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A B S T R A C T

Rocket engines and high-power new generations of gas-turbine jet engines and diesel engines oftentimes in-
volve the injection of one or more reactants at subcritical temperatures into combustor environments at high
pressures, and more particularly at pressures higher than those corresponding to the critical points of the indi-
vidual components of the mixture, which typically range from 13 to 50 bars for most propellants. This class
of trajectories in the thermodynamic space has been traditionally referred to as transcritical. However, the
fundamental understanding of fuel atomization, vaporization, mixing, and combustion processes at such high
pressures remains elusive. In particular, whereas fuel sprays are relatively well characterized at normal pres-
sures, analyses of dispersion of fuel in high-pressure combustors are hindered by the limited experimental
diagnostics and theoretical formulations available. The description of the thermodynamics of hydrocarbon-fu-
eled mixtures employed in chemical propulsion systems is complex and involves mixing-induced phenomena,
including an elevation of the critical point whereby the coexistence region of the mixture extends up to pres-
sures much larger than the critical pressures of the individual components. As a result, interfaces subject to
surface-tension forces may persist in multicomponent systems despite the high pressures, and may give rise to
unexpected spray-like atomization dynamics that are otherwise absent in monocomponent systems above their
critical point. In this article, the current understanding of this phenomenon is reviewed within the context of
propulsion systems fueled by heavy hydrocarbons. Emphasis is made on analytical descriptions at mesoscopic
scales of interest for computational fluid dynamics. In particular, a set of modifications of the constitutive
laws in the Navier–Stokes equations for multicomponent flows, supplemented with a high-pressure equation
of state and appropriate redefinitions of the thermodynamic potentials, are introduced in this work based on an
extended version of the diffuse-interface theory of van der Waals. The resulting formulation involves revisited
forms of the stress tensor and transport fluxes of heat and species, and enables a description of the mesoscopic
volumetric effects induced by transcritical interfaces consistently with the thermodynamic phase diagram of
the mixture at high pressures. Applications of the theory are illustrated in canonical problems, including dode-
cane/nitrogen transcritical interfaces in non-isothermal systems. The results indicate that a transcritical inter-
face is formed between the propellant streams that persists downstream of the injection orifice over distances
of the same order as the characteristic thermal-entrance length of the fuel stream. The transcritical interface
vanishes at an edge that gives rise to a fully supercritical mixing layer.

© 2020.

Nomenclature

Latin letters ***
a, b coefficients of the Peng-Robinson equation of state
AP / Aμ characteristic oscillation amplitudes of the pressure /

chemical potential across the interface
parameters of the gradient-energy coefficient model
volume expansivity divided by the corresponding
ideal-gas value

c speed of sound
ratio between real and ideal specific heats at constant
pressure

cp / constant-pressure specific / molar heat

⁎ Corresponding author.
Email address: jurzay@stanford.edu (J. Urzay)

cv / constant-volume specific / molar heat
d equivalent hard-sphere diameter
Di,j Fickian diffusion coefficient

binary diffusion coefficient
DT thermal diffusivity
e / specific / molar internal energy
E total energy

/ mechanical- / transport-equilibrium parameters
f / specific / molar Helmholtz free energy
F Helmholtz free energy of the system
F vector of thermodynamic forces
f fugacity
g / specific / molar partial Gibbs free energy
G Gibbs free energy of the system
h / specific / molar enthalpy
H enthalpy of the system
Ji species diffusion flux
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interfacial species flux
kT thermal-diffusion ratio
KI local curvature of the interface

interfacial stress tensor
KnI Knudsen number
ℓca capillary length
Li,j Onsager coefficients

Onsager matrix
LTR supercriticalization length
Le Lewis number
M momentum-flux ratio
Ma Mach number
n number of moles

spatial coordinate normal to the interface
N number of components

nondimensional curvature
NA Avogadro’s number
Oh Ohnesorge number
OPR overall pressure ratio
P pressure
Pa air pressure at a given altitude
Pc,F/Pc,O critical pressures of the propellants
P∞ combustor pressure

ratio between the characteristic oscillation amplitude
of the pressure through the interface and the combus-
tor pressure

Pe Péclet number
q heat flux
qt heat flux (excluding heat transport by interdiffusion of

species)
interfacial heat flux

RF radius of the orifice
R0 universal gas constant

ratio between fuel and oxidizer densities
Re Reynolds number
s / specific / molar / generalized entropy

entropy production rate
t time
T temperature
Tc,diff temperature of the diffusional critical point
Tc,F/Tc,O critical temperatures of the propellants
Tc,mix critical mixing temperature
Tpb pseudo-boiling temperature
TTR supercriticalization temperature
UF / UO injection velocities of the propellants
v velocity vector
v molar volume
V volume of the system
VLE vapor-liquid equilibrium

partial molar volume
W / molecular weight / mean molecular weight of the mix-

ture
ratio between fuel and coflow molecular weights

We Weber number
x streamwise spatial coordinate
X molar fraction
y transversal spatial coordinate
Y mass fraction
Z compressibility factor
Greek symbols ***
α thermal-expansion ratio
βs isentropic compressibility
βT isothermal compressibility

βv volume expansivity
γ adiabatic coefficient
δI interface thickness
δT / δY thermal / compositional mixing-layer thickness
Δde / Δdh internal energy / enthalpy departure function
ϵR / ϵT large-scale / thermal Cahn number
η dynamic viscosity
θ reduced temperature
ϑ binary-interaction parameter
ι model parameter for calculation of thermal-diffusion

ratio
κ gradient-energy coefficient
λ thermal conductivity
Λ molecular mean free path
μ / / specific / molar / generalized chemical potential
ρ density
σ surface-tension coefficient
σ0 characteristic value of the surface-tension coefficient
τ ratio between interface and fuel-stream temperatures
τ viscous stress tensor
φ fugacity coefficient
ϕ vector of thermodynamic currents
χ auxiliary variable
Ω Landau potential
ψ auxiliary vector
Main subscripts ***
c critical thermodynamic state
diff diffusional critical point
e vapor-liquid equilibrium conditions
f formation value
F fuel stream
FF, O employed to denote the value of the binary diffusivity

in the fuel stream
F, OO employed to denote the value of the binary diffusivity

in the coflow stream
GD gradient-dependent thermodynamic potential or pres-

sure
I interface-related quantity
mix critical mixing conditions
O coflow stream
pb pseudo-boiling conditions
∞ conditions in the combustor environment
Main superscripts ****
g gas-like state
IG ideal-gas conditions
ℓ liquid-like state
ΔT species or heat flux components dependent on temper-

ature gradients
′ species or heat flux components independent of tem-

perature gradients
⋆ nondimensional variable
0 reference or initial value

1. Introduction

The utilization of high pressures for burning fuel and oxidizer
is a necessary requirement for the generation of thrust in chemical
propulsion systems for ground, air, and space engineering applica-
tions. In modern designs, the characteristic pressures in the combus-
tor range from 40 to 560 bars in rocket engines, to 20–60 bars in
gas-turbine jet engines at takeoff, and 10–30 bars in diesel engines.
However, great difficulties arise when attempting to model the dy-
namics of chemically reacting flows at high pressures. One of them,
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which influences the dispersion of fuel in the combustor and repre-
sents the focus of the present work, is related to the occurrence of tran-
scritical conditions.

