

Deep Learning for Object Tracking

in 3D Point Clouds

A Degree Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya

by

Jaume Colom Hernandez

In partial fulfilment

of the requirements for the degree in

Telecommunications engineering

Advisor: Aljosa Osep

Supervisor: Josep R. Casas

Barcelona, June 2020

1

Abstract

Great progress has been achieved in computer vision tasks within image and video, how-
ever technological advances in LiDAR sensors have created a whole new area of computer
vision research devoted to it. With applications in many industries, such as transportation,
agriculture or healthcare.

This thesis studies object tracking in 3D point clouds. Pairs of point cloud observations
are feed to a neural network to estimate pose and translation between the observations.
Then this estimations, together with external features, are processed with Kalman Filter and
RNN to extract spatial-temporal redundancies and improve the results.

The system has been tested in the KITTI dataset, with pre-segmented observations, on
different types of objects and paths. The results show that the neural network estimated
pose gives a very accurate tracking, but the best results are achieved when combining the
estimated pose and translations with a recurrent neural network.

1

Resum

 S’han aconseguit grans avenços en problemes de visió per ordenador en imatge i vide,
tot i així els avenços tecnologics en sensors LiDAR han creat una nova área de recerca en
visió per ordenador dedicada a ella. Amb aplicacions en varies industries, per exemple
transport, agricultura o sanitat.

 Aquesta tesis estudia tracking d’objectes en nuvols de punts 3D. Parelles
d’observacions de nuvols de punts és processen amb una red neuronal per a estimar posició i
translació entre les observacions. Després aquestes estimacions, juntament amb ‘features’
externes, són processades amb filtres de Kalman i RNN per a extraure redundancies espai-
temporals i millorar els resultats.

 El sistema s’ha testejat amb la base de dades KITTI, amb observacions pre-
segmentades, en diferents tipus d’objectes i rutes. Els resultats mostren que l’estimació de
posició amb la red neuronal dona molt bons resultats, pero els millors resultats
s’aconsegueixen quan és combina les estimacions de posició amb reds neuronals recurrents.

2

Resumen

 Se han conseguido grandes avances en problemas de visión por ordenador en imagen
y video, aun así los avances tecnológicos en sensores LiDAR han creado una nueva área de
investigación en visión por ordenador dedicada a ella. Con aplicaciones en varias industrias,
por ejemplo transporte, agricultura o sanidad.

 Esta tesis estudio tracking de objetos en nubes de puntos 3D. Parejas de observacio-
nes de nubes de puntos se procesan con una red neuronal para estimar posición y traslación
entra las observaciones. Después estas estimaciones, junto con ‘features’ externas, son pro-
cesadas con filtros Kalman y RNN para extraer redundancias espaciotemporales y mejorar
resultados.

 El sistema se ha testeado con la base de datos KITTI, con observaciones pre-
segmentadas, en diferentes tipos de objetos y rutas. Los resultados muestran que la estima-
ción de posición con la red neural ya da muy buenos resultados, pero los mejores resultados
se consiguen cuando se combinan estimación de posición con redes neuronales recurrentes.

3

Acknowledgements

I want to thank my advisor Aljosa Osep, for his help and attitude during the development
of the thesis. Also Prof. Laura Leal for allowing me to write the thesis in her lab, and helping
with the initial paperwork. And finally thanks to Quirin Lohr for the technical support he
provided.

From UPC I want to thank Josep R. Casas for supervising the project from Spain and help-
ing me successfully face the bachelor thesis.

Finally thanks to my family and friends for their invaluable support and patience.

4

Revision history and approval record

Revision Date Purpose

0 15/06/2020 Document creation

1 29/06/2020 Document revision

DOCUMENT DISTRIBUTION LIST

 Name e-mail

Jaume Colom Hernandez jaumecolomhernandez@gmail.com

Aljosa Osep aljosa.osep@tum.de

Josep R. Casas josep.ramon.casas@upc.edu

Written by: Reviewed and approved by:

Date 15/06/2020 Date 29/06/2020

Name Jaume Colom Name Aljosa Osep

Position Project Author Position Project Supervisor

5

Table of contents

1.Introduction
 1.1.Statement of purpose 7
 1.2.Requirements and specifications 8
 1.3.Methods and procedures 8
 1.4.Work plan 8
 1.5.Deviations from initial plan 9
2.Technology review
 2.1.Fundamentals
 2.1.1.Machine Learning 11
 2.1.2.Deep Learning 11
 2.1.3.Recurrent neural networks 13
 2.1.4.Kalman Filter 14
 2.2.Relevant research
 2.2.1.PointNet: Deep Learning on Point Sets for 3D … 15
 2.2.2.AlignNet-3D for Fast Point Cloud Registration … 18
 2.2.3.A Baseline for 3D multi-object tracking … 19
3.Methodology/project development
 3.1.System definition
 3.1.1.Full pipeline 22
 3.1.2.Evaluation of the system 22
 3.2.KF for Object tracking
 3.2.1.Align3D translations 22
 3.2.2.Pose estimation (mean, median and predicted) 23
 3.2.3.Fusing data with KF 23
 3.3.LSTMs for Object tracking
 3.3.1.Architecture of the network 23
 3.3.2.Huber loss 24
 3.4.Implementation details
 3.4.1.Dataset creation 24

3.4.2.The dataset 24
 3.4.3.Angle analysis and correction 27
 3.4.4.Evaluation framework 28
 3.4.5.Visualization of the results 29
 3.4.6.Open Source 30
4.Results
 4.1.Direct estimation
 4.1.1.Table of results 31
 4.1.2.Qualitative results 31
 4.2.Kalman Filter

4.2.1.Table of results 31
 4.2.2.Qualitative results 32
 4.3.LSTMs

4.3.1.Table of results 33
 4.3.2.Qualitative results 33
5.Budget 35
6.Conclusions 36
7.Bibliography 37

6

List of Figures

Figure 1: Classification/Regression [16] ... 11

Figure 2: Neural network graphic representation [17] ... 12

Figure 3: LSTMS cell diagram [19] ... 13

Figure 4: PointNet critical points and shape upper-bound [21] .. 16

Figure 5: PointNet architecture [21] ... 16

Figure 6: Structure of the Spatial Transformer .. 17

Figure 7: Regularization used in loss function .. 18

Figure 8: High level overview of Align3D .. 18

Figure 9: Architecture align3d ... 18

Figure 10: CanonicalNet architecture ... 19

Figure 11: MOT in LiDAR captures (source: [27]) ... 20

Figure 12: System architecture ... 20

Figure 13: Schematic of the system ... 22

Figure 14: Class schematic .. 25

Figure 15: Pose and angle estimation in route 2_11 ... 27

Figure 16: Angle corrections on route 2_11 ... 28

Figure 17: Compute error diagram .. 29

Figure 18: Example plot.. 30

Figure 19: Pose estimation and AlignNet-3D in route 6_10 .. 31

Figure 20: Kalman Filter + pose estimations in route 6_10 ... 32

Figure 21: Kalman Filter + translation Figure 22: Kalman Filter + pose + translation........ 33

Figure 23: LSTMs + pose Figure 24: LSTMs + translation ... 34

Figure 25: LSTMs + pose and translation estimation ... 34

file:///C:/Users/Usuario/Desktop/thesis.docx%23_Toc44360811
file:///C:/Users/Usuario/Desktop/thesis.docx%23_Toc44360820

7

1.Introduction

Recently there has been an increase of interest in 3D perception, fuelled by the recent
developments of LiDAR sensors [1]. Due to increased availability, reduction of price and in-
creased performance, LiDAR sensors have been gaining popularity in many applications, be-
ing robotics and more specifically self-driving cars the star application.

