of the AlignNet-3D solution is that it is constrained to predict ob-
ject pose movement within two frames. To solve this problem an initial solution is proposed. 
Run AlignNet-3D with all consequent frames and simply add the predicted translation to 
predict the full translation. To refine this trajectory we try two approaches, Kalman Filter 
[10] and learned LSTMS [11]. 

The next iteration is to train a network on the 1024 length vector output of the Canoni-
calNet [9]. This network will be able to pick a lot more information from the implicit repre-
sentation. Further improvements imply to have two latent representations one for pose and 
one for shape, and use both to create a better tracking with the by-product of having a shape 
representation in the network. 

1.1.Statement of purpose 

The purpose of this project is to extend to extend siamese tracker [9]. Instead of estimat-
ing relative motion between two point sets only, we should take the full history of surface 
observations into account. This can be posed as sequence-level learning using recurrent neu-
ral networks, e.g., Long-Short Term Memory Networks (LSTMs). 

The project main goals are: 

1.- Learn about deep learning applied to computer vision. 

2.- Design and implement a system for object tracking in 3D point clouds. 

1.2.Requirements and specifications 

The   project   requires   the   following   technical   skills   (non-exhaustive   list),   pro-
gramming,   basic geometry, machine learning and deep learning. Apart, the project requires 
specific knowledge about the base publication, AlignNet [9], as it will extend the current pro-
ject with new features.  
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The   project   will   produce   path   estimations/predictions   based   on   previous   ob-
servations   of   the dataset. Therefore it needs to be able to process the input data, generate 
the output (paths) and evaluate the data. It needs to do so in an automated fashion as a large 
number of experiments will be run during the experimentation phase of the project, and the 
easier it is to run them the faster and more effective the project will be. 

1.3.Methods and procedures 

The Dynamic Vision and Learning chair (https://dvl.in.tum.de/) at TUM is a newly creat-
ed research group within the Computer Vision group. It is leaded by Professor Laura Leal 
(https://dvl.in.tum.de/team/). It works on solving computer vision problems with a deep 
learning approach; The current areas of research are Multi Object Tracking [12] [13], GAN 
video generation [14] and minor focus on other areas of computer vision. Previous work has 
been done at DVL in the context of object tracking, both in 2D and 3D problems, proposing 
novel solutions to the problem. Also they organize the MOTChallenge [15] in the CVPR con-
ference.  

The project is a continuation of the Align-3D [5] publication from Gross et al. It proposes 
to extend the Siamese tracker to use the full trajectory to estimate motion. It is performed as 
an independent thesis within the laboratory (DVL), this means that the student works inde-
pendently in the project while the advisor supervises the work. The main ideas were pro-
posed by the supervisor, in the chair they have a document with different project ideas and I 
decided to work in one of them. 

1.4.Work plan 

 

WP Name: Intensive research WP ref: 1.1 
Major constituent: Research - 
Short description: 
Read and learn about the current trends relevant to this pro-
ject. In this case: Multi object tracking, deep learning on point 
clouds (point-net), point cloud registration, object detec-
tion/recognition. 

Planned start date: 
07/02/2020 
Planned end date: 
15/02/2020 

 

WP Name: First steps with current model (Align-3D) WP ref: 1.2 
Major constituent: Learning - 
Short description: 
Read the code, train, reproduce results, adapt to current setup 
and play with the existing code. 

Planned start date: 
07/02/2020 
Planned end date: 
15/02/2020 

 

WP Name: Extensive research WP ref: 1.3 
Major constituent: Research - 
Short description: 
Read and learn about the current trends relevant (or not) to 
this project. In this second stage it is both theoretical and prac-
tical areas. The plan is that this work will ease and sharpen my 
skills and it will be reflected in the on-going project. 

Planned start date: 
10/02/2020 
Planned end date: 
01/06/2020 

 

WP Name: Kalman Filter with Align3D predictions WP ref: 2.1 
Major constituent: Development - 
Short description: 
The current model gets the translation and rotation of the ob-

Planned start date: 
15/02/2020 

https://dvl.in.tum.de/team/
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ject in two different timepoints. Using this data with many 
consequent frames we can get the object path. Analyze the 
results and improve them using Kalman Filter. 

Planned end date: 
24/02/2020 

 

WP Name: Kalman Filter with estimated positions WP ref: 2.2 
Major constituent: Development - 
Short description: 
Extending the work of the previous WP the results were not as 
good as expected. Design, implement and analyze the results of 
using estimated position (mean, median and NN) for predicting 
the position. 

Planned start date: 
24/02/2020 
Planned end date: 
06/03/2020 

 

WP Name: Kalman Filter further experiments and tuning WP ref: 2.3 
Major constituent: Development - 
Short description: 
Once having both estimated position and translation there were 
a lot of option to analyze. Predict positions or translations. Take 
into account rotation. Extended Kalman Filter. 

Planned start date: 
09/03/2020 
Planned end date: 
03/04/2020 

 

WP Name: LSTMs for object tracking WP ref: 3.1 
Major constituent: Development - 
Short description: 
Use LSTMs to estimate the position of the objects, it acts as a 
replacement to the Kalman Filter. Design, implement and 
evaluate the results. 

Planned start date: 
06/04/2020 
Planned end date: 
01/05/2020 

 

WP Name: LSTMs with CanonicalNet outputs WP ref: 3.2 
Major constituent: Development - 
Short description: 
Use LSTMs to estimate the position of the objects, this time 
based on the 1024 length vector generated by the CanonicalNet. 
Much larger network, have to see if will have enough data with 
KITTI dataset. 

Planned start date: 
01/05/2020 
Planned end date: 
01/06/2020 

 

WP Name: Further ideas (optional) WP ref: 3.3 
Major constituent: Development - 
Short description: 
Extend the current model to support full trajectory when doing 
inference. Current ideas are: add shape information using a 
latent representation of the shape. 