Challenges associated with transcritical conditions have been
known since the development of high-pressure thrust chambers for
liquid-fueled rocket engines [1–4]. A number of controlled experi-
ments have been undertaken over the years to study flows at high pres-
sures [5–14], and many have revealed the presence of interfaces sep-
arating the propellants [15–23]. The high pressures, however, limit
the amount of information that can be obtained from state-of-the-art
experimental diagnostics. Numerical simulations have accompanied
these endeavors [24–31], but most of these computations have been
limited to high-pressure conditions that did not warrant the existence
of interfaces. Major reviews in the field have also focused on those
conditions [32–34]. The field has evolved rapidly in recent years
spurred by a number of publications, including (a) the thermodynamic
analysis of Qiu and Reitz [35], which has provided detailed informa-
tion about the thermodynamic space transited by homogeneous hydro-
carbon-fueled mixtures at high pressures; (b) the molecular-dynamics
simulations by Mo and Qiao [36], which have described the structure
of transcritical interfaces albeit limited to very small length and time
scales imposed by the high computational cost of molecular methods;
and (c) the continuum-level theoretical work of Dahms and Oefelein
[37], and Gaillard et al. [38,39], which have provided insight into the
problem of transcriticality by using the diffuse-interface theory of van
der Waals. The work by Dahms and Oefelein [37] was limited to the
analysis of mean thermodynamic states in the combustor and station-
ary interfaces in absence of flow effects. In contrast, Gaillard et al.
[38,39] made significant progress in coupling extensions of the dif-
fuse-interface theory of van der Waals with the Navier-Stokes equa-
tions to describe, for instance, steady counterflow hydrogen diffusion
flames in transcritical conditions.

This review article shows that fluid-mechanical effects are cen-
tral to the description of transcritical phenomena, and that the prob

lem cannot be treated solely by mean thermodynamic states in the
combustor or isolated stationary interfaces, as previously attempted
[37]. This review article fulfills the following objectives: (a) it sum-
marizes relevant operating conditions leading to transcriticality; (b) it
describes the state-of-the-art in the theoretical and computational un-
derstanding of transcritical interfaces at the continuum level; (c) it pro-
vides a comprehensive diffuse-interface theory of the hydrodynamics
of propellants under transcritical conditions; and (d) it employs that
theory to describe, for the first time, the downstream evolution of a
transcritical interface separating the propellant streams. This review
article also provides an analysis of the terminal structure of the tran-
scritical interface at an edge located at a supercriticalization distance
downstream of the orifice that is calculated as part of the solution. The
diffusional critical point of the mixture of the propellants is shown to
play a crucial role in the description of the interface edge. Downstream
of the interface edge, the flow becomes fully supercritical, the inter-
face disappears, and the propellants mix by molecular diffusion across
a growing compositional mixing layer.

1.1. Transcritical conditions in combustors fueled by heavy
hydrocarbons

Although there may be several definitions of the character of tran-
scritical conditions in the literature
[1–4,6,7,9–14,19,22,24,25,30,32,33,35–37], one that is of practical
relevance for chemical propulsion systems corresponds to the ther-
modynamic conditions attained in the injection configuration sketched
in Fig. 1. There, two streams of different propellants, denoted by the
subindexes F (for the fuel stream) and O (for the coflow stream), are
injected in such a way that the temperature of the coflow stream TO
is higher than that of the fuel stream TF. In this configuration, trans-
criticality is attained when at least one of the propellant streams, of-
ten the fuel stream in practical applications, enters the combustor at a
subcritical temperature, but the combustor pressure P∞ is larger than

Fig. 1. Schematics of a transcritical flow near an injector orifice delivering a cold supercritical heavy-hydrocarbon fuel into a hot supercritical coflow in a combustor at a pressure
higher than the critical pressures of the two separate components. The symbol RF denotes the radius of the orifice, and UF and UO are the characteristic injection velocities of the
fuel and oxidizer streams, respectively. Additionally, σ is the surface-tension coefficient, P∞ is the combustor pressure, YF is the fuel mass fraction, and TF and TO correspond to the
temperatures of the fuel and coflow streams, respectively. The critical temperatures and pressures of the fuel and oxidizer streams are denoted, respectively, by Tc,F and Pc,F, and by
Tc,O and Pc,O. The rest of the symbols are defined in the main text.
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the critical pressures of the two separate components, denoted here by
Pc,F and Pc,O.

The configuration depicted in Fig. 1 drives the discussion through-
out the remainder of this manuscript. It is shown in Section 7 that
the main characteristics of the flow field sketched in Fig. 1, includ-
ing the interface separating the propellant streams, can be described
by the diffuse-interface theory presented in Sections 4 and 5 even in
a simpler canonical configuration where complex but inessential fac-
tors such as turbulence, shear, and interface corrugation are not con-
sidered. This section provides a qualitative summary of the main phys-
ical processes and the associated characteristic scales.

The possible number of combinations of thermodynamic condi-
tions in the propellant streams that may lead to transcritical phenom-
ena are large and cannot be addressed in a single study. Their partic-
ularities depend on the propulsion system and the mixture of propel-
lants considered, as discussed in Sections 2 and 3. However, the trans-
critical conditions illustrated in Fig. 1 are of general relevance in com-
bustors fueled by heavy hydrocarbons because of two factors:

(a) As observed in Table 1, heavy hydrocarbons have relatively high
critical temperatures, and therefore require significant temperature
increments of order unity relative to their injection temperature to
become fully supercritical, namely

Specifically, 200–400 K for heavy hydrocarbon fu-
els of interest (e.g., C6H14, C7H16, C10H22, C12H26, Jet-A, and
RP-1), where TF ∼ 300–450 K and Tc,F ∼ 500–700 K are the typ-
ical ranges of the fuel injection temperature and the fuel critical
temperature, respectively.

(b) As discussed in Section 3, mixtures of heavy hydrocarbons with
molecular nitrogen (N2), molecular oxygen (O2), or air have much
higher critical pressures than their separate components.

Under the aforementioned transcritical conditions, which are of-
ten found in practice as discussed in Section 2, and despite the pre-
vailing high pressures, the flow field contains a region immediately
downstream of the injector orifice where a thin transcritical interface
is formed between the fuel and coflow streams because of diffusion
processes essential to the mixing that necessarily precedes combus-
tion. Specifically, as described in Section 5, the theory presented here
indicates that surface tension survives the high pressures because of
the intrinsic diffusional instability of the fluid resulting from mixing
the two propellant streams. This diffusional instability, whose basic
foundations are discussed in Appendix A, leads to separation of the
propellants by a transcritical interface that bears large composition
gradients across and is accompanied by surface tension.