This has driven a scientific movement to solve a myriad of new problems in the context
of 3D computer vision, for self-driving cars it means object classification, object tracking,
SLAM among others. Other relevant areas of research are object reconstruction [2], neural
rendering [3], semantic segmentation [4], image generation [5] or pose estimation [6]. These
technologies have a wide range of applications (retail, automotive, healthcare or agriculture)
and are still a subject of research.

Deep learning has revolutionised machine learning and computer vision. In the last years
we have seen great increases in the performance of traditional computer vision problems
such as object recognition [7] or detection. The availability of large datasets [8] together
with the computing power needed for training big enough models has brought deep learning
at the forefront of research in computer science.

This project will start from the AlignNet [9] publication from Gross et al. , analyze it, and
extend it to multiple time-step prediction. This publication proposes a novel approach to
point cloud registration, instead of using a classical algorithm it uses a learned approach. It
outperforms the classical, computationally expensive methods both in accuracy and compu-
tation time.

The current limitation of the AlignNet-3D solution is that it is constrained to predict ob-
ject pose movement within two frames. To solve this problem an initial solution is proposed.
Run AlignNet-3D with all consequent frames and simply add the predicted translation to
predict the full translation. To refine this trajectory we try two approaches, Kalman Filter
[10] and learned LSTMS [11].

The next iteration is to train a network on the 1024 length vector output of the Canoni-
calNet [9]. This network will be able to pick a lot more information from the implicit repre-
sentation. Further improvements imply to have two latent representations one for pose and
one for shape, and use both to create a better tracking with the by-product of having a shape
representation in the network.

1.1.Statement of purpose

The purpose of this project is to extend to extend siamese tracker [9]. Instead of estimat-
ing relative motion between two point sets only, we should take the full history of surface
observations into account. This can be posed as sequence-level learning using recurrent neu-
ral networks, e.g., Long-Short Term Memory Networks (LSTMs).

The project main goals are:

1.- Learn about deep learning applied to computer vision.

2.- Design and implement a system for object tracking in 3D point clouds.

1.2.Requirements and specifications

The project requires the following technical skills (non-exhaustive list), pro-
gramming, basic geometry, machine learning and deep learning. Apart, the project requires
specific knowledge about the base publication, AlignNet [9], as it will extend the current pro-
ject with new features.

8

The project will produce path estimations/predictions based on previous ob-
servations of the dataset. Therefore it needs to be able to process the input data, generate
the output (paths) and evaluate the data. It needs to do so in an automated fashion as a large
number of experiments will be run during the experimentation phase of the project, and the
easier it is to run them the faster and more effective the project will be.

1.3.Methods and procedures

The Dynamic Vision and Learning chair (https://dvl.in.tum.de/) at TUM is a newly creat-
ed research group within the Computer Vision group. It is leaded by Professor Laura Leal
(https://dvl.in.tum.de/team/). It works on solving computer vision problems with a deep
learning approach; The current areas of research are Multi Object Tracking [12] [13], GAN
video generation [14] and minor focus on other areas of computer vision. Previous work has
been done at DVL in the context of object tracking, both in 2D and 3D problems, proposing
novel solutions to the problem. Also they organize the MOTChallenge [15] in the CVPR con-
ference.

The project is a continuation of the Align-3D [5] publication from Gross et al. It proposes
to extend the Siamese tracker to use the full trajectory to estimate motion. It is performed as
an independent thesis within the laboratory (DVL), this means that the student works inde-
pendently in the project while the advisor supervises the work. The main ideas were pro-
posed by the supervisor, in the chair they have a document with different project ideas and I
decided to work in one of them.

1.4.Work plan

WP Name: Intensive research WP ref: 1.1
Major constituent: Research -
Short description:
Read and learn about the current trends relevant to this pro-
ject. In this case: Multi object tracking, deep learning on point
clouds (point-net), point cloud registration, object detec-
tion/recognition.

Planned start date:
07/02/2020
Planned end date:
15/02/2020

WP Name: First steps with current model (Align-3D) WP ref: 1.2
Major constituent: Learning -
Short description:
Read the code, train, reproduce results, adapt to current setup
and play with the existing code.

Planned start date:
07/02/2020
Planned end date:
15/02/2020

WP Name: Extensive research WP ref: 1.3
Major constituent: Research -
Short description:
Read and learn about the current trends relevant (or not) to
this project. In this second stage it is both theoretical and prac-
tical areas. The plan is that this work will ease and sharpen my
skills and it will be reflected in the on-going project.

Planned start date:
10/02/2020
Planned end date:
01/06/2020

WP Name: Kalman Filter with Align3D predictions WP ref: 2.1
Major constituent: Development -
Short description:
The current model gets the translation and rotation of the ob-

Planned start date:
15/02/2020

https://dvl.in.tum.de/team/

9

ject in two different timepoints. Using this data with many
consequent frames we can get the object path. Analyze the
results and improve them using Kalman Filter.

Planned end date:
24/02/2020

WP Name: Kalman Filter with estimated positions WP ref: 2.2
Major constituent: Development -
Short description:
Extending the work of the previous WP the results were not as
good as expected. Design, implement and analyze the results of
using estimated position (mean, median and NN) for predicting
the position.

Planned start date:
24/02/2020
Planned end date:
06/03/2020

WP Name: Kalman Filter further experiments and tuning WP ref: 2.3
Major constituent: Development -
Short description:
Once having both estimated position and translation there were
a lot of option to analyze. Predict positions or translations. Take
into account rotation. Extended Kalman Filter.

Planned start date:
09/03/2020
Planned end date:
03/04/2020

WP Name: LSTMs for object tracking WP ref: 3.1
Major constituent: Development -
Short description:
Use LSTMs to estimate the position of the objects, it acts as a
replacement to the Kalman Filter. Design, implement and
evaluate the results.

Planned start date:
06/04/2020
Planned end date:
01/05/2020

WP Name: LSTMs with CanonicalNet outputs WP ref: 3.2
Major constituent: Development -
Short description:
Use LSTMs to estimate the position of the objects, this time
based on the 1024 length vector generated by the CanonicalNet.
Much larger network, have to see if will have enough data with
KITTI dataset.

Planned start date:
01/05/2020
Planned end date:
01/06/2020

WP Name: Further ideas (optional) WP ref: 3.3
Major constituent: Development -
Short description:
Extend the current model to support full trajectory when doing
inference. Current ideas are: add shape information using a
latent representation of the shape.

Planned start date:
22/05/2020
Planned end date:
01/06/2020

WP Name: Write thesis WP ref: 4
Major constituent: Writing -
Short description:
Write the thesis document. Will dedicate full time during the
last month to this task.

Planned start date:
01/06/2020
Planned end date:
20/06/2020

1.5.Deviations from initial plan

In the original plan I introduced a short work package called ‘‘Object Tracking with cur-
rent model’’ that ended mid-march but I continued to work in that area for an extra month.

10

During the first month I analyzed the Kalman Filter on the outputs of the Align3D, and then I
analyzed the performance of a LSTMs based network on the same outputs.

A second reason for the delay was the development of a lot of infrastructure to support
the experiments. The first iteration demanded a lot of manual work for each experiment,
creating classes, data container, visualizations, etc. Because of this original infrastructure I
was quite slow to perform experiments and not progressing as much as I wanted so I devel-
oped a novel architecture to hold all the data and help me access the results.