Planned start date: 
22/05/2020 
Planned end date: 
01/06/2020 

 

WP Name: Write thesis WP ref: 4 
Major constituent: Writing - 
Short description: 
Write the thesis document. Will dedicate full time during the 
last month to this task. 

Planned start date: 
01/06/2020 
Planned end date: 
20/06/2020 

1.5.Deviations from initial plan 

In the original plan I introduced a short work package called ‘‘Object Tracking with cur-
rent model’’ that ended mid-march but I continued to work in that area for an extra month. 
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During the first month I analyzed the Kalman Filter on the outputs of the Align3D, and then I 
analyzed the performance of a LSTMs based network on the same outputs.  

A second reason for the delay was the development of a lot of infrastructure to support 
the experiments. The first iteration demanded a lot of manual work for each experiment, 
creating classes, data container, visualizations, etc. Because of this original infrastructure I 
was quite slow to perform experiments and not progressing as much as I wanted so I devel-
oped a novel architecture to hold all the data and help me access the results. 
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2.Technology review 

In this chapter we will review the basic concepts required for understanding this thesis 
and analyse three scientific publications that lay the groundwork for the development of this 
project. 

2.1.Fundamentals 

2.1.1.Machine Learning 

Machine learning is an area from artificial intelligence that is dedicated to the design, 
analysis and development of algorithms and techniques that allow machines to learn from 
data. It creates programs capable of generalizing behaviours based on patterns or classifica-
tions. It is related to the field of statistics, but it also coincides with model building methods, 
or statistical learning.  

Some areas where this type of learning has been applied are applications dedicated to 
natural language processing, search algorithms, medical diagnosis, bioinformatics, fraud de-
tection and classification.  

 

Figure 1: Classification/Regression [16] 

Any system that is considered intelligent must have the ability to learn, that is to auto-
matically improve with experience. The programs used are learning systems capable of ac-
quiring high-level knowledge and problem-solving strategies using examples, analogous to 
how the human mind would do it. 

In machine learning, tasks are generally classified into broad categories. These categories 
are based on how learning is received or how feedback on the learning is given to the system 
developed. 

- Supervised machine learning: The program is “trained” on a pre-defined set of “train-
ing examples”, which then facilitate its ability to reach an accurate conclusion when 
given new data. 

- Unsupervised machine learning: The program is given a bunch of data and must find 
patterns and relationships therein. 

2.1.2.Deep Learning 

Deep learning is a subset of machine learning. It attempts to imitate how the human 
brain can process light and sound stimuli into vision and hearing. A deep learning architec-
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ture is inspired by biological neural networks and consists of multiple layers in an artificial 
neural network made up of hardware and GPUs. 

Deep learning uses a cascade of nonlinear processing unit layers in order to extract or 
transform features (or representations) of the data. The output of one layer serves as the in-
put of the successive layer. In deep learning, algorithms can be either supervised and serve 
to classify data, or unsupervised and perform pattern analysis. 

Among the machine learning algorithms that are currently being used and developed, 
deep learning absorbs the most data and has been able to beat humans in some cognitive 
tasks. Because of these attributes, deep learning has become an approach with significant 
potential in the artificial intelligence space 

Computer vision and speech recognition have both realized significant advances from 
deep learning approaches. 

Deep learning algorithms use neural networks to find associations between a set of in-
puts and outputs. See figure 1 for the basic structure of a neural network. 

 

Figure 2: Neural network graphic representation [17]  

A neural network is composed of input, hidden, and output layers — all of which are 
composed of “nodes”. Input layers take in a numerical representation of data (e.g. images 
with pixel specs), output layers output predictions, while hidden layers are correlated with 
most of the computation. 

 

Figure 6: Basic Perceptron/Linear Classifier [18] 

Information is passed between network layers through the function shown above. The 
major points to keep note of here are the tuneable weight and bias parameters — represent-
ed by w and b respectively in the function above. These are essential to the actual “learning” 
process of a deep learning algorithm. 

After the neural network passes its inputs all the way to its outputs, the network evalu-
ates how good its prediction was (relative to the expected output) using a loss function. The 
goal of the network is ultimately to minimize this loss by adjusting the weights and biases of 
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the network. Using back propagation (paper) through gradient descent, the network back-
tracks through all its layers to update the weights and biases of every node in the opposite 
direction of the loss function – In other words, every iteration of back propagation should 
result in a smaller loss function than before. 

Without going into the proof, the continuous updated of the weights and biases of the 
network ultimately turns it into a precise function approximate – one that models the rela-
tionship between inputs and expected outputs.  

 

2.1.2.1.Recurrent neural networks 

Recurrent neural networks add a twist to basic neural networks. A vanilla neural net-
work takes a fixed size vector as input which limits its usage in situations that involve a se-
ries type input with no predetermined size. 

Recurrent Neural Network remembers the past and its decisions are influenced by what 
it has learnt from the past. Note: Basic feed forward networks “remember” things too, but 
they remember things they learnt during training. For example, an image classifier learns 
what a “1” looks like during training and then uses that knowledge to classify things in pro-
duction. 

While RNNs learn similarly while training, in addition, they remember things learnt from 
prior input(s) while generating output(s). It’s part of the network. RNNs can take one or 
more input vectors and produce one or more output vectors and the output(s) are influenced 
not just by weights applied on inputs like a regular NN, but also by a “hidden” state vector 
representing the context based on prior input(s)/output(s). So, the same input could pro-
duce a different output depending on previous inputs in the series. 

In summary, in a vanilla neural network, a fixed size input vector is transformed into a 
fixed size output vector. Such a network becomes “recurrent” when you repeatedly apply the 
transformations to a series of given input and produce a series of output vectors. There is no 
pre-set limitation to the size of the vector. And, in addition to generating the output which is 
a function of the input and hidden state, we update the hidden sate itself based on the input 
and use it in processing the next input. 