Both thermal and compositional mixing layers sketched in Fig. 1
are slender, since the characteristic Reynolds number

is typically much larger than unity in practical applications. In

Eq. (2), UF, ρF, and ηF are the velocity, density, and dynamic viscosity
of the fuel stream, respectively, and RF is the fuel orifice radius, which
is typically of order 0.1–1 mm in chemical propulsion systems of in-
terest [19,43–45].

The magnitude of UF relative to the coflow-stream velocity UO is
represented by the momentum-flux ratio

with ρO being the density of the coflow stream. The momentum-flux
ratio is of order M ∼ 1–10 in rocket engines and gas-turbine jet en-
gines [43,46–48], whereas for diesel engines. In the high-pres-
sure operating conditions investigated herein, the density ratio

is within the range = 5–40, as opposed to = 500–1000 at at-
mospheric pressure. The corresponding velocity ratios are of order

1–10.
In the model problem depicted in Fig. 1, the coflow temperature

TO is large enough to heat up the fuel to its critical temperature down-
stream of the injection orifice. For coflows comprised of N2, O2, or air,
the prevailing condition implies that TO must be larger than the critical
temperature of the coflow, TO > Tc,O, since Tc,O ∼ 120–150 K is in the
range of cryogenic temperatures for those components (see Table 1).
As a result, the relative temperature difference between the propellant
streams, defined as the thermal-expansion ratio

is an order-unity parameter. Additionally, the coflow is cooled down
by the fuel stream and, to a much lesser extent, the fuel stream is
heated by the coflow. This discrepancy is driven by the much higher
thermal diffusivity of the coflow. The thickness of the resulting ther-
mal mixing layer, δT, grows with distance downstream from small val-
ues compared to RF near the orifice (a good assumption for thin ori-
fice rings), to values of order RF far from the orifice where the inter-
face vanishes. Since the Prandtl number remains close to that of air at
normal conditions, only δT may be considered, for simplicity, as the
length scale representative of both momentum and thermal transport.

The transcritical interface extends from the orifice ring to an edge
at a supercriticalization distance where the fuel stream has
been heated up to a supercriticalization temperature . The lat-
ter depends on the combination of propellants and is a solution of the
thermodynamic phase diagram of the mixture. For mixtures of heavy
hydrocarbons with N2, O2, or air, it will be shown that

Table 1
Critical temperatures and pressures for selected species [40–42].

N2 O2 air H2O CO2 H2 CH4 C6H14 C7H16 C10H22 C12H26 Jet-A RP-1

Tc [K] 126 155 131 647 304 33 191 508 540 618 658 671 677
Pc [bar] 34 50 36 220 74 13 46 30 27 21 18 24 22

(1)

(2)

(3)

(4)

(5)

(6)
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where Tc,diff is the temperature of the diffusional critical point of the
mixture at the combustor pressure P∞ (see Appendix A for a formal
definition of the diffusional critical point). The temperature of the dif-
fusional critical point Tc,diff is smaller than the fuel critical temperature
Tc,F by small amounts,

For instance, 10–40 K at pressures P∞ ∼
50–200 bar in C12H26/N2 mixtures, thereby yielding

=0.02–0.06. The value of Tc,diff is also similar to
the critical mixing temperature Tc,mix defined as the maximum temper-
ature that can be attained by the mixture under conditions of phase co-
existence at P∞, with Tc,mix − Tc,diff being at most 5 K in C12H26/N2
mixtures at P∞=50–200 bar. As a consequence, TTR is also larger
than the fuel in

Fig. 3. Evolution of the surface-tension coefficient along the transcritical interface in
Fig. 2 obtained from the present theory. Further details about these calculations are pro-
vided in Section 7.

jection temperature TF by relative amounts of order unity,

The transcritical interface terminates at an edge crossed by the su-
percriticalization isotherm, where a fundamental change in the diffu-
sional characteristics of the mixture occurs. The structure of the edge
can be previewed in terms of spatial contours of the fuel mass fraction
YF in Fig. 2 for a system consisting of C12H26 injected at TF = 450 K
into a coflowing N2 stream at TO = 1000 K. The system is at P∞ = 100
bar, which represents a supercritical pressure with respect to both
components. The resulting distribution of surface tension along the
transcritical interface with distance downstream of the injection ori-
fice is shown in Fig. 3. The results in both of those figures are ob-
tained by using the diffuse-interface theory presented in Sections 4
and 5. The resulting formulation describes high-pressure flows with
interfaces whose strength can vary in space and vanish altogether. The
results obtained by using this theory indicate that the interface thick-
ness δI remains small along a large portion of the interface despite the
high pressures involved. Consequently, the integration of the formula-
tion is hindered by the large disparity between the interface thickness
δI and other length scales, including δT, RF, LTR, and the interface ra-
dius of curvature RI. In particular, it will be shown, in conditions of
practical relevance, that the large-scale Cahn number

and the thermal Cahn number

are both much smaller than unity in the transcritical region, where
the interface survives. These represent fundamental characteristics

Fig. 2. Numerical results of the present theory showing a zoomed view of the terminal structure of a transcritical interface at an edge. The interface separates two planar laminar
streams at high Péclet numbers: one of dodecane (C12H26) injected at TF = 450 K (below the interface), and one of molecular nitrogen (N2) injected at TO = 1000 K (above the in-
terface). The system is at a supercritical pressure P∞ = 100 bar with respect to both components. The figure shows the fuel mass fraction YF (solid contours and dark thin dashed
lines), temperature (colored thick dashed-line contours), diffusional critical point (purple diamond symbol), and diffusional spinodal (thick purple dashed lines). The vertical axis is
the transversal distance from the jet axis y normalized with the orifice radius RF, whereas the horizontal axis is the streamwise distance x normalized with the estimate (13) for the
supercriticalization length. The flow attains fully supercritical conditions downstream of the interface edge. There, both propellants resemble gas-like supercritical fluids and mix by
molecular diffusion across a compositional mixing layer that emanates from the interface edge. Details about the calculations are provided in Section 7. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

(7)

(8)

(9)

(10)
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that simplify the theoretical description of the interface structure. Fur-
ther details and additional explanations of the results in Figs. 2 and 3
are deferred to Section 7.

In the transcritical region 0< x < LTR, the interface survives along
with the surface-tension force it engenders. In general, the quantifica-
tion of LTR requires numerical integration of the diffuse-interface for-
mulation presented here. In laminar flows at moderately large values
of the Reynolds number (2), an estimate of LTR can be obtained by an
integral balance between the streamwise variation of the enthalpy flux
in the fuel stream and the total amount of heat conduction received
across the interface from the hot coflow,

where λO is the thermal conductivity in the coflow stream. For ax-
isymmetric jets, the approximation δT ∼RF can be made in Eq. (11) in
analogy to cold round jets at downstream distances approaching ther-
mal-entrance conditions [49]. It follows that LTR depends quadrati-
cally on the orifice radius RF as

where the approximation TTR ≈Tc,diff ≈Tc,F has been made in accor-
dance with Eqs. (6) and (7). In Eq. (12), DT,O is the thermal diffusiv-
ity of the coflow stream, and cp,F/cp,O is the ratio of fuel and coflow
specific heats, which is of order unity in the conditions analyzed here,
as discussed in Appendix B. Additionally, is
an order-unity temperature-difference ratio, as prescribed by Eqs. (1)
and (5). In contrast, two-dimensional laminar jets are known to have
much longer thermal-entrance lengths than their round counterparts
because the outer region, where streamwise convection and transverse
diffusion balance, grows indefinitely with the square root of x, thereby
yielding comparatively smaller heat fluxes into the cold stream [49].
In this case, a more appropriate approximation to utilize in Eq. (11) is
δT ∼ (DT,OLTR/UF)1/2. This leads to the estimate

which is used for normalizing x in Figs. 2 and 3.
The estimates (12) or (13) predict that the supercriticalization

length increases with decreasing values of the fuel injection tempera-
ture TF, coflow injection temperature TO, and combustor pressure P∞.
Among these three quantities, the maximum sensitivity is to variations
of TO. For instance, a decrease of 300 K in TO leads to a four-fold in-
crement in LTR in the conditions analyzed in Figs. 2 and 3.