11

2.Technology review

In this chapter we will review the basic concepts required for understanding this thesis
and analyse three scientific publications that lay the groundwork for the development of this
project.

2.1.Fundamentals

2.1.1.Machine Learning

Machine learning is an area from artificial intelligence that is dedicated to the design,
analysis and development of algorithms and techniques that allow machines to learn from
data. It creates programs capable of generalizing behaviours based on patterns or classifica-
tions. It is related to the field of statistics, but it also coincides with model building methods,
or statistical learning.

Some areas where this type of learning has been applied are applications dedicated to
natural language processing, search algorithms, medical diagnosis, bioinformatics, fraud de-
tection and classification.

Figure 1: Classification/Regression [16]

Any system that is considered intelligent must have the ability to learn, that is to auto-
matically improve with experience. The programs used are learning systems capable of ac-
quiring high-level knowledge and problem-solving strategies using examples, analogous to
how the human mind would do it.

In machine learning, tasks are generally classified into broad categories. These categories
are based on how learning is received or how feedback on the learning is given to the system
developed.

- Supervised machine learning: The program is “trained” on a pre-defined set of “train-
ing examples”, which then facilitate its ability to reach an accurate conclusion when
given new data.

- Unsupervised machine learning: The program is given a bunch of data and must find
patterns and relationships therein.

2.1.2.Deep Learning

Deep learning is a subset of machine learning. It attempts to imitate how the human
brain can process light and sound stimuli into vision and hearing. A deep learning architec-

12

ture is inspired by biological neural networks and consists of multiple layers in an artificial
neural network made up of hardware and GPUs.

Deep learning uses a cascade of nonlinear processing unit layers in order to extract or
transform features (or representations) of the data. The output of one layer serves as the in-
put of the successive layer. In deep learning, algorithms can be either supervised and serve
to classify data, or unsupervised and perform pattern analysis.

Among the machine learning algorithms that are currently being used and developed,
deep learning absorbs the most data and has been able to beat humans in some cognitive
tasks. Because of these attributes, deep learning has become an approach with significant
potential in the artificial intelligence space

Computer vision and speech recognition have both realized significant advances from
deep learning approaches.

Deep learning algorithms use neural networks to find associations between a set of in-
puts and outputs. See figure 1 for the basic structure of a neural network.

Figure 2: Neural network graphic representation [17]

A neural network is composed of input, hidden, and output layers — all of which are
composed of “nodes”. Input layers take in a numerical representation of data (e.g. images
with pixel specs), output layers output predictions, while hidden layers are correlated with
most of the computation.

Figure 6: Basic Perceptron/Linear Classifier [18]

Information is passed between network layers through the function shown above. The
major points to keep note of here are the tuneable weight and bias parameters — represent-
ed by w and b respectively in the function above. These are essential to the actual “learning”
process of a deep learning algorithm.

After the neural network passes its inputs all the way to its outputs, the network evalu-
ates how good its prediction was (relative to the expected output) using a loss function. The
goal of the network is ultimately to minimize this loss by adjusting the weights and biases of

13

the network. Using back propagation (paper) through gradient descent, the network back-
tracks through all its layers to update the weights and biases of every node in the opposite
direction of the loss function – In other words, every iteration of back propagation should
result in a smaller loss function than before.

Without going into the proof, the continuous updated of the weights and biases of the
network ultimately turns it into a precise function approximate – one that models the rela-
tionship between inputs and expected outputs.

2.1.2.1.Recurrent neural networks

Recurrent neural networks add a twist to basic neural networks. A vanilla neural net-
work takes a fixed size vector as input which limits its usage in situations that involve a se-
ries type input with no predetermined size.

Recurrent Neural Network remembers the past and its decisions are influenced by what
it has learnt from the past. Note: Basic feed forward networks “remember” things too, but
they remember things they learnt during training. For example, an image classifier learns
what a “1” looks like during training and then uses that knowledge to classify things in pro-
duction.

While RNNs learn similarly while training, in addition, they remember things learnt from
prior input(s) while generating output(s). It’s part of the network. RNNs can take one or
more input vectors and produce one or more output vectors and the output(s) are influenced
not just by weights applied on inputs like a regular NN, but also by a “hidden” state vector
representing the context based on prior input(s)/output(s). So, the same input could pro-
duce a different output depending on previous inputs in the series.

In summary, in a vanilla neural network, a fixed size input vector is transformed into a
fixed size output vector. Such a network becomes “recurrent” when you repeatedly apply the
transformations to a series of given input and produce a series of output vectors. There is no
pre-set limitation to the size of the vector. And, in addition to generating the output which is
a function of the input and hidden state, we update the hidden sate itself based on the input
and use it in processing the next input.

LSTMS

Long Short Term Memory networks – usually just called “LSTMs” – are a special kind of
RNN, capable of learning long-term dependencies. They were introduced by Hochreiter &
Schmidhuber (1997) [11], and were refined and popularized by many people in following
work. They work tremendously well on a large variety of problems, and are now widely
used.

Figure 3: LSTMS cell diagram [19]

14

KF Algorithm (𝐱𝐭−𝟏,𝐏𝐭−𝟏,𝐮𝐭, 𝐳𝐭)

Prediction stage:

1- Forward state projection.

 𝐱𝐭 = 𝐀𝐭𝐱𝐭−𝟏 + 𝐁𝐭𝐮𝐭

2- Covariance error forward projection.

 𝐏𝐭 = 𝐀𝐭𝐏𝐭−𝟏𝐀𝐭
𝐓 + 𝐑𝐭

 Update stage:

3- Compute Kalman Gain.

 𝐊𝐭 = 𝐏𝐭 𝐂𝐭
𝐓(𝐀𝐭𝐏𝐭 𝐀𝐭

𝐓 + 𝐐𝐭)
−𝟏

4- Update state with measurement (𝐳𝐭)

 𝐱𝐭 = 𝐱𝐭 + 𝑲𝒕(𝒛𝒕 − 𝑪𝒕𝒙𝒕)

5- Update error covariance.

 𝐏𝐭 = (𝑰−𝑲𝒕𝑪𝒕)𝑷𝒕

6- Return 𝐱𝐭,𝐏𝐭

LSTMs are explicitly designed to avoid the long-term dependency problem. Remember-
ing information for long periods of time is practically their default behaviour, not something
they struggle to learn.

A common architecture is composed of a cell (the memory part of the LSTM unit) and
three "regulators", usually called gates, of the flow of information inside the LSTM unit: an
input gate, an output gate and a forget gate.

Intuitively, the cell is responsible for keeping track of the dependencies between the el-
ements in the input sequence. The input gate controls the extent to which a new value flows
into the cell, the forget gate controls the extent to which a value remains in the cell and the
output gate controls the extent to which the value in the cell is used to compute the output
activation of the LSTM unit. The activation function of the LSTM gates is often the logistic
sigmoid function.

2.1.3.Kalman Filter

The Kalman Filter is a powerful mathematical tool that plays an important role when re-
al-world measurements are included in the system you are working with. It was invented by
Rudolph Emil Kalman in the late 1950s [20], with the aim of filtering and predicting linear
systems.

Basically it is a set of mathematical equations that implement an optimal estimator of the
predictor-corrector type. It processes all available measurements, regardless of their preci-
sion, to estimate the current value of the variables of interest. This is possible thanks to:

a) Knowledge of the system and dynamic measurement devices,

b) The statistical description of system noises, measurement errors and uncertainties

in dynamic models,

c) And any available information about the variables of interest.