LSTMS 

Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of 
RNN, capable of learning long-term dependencies. They were introduced by Hochreiter & 
Schmidhuber (1997) [11], and were refined and popularized by many people in following 
work. They work tremendously well on a large variety of problems, and are now widely 
used. 

 

Figure 3: LSTMS cell diagram [19] 
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KF Algorithm (𝐱𝐭−𝟏,𝐏𝐭−𝟏,𝐮𝐭, 𝐳𝐭) 

Prediction stage: 

1-   Forward state projection. 

       𝐱𝐭 = 𝐀𝐭𝐱𝐭−𝟏 + 𝐁𝐭𝐮𝐭  

2-   Covariance error forward projection. 

       𝐏𝐭 =  𝐀𝐭𝐏𝐭−𝟏𝐀𝐭
𝐓 + 𝐑𝐭  

       Update stage: 

3-   Compute Kalman Gain. 

       𝐊𝐭 = 𝐏𝐭 𝐂𝐭
𝐓(𝐀𝐭𝐏𝐭 𝐀𝐭

𝐓 + 𝐐𝐭)
−𝟏  

4-   Update state with measurement (𝐳𝐭) 

       𝐱𝐭 = 𝐱𝐭 + 𝑲𝒕(𝒛𝒕 − 𝑪𝒕𝒙𝒕 )  

5-   Update error covariance. 

       𝐏𝐭 = (𝑰−𝑲𝒕𝑪𝒕)𝑷𝒕     

6-   Return 𝐱𝐭,𝐏𝐭 

 

LSTMs are explicitly designed to avoid the long-term dependency problem. Remember-
ing information for long periods of time is practically their default behaviour, not something 
they struggle to learn. 

A common architecture is composed of a cell (the memory part of the LSTM unit) and 
three "regulators", usually called gates, of the flow of information inside the LSTM unit: an 
input gate, an output gate and a forget gate. 

Intuitively, the cell is responsible for keeping track of the dependencies between the el-
ements in the input sequence. The input gate controls the extent to which a new value flows 
into the cell, the forget gate controls the extent to which a value remains in the cell and the 
output gate controls the extent to which the value in the cell is used to compute the output 
activation of the LSTM unit. The activation function of the LSTM gates is often the logistic 
sigmoid function. 

2.1.3.Kalman Filter 

The Kalman Filter is a powerful mathematical tool that plays an important role when re-
al-world measurements are included in the system you are working with. It was invented by 
Rudolph Emil Kalman in the late 1950s [20], with the aim of filtering and predicting linear 
systems. 

Basically it is a set of mathematical equations that implement an optimal estimator of the 
predictor-corrector type. It processes all available measurements, regardless of their preci-
sion, to estimate the current value of the variables of interest. This is possible thanks to:  

a) Knowledge of the system and dynamic measurement devices,  

b) The statistical description of system noises, measurement errors and uncertainties 

in dynamic models,  

c) And any available information about the variables of interest.  
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The algorithm 

The KF represents a belief or confidence in the state at the time that is given by the mean, 
   and the covariance,   . The input that the KF receives is the belief in t−1, represented by 
  −  and   − . 

To update this belief, the KF also requires the control signals (  ) and the observations of 
the environment provided by the sensors (  ). The output of the KF would be the belief in the 
instant of time, represented by    and   .  

Prediction stage, in which belief in the current moment is projected, through odometry. 
It is just the addition to the robot's displacement and rotation of the instant t − 1 of the dis-
placement and the rotation that have occurred since the instant t – 1 to t. 

Updating stage, in which the re-observed characteristics are considered. Thanks to the 
estimation of the position provided by the Prediction stage, it is possible to estimate where 
the feature should be, allowing to correct the position of the robot. 

The matrices that appear in the KF algorithm are defined below:  

  : Matrix that relates the state at time t − 1 to the state at time t, in the absence of control 

signals.  

  : Matrix that relates the optional control signals to the current state. Rt: Matrix nxn that 

represents the covariance of the process noise.  

  : Matrix mxn that relates the current state with the observations of the environment.  

  : Matrix nxn that represents the covariance of the noise of the observations.  

  : Matrix nxm that represents the Kalman Gain. The Kalman gain indicates confidence in the 

observed characteristics, using their uncertainty together with a measure of the quality of 

the data provided by the laser and by odometry. If the odometry is good and the data sup-

plied by the laser are not so good, the odometry will have more weight than the observa-

tions, giving a low value of the Kalman gain. If the opposite situation were to occur, the Kal-

man gain would be high, and the observations supplied by the laser would have more weight. 

2.2.Relevant research 

2.2.1. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation 

[21]   

PointNet [21] is a seminal paper in 3D perception, applying deep learning to point clouds 
for object classification and part/scene semantic segmentation. Its basis structure has been 
used for many different applications in 3D perception, extending it from classifica-
tion/segmentation to many other domains. 

Input data 

PointNet takes raw point cloud data as input, which is typically collected from either a 
LiDAR or radar sensor. Unlike 2D pixel arrays (images) or 3D voxel arrays, point clouds have 
an unstructured representation in that the data is simply a collection (more specifically, a 
set) of the points captured during a LiDAR or radar sensor scan. In order to leverage existing 
techniques built around (2D and 3D) convolutions [22] [23] [24], many researchers and 
practitioners often discretize a point cloud by taking multi-view projections onto 2D space or 
quantizing it to 3D voxels. Given that the original data is manipulated, this approach can have 
negative impacts. 
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Figure 4: PointNet critical points and shape upper-bound [21] 

Network architecture 

Given that PointNet consumes raw point cloud data, it was necessary to develop an archi-
tecture that conformed to the unique properties of point sets. Among these, the authors em-
phasize: 

- Permutation (Order) Invariance: given the unstructured nature of point cloud data, a 

scan made up of N points has N! permutations. The subsequent data processing must 

be invariant to the different representations. 