The considerations above suggest that the injection orifice radius
RF has a decisive influence on the size of the transcritical region. In
practice, LTR is a fraction of the thermal-entrance length, the latter de-
limiting the condition for which the hot coflow temperature TO (rather
than Tc,F) is attained in the bulk of the fuel stream. However, it will be
shown that the transfer of heat from the coflow to the fuel stream is
hindered in transcritical conditions because of two factors:

(a) High pressures lead to small values of the thermal diffusivity in
the coflow stream.

(b) For a significant portion of the interface length, the specific heat
attains a global maximum in the vicinity of the interface, thereby
leading to a decrease in the local thermal diffusivity there.

These factors should be taken into account when interpreting mol-
ecular-dynamics simulations of transcritical systems, since those tech-
niques are typically limited to microscopic length scales that may be
too small compared to the supercriticalization length required to de-
scribe the macroscopic evolution of the interface with distance down-
stream of the injection orifice.

Additional complexities arise in realistic scenarios that are beyond
the scope of this study. For instance, in turbulent transcritical flows at
large values of the Reynolds number (2), the molecular thermal dif-
fusivity DT,O in Eq. (12) should be replaced by a turbulent eddy dif-
fusivity of order Dturb ∼UFRF, which is lager than DT,O by a factor
of order ReF ≫1. Consequently, the ratio of the supercriticalization
length to the orifice radius decreases from in lami-
nar flows to in turbulent flows. There is however little
work to date that have addressed closures in high-pressure turbulent
flows [50], and therefore the effects of turbulence will not be further
pursued here. Similarly, hydrodynamic instabilities may develop as a
result of the competition between aerodynamic stresses and the inter-
face-restoring surface-tension force in the transcritical region. These
force imbalances may roll the interface leading to a finite local radius
of interface curvature RI, and eventually to the formation of ligaments
and droplets, as sketched in Fig. 1. Configurations different from that
in Fig. 1 may therefore exist in which the supercriticalization isotherm
never crosses the interface before it breaks up, but instead crosses the
ensuing fuel spray cloud.

1.2. Objectives and outline of the present review

This review focuses on theoretical aspects of transcritical phe-
nomena at a continuum level and in a manner amenable to com-
putational fluid dynamics (CFD). The key question to be explored
is whether transcritical systems can be computed by integrating the
Navier-Stokes equations uniformly over the entire flow field while
subject to high-pressure equations of state along with the standard
transport theory for multicomponent mixtures. The key concern that
impedes that approach is related to the antidiffusive character of the
mass transport predicted by the standard theory in transcritical condi-
tions, which renders the problem ill-posed. To address that, a formu-
lation of the Navier-Stokes equations with revisited constitutive laws,
supplemented with (a) proper redefinitions of thermodynamic poten-
tials, (b) a high-pressure equation of state, and (c) high-pressure ther-
mophysical and multicomponent transport properties, is introduced
that regularizes the problem and enables the description of volumetric
effects of transcritical interfaces in multicomponent flows. The formu-
lation is based on extensions of the diffuse-interface theory of van der
Waals [108] – a useful formalism originally designed for monocom-
ponent isothermal systems at high pressures, when the interface broad-
ens significantly relative to intermolecular distances.

The theory outlined here provides a description of the structure of
stationary transcritical interfaces in equilibrium, as well as the down-
stream evolution of non-equilibrium transcritical interfaces separat-
ing propellant streams with different temperatures. In the latter case,
this theory predicts that the interface ends at an edge, whose struc-
ture elicits the central role played by the diffusional critical point
of the mixture in supercriticalizing the system, as shown in Fig. 2.
Emphasis is made on transcritical interfaces in C12H26/N2 mixtures,
but supplementary thermodynamic analyses are provided for several
other mixtures of interest that identify pressure and temperature condi-
tions inducing transcritical interfaces in the flow field. A discussion is

(11)

(12)

(13)
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also included about operating conditions in combustors of aerospace
propulsion systems leading to transcriticality.

The remainder of this manuscript is structured as follows. A qual-
itative description of transcritical phenomena is provided in Section 2
for monocomponent and bicomponent systems, along with a short
survey of characteristic injection conditions in aerospace propulsion
systems. Phase diagrams for hydrocarbon-fueled binary mixtures are
discussed in Section 3. Using the diffuse-interface theory, a formula-
tion of the Navier-Stokes equations that incorporates high-pressure ef-
fects and volumetric terms representing embedded interfaces is out-
lined in Section 4. Entropy-based closures of interface-related terms
in the augmented Navier-Stokes equations, which enable the descrip-
tion of the structure of transcritical interfaces, are derived in Section 5.
Readers who are not interested in the development of the formula-
tion can skip Sections 4 and 5 and move directly to Sections 6 and
7, in which calculations of simplified canonical problems are pro-
vided. In Section 6, transcritical interfaces in equilibrium isothermal
systems are analyzed. Section 7 is devoted to non-equilibrium trans-
critical interfaces in non-isothermal systems and their evolution down-
stream of the injection orifice. Lastly, concluding remarks are given
in Section 8. Additionally, seven appendices are included that contain
supplementary details and fundamental concepts closely connected
with the formulation. In particular, Appendix A reviews basic con-
cepts of thermodynamic stability and phase equilibrium. Appendix B
provides a description of thermophysical properties and transport co-
efficients at high pressures. Appendix C outlines supplementary ther-
modynamic expressions for systems at high pressures. Appendix D
focuses on numerical results obtained for near-critical interfaces in
monocomponent systems. Appendix E discusses the behavior of the
present theory near mechanically unstable conditions. Appendix F
lists supplementary expressions for transport coefficients at high pres-
sures, and Appendix G provides methods for the numerical integration
of the formulation presented here.

2. High-pressure transcritical flow phenomena

A significant challenge for the predictive calculation of transcriti-
cal flows lies in the complexity of the transitional and composition-de-
pendent character of the interface formation and breakup, and of the
subsequent dispersion and mixing of fuel in the combustor. To ad-
dress these aspects, this section begins by introducing the main prob-
lems associated with transcriticality in monocomponent flows, fol-
lowed by a description of more complex phenomena in bicompo

nent flows. In addition, a survey of characteristic injection conditions
in aerospace chemical propulsion systems is provided at the end of this
section that serves to familiarize the reader with practical configura-
tions.