15

The algorithm

The KF represents a belief or confidence in the state at the time that is given by the mean,
 and the covariance, . The input that the KF receives is the belief in t−1, represented by
 − and − .

To update this belief, the KF also requires the control signals () and the observations of
the environment provided by the sensors (). The output of the KF would be the belief in the
instant of time, represented by and .

Prediction stage, in which belief in the current moment is projected, through odometry.
It is just the addition to the robot's displacement and rotation of the instant t − 1 of the dis-
placement and the rotation that have occurred since the instant t – 1 to t.

Updating stage, in which the re-observed characteristics are considered. Thanks to the
estimation of the position provided by the Prediction stage, it is possible to estimate where
the feature should be, allowing to correct the position of the robot.

The matrices that appear in the KF algorithm are defined below:

 : Matrix that relates the state at time t − 1 to the state at time t, in the absence of control

signals.

 : Matrix that relates the optional control signals to the current state. Rt: Matrix nxn that

represents the covariance of the process noise.

 : Matrix mxn that relates the current state with the observations of the environment.

 : Matrix nxn that represents the covariance of the noise of the observations.

 : Matrix nxm that represents the Kalman Gain. The Kalman gain indicates confidence in the

observed characteristics, using their uncertainty together with a measure of the quality of

the data provided by the laser and by odometry. If the odometry is good and the data sup-

plied by the laser are not so good, the odometry will have more weight than the observa-

tions, giving a low value of the Kalman gain. If the opposite situation were to occur, the Kal-

man gain would be high, and the observations supplied by the laser would have more weight.

2.2.Relevant research

2.2.1. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

[21]

PointNet [21] is a seminal paper in 3D perception, applying deep learning to point clouds
for object classification and part/scene semantic segmentation. Its basis structure has been
used for many different applications in 3D perception, extending it from classifica-
tion/segmentation to many other domains.

Input data

PointNet takes raw point cloud data as input, which is typically collected from either a
LiDAR or radar sensor. Unlike 2D pixel arrays (images) or 3D voxel arrays, point clouds have
an unstructured representation in that the data is simply a collection (more specifically, a
set) of the points captured during a LiDAR or radar sensor scan. In order to leverage existing
techniques built around (2D and 3D) convolutions [22] [23] [24], many researchers and
practitioners often discretize a point cloud by taking multi-view projections onto 2D space or
quantizing it to 3D voxels. Given that the original data is manipulated, this approach can have
negative impacts.

16

Figure 4: PointNet critical points and shape upper-bound [21]

Network architecture

Given that PointNet consumes raw point cloud data, it was necessary to develop an archi-
tecture that conformed to the unique properties of point sets. Among these, the authors em-
phasize:

- Permutation (Order) Invariance: given the unstructured nature of point cloud data, a

scan made up of N points has N! permutations. The subsequent data processing must

be invariant to the different representations.

- Transformation Invariance: classification and segmentation outputs should be un-

changed if the object undergoes certain transformations, including rotation and

translation.

- Point Interactions: the interaction between neighbouring points often carries useful

information (i.e., a single point should not be treated in isolation). Whereas classifica-

tion need only make use of global features, segmentation must be able to leverage lo-

cal point features along with global point features.

Figure 5: PointNet architecture [21]

17

Ignoring the application specific part of the network, what point net does is transforming
the input data (nx3) to a global feature vector of length 1024. The core network uses a
shared multi-layer perceptron (MLP) to map each of the n points from three dimensions (x,
y, z) to 64 dimensions. It’s important to note that a single multi-layer perceptron is shared
for each of the n points (i.e., mapping is identical and independent on the n points). This pro-
cedure is repeated to map the n points from 64 dimensions to 1024 dimensions. With the
points in a higher-dimensional embedding space, max pooling is used to create a global fea-
ture vector in ℝ;:<⁴.

Permutation invariance

As mentioned, point clouds are inherently unstructured data and are represented as nu-
merical sets. Specifically, given N data points, there are N! permutations. In order to make
PointNet invariant to input permutations, the authors turned to symmetric functions, those
whose value given n arguments is the same regardless of the order of the arguments [2]. For
binary operators, this is also known as the commutative property. Common examples in-
clude:

sum(a, b) = sum(b, a)

average(a, b) = average(b, a)

max(a, b) = max(b, a)

Specifically, the authors make use of the symmetric function once the n input points are
mapped to higher-dimensional space, as shown below. The result is a global feature vector
that aims to capture an aggregate signature of the n input points. Naturally, the expressive-
ness of the global feature vector is tied to the dimensionality of it (and thus the dimensionali-
ty of the points that are input to the symmetric function). The global feature vector is used
directly for classification and is used alongside local point features for segmentation.

Transformation invariance

The classification (and segmentation) of an object should be invariant to certain geomet-
ric transformations (e.g., rotation). The “input transform” and “feature transform” are modu-
lar sub-networks that seek to provide pose normalization for a given input.

The T-Net is a regression network that is tasked with predicting an input-dependent 3-
by-3 transformation matrix that is then matrix multiplied with the n-by-3 input.

The operations comprising the T-Net are motivated by the higher-level architecture of
PointNet. MLPs (or fully-connected layers) are used to map the input points independently
and identically to a higher-dimensional space; max pooling is used to encode a global feature
vector whose dimensionality is then reduced to ℝ<⁵⁶ with FC layers. The input-dependent
features at the final FC layer are then combined with globally trainable weights and biases,
resulting in a 3-by-3 transformation matrix.

Figure 6: Structure of the Spatial Transformer

The concept of pose normalization is extended to the 64-dimensional embedding space
(“feature transform” in Fig. 2). The corresponding T-Net is nearly identical to that of Fig. 8
except for the dimensionality of the trainable weights and biases, which become 256-by-

18

4096 and 4096, respectively resulting in a 64-by-64 transformation matrix. The increased
number of trainable parameters leads to the potential for over fitting and instability during
training, so a regularization term is added to the loss function. The regularization term is
shown below and encourages the resulting 64-by-64 transformation matrix (represented as
A below) to approximate an orthogonal transformation.

Figure 7: Regularization used in loss function

2.2.2. AlignNet-3D for Fast Point Cloud Registration of Partially Observed Objects [9]

Align3D proposes a novel approach for computing point cloud registration. It is based on
learned approach instead of computationally expensive classical algorithms.

Figure 8: High level overview of Align3D

Given two LiDAR point segments that measure object shape at different times, the net-
work estimates the relative motion between scans. The novelty is that it uses a learning
approach opposed to purely geometric methods. This gives good performance in adverse
conditions such as large temporal gaps.

System architecture

Input data to the network are two 3D point clouds that represent surface measurements
of an object, captured at two different timesteps. The point clouds are sampled to ensure the
same size. Both point clouds are input to branches of (the same) CanonicalNet, which trans-
form the point clouds to a canonical pose and compute a fixed-dimensional feature vector for
each point cloud (see PointNet 3.1.3). To obtain a refined alignment estimate, it concatenates
the embeddings of both point clouds and uses a multi-layer perceptron (MLP) to produce the
final transform.