- Transformation Invariance: classification and segmentation outputs should be un-

changed if the object undergoes certain transformations, including rotation and 

translation. 

- Point Interactions: the interaction between neighbouring points often carries useful 

information (i.e., a single point should not be treated in isolation). Whereas classifica-

tion need only make use of global features, segmentation must be able to leverage lo-

cal point features along with global point features. 

 

Figure 5: PointNet architecture [21] 
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Ignoring the application specific part of the network, what point net does is transforming 
the input data (nx3) to a global feature vector of length 1024. The core network uses a 
shared multi-layer perceptron (MLP) to map each of the n points from three dimensions (x, 
y, z) to 64 dimensions. It’s important to note that a single multi-layer perceptron is shared 
for each of the n points (i.e., mapping is identical and independent on the n points). This pro-
cedure is repeated to map the n points from 64 dimensions to 1024 dimensions. With the 
points in a higher-dimensional embedding space, max pooling is used to create a global fea-
ture vector in ℝ;:<⁴. 

Permutation invariance 

As mentioned, point clouds are inherently unstructured data and are represented as nu-
merical sets. Specifically, given N data points, there are N! permutations. In order to make 
PointNet invariant to input permutations, the authors turned to symmetric functions, those 
whose value given n arguments is the same regardless of the order of the arguments [2]. For 
binary operators, this is also known as the commutative property. Common examples in-
clude: 

sum(a, b) = sum(b, a) 

average(a, b) = average(b, a) 

max(a, b) = max(b, a) 

Specifically, the authors make use of the symmetric function once the n input points are 
mapped to higher-dimensional space, as shown below. The result is a global feature vector 
that aims to capture an aggregate signature of the n input points. Naturally, the expressive-
ness of the global feature vector is tied to the dimensionality of it (and thus the dimensionali-
ty of the points that are input to the symmetric function). The global feature vector is used 
directly for classification and is used alongside local point features for segmentation. 

Transformation invariance 

The classification (and segmentation) of an object should be invariant to certain geomet-
ric transformations (e.g., rotation). The “input transform” and “feature transform” are modu-
lar sub-networks that seek to provide pose normalization for a given input.  

The T-Net is a regression network that is tasked with predicting an input-dependent 3-
by-3 transformation matrix that is then matrix multiplied with the n-by-3 input. 

The operations comprising the T-Net are motivated by the higher-level architecture of 
PointNet. MLPs (or fully-connected layers) are used to map the input points independently 
and identically to a higher-dimensional space; max pooling is used to encode a global feature 
vector whose dimensionality is then reduced to ℝ<⁵⁶ with FC layers. The input-dependent 
features at the final FC layer are then combined with globally trainable weights and biases, 
resulting in a 3-by-3 transformation matrix. 

 

Figure 6: Structure of the Spatial Transformer 

The concept of pose normalization is extended to the 64-dimensional embedding space 
(“feature transform” in Fig. 2). The corresponding T-Net is nearly identical to that of Fig. 8 
except for the dimensionality of the trainable weights and biases, which become 256-by-
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4096 and 4096, respectively resulting in a 64-by-64 transformation matrix. The increased 
number of trainable parameters leads to the potential for over fitting and instability during 
training, so a regularization term is added to the loss function. The regularization term is 
shown below and encourages the resulting 64-by-64 transformation matrix (represented as 
A below) to approximate an orthogonal transformation. 

 

Figure 7: Regularization used in loss function 

2.2.2. AlignNet-3D for Fast Point Cloud Registration of Partially Observed Objects [9]  

Align3D proposes a novel approach for computing point cloud registration. It is based on 
learned approach instead of computationally expensive classical algorithms. 

 
Figure 8: High level overview of Align3D 

Given two LiDAR point segments that measure object shape at different times, the net-
work estimates the relative motion between scans. The novelty is that it uses a learning 
approach opposed to purely geometric methods. This gives good performance in adverse 
conditions such as large temporal gaps. 

System architecture 

Input data to the network are two 3D point clouds that represent surface measurements 
of an object, captured at two different timesteps. The point clouds are sampled to ensure the 
same size. Both point clouds are input to branches of (the same) CanonicalNet, which trans-
form the point clouds to a canonical pose and compute a fixed-dimensional feature vector for 
each point cloud (see PointNet 3.1.3). To obtain a refined alignment estimate, it concatenates 
the embeddings of both point clouds and uses a multi-layer perceptron (MLP) to produce the 
final transform.  

 

 Figure 9: Architecture align3d 
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To process the sparse point cloud data (within a branch of the siamese network), it uses a 
PointNet architecture. First normalizes the input point cloud by moving its centroid to the 
origin. Using T-CoarseNet (Point-Net (64, 128, 256), followed by       (512, 256)) it pre-
dicts an amodal object center and bring the object closer to a canonical pose by moving the 
predicted center to the origin. After the coarse center estimate, it uses T-FineNet (Point-Net 
(64, 128, 512), followed by       (512, 256)) to refine the object center and additionally 
predict a canonical orientation. To estimate orientation instead of directly regressing the an-
gle to the canonical orientation, it predicts a classification into one of 50 equidistant angle 
bins between 0 and 2π. Additionally, we predict an angle residual for every angle bin, so that 
the final angle prediction is computed as α = i·   (     )+     , where i is the predicted an-
gle bin and      is the respective predicted residual. The output layer size of an MLP predict-
ing a translation and an angle is therefore 2 + 2 · #bins. We re-normalize the point cloud by 
moving the new amodal center to the origin, followed by a rotation by −α. The final point 
cloud embedding is predicted by a PointNet(64, 128, 1024) network. 

 

 

Figure 10: CanonicalNet architecture 

Finally, it concatenates the point cloud embeddings computed by the siamese branches 
(see Fig. 3a). It inputs the combined feature vector of size 2048 to a final       (512, 256), 
which predicts refined translation and angle to precisely align the two point clouds in their 
canonical pose estimates.  