2.1. Transcriticality in monocomponent systems

Consider a closed vessel filled with a monocomponent liquid in
phase equilibrium with its own vapor. The pressure and temperature
in the vessel are denoted by P and T, respectively. At normal pressure,
the liquid and vapor are separated by an interface whose thickness
is clearly not in the continuum range, and which is subject to a sur-
face-tension force. Below the critical pressure Pc, the presence of such
interface is warranted since each thermodynamic state (P, T) is asso-
ciated with two densities [51] corresponding to the phase-equilibrium
values for vapor, and liquid, . This is illustrated in the P − v
thermodynamic phase diagram in Fig. 4 for N2, where is
the molar volume and WN2 is the molecular weight. The resulting ra-
tio of densities of the phases, is typically of order 103 at
normal conditions.

As the temperature of the vessel is increased, the liquid evaporates
and a new phase-equilibrium condition is attained in which the pres-
sure increases as well in accordance with the Clausius–Clapeyron re-
lation. During this process, the interface thickens and the density ra-
tio decreases to a value close to unity near the critical pressure Pc, at
which the two phases become visually indistinguishable. Above the
critical pressure, P > Pc, the fluid is supercritical with a uniquely de-
fined density ρ for each thermodynamic state (P, T), thereby prevent-
ing the existence of an interface. Meanwhile, the surface tension nec-
essarily vanishes at P ≥Pc; the limit P → Pc is taken here in combina-
tion with T → Tc [53,54].

The transition from subcritical to supercritical conditions described
above can be visualized in laboratory experiments involving the ther-
modynamic characterization of pure substances by using equilibrium
cells [52,55]. A sequence of photographs that illustrates the vanishing
distinction between the two phases in a system approaching and cross-
ing the critical point of propane is provided in Fig. 5(a).

In contrast with closed systems, combustors involve continuous
flows of propellants. Consider a cold liquid jet injected at tempera-
ture TF and atmospheric pressure into its own hot vapor at temper-
ature TO, where TF ≤Te ≤TO, with Te being the vapor-liquid equilib-
rium (VLE) or boiling temperature at the corresponding pressure. The
resulting liquid-to-gas density ratio ρF/ρO is of order 103. The liq

Fig. 4. Thermodynamic phase diagram for pure N2 calculated with the Peng-Robinson equation of state introduced in Section 3.1. Included in the plot are the mechanical spinodals
(dot-dashed lines), vapor-liquid equilibrium lines (thick red dashed lines), the pseudo-boiling line (thick green dot-dashed line), and the critical point (square symbol). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Experimental visualizations of high-pressure flow systems. (a) Equilibrium cell filled with pure propane at pressure and temperature below the critical point (left panel), at
pressure and temperature near the critical point (center panel), and at pressure and temperature above the critical point (right panel) (adapted from Ref[52].). (b) Cold nitrogen at 105
K (dark stream) injected into a hot nitrogen environment at 300 K at subcritical pressure 10 bar (left panel), near-critical pressure 30 bar (center panel), and supercritical pressure 40
bar (right panel) (adapted from Ref[6].). (c) N-hexadecane injected at subcritical temperature 300 K (dark stream) into a hot supercritical nitrogen environment at temperature 907 K
and pressure 79 bar (i.e., higher than the critical pressures of the individual components). The different panels in (c) correspond to different instants of time after injection cutoff, with
insets showing magnified views of fuel droplets (reprinted from Ref[19]. with permission from Elsevier).

uid jet breaks up due to unbalances between aerodynamic and sur-
face-tension forces [45,56–60] as illustrated in Fig. 5(b). A relatively
large amount of energy, comparable to the thermal enthalpy of the hot
environment, must be transferred to the spray to heat it up and vapor-
ize it [61].

Similarly to the closed vessel operating at normal pressure, the
thickness of the liquid-gas interface in the jet flow mentioned above
is several orders of magnitude smaller than any of the relevant hy-
drodynamic scales involved. Nonetheless, predictive simulation capa-
bilities have been developed in recent years using interface-captur

ing methods such as the volume-of-fluid or level-set formulations,
both of which volumetrically incorporate the surface-tension force in
the momentum equation through a surface-tension coefficient σ multi-
plied by the interface curvature and by a Dirac-delta function localized
at the interface [62–66]. As the ambient pressure P∞ increases, the liq-
uid-to-gas density ratio decreases. In particular, the interface becomes
thicker as the critical pressure is approached, both surface tension and
vaporization enthalpy decrease, and the atomization process becomes
a mixing between gas-like fluids without any breakup.
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Entering the supercritical region, it is important to distinguish be-
tween supercritical gas-like and supercritical liquid-like fluids as de-
picted in Fig. 4. As discussed in Appendix B.4, the factors that sepa-
rate the behavior of liquid-like from gas-like supercritical fluids are:

(a) A supercritical liquid-like fluid is one whose density is large,
whose isothermal compressibility is small, and whose transport
coefficients behave in a manner that is reminiscent of a liquid,
with decreasing viscosities and thermal conductivities found at in-
creasingly larger values of temperature, whereas the mass diffu-
sivity remains mostly constant or increases slowly with tempera-
ture.

(b) In contrast, the density of supercritical gas-like fluids is relatively
smaller, their isothermal compressibility is larger, and their vis-
cosity, thermal conductivity, and mass diffusivity increase with
temperature, thus resembling the behavior observed in gases. At
high temperatures, T ≫Tc, and despite the high pressures, the in-
termolecular distances are sufficiently large for the supercritical
gas-like fluid to behave like an ideal gas.

At pressures not too large compared to Pc, a clear transition from
liquid-like to gas-like supercritical behavior occurs at the pseudo-boil-
ing, or Widom, temperature Tpb denoted by the thick green dot-dashed
line in Fig. 4 (see Refs[67,68]. and Appendix B.4 for related discus-
sions). This temperature depends on pressure and is not too different
from Tc (e.g., Tpb ∼130 K at 40bar and Tpb ∼150 K at 60bar, both
for N2, for which K). In particular, Tpb corresponds approx-
imately to the temperature where a second-order phase transition oc-
curs, with the density, viscosity and thermal conductivity plunging as
transition from a liquid-like to a gas-like state occurs, and with the
specific heat at constant pressure displaying a characteristic finite-am-
plitude spike [69,70]. As the pressure becomes increasingly larger
than Pc, the distinction between liquid-like and gas-like supercritical
behavior is increasingly more difficult to ascertain. Consequently, the
dynamical relevance of the pseudo-boiling line diminishes away from
the critical point.