 Figure 9: Architecture align3d

19

To process the sparse point cloud data (within a branch of the siamese network), it uses a
PointNet architecture. First normalizes the input point cloud by moving its centroid to the
origin. Using T-CoarseNet (Point-Net (64, 128, 256), followed by (512, 256)) it pre-
dicts an amodal object center and bring the object closer to a canonical pose by moving the
predicted center to the origin. After the coarse center estimate, it uses T-FineNet (Point-Net
(64, 128, 512), followed by (512, 256)) to refine the object center and additionally
predict a canonical orientation. To estimate orientation instead of directly regressing the an-
gle to the canonical orientation, it predicts a classification into one of 50 equidistant angle
bins between 0 and 2π. Additionally, we predict an angle residual for every angle bin, so that
the final angle prediction is computed as α = i· ()+ , where i is the predicted an-
gle bin and is the respective predicted residual. The output layer size of an MLP predict-
ing a translation and an angle is therefore 2 + 2 · #bins. We re-normalize the point cloud by
moving the new amodal center to the origin, followed by a rotation by −α. The final point
cloud embedding is predicted by a PointNet(64, 128, 1024) network.

Figure 10: CanonicalNet architecture

Finally, it concatenates the point cloud embeddings computed by the siamese branches
(see Fig. 3a). It inputs the combined feature vector of size 2048 to a final (512, 256),
which predicts refined translation and angle to precisely align the two point clouds in their
canonical pose estimates.

Loss function

All the stages of the pipeline are fully supervised. In stage 1 it predicts an amodal center
with our first transformer network, T-CoarseNet. As target center it uses the center of the 3D
bounding box. In stage 2 it predicts an amodal center and the deviation from a canonical ori-
entation. The target rotation angle is the annotated 3D bounding box orientation. In stage 3
we predict the remaining translation and rotation needed to align the point clouds from the
remaining translation and rotation needed to align the point clouds from the concatenated
embeddings.

For translation the Huber loss function [25] is used with δ=1 except for the last stage

where δ=2. The Huber loss function is defined as 1 for |x| ≤ δ and δ|x|- 1 oth-
erwise. The angle loss if formed by the cross entropy loss for the angle bin classification and
a Huber loss for the residual corresponding to the ground truth angle bin. Residuals are pre-
dicted normalized within [-1,1], corresponding to angles [–β/2, β/2] with the angle bin size
beta = 2pi/#bins.

2.2.3.A Baseline for 3D multi-object tracking [26]

3D Multi-object tracking is an essential component technology for many vision (real-time
or not) applications such as autonomous driving, robot collision prediction or video face
alignment. In the recent years there has been a great progress on MOT.

20

Although the accuracy overtime has been significantly improved, it has come at the cost
of increasing system complexity and computational cost. This paper develops an accurate,
simple and real-time 3D MOT system. It combines the minimal components for 3D MOT and
works extremely well, getting state of the art performance on 3D MOT.

It uses an off-the-shelf 3D object detector to obtain oriented 3D bounding boxes from Li-
DAR point cloud. Then a combination of Kalman Filter and Hungarian algorithm is used for
state estimation and data association. Note that this work extends the state space of the Kal-
man Filter to full domain, including 3D location, size, velocity and orientation of the objects.

Figure 11: MOT in LiDAR captures (source: [27])

System architecture

The paper presents an online method, the means that at every frame we require only the
detection at the current frame and associated trajectories from the previous frame. The sys-
tem pipeline is illustrated in the next figure. It is composed of (1) 3D detection module to
provide the bounding boxes from the LiDAR point cloud; (2) 3D Kalman Filter predicts the
object state to the current frame; (3) data association module matches the detection with
predicted trajectories; (4) 3D Kalman Filter updates the object state based on the measure-
ment; (5) birth and death memory controls the newly appeared and disappeared trajecto-
ries.

Figure 12: System architecture

3D Object Detection

This publication takes advantage of high quality detection from many successful detec-
tors. It experiments with state-of-the-art 3D detectors on the KITTI dataset. It directly adopts
their pretrained models on the training set of the KITTI 3D object detection benchmark. At

21

frame t the output of the 3D detection module is a set of detections = *
 ,

 , ,
 + (n can

vary from frame to frame). Each detection is
 is represented as a tuple (, , , , , ,)

3D Kalman Filter: State Prediction

To predict the object state in the next frame, we approximate the inter-frame displace-
ment of object using the constant velocity model , independent of camera ego-motion. The
state of object trajectory is represented as a 10-dimensional vector
 = (, , , , , , , , ,) where , , represent the velocity in 3D space. is not in-

cluded as it degrades the performance of the whole system.

At every frame all associated trajectories from previous frame − = * −
 , −

 , , −
 +

are propagated to frame t based on the constant velocity model:

 = + = + = +

As a result for every trajectory the predicted state after propagations to frame t is
 = (, , , , , , , , ,) in , which will be fed to the data association

module.

Data Association

To match the detections with predicted trajectories , it applies the Hungarian algo-
rithm. The affinity matrix is computed using the 3D IoU (intersection over union) metric be-

tween every pair of detection and
 . Then, the bipartite graph matching problem can be

solved with the Hungarian algorithm. In addition trajectories are rejected when 3D IoU is
less than .

3D Kalman Filter: State Update

The updated trajectories are computed following the Bayes rule, they are the weighted
average between the state space of

 (estimated) and
 (measurement). The

weights are determined by the uncertainty of both the matched trajectory and detection. See
Kalman Filter (section 2.1.3).

In addition, it is observed that the naïve weighted average does not work well for orien-
tation. For matched object k, the orientation of its detection

 can be nearly opposite to

 (differ by π). This is not possible in real motion so the orientation of

 or

must be wrong (most possibly
), when computing the IoU this mismatch will lead to

low 3D IoU with ground truth. The paper proposes a simple solution to this problem. When
the difference of orientation is frater than π/2, add π to the orientation of

 so that it is
consistent with

 .

Birth and Death Memory

It is necessary to manage the birth and death trajectories as new objects might appear
and existing disappear. First, it considers all unmatched detection as potential ob-
jects entering the image. To avoid creating false positives a new trajectory won’t be created
until appears for the next frames. Once the new trajectory is successfully created, we
initialize the state of the trajectory

 same as its most recent measurement

 with
velocities set to zero.

Second, it considers all unmatched trajectories as potential objects leaving the
image. To avoid deleting true positive trajectories which have missing detection at certain
frames, we keep tracking each unmatched trajectory

 for frames before de-
leting it from the associated trajectories. Ideally, true positive trajectories with missing de-
tection can be maintained and interpolated by our 3D MOT system, and only the trajectories
that leave the image are deleted.

22

3.Methodology / project development:

3.1.System definition

3.1.1.Full pipeline

The system uses a sequence of pre-segmented point clouds as input data, this means that
each observation only contains one object. They are sequentially processed with align-3D
network to compute pose and translation estimations, then these estimations together with
external features are feed into Kalman Filter or LSTMs to compute the refined routes.

Figure 13: Schematic of the system

3.1.2.Evaluation of the system

To evaluate the system we take the RMSE on the computed routes. It is computed by
comparing the estimation with the ground-truth data.

 = √∑
(−)

3.2.KF for Object tracking

As explained in section 2.1.3, the Kalman Filter is used to estimate a value given noisy
measurements. This same approach can be taken to estimate the path of an object given
some estimations. This section explores the use of KF for object tracking, both for pose and
translation estimation.

We tried various experiments with the Kalman filter, with different input data, output da-
ta and whether we used angle information or not. The process noise covariance matrix and
the measurement noise covariance matrix parameters are set up using linear search on the
training set.

3.2.1.Align3D translations

The first experiment was to use the outputs of align3d (translations) as observable state
and estimate translation. The state is represented by pose and velocities.