 
Loss function 

All the stages of the pipeline are fully supervised. In stage 1 it predicts an amodal center 
with our first transformer network, T-CoarseNet. As target center it uses the center of the 3D 
bounding box. In stage 2 it predicts an amodal center and the deviation from a canonical ori-
entation. The target rotation angle is the annotated 3D bounding box orientation. In stage 3 
we predict the remaining translation and rotation needed to align the point clouds from the 
remaining translation and rotation needed to align the point clouds from the concatenated 
embeddings.  

 
For translation the Huber loss function [25] is used with δ=1 except for the last stage 

where δ=2. The Huber loss function is defined as 1       for |x| ≤ δ and δ|x|-  1       oth-
erwise. The angle loss if formed by the cross entropy loss for the angle bin classification and 
a Huber loss for the residual corresponding to the ground truth angle bin. Residuals are pre-
dicted normalized within [-1,1], corresponding to angles [–β/2, β/2] with the angle bin size 
beta = 2pi/#bins.  

 
2.2.3.A Baseline for 3D multi-object tracking [26] 

3D Multi-object tracking is an essential component technology for many vision (real-time 
or not) applications such as autonomous driving, robot collision prediction or video face 
alignment. In the recent years there has been a great progress on MOT.  
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Although the accuracy overtime has been significantly improved, it has come at the cost 
of increasing system complexity and computational cost. This paper develops an accurate, 
simple and real-time 3D MOT system. It combines the minimal components for 3D MOT and 
works extremely well, getting state of the art performance on 3D MOT. 

It uses an off-the-shelf 3D object detector to obtain oriented 3D bounding boxes from Li-
DAR point cloud. Then a combination of Kalman Filter and Hungarian algorithm is used for 
state estimation and data association. Note that this work extends the state space of the Kal-
man Filter to full domain, including 3D location, size, velocity and orientation of the objects. 

 
Figure 11: MOT in LiDAR captures (source: [27]) 

 
System architecture 

The paper presents an online method, the means that at every frame we require only the 
detection at the current frame and associated trajectories from the previous frame. The sys-
tem pipeline is illustrated in the next figure. It is composed of (1) 3D detection module to 
provide the bounding boxes from the LiDAR point cloud; (2) 3D Kalman Filter predicts the 
object state to the current frame; (3) data association module matches the detection with 
predicted trajectories; (4) 3D Kalman Filter updates the object state based on the measure-
ment; (5) birth and death memory controls the newly appeared and disappeared trajecto-
ries. 

 

Figure 12: System architecture 

3D Object Detection 

This publication takes advantage of high quality detection from many successful detec-
tors. It experiments with state-of-the-art 3D detectors on the KITTI dataset. It directly adopts 
their pretrained models on the training set of the KITTI 3D object detection benchmark. At 
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frame t the output of the 3D detection module is a set of detections   = *  
 ,   

 ,  ,   
 + (n can 

vary from frame to frame). Each detection is   
  is represented as a tuple ( ,  ,  ,  ,  ,  ,  )  

 
3D Kalman Filter: State Prediction 

To predict the object state in the next frame, we approximate the inter-frame displace-
ment of object using the constant velocity model , independent of camera ego-motion. The 
state of object trajectory is represented as a 10-dimensional vector 
  =  ( ,  ,  ,  ,  ,  ,  ,   ,   ,   ) where   ,   ,    represent the velocity in 3D space.    is not in-

cluded as it degrades the performance of the whole system. 

At every frame all associated trajectories from previous frame   − = *  − 
 ,   − 

 ,  ,   − 
 + 

are propagated to frame t based on the constant velocity model: 

    =  +            =  +            =  +    

As a result for every trajectory the predicted state after propagations to frame t is 
    = (    ,     ,     ,  ,  ,  ,  ,   ,   ,   ) in     , which will be fed to the data association 

module.  

Data Association 

To match the detections    with predicted trajectories     , it applies the Hungarian algo-
rithm. The affinity matrix is computed using the 3D IoU (intersection over union) metric  be-

tween every pair of detection    and     
 . Then, the bipartite graph matching problem can be 

solved with the Hungarian algorithm. In addition trajectories are rejected when 3D IoU is 
less than       .  

3D Kalman Filter: State Update 

The updated trajectories are computed following the Bayes rule, they are the weighted 
average between the state space of       

  (estimated) and       
  (measurement). The 

weights are determined by the uncertainty of both the matched trajectory and detection. See 
Kalman Filter (section 2.1.3). 

In addition, it is observed that the naïve weighted average does not work well for orien-
tation. For matched object k, the orientation of its detection       

  can be nearly opposite to 
      
  (differ by π). This is not possible in real motion so the orientation of       

  or       
  

must be wrong (most possibly       
 ), when computing the IoU this mismatch will lead to 

low 3D IoU with ground truth. The paper proposes a simple solution to this problem. When 
the difference of orientation is frater than π/2, add π to the orientation of       

  so that it is 
consistent with       

 .   

Birth and Death Memory 

It is necessary to manage the birth and death trajectories as new objects might appear 
and existing disappear. First, it considers all unmatched detection          as potential ob-
jects entering the image. To avoid creating false positives a new trajectory won’t be created 
until    appears for the next      frames. Once the new trajectory is successfully created, we 
initialize the state of the trajectory     

 
 same as its most recent measurement         

  with 
velocities set to zero. 

Second, it considers all unmatched trajectories          as potential objects leaving the 
image. To avoid deleting true positive trajectories which have missing detection at certain 
frames, we keep tracking each unmatched trajectory         

  for        frames before de-
leting it from the associated trajectories. Ideally, true positive trajectories with missing de-
tection can be maintained and interpolated by our 3D MOT system, and only the trajectories 
that leave the image are deleted. 
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3.Methodology / project development:  

3.1.System definition 

3.1.1.Full pipeline 

The system uses a sequence of pre-segmented point clouds as input data, this means that 
each observation only contains one object. They are sequentially processed with align-3D 
network to compute pose and translation estimations, then these estimations together with 
external features are feed into Kalman Filter or LSTMs to compute the refined routes. 