The chamber pressure in the jet flow shown in the right panel in
Fig. 5(b) is supercritical, but the jet and ambient temperatures are, re-
spectively, smaller and larger than Tpb. Many studies have character-
ized those conditions as transcritical [5,8,26–29,31]. However, sur-
face-tension effects are irrelevant in monocomponent systems above
the critical point [53,71–74] as corroborated, for instance, by the ab-
sence of a spray in the right panel in Fig. 5(b). Furthermore, the de-
crease of surface tension with pressure and temperature is continuous,
and as a result its value is always of little to no dynamical relevance
even at subcritical conditions nearing the critical point in monocom-
ponent systems. As a result, the liquid-like supercritical N2 jet in the
right panel in Fig. 5(b) mixes with the gas-like supercritical N2 envi-
ronment similarly to pure gaseous mixing.

2.2. Transcriticality in bicomponent systems

Bicomponent systems behave fundamentally different from mono-
component ones and can lead to spray formation at combustor pres-
sures that are supercritical with respect to the separate components,
P∞ > max{Pc,F, Pc,O} [15–19,22,23]. As shown in Section 3.2, an im-
portant physical characteristic enabling the formation of the spray is
that binary mixtures of heavy hydrocarbons with typical oxidizers,
including pure oxygen (for rockets) and air (for gas-turbine jet en-
gines and diesel engines), have much higher critical pressures than
those of the individual components. For mixtures of n-alkanes with
O2, this effect is easily recognizable as a promontory in the coexis-
tence region of the phase diagram along the pressure axis. For mix

tures of n-alkanes with N2 or air, the maximum pressure of the coex-
istence region diverges [21,75,76]. Consequently, even at supercriti-
cal pressures with respect to both components, the system can traverse
the coexistence region when the injection temperatures of the two pro-
pellant streams are oppositely placed on either side of it. These incur-
sions in the coexistence region, which engender transcritical behavior
in combustors, are particularly likely when the injection temperature
of at least one of the propellant streams (typically the heavy hydrocar-
bon fuel stream) is smaller than its critical temperature.

An innermost zone is encountered within the coexistence region
of the thermodynamic phase diagram that is bounded by the spinodal
lines similarly to Fig. 4 for a pure component. In binary systems, this
zone can exist above the critical pressures of the separate components
due to the elevation of the critical pressure of the mixture, as men-
tioned above. This zone is thermodynamically unstable, in that no sta-
ble thermodynamic state exists that describes a spatially homogeneous
mixture there. On the contrary, in those conditions, the components
tend to stay separated into two fluids bounded by an interface where
capillary forces become important. This phenomenon is observed in
experiments (e.g., see Refs[15–23].), but not necessarily in computa-
tions unless an appropriate formulation of the problem, such as the dif-
fuse-interface theory developed in this review article, is employed that
accounts for interfaces consistently with the thermodynamic stability
of the mixture.

In bicomponent systems at high pressures, the fluids on each side
of the interface, or on each side of the coexistence region of the ther-
modynamic phase diagram, cease to be different ordinary phases such
as liquid and vapor, and instead become distinct supercritical fluids
whose composition depends on the particular configuration. For in-
stance, in the problem depicted in Fig. 1, the two participating fluids
are a liquid-like supercritical mixture rich in a heavy hydrocarbon on
the fuel side of the interface, and a gas-like supercritical mixture rich
in coflow species (e.g., O2, N2, or air) on the coflow side of the inter-
face. Fundamental differences between gas-like and liquid-like super-
critical C12H26/N2 mixtures are analyzed in Appendix B.4.

In the present theory, the transcritical interface is a physical-space
representation of the coexistence region. References to VLE lines at
high pressures should therefore be understood as the loci of points
where gas-like and liquid-like supercritical fluids – rather than clas-
sic vapor and liquid states – coexist. Pseudo-boiling conditions are at-
tained within the transcritical interface, these being understood in mul-
ticomponent systems as approximately the conditions where the con-
stant-pressure molar heat of the mixture attains a local maximum, and
where transition between liquid-like and gas-like supercritical behav-
ior takes place, as discussed in Appendices B.2 and B.4.

As noted in Section 1.1, the disparity between the critical (Tc,F)
and injection (TF) temperatures of the fuel stream plays an impor-
tant role in the onset of transcriticality in combustors fueled by heavy
hydrocarbons. The larger this disparity, the larger the supercritical-
ization length LTR, and the more favored are transcritical thermody-
namic trajectories across the elevated coexistence dome. As indicated
in Table 1, Tc,F is typically 200–400 K larger than TF, since the lat-
ter is typically limited to 300–450 K in order to minimize carbon
deposition by thermal decomposition of the fuel in feeding systems
and engine wall-cooling channels [77]. At those injection tempera-
tures, heavy-hydrocarbon fuels resemble supercritical liquid-like flu-
ids. That tendency increases with the number of carbon atoms due to
the corresponding increase in the fuel critical temperature:
K for CH4, 508 K for C6H14, 540 K for C7H16, 618 K for C10H22, and
658 K for C12H26. However, this is counterbalanced by an increasing
supercriticality in pressure with increasing number of carbon atoms:
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bar for CH4, 30 bar for C6H14, 27 bar for C7H16, 21 bar for
C10H22, and 18 bar for C12H26.

In contradistinction, the critical temperature of the coflow stream
is much smaller: K for O2, 126 K for N2, and 131 K for
air. As a result, the coflow stream often resembles a gas-like super-
critical fluid in propulsion systems operating at high pressures, in-
cluding (a) gas-turbine jet engines, where the air coflow entering the
combustor is at TO ∼ 700–1000 K; (b) diesel engines, where the en-
closed air near the top-dead center attains similar temperatures; and (c)
thrust chambers of O2-rich staged-combustion rocket engines, where
the oxidizer stream is preheated to TO ∼ 600–700 K in a preburner.

All these systems operate in the transcritical conditions discussed in
Section 1.1.

2.3. Transcriticality in aerospace propulsion systems

Developments in aviation jet-propulsion technologies have been
characterized over the last five decades by ever-growing overall pres-
sure ratios (OPR) as a means of increasing thermal efficiency and re-
ducing emissions of CO, CO2, and unburnt hydrocarbons. This trend
is illustrated in Fig. 6(a). The overall pressure ratio of a jet engine can
be approximated as OPR ≈P∞/Pa, where P∞ is the combustor pres

Fig. 6. (a) Overall pressure ratio (or equivalently, combustor pressure P∞ in bars at sea-level takeoff) for gas-turbine jet engines as a function of time (adapted and extended with data
beyond year 2000 from the original version in Ref[78].). The different colors indicate manufacturers, including Rolls Royce (green), General Electric (red), CFM (blue), and Pratt &
Whitney (yellow). The upper and lower dashed horizontal lines mark the OPRs required to reach supercritical combustor pressure with respect to both air ( bar) and Jet-A
( bar [41]) during takeoff at sea level. (b) Pressures in gas generators, preburners, and main thrust chambers of rocket engines as a function of the production year. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sure and Pa is the ambient pressure at the corresponding flight altitude.
At sea level, bar and OPR is approximately equal to P∞ in bars.
Modern engine designs reach OPR ∼ 50–60, which translate into fully
supercritical combustor pressures P∞ ∼ 50–60 bar at takeoff. At these
pressures, the fuel is injected as a supercritical liquid-like fluid into
a supercritical gas-like air coflow, thereby leading to the transcritical
conditions depicted in Fig. 1. Transcriticality in the combustor may
persist up to flight altitudes of 2.7 km for OPR=50, and 4.2 km for
OPR=60, above which the combustor pressure P∞ becomes smaller
than the critical pressure of air, bar.