 = (, , ,)

 = (,)

 = [1
 1

]

23

 = [

1 1
 1 1
 1
 1

]

3.2.2.Pose estimation – Mean, median and predicted

The next iteration was to use pose estimation together with Kalman Filter to estimate the
pose. In this experiment we first tried to estimate the pose with taking the mean and the me-
dian of the point cloud. Then we added estimated pose from Align3D stage 2.

 = (, , ,)

 = (,)

 = [1
 1

]

 = [

1 1
 1 1
 1
 1

]

3.2.3.Fusing data with KF

The final stage with Kalman Filter was to use both estimated pose and estimated transla-
tion together with Kalman Filter. In this stage we are fusing together pose and translations
estimations.

 = (, , ,)

 = (, , ,)

 = [

1
 1
 1
 1

]

 = [

1 1
 1 1
 1
 1

]

3.3.LSTMs for Object tracking

We evaluated LSTMs performance for the object tracking task. Unlike Kalman Filters,
LSTMs make no assumptions about the type of motion of the object, so they should be able to
capture both linear and non-linear motion. Furthermore, because of the recurrent nature of
the neural network, the LSTM can incorporate a window of the previous history when learn-
ing to predict the future position of an object. The LSTM learns a regression based on the
previous N observations, where the observations are point clouds and the outputs are the
estimated pose.

3.3.1.Architecture of the network

The architecture of the network is a model that has a single hidden layer of LSTM units and
an output layer used to make the predictions. As inputs we use estimated pose, estimated
translation or both. The number of units in the hidden layer is studied in the results section.

24

3.3.2.Huber loss

The Huber loss [28] is used for training the network. It is less sensitive to outliers in data
than the squared error loss. The function is quadratic for small values of a, and linear for
large values. With equal values and slopes of the different sections at the two points where
|a| = δ.

 () = {

1

 | |

 (| | −
1

) t

3.4.Implementation details

3.4.1.Dataset creation

The original Align3D datasets were designed for evaluating point-cloud translation be-
tween two observations. They are already segmented; this means that each observation con-
tains only one object. Each entry in the dataset contains two temporally adjacent observa-
tions (point clouds) and a json file with metadata containing the path id, object id and ground
truth data.

25

For our problem we are interested in having full trajectories of the same object. We need
to group by recording and object identification number. The proposed solution is based on
creating an index of the different routes, running inference on the whole (ungrouped) da-
taset, computing extra features (mean and median), then loading in memory the estimations,
ground truth data and extra features based on the index of the different routes.

The output of the neural network contains: ground truth pose (both point clouds),
align3d output (translation), and stage 2 predicted pose (both point clouds) for each entry.
The index of the routes contains: name (path and object id), type (train or val), first point,
number of points, and cumulative sum of the number of points.

The in-memory representation is based on a class containing: name, flag for indicating if
it is a full route (contains measurements or just metadata) and dataframes for generated
routes (kf, lstms), ground_truth (straight from NN output), routes (used for plotting and er-
ror measurement) and error (error computation per timepoint).

Figure 14: Class schematic

During our experiment, we thought that adding new features to the model for object
tracking could be a good idea. The first/simplest iteration was to add the mean of the obser-
vations as input to the Kalman filter and combine that data with the estimated translations.
The procedure to do this is to first compute the features, store them as an external file, and
then add them to the in-memory representation. This way we have an extendable, decoupled
way of adding extra information to the model. Eventually, we added the mean, median, and
the prediction from stage 2 (align3d) of the observations. All of them are added to the gener-
ated data frame.

3.4.2.The dataset

In this section we analyse the existing align3D dataset, both in the raw/unstructured ob-
servation domain and also with routes.

Number of points per observation statistics

 MEAN MEDIAN STD
KITTI_CARS 395.18 108.0 772.94
KITTI_CARS_PERSONS 381.35 102.0 761.85
KITTI_CARS_HARD 148.51 55.0 163.94
KITTI_CARS_PERSONS_HARD 193.44 113.0 199.65

26

Histogram number of points in observations (capped at p80)

In the standard datasets (not hard) we have more points per observation and also a very
long tail with some observations with thousands of points. Also they present the same distri-
bution. In the case of the hard datasets we get fewer points per observation, and lower vari-
ability too.

Number of observations per route statistics

 MEAN MEDIAN STD
KITTI_CARS 46.37 30.6 57.39
KITTI_CARS_PERSONS 50.80 32.0 59.89
KITTI_CARS_HARD 805.55 487.0 1209.37
KITTI_CARS_PERSONS_HARD 491.53 280.0 734.13

Histogram number of observations in routes (capped at p95)

Analyzing the number of observations it is clear that the kitti_cars and kitt_cars_persons

datasets are very similar, both the statistics and the distributions are really close. The hard
datasets contain some very long routes, that is why the statistics and distributions are like
this.

27

Number of pairs and routes per dataset

 N.PAIRS N_ROUTES
 TRAIN VAL TOTAL TRAIN VAL TOTAL

KITTI_CARS 20518 8790 29308 463 169 632
KITTI_CARS_PERSONS 28463 12072 40535 561 237 798
KITTI_CARS_HARD 20000 9000 29000 22 14 36
KITTI_CARS_PERSONS_HARD 20000 9000 29000 39 20 59

Class analysis per dataset
 Van Car Pedestrian
 Obs. Route Obs. Route Obs. Route

KITTI_CARS 3236 55 26072 577 0 0
KITTI_CARS_PERSONS 3236 55 26072 577 11227 166
KITTI_CARS_HARD 4817 5 24813 31 0 0
KITTI_CARS_PERSONS_HARD 2678 4 10970 31 15352 24

From the last two tables we see that the kitti_cars_persons is just the kitti_cars dataset
plus some pedestrian observations. And that the hard datasets contain fewer and longer
routes.

3.4.3.Angle analysis and correction

From analysing the straight Align3d results, something that surprised me was the inacu-
rate results it got on angle estimation, especially compared to pose estimation.

Figure 15: Pose and angle estimation in route 2_11

28

The error on the whole dataset is very high by default. Then we tried a few techniques to
improve the results. The first technique was to normalize the estimations to [-π, π]. The se-
cond was to check if there was brusque changes (>π/2) in the angle, as they cannot happen
in the real world from frame to frame, and adding pi when this happened. And the third one
was to compute the trajectory angle (,) and check that the estimated angle does
not differ with the trajectory angle by (>π/2), in case it was we added π.

Figure 16: Angle corrections on route 2_11

After some experiments and applying the different methods outlined in the previous par-
agraph we didn’t manage to significantly improve the angle estimations. Even the estimated
theta is way different than the ground truth, (in many cases) this is because the camera is
moving and the object we are tracking is still. The conclusion is that these angle estimations
are too inaccurate to work with them, and we have dismissed for future experiments.

3.4.4.Evaluation framework

Creating routes from translation - relative and absolute routes

Align3d generates translations from two pairs of observations. This presents the problem
of how to evaluate object tracking given only translations. One solution could be to just eval-
uate the translations of the different observations, but this means limiting the scope of the
object tracking to only estimate translations between frames. Furthermore in this case we
are only evaluating the error on a sample by sample basis, we are not taking into account the
accumulated error from the previous frame by not taking a reference point.

The approach we chose to follow tries to solve both problems by computing an estimated
route, whether if we are estimating translations or directly estimating the pose. In the latter
case, the processing is straightforward. But in the case of estimating translation a problem is
presented, how do we create the route if we only have estimated translations?