 

Figure 13: Schematic of the system 

3.1.2.Evaluation of the system 

To evaluate the system we take the RMSE on the computed routes. It is computed by 
comparing the estimation with the ground-truth data. 

    = √∑
(   −   )

 

 

 

   

 

3.2.KF for Object tracking 

As explained in section 2.1.3, the Kalman Filter is used to estimate a value given noisy 
measurements. This same approach can be taken to estimate the path of an object given 
some estimations. This section explores the use of KF for object tracking, both for pose and 
translation estimation. 

We tried various experiments with the Kalman filter, with different input data, output da-
ta and whether we used angle information or not. The process noise covariance matrix and 
the measurement noise covariance matrix parameters are set up using linear search on the 
training set. 

3.2.1.Align3D translations 

The first experiment was to use the outputs of align3d (translations) as observable state 
and estimate translation. The state is represented by pose and velocities. 

      =  ( ,  ,   ,   ) 

           =  (  ,   ) 

  =  [  1  
   1

] 
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  =  [

1  1  
 1  1
  1  
   1

] 

3.2.2.Pose estimation – Mean, median and predicted 

The next iteration was to use pose estimation together with Kalman Filter to estimate the 
pose. In this experiment we first tried to estimate the pose with taking the mean and the me-
dian of the point cloud. Then we added estimated pose from Align3D stage 2.  

      =  ( ,  ,   ,   ) 

           =  ( ,  ) 

  =  [1    
 1   

] 

  =  [

1  1  
 1  1
  1  
   1

] 

3.2.3.Fusing data with KF 

The final stage with Kalman Filter was to use both estimated pose and estimated transla-
tion together with Kalman Filter. In this stage we are fusing together pose and translations 
estimations.  

      =  ( ,  ,   ,   ) 

           =  ( ,  ,   ,   ) 

  =  [

1    
 1   
  1  
   1
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  =  [

1  1  
 1  1
  1  
   1

] 

3.3.LSTMs for Object tracking 

We evaluated LSTMs performance for the object tracking task. Unlike Kalman Filters, 
LSTMs make no assumptions about the type of motion of the object, so they should be able to 
capture both linear and non-linear motion. Furthermore, because of the recurrent nature of 
the neural network, the LSTM can incorporate a window of the previous  history when learn-
ing to predict the future position of an object. The LSTM learns a regression based on the 
previous N observations, where the observations are point clouds and the outputs are the 
estimated pose. 

3.3.1.Architecture of the network 

The architecture of the network is a model that has a single hidden layer of LSTM units and 
an output layer used to make the predictions.  As inputs we use estimated pose, estimated 
translation or both. The number of units in the hidden layer is studied in the results section.   
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3.3.2.Huber loss 

The Huber loss [28] is used for training the network. It is less sensitive to outliers in data 
than the squared error loss. The function is quadratic for small values of a, and linear for 
large values. With equal values and slopes of the different sections at the two points where 
|a| = δ. 

  ( ) = {
        

1

 
                       | |    

 (| | −
1

 
 )            t            

 

3.4.Implementation details 

3.4.1.Dataset creation 

The original Align3D datasets were designed for evaluating point-cloud translation be-
tween two observations. They are already segmented; this means that each observation con-
tains only one object. Each entry in the dataset contains two temporally adjacent observa-
tions (point clouds) and a json file with metadata containing the path id, object id and ground 
truth data. 
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For our problem we are interested in having full trajectories of the same object. We need 
to group by recording and object identification number. The proposed solution is based on 
creating an index of the different routes, running inference on the whole (ungrouped) da-
taset, computing extra features (mean and median), then loading in memory the estimations, 
ground truth data and extra features based on the index of the different routes. 

The output of the neural network contains: ground truth pose (both point clouds), 
align3d output (translation), and stage 2 predicted pose (both point clouds) for each entry. 
The index of the routes contains: name (path and object id), type (train or val), first point, 
number of points, and cumulative sum of the number of points.  

The in-memory representation is based on a class containing: name, flag for indicating if 
it is a full route (contains measurements or just metadata) and dataframes for generated 
routes (kf, lstms), ground_truth (straight from NN output), routes (used for plotting and er-
ror measurement) and error (error computation per timepoint). 

 

Figure 14: Class schematic 

During our experiment, we thought that adding new features to the model for object 
tracking could be a good idea. The first/simplest iteration was to add the mean of the obser-
vations as input to the Kalman filter and combine that data with the estimated translations. 
The procedure to do this is to first compute the features, store them as an external file, and 
then add them to the in-memory representation. This way we have an extendable, decoupled 
way of adding extra information to the model. Eventually, we added the mean, median, and 
the prediction from stage 2 (align3d) of the observations. All of them are added to the gener-
ated data frame. 

3.4.2.The dataset 

In this section we analyse the existing align3D dataset, both in the raw/unstructured ob-
servation domain and also with routes. 

Number of points per observation statistics 

 MEAN MEDIAN STD 
KITTI_CARS 395.18 108.0 772.94 
KITTI_CARS_PERSONS 381.35 102.0 761.85 
KITTI_CARS_HARD 148.51 55.0 163.94 
KITTI_CARS_PERSONS_HARD 193.44 113.0 199.65 
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Histogram number of points in observations (capped at p80) 

 

In the standard datasets (not hard) we have more points per observation and also a very 
long tail with some observations with thousands of points. Also they present the same distri-
bution. In the case of the hard datasets we get fewer points per observation, and lower vari-
ability too.  