Whereas diesel and gas-turbine jet engines are now mature tech-
nologies that operate with air and derivatives of kerosene at standard-
ized injection temperatures, the propellant combinations and injection
conditions are much more numerous in rocket engines due to big leaps
in designs over the last 80 years, as summarized in Table 2. Early de-
velopments in rocket propulsion during the V-2 program involved the
utilization of a steam-catalyst-generator cycle at subcritical pressure
P∞ ∼15 bar [79]. Motivated by the need of higher thrust to lift heav-
ier payloads to orbit and accomplish longer-range mission profiles in
space exploration and military applications, the operating pressures in
rocket engines have increased significantly over recent decades, as in-
dicated in Fig. 6(b), and they have reached values much larger than
the critical pressures of the propellants. Typical pressures range from
P∞ ∼70 bar in the F-1 gas-generator rocket engine employed during
the Apollo program, to P∞ ∼ 250–350 bars in thrust chambers of mod-
ern staged-combustion-based rocket engines such as the RD-180 and
Raptor, whose preburners operate at much higher pressures of about
500–600 bar.

In rockets fueled by RP-1 (a highly refined kerosene whose criti-
cal point can be approximated as bar and K [42]),
the fuel is injected at temperatures ranging from near-storage values
TF ∼280 K in gas generators and preburners, to TF ∼ 320 K in thrust
chambers after passing through the wall cooling channels. In RP-1-fu-
eled open-cycle systems such as the F-1 and Merlin engines, whose
gas generators and thrust chambers operate at 60–100 bar, the liq-
uid oxidizer (LOX) is injected at near-storage cryogenic temperatures
TO ∼ 90–100 K. As a result, the RP-1 and LOX resemble liquid-like
supercritical fluids at injection in the gas generator and thrust cham-
ber. Much higher pressures are achieved in RP-1-fueled closed cycles
such as the RD-170 and RD-180 engines. The preburners of these en-
gines operate with RP-1 and LOX injected at very high combustor
pressures P∞ > 500 bar but at cold near-storage temperatures, thereby
resembling supercritical liquid-like fluids. The O2-rich hot combustion
products from the preburner are expanded in the turbine and injected
at temperatures TO ∼ 600–700 K along with the cold RP-1 stream into
the thrust chamber at pressures larger than 200 bar. The resulting tran-
scritical conditions in the thrust chamber are analogous to those de-
picted in Fig. 1, with RP-1 and oxidizer entering as liquid-like and
gas-like supercritical fluids, respectively.

In H2-fueled rocket engines, the role of the fuel and coflow streams
is opposite to that shown in Fig. 1, in that the LOX stream occupies
the center core, whereas the H2 stream is the coflow [43,84,85,89].
As discussed in Section 3.2, the thermodynamic phase diagram of
H2/O2 mixtures is qualitatively similar to those of mixtures of n-alka-
nes with N2 or air. Since the H2 is typically recirculated through the
wall cooling channels, or is injected via fuel-rich combustion prod-
ucts exhausted from the preburner, its temperature is always much
larger than the critical value K, and often larger than the
critical temperature of oxygen. Correspondingly, the H2 and LOX
streams resemble, respectively, gas-like and liquid-like supercritical
fluids at injection in thrust chambers of rocket engines such as the
SSME or Vinci. The resulting transcritical conditions may involve
supercriticalization of the oxidizer stream upon undergoing rela

Table 2
Characteristic propellant injection conditions in rocket engines.

Gas-generator rocket-engine cycles

Gas Generator Thrust Chamber

F-1 (Saturn-V first
stage)

bar bar

[80,81] O2: TO = 94 K
(supercritical liquid-
like)

O2: TO = 94 K (supercritical
liquid-like)

RP-1: K
(supercritical liquid-
like)

RP-1: K
(supercritical liquid-like)

MC-1 bar bar
[82] O2: TO = 94 K

(subcritical liquid)
O2: TO = 94 K (subcritical
liquid)

RP-1: TF = 300 K
(supercritical liquid-
like)

RP-1: TF = 300 K
(supercritical liquid-like)

STME (Space
Transportation Main
Engine)

bar bar

[81] O2: TO = 101 K
(supercritical liquid-
like)

O2: TO = 100 K
(supercritical liquid-like)

H2: K
(supercritical gas-like)

H2: K
(supercritical gas-like)

Merlin (Falcon-9 first
stage, approx.)

bar P∞ = 100 bar

[83] O2: TO = 105 K
(supercritical liquid-
like)

O2: TO = 105 K
(supercritical liquid-like)

RP-1: K
(supercritical liquid-
like)

RP-1: K
(supercritical liquid-like)

Fuel-rich staged-combustion rocket-engine cycles
Preburner Thrust Chamber

SSME (Space Shuttle
Main Engines)

bar bar

[84,85] O2: TO = 118 K
(supercritical liquid-
like)

O2: K
(supercritical liquid-like)

H2: K
(supercritical gas-like)

H2-rich products:
K (supercritical gas-like)

Oxidizer-rich staged-combustion rocket-engine cycles
Preburner Thrust Chamber

RD-170 (Energia-
Buran first stage)

bar bar

[81] O2: TO = 101 K
(supercritical liquid-
like)

O2-rich products:
K (supercritical gas-like)

RP-1: K
(supercritical liquid-
like)

RP-1: K
(supercritical liquid-like)

RD-180 (Atlas-V first
stage)

bar bar

[86] O2: TO = 118 K
(supercritical liquid-
like)

O2-rich products:
K (supercritical gas-like)

RP-1: K
(supercritical liquid-
like)

RP-1: K
(supercritical liquid-like)

Expander rocket-engine cycles
RL-10 (upper stages of

Atlas-V and Delta-
IV)

bar

[87] O2: TO = 100 K (subcritical liquid)
H2: K (supercritical gas-like)

Vinci (Ariane-6 upper
stage)

bar

[88] O2: TO = 94 K (supercritical liquid-like)
H2: K (supercritical gas-like)
Steam-catalyst-generator rocket engines

V-2 bar (subcritical)
[79] O2: TO = unavailable
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Table 2 (Continued)

Gas-generator rocket-engine cycles

Gas Generator Thrust Chamber

Water/alcohol mixture: TF = unavailable
A-7 (Mercury-

Redstone)
bar (subcritical)

[89] O2: TO = unavailable
Water/alcohol mixture: TF = unavailable

tively small temperature increments of order K by
heat transfer from the hot hydrogen stream. However, at elevated pres-
sures, when the combustor is ignited and the orifice ring is thick, re-
sults from existing numerical simulations suggest that the ensuing dif-
fusion flame may be anchored so close to the orifice that it would
rapidly supercriticalize the oxidizer, thereby diminishing the practical
relevance of the transcritical region [25].