Initially, we created two solutions. The first was to create a relative route, this means tak-
ing the previous point in the ground truth data and adding the translation. Essentially evalu-
ating the translation estimation without taking into account accumulating error. The second

29

was to take the ground truth data for the first point and keep adding the estimated transla-
tions for each. In this case, we are taking into account the outcomes of all the estimations.
Eventually, we concluded that the correct approach was to compare the estimated absolute
routes with the directly pose estimated routes.

Computing error

As indicated in Figure X the class contains a DataFrame with the ground truth data for x,
y and angle. Then it is easy to compute the estimation error based on any loss function for a
single route.

Taking advantage of the data frames we add columns with the error at each observation
and value. Therefore we have a registry of all the measurements, estimations, and errors at
any level of granularity.

Figure 17: Compute error diagram

To create a more general and easier to use framework this operation is done automatical-
ly for all the routes in the dataset, both relative and absolute. The dataset keeps track of the
different routes with the name_routes parameter. It is a simple class that contains two lists,
one for relative routes and one for absolute ones. Based on the names on name_routes it
computes the error for all the observations and routes in the dataset.

3.4.5.Visualization of the results

To qualitatively analyse the results we created a visualization tool. It takes all the routes
from the routes dataframe and plots them in a dual plot, containing the relative and absolute
pose. Note that for the methods that directly compute pose, the relative and absolute pose
are the same.

There is also the option to visualize the angle in the plot. It paints an arrow in the direc-
tion of the angle on each point. The length is computed by taking the magnitude of the trans-
lation vector and computing a percentage of its.

The visualizations are implemented using Matplotlib [29] and 3Djs [30]. They are inter-
active so we can focus on each route and zoom as much as needed.

30

3.4.6.Open source

All the code used for creating the datasets, visualizing the results, running inference on
AlignNet-3D, running Kalman Filter/LSTM and evaluating the results can be found in the fol-
lowing link: https://github.com/jaumecolomhernandez/3d-object-tracking-lstms.

Figure 18: Example plot

https://github.com/jaumecolomhernandez/3d-object-tracking-lstms

31

4.Results

4.1.Direct estimation

4.1.1.Tables of results

Results pose estimation

ROUTE RMSE
Mean 1.0275
Median 1.2736
Pred 0.4868

Results AlignNet-3D (translation)

ROUTE RMSE
Align3D 0.9055

4.1.2.Discussion

In this plot we see that mean and median are dependent on having a good/complete ob-
servation of the object. At the beginning of the path we see that it separates a lot from the
ground truth, but through the trajectory it gets closer. The predicted pose from AlignNet-3D
is very consistent through all the trajectories and that is the reason why it has got such a low
RMSE in the results table.

Figure 19: Pose estimation and AlignNet-3D in route 6_10

The estimated translations from AlignNet-3D are quite accurate. Although the problem is
that in some cases the translation error adds up and the final estimated trajectory has a bad
performance.

4.2.Kalman Filter

4.2.1.Tables of results

Results pose estimation and kalman filter (pose)

ROUTE RMSE
KF/Mean 2.0889
KF/Median 2.3012

32

KF/Pred 1.6867

Results align3D and kalman filter (translation)

ROUTE RMSE
KF/Align3D 5.9775

Results fusing data with kalman filter (translation)

ROUTE RMSE
KF/Mean+Align3D 2.0624
KF/Median+Align3D 2.3014
KF/Pred+Align3D 1.4434

Results fusing data with kalman filter (pose)

ROUTE RMSE
KF/Mean+Align3D 0.7406
KF/Median+Align3D 0.7526
KF/Pred+Align3D 0.6780

4.2.2.Discussion

In the case of Kalman filter applied to pose estimations (mean, median and pred) we see
that the performance degrades a lot, almost doubling the RMSE.

Figure 20: Kalman Filter + pose estimations in route 6_10

For Kalman Filter applied to AlignNet-3D the results are even worse, the RMSE jumps to
near 6. As we can see in Figure 22, what happens is that the translations overshoot on the
initial direction. In the cases where the trajectory is straight there is not any problem, but in
the cases where the trajectory curves it is prominent.

The big improvement comes when we apply kalman filter to pose and translation
information, as both inputs are fused in a better estimate. In Figure 24 we see a plot with the
resulting route from fusing mean, median and prediction with AlignNet-3D translation
estimations. Once again the best results come from using the predicted pose. Althought in all
cases the results improve a lot from just using the AlignNet-3D or the Pred estimation.

33

Figure 21: Kalman Filter + translation Figure 22: Kalman Filter + pose + translation

4.3.LSTMs

4.3.1.Tables of results

Results pose estimation and LSTMs (pose)

ROUTE RMSE
LSTMs/Mean 0.8202
LSTMs/Median 0.8460
LSTMs/Pred 0.4842

Results AlignNet-3D and LSTMs (translation)

ROUTE RMSE
LSTMs/Align3D 0.9619

Results fusing data with LSTMs (pose)

ROUTE RMSE
LSTMs/Mean+Align3D 0.4997
LSTMs/Median+Align3D 0.4994
LSTMs/Pred+Align3D 0.4207

Results fusing data with LSTMs (translation)

ROUTE RMSE
LSTMs/Mean+Align3D 1.4197
LSTMs/Median+Align3D 1.4265
LSTMs/Pred+Align3D 1.0895

4.3.2.Discussion

In Figure 25 we see LSTMs applied to pose estimation. We see that there is a big im-
provement in mean and median poses, but with predicted (s2) pose it improves marginally.

34

This may be because the predicted poses are much more accurate than the mean and median
poses, so the network has more difficulties to learn the correction.

Figure 23: LSTMs + pose Figure 24: LSTMs + translation

In the next Figure, we see LSTMs applied to the AlignNet-3D translation estimations. In
this case we see a big improvement respect to Kalman Filter, while in the previous case the
results drifted a lot due to the filter, now they improve. Although that applied to the whole
dataset the results are marginally the same.

Figure 25: LSTMs + pose and translation estimation

In the last plot we see LSTMs with pose and translation estimation. The results are signif-
icantly better than anything seen up to now. In the case that uses predictions as pose estima-
tion it gets an RMSE on the whole dataset of 0.42, which is significantly lower than the 0.48
of the AlignNet-3D pose estimations.

35

5.Budget

This thesis is not a prototype, but a research exercise on extending a current publication
related to object tracking. It is entirely developed in Python and uses free open-source librar-
ies.

The development costs come from the salaries paid to engineers. In this case it was a sen-
ior engineer supervising the project 2 hours per week and a junior engineer (me) working
25 hours per week on the project. The project had a full duration of 25 weeks.

Person Hours per week Cost per hour Full cost (25 weeks)

Senior engineer 2 h/week 50 €/h 2500 €

Junior engineer 25 h/week 15 €/h 9375 €

 TOTAL 11875 €

36

6.Conclusions and future development:

The main objective of this thesis was to analyse and extend the AlignNet-3D publication
[9] from estimating the relative motion between two observations to do object tracking in
full trajectories. Moreover, another objective of the project was to become familiar with deep
learning and computer vision concepts.

The results obtained in the project are satisfactory. We have accomplished the first objec-
tive, developing a full framework to estimate the trajectories in the KITTI dataset, running
many experiments with the raw results from AlignNet-3D, with the Kalman Filter and also
with recurrent neural networks. The best results are achieved with using pose and transla-
tion estimation with LSTMs to directly estimate pose, with an RMSE error of 0.42 on the
whole dataset. It is relevant that the results from just using the AligNet-3D pose estimations
(stage 2) are already very accurate, achieving an RMSE error of 0.48 without the need of any
extra processing.