Number of observations per route statistics 

 MEAN MEDIAN STD 
KITTI_CARS 46.37 30.6 57.39 
KITTI_CARS_PERSONS 50.80 32.0 59.89 
KITTI_CARS_HARD 805.55 487.0 1209.37 
KITTI_CARS_PERSONS_HARD 491.53 280.0 734.13 

Histogram number of observations in routes (capped at p95) 

 
Analyzing the number of observations it is clear that the kitti_cars and kitt_cars_persons 

datasets are very similar, both the statistics and the distributions are really close.  The hard 
datasets contain some very long routes, that is why the statistics and distributions are like 
this.  
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Number of pairs and routes per dataset 

 N.PAIRS N_ROUTES 
 TRAIN VAL TOTAL TRAIN VAL TOTAL 

KITTI_CARS 20518 8790 29308 463 169 632 
KITTI_CARS_PERSONS 28463 12072 40535 561 237 798 
KITTI_CARS_HARD 20000 9000 29000 22 14 36 
KITTI_CARS_PERSONS_HARD 20000 9000 29000 39 20 59 

Class analysis per dataset 
 Van Car Pedestrian 
 Obs. Route Obs. Route Obs. Route 

KITTI_CARS 3236 55 26072 577 0 0 
KITTI_CARS_PERSONS 3236 55 26072 577 11227 166 
KITTI_CARS_HARD 4817 5 24813 31 0 0 
KITTI_CARS_PERSONS_HARD 2678 4 10970 31 15352 24 

From the last two tables we see that the kitti_cars_persons is just the kitti_cars dataset 
plus some pedestrian observations. And that the hard datasets contain fewer and longer 
routes. 

3.4.3.Angle analysis and correction 

From analysing the straight Align3d results, something that surprised me was the inacu-
rate results it got on angle estimation, especially compared to pose estimation.  

 

Figure 15: Pose and angle estimation in route 2_11 
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The error on the whole dataset is very high by default. Then we tried a few techniques to 
improve the results. The first technique was to normalize the estimations to [-π, π]. The se-
cond was to check if there was brusque changes (>π/2) in the angle, as they cannot happen 
in the real world from frame to frame, and adding pi when this happened. And the third one 
was to compute the trajectory angle     (  ,  ) and check that the estimated angle does 
not differ with the trajectory angle by (>π/2), in case it was we added π. 

 

Figure 16: Angle corrections on route 2_11 

After some experiments and applying the different methods outlined in the previous par-
agraph  we didn’t manage to significantly improve the angle estimations. Even the estimated 
theta is way different than the ground truth, (in many cases) this is because the camera is 
moving and the object we are tracking is still.  The conclusion is that these angle estimations 
are too inaccurate to work with them, and we have dismissed for future experiments. 

3.4.4.Evaluation framework 

Creating routes from translation - relative and absolute routes 

Align3d generates translations from two pairs of observations. This presents the problem 
of how to evaluate object tracking given only translations. One solution could be to just eval-
uate the translations of the different observations, but this means limiting the scope of the 
object tracking to only estimate translations between frames. Furthermore in this case we 
are only evaluating the error on a sample by sample basis, we are not taking into account the 
accumulated error from the previous frame by not taking a reference point. 

The approach we chose to follow tries to solve both problems by computing an estimated 
route, whether if we are estimating translations or directly estimating the pose. In the latter 
case, the processing is straightforward. But in the case of estimating translation a problem is 
presented, how do we create the route if we only have estimated translations? 

Initially, we created two solutions. The first was to create a relative route, this means tak-
ing the previous point in the ground truth data and adding the translation. Essentially evalu-
ating the translation estimation without taking into account accumulating error. The second 
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was to take the ground truth data for the first point and keep adding the estimated transla-
tions for each. In this case, we are taking into account the outcomes of all the estimations. 
Eventually, we concluded that the correct approach was to compare the estimated absolute 
routes with the directly pose estimated routes. 

Computing error 

As indicated in Figure X the class contains a DataFrame with the ground truth data for x, 
y and angle. Then it is easy to compute the estimation error based on any loss function for a 
single route. 

Taking advantage of the data frames we add columns with the error at each observation 
and value. Therefore we have a registry of all the measurements, estimations, and errors at 
any level of granularity. 

 

Figure 17: Compute error diagram 

To create a more general and easier to use framework this operation is done automatical-
ly for all the routes in the dataset, both relative and absolute. The dataset keeps track of the 
different routes with the name_routes parameter. It is a simple class that contains two lists, 
one for relative routes and one for absolute ones. Based on the names on name_routes it 
computes the error for all the observations and routes in the dataset. 

3.4.5.Visualization of the results 

To qualitatively analyse the results we created a visualization tool. It takes all the routes 
from the routes dataframe and plots them in a dual plot, containing the relative and absolute 
pose. Note that for the methods that directly compute pose, the relative and absolute pose 
are the same. 

There is also the option to visualize the angle in the plot. It paints an arrow in the direc-
tion of the angle on each point. The length is computed by taking the magnitude of the trans-
lation vector and computing a percentage of its. 

The visualizations are implemented using Matplotlib [29] and 3Djs [30]. They are inter-
active so we can focus on each route and zoom as much as needed. 
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3.4.6.Open source 

All the code used for creating the datasets, visualizing the results, running inference on 
AlignNet-3D, running Kalman Filter/LSTM and evaluating the results can be found in the fol-
lowing link: https://github.com/jaumecolomhernandez/3d-object-tracking-lstms.  

Figure 18: Example plot 

https://github.com/jaumecolomhernandez/3d-object-tracking-lstms
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4.Results 

4.1.Direct estimation 

4.1.1.Tables of results 

Results pose estimation 

ROUTE RMSE 
Mean 1.0275 
Median 1.2736 
Pred 0.4868 

Results AlignNet-3D (translation) 

ROUTE RMSE 
Align3D 0.9055 

4.1.2.Discussion 

In this plot we see that mean and median are dependent on having a good/complete ob-
servation of the object. At the beginning of the path we see that it separates a lot from the 
ground truth, but through the trajectory it gets closer. The predicted pose from AlignNet-3D 
is very consistent through all the trajectories and that is the reason why it has got such a low 
RMSE in the results table.  