Regarding the second objective I also consider it accomplished. I have gone from having
little experience with computer vision and point clouds to understanding the relevant publi-
cations in the area, knowing how to structure a project of this scope, preparing/analysing the
datasets and performing experiments on a new problem.

Finally, as future work, the next step is to create an encoder-decoder architecture to en-
code a representation of the object of analysis, similar to the proposal of [31]. So that each
observation adds information to the latent representation and this is used to improve the
tracking.

37

Bibliography

[1] Hao Jiang, Zongwei Liu Fuquan Zhao, "Recent development of automotive LiDAR technology,
industry and trends," in ICDIP 2019.

[2] Xianfeng and Laga, Hamid and Bennamoun, Mohammed Han, "Image-based 3D Object
Reconstruction: State-of-the-Art and Trends in the Deep Learning Era," IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2019.

[3] Sebastian Weiss and Mengyu Chu and Nils Thuerey and Rüdiger Westermann, Volumetric
Isosurface Rendering with Deep Learning-Based Super-Resolution, 2019.

[4] Jonathan and Shelhamer, Evan and Darrell, Trevor Long, "Fully Convolutional Networks for
Semantic Segmentation," in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[5] Aaron and Kalchbrenner, Nal and Espeholt, Lasse and kavukcuoglu, koray and Vinyals, Oriol and
Graves, Alex van den Oord, "Conditional Image Generation with PixelCNN Decoders," in Advances
in Neural Information Processing Systems, 2016.

[6] Kaiyu Yang, Jia Deng Alejandro Newell, "Stacked Hourglass Networks for Human Pose
Estimation," in European Conference on Computer Vision, 2016.

[7] Ilya Sutskever, Geoffrey E. Hinton Alex Krizhevsky, "ImageNet Classification with Deep
Convolutional Neural Networks," in Neurips 2012.

[8] Alex Krizhevsky, Learning multiple layers of features from tiny images, 2009.

[9] Johannes Gross and Aljosa Osep and Bastian Leibe, "AlignNet-3D: Fast Point Cloud Registration of
Partially Observed Objects," in International Conference on 3D Vision (3DV), 2019.

[10] Rudolph Emil Kalman, A New Approach to Linear Filtering and Prediction Problems, 1960.

[11] Jürgen Schmidhuber Sepp Hochreiter, Long short-term memory, 1997.

[12] Aljosa Osep, Yutong Ban, Radu Horaud, Laura Leal-Taixe, Xavier Alameda-Pineda Yihong Xu,
"How To Train Your Deep Multi-Object Tracker," in Computer Vision and Pattern Recognition
(cs.CV), 2020.

[13] Laura Leal-Taixé Guillem Brasó, "Learning a Neural Solver for Multiple Object Tracking," in
Computer Vision and Pattern Recognition (cs.CV), 2020.

[14] Ismail Elezi, Laura Leal-Taixé Maxim Maximov, "CIAGAN: Conditional Identity Anonymization
Generative Adversarial Networks," in Computer Vision and Pattern Recognition (cs.CV), 2020.

[15] Patrick Dendorfer and Hamid Rezatofighi and Anton Milan and Javen Shi and Daniel Cremers and
Ian Reid and Stefan Roth and Konrad Schindler and Laura Leal-Taixé, MOT20: A benchmark for
multi object tracking in crowded scenes, January 2020, arXiv 0712.0157.

[16] javatpoint.com, Regression vs classification machine learning ,
https://www.javatpoint.com/regression-vs-classification-in-machine-learning.

[17] Jaume Colom, Neural network implementation, https://github.com/jaumecolomhernandez
/simple-net.

[18] Nitesh Goyal, Perceptron Algorithm, https://mlforanalytics.com/2018/04/29/implementation-
of-perceptron-algorithm-using-python/.

[19] Christopher Olah, Understanding LSTM Networks, 2015, https://colah.github.io/posts/2015-08-
Understanding-LSTMs/.

[20] Rudolph Emil Kalman, "A New Approach to Linear Filtering and Prediction Problems,"
Transactions of the ASME--Journal of Basic Engineering, vol. 82, no. 82, pp. 35-45, 1960.

[21] Charles R. Qi and Hao Su and Kaichun Mo and Leonidas J. Guibas, "PointNet: Deep Learning on
Point Sets for 3D Classification and Segmentation," in Computer Vision and Pattern Recognition
(cs.CV), 2016.

[22] S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao Z. Wu, "3D ShapeNets: A Deep
Representation for Volumetric Shape Modeling," in IEEE Conference on Computer Vision and
Pattern Recognition , 2015.

[23] Charles R. Qi and Hao Su and Matthias Niessner and Angela Dai and Mengyuan Yan and Leonidas
J. Guibas, "Volumetric and Multi-View CNNs for Object Classification on 3D Data," in IEEE

38

Conference on Computer Vision and Pattern Recognition , 2016.

[24] Sebastian Scherer Daniel Maturana, "VoxNet: A 3D Convolutional Neural Network for real-time
object recognition," in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2015.

[25] P. J. Huber, "Robust estimation of a location parameter," in The Annals of Mathematical Statistics.,
1964, pp. 73-101.

[26] Xinshuo Weng and Kris Kitani, "A Baseline for 3D Multi-Object Tracking," in Computer Vision and
Pattern Recognition (cs.CV), 2019.

[27] Bin Yang, Raquel Urtasun Wenjie Luo, "Fast and Furious: Real Time End-to-End 3D Detection,
Tracking and Motion Forecasting with a Single Convolutional Net," in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 2018.

[28] Peter J. Huber, Robust Estimation of a Location Parameter, 1964, Annals of Statistics. 53 (1): 73–
101.

[29] J. D. Hunter, "Matplotlib: A 2D graphics environment," Computing in Science & Engineering, vol. 9,
no. 3, pp. 90--95, 2007.

[30] Vadim Ogievetsky, Jeffrey Heer Michael Bostock, D3: Data-Driven Documents, 2011.

[31] Jesus Zarzar, Bernard Ghanem Silvio Giancola, "Leveraging Shape Completion for 3D Siamese
Tracking," in Computer Vision and Pattern Recognition (cs.CV), 2019.

[32] Wenhan Luo and Junliang Xing and Anton Milan and Xiaoqin Zhang and Wei Liu and Xiaowei
Zhao and Tae-Kyun Kim, Multiple Object Tracking: A Literature Review, 2014, arXiv:1409.7618.

[33] Maria Cristina Munuera Raga, Filtro de Kalman y sus aplicaciones, 2018, TFG Grau matemàtiques
UB.

[34] David Pampliega Ruiz, Algoritmo de SLAM para el ROMEO-4R, 2008, PFC Ingeniero de
Telecomunicación.

[35] Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks, 2015,
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

[36] Lisa Tagliaferri, An Introduction to Machine Learning, 2017,
https://www.digitalocean.com/community/tutorials/an-introduction-to-machine-learning.

[37] James Liang, An introduction to Deep Learning, 2018, https://towardsdatascience.com/an-
introduction-to-deep-learning-af63448c122c.

[38] Nick McCrea, An Introduction to Machine Learning Theory and Its Applications, -,
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer.

[39] Loic and Simonovsky, Martin Landrieu, "Large-Scale Point Cloud Semantic Segmentation With
Superpoint Graphs," in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018.