 

Figure 19: Pose estimation and AlignNet-3D in route 6_10 

The estimated translations from AlignNet-3D are quite accurate. Although the problem is 
that in some cases the translation error adds up and the final estimated trajectory has a bad 
performance. 

4.2.Kalman Filter 

4.2.1.Tables of results 

Results  pose estimation and kalman filter (pose) 

ROUTE RMSE 
KF/Mean 2.0889 
KF/Median 2.3012 
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KF/Pred 1.6867 

Results align3D and kalman filter (translation) 

ROUTE RMSE 
KF/Align3D 5.9775 

Results fusing data with kalman filter (translation) 

ROUTE RMSE 
KF/Mean+Align3D 2.0624 
KF/Median+Align3D 2.3014 
KF/Pred+Align3D 1.4434 

Results fusing data with kalman filter (pose) 

ROUTE RMSE 
KF/Mean+Align3D 0.7406 
KF/Median+Align3D 0.7526 
KF/Pred+Align3D 0.6780 

4.2.2.Discussion 

In the case of Kalman filter applied to pose estimations (mean, median and pred) we see 
that the performance degrades a lot, almost doubling the RMSE.  

 
Figure 20: Kalman Filter + pose estimations in route 6_10 

For Kalman Filter applied to AlignNet-3D the results are even worse, the RMSE jumps to 
near 6. As we can see in Figure 22, what happens is that the translations overshoot on the 
initial direction. In the cases where the trajectory is straight there is not any problem, but in 
the cases where the trajectory curves it is prominent. 

The big improvement comes when we apply kalman filter to pose and translation 
information, as both inputs are fused in a better estimate. In Figure 24 we see a plot with the 
resulting route from fusing mean, median and prediction with AlignNet-3D translation 
estimations. Once again the best results come from using the predicted pose. Althought in all 
cases the results improve a lot from just using the AlignNet-3D or the Pred estimation. 
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Figure 21: Kalman Filter + translation  Figure 22: Kalman Filter + pose + translation  

4.3.LSTMs 

4.3.1.Tables of results 

Results  pose estimation and LSTMs (pose) 

ROUTE RMSE 
LSTMs/Mean 0.8202 
LSTMs/Median 0.8460 
LSTMs/Pred 0.4842 

Results AlignNet-3D and LSTMs (translation) 

ROUTE RMSE 
LSTMs/Align3D 0.9619 

Results fusing data with LSTMs (pose) 

ROUTE RMSE 
LSTMs/Mean+Align3D 0.4997 
LSTMs/Median+Align3D 0.4994 
LSTMs/Pred+Align3D 0.4207 

Results fusing data with LSTMs (translation) 

ROUTE RMSE 
LSTMs/Mean+Align3D 1.4197 
LSTMs/Median+Align3D 1.4265 
LSTMs/Pred+Align3D 1.0895 

4.3.2.Discussion 

In Figure 25 we see LSTMs applied to pose estimation. We see that there is a big im-
provement in mean and median poses, but with predicted (s2) pose it improves marginally. 
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This may be because the predicted poses are much more accurate than the mean and median 
poses, so the network has more difficulties to learn the correction. 

 

Figure 23: LSTMs + pose    Figure 24: LSTMs + translation  

In the next Figure, we see LSTMs applied to the AlignNet-3D translation estimations. In 
this case we see a big improvement respect to Kalman Filter, while in the previous case the 
results drifted a lot due to the filter, now they improve. Although that applied to the whole 
dataset the results are marginally the same. 

 
Figure 25: LSTMs + pose and translation estimation 

In the last plot we see LSTMs with pose and translation estimation. The results are signif-
icantly better than anything seen up to now. In the case that uses predictions as pose estima-
tion it gets an RMSE on the whole dataset of 0.42, which is significantly lower than the 0.48 
of the AlignNet-3D pose estimations. 
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5.Budget 

This thesis is not a prototype, but a research exercise on extending a current publication 
related to object tracking. It is entirely developed in Python and uses free open-source librar-
ies. 

The development costs come from the salaries paid to engineers. In this case it was a sen-
ior engineer supervising the project 2 hours per week and a junior engineer (me) working 
25 hours per week on the project. The project had a full duration of 25 weeks. 

 

Person Hours per week Cost per hour Full cost (25 weeks) 

Senior engineer 2 h/week 50 €/h 2500 € 

Junior engineer 25 h/week 15 €/h 9375 € 

  TOTAL 11875 € 
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6.Conclusions and future development:  

The main objective of this thesis was to analyse and extend the AlignNet-3D publication 
[9] from estimating the relative motion between two observations to do object tracking in 
full trajectories. Moreover, another objective of the project was to become familiar with deep 
learning and computer vision concepts.  

The results obtained in the project are satisfactory. We have accomplished the first objec-
tive, developing a full framework to estimate the trajectories in the KITTI dataset, running 
many experiments with the raw results from AlignNet-3D, with the Kalman Filter and also 
with recurrent neural networks. The best results are achieved with using pose and transla-
tion estimation with LSTMs to directly estimate pose, with an RMSE error of 0.42 on the 
whole dataset. It is relevant that the results from just using the AligNet-3D pose estimations 
(stage 2) are already very accurate, achieving an RMSE error of 0.48 without the need of any 
extra processing. 

Regarding the second objective I also consider it accomplished. I have gone from having 
little experience with computer vision and point clouds to understanding the relevant publi-
cations in the area, knowing how to structure a project of this scope, preparing/analysing the 
datasets and performing experiments on a new problem. 

Finally, as future work, the next step is to create an encoder-decoder architecture to en-
code a representation of the object of analysis, similar to the proposal of [31]. So that each 
observation adds information to the latent representation and this is used to improve the 
tracking. 
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