Some of the most recent rocket engines currently under design or
testing, such as BE4 (oxidizer-rich staged-combustion cycle, P∞ ∼134
bar in thrust chamber) and Raptor (full-flow staged-combustion cy-
cle, P∞ ∼300 bar in thrust chamber) operate with CH4 fuel instead of
RP-1. As shown in Section 3.2, CH4/O2 mixtures behave differently
from mixtures of heavy hydrocarbons with O2, in that the coexistence
region in CH4/O2 mixtures does not display a significant elevation
above the critical pressures of the separate components. As a result,
the diffuse-interface theory presented here predicts no interface forma-
tion in CH4/O2 systems at supercritical pressures with respect to both
propellants above P∞ ≳50 bar.

2.4. Additional research aspects of transcritical systems

There exist several other aspects that may be of technological and
scientific relevance that have been intentionally left out of the remain-
der of this paper because of their complexity:

(a) The autoxidation and pyrolysis of the heavy-hydrocarbon fuel as it
progressively heats up flowing downstream of the injection orifice
in transcritical configurations similar to that depicted in Fig. 1.
The breakdown of the fuel may cause variations in its physical
properties (including surface tension) that could influence atom-
ization [90].

(b) The release of chemical heat as a result of combustion reactions
between fuel and oxidizer, which may contribute through conduc-
tion and radiation to prompt supercriticalization of the flow up-
stream and around flames [10,25,32].

(c) The role of the complex thermodynamic-state spaces of tertiary
and higher-degree mixtures of heavy hydrocarbons with oxygen,
nitrogen, and combustion products at high pressures, the under-
standing of which remains mostly incomplete in the literature.

(d) The transition from subcritical to supercritical combustor pres-
sures during ignition sequences, including in-space ignition of up-
per stages of rocket space launchers or spacecraft reaction-control
thrusters [91]. In particular, as observed in the phase diagrams in-
troduced in Section 3, hydrocarbon fuels such as CH4 injected in
subcritical gaseous state at TF < Tc,F early during engine ignition
may undergo complex processes until fully supercritical pressures
are attained in the combustor, including retrograde condensation
when the combustor pressure becomes similar to the phase-equi-
librium pressure at TF.

3. Thermodynamic phase diagrams of mixtures fueled by heavy
hydrocarbons

The physical-space solution of the diffuse-interface formulation
developed in this review article has a direct correspondence to ther-
modynamic states in the phase diagram. In this section, quantitative
descriptions of phase diagrams of relevant mixtures are provided.

3.1. Equation of state

The thermodynamic space of solutions for the state variables {P, ρ,
T, and Y1, Y2...YN − 1} of a single substance or a mixture of N compo-
nents is described by its phase diagram. In this notation, Yi is the mass
fraction of species i, with . A first constraint on the
state variables that narrows down all of their possible combinations is
provided by an equation of state. One popular choice for systems at
high pressures, which is used in this study, is the Peng-Robinson equa-
tion of state [92]

where R0 is the universal gas constant, is the molar vol-
ume of the mixture, ρ is the density of the mixture, and

is the mean molecular weight, with
Wi and the corresponding values of the molecular
weight and molar fraction of species i, respectively. The coefficients a
and b take into account real-gas effects related to attractive forces and
finite packing volume, respectively, and depend on the critical temper-
atures, critical pressures, and acentric factors of the individual mixture
components, as well as on the local temperature and mixture composi-
tion. In particular, a and b are obtained by first computing the individ-
ual values of the coefficients for each species, ai and bi, as specified
in Ref[92]. and also provided in Eqs. (C.10)–(C.12) in Appendix C.
The individual coefficients ai and bi are combined using the empirical
van-der-Waals mixing rules

where ϑi,j are binary-interaction parameters listed in Appendix C.
Volume-translating corrections to the Peng-Robinson Eq. (14) ex-

ist that provide a higher accuracy of the density near the critical point
[93–95], but are not considered in the present study since they tend to
lead to a mismatch of the specific heat, which is an undesirable char-
acteristic for describing the transfer of heat across the transcritical in-
terface. As a result, all supplementary thermodynamic relations writ-
ten in Appendix C have been particularized for the standard version of
the Peng-Robinson Eq. (14).

The particular choice of Eq. (14) as equation of state is not fun-
damental to the theory developed here. The only indispensable char-
acteristic of Eq. (14) is that it is capable of reproducing – in con-
ditions of coexistence – the multivalued character of the density (in
monocomponent flows) and the fugacity (in multicomponent flows),

(14)

(15)
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as discussed in Section 4. Like many other members of the family of
cubic equations of state, Eq. (14) provides three values of the density
for the same pressure P in the coexistence region in monocomponent
flows. Correspondingly, every isotherm passing through the coexis-
tence region contains a single oscillation or Maxwell loop, as shown
in Fig. 4. This behavior is consistent with thermodynamic stability
theory, which predicts two neutral-stability points, namely the spin-
odal points. The latter can be unambiguously identified with the maxi-
mum and minimum of the looping isotherm. Several other cubic equa-
tions of state, including the classic interpolating formula of van der
Waals [51], are available in the literature that have similar characteris-
tics and have been ubiquitously employed for treating real-gas effects
at high pressures [54,96–99]. Enhanced accuracy in the prediction of
thermodynamic states outside the coexistence region can be achieved
by using multiparameter equations of state. However, these equations
tend to contain multiple Maxwell loops within the coexistence region
that lead to artificial intermediate pseudo-stable states [99]. Improved
multi-parameter equations of state with depressed or no intermediate
loops in the coexistence region have been recently developed that may
be amenable to coupling with diffuse-interface formulations [100].

3.2. Critical-point elevation in hydrocarbon-fueled mixtures

This section focuses on numerical calculations of thermodynamic
phase diagrams of selected mixtures. Basic concepts of thermody-
namic stability and phase equilibrium, including formal definitions of
the VLE lines, along with mechanical and diffusional critical lines for
mixtures, are required to follow this discussion. Those are provided
in Appendix A. In particular, the calculations in this section employ
Eq. (A.3) for the mechanical spinodals, Eqs. (A.3) and (A.4) for the
mechanical critical line, Eq. (A.9) for the diffusional spinodals, Eqs.
(A.9)–(A.11) for the diffusional critical line, along with Eqs. (A.12),
(A.13) and (A.15) for the coexistence envelope, with the fugacity be-
ing defined in Eq. (B.22) from Appendix B and particularized for
the Peng-Robinson equation of state in Eq. (C.47) from Appendix C.
These constraints are supplemented with the equation of state (14),
where the coefficients a and b are computed using the mixing rules
(15) in conjunction with Eqs. (C.10)–(C.12). Auxiliary quantities re-
quired for the calculations include the critical pressures and temper-
atures listed in Table 1, along with the acentric and binary-interac-
tion parameters listed in Appendix C. Combustion chemical reactions
are neglected here when constructing phase diagrams involving mix-
tures of fuel and oxidizer because of the relatively low temperatures
considered within the visualization windows. Practical methods for
the calculation of VLE and diffusional critical lines are available in
Refs[101–105].

Depending on the physical properties of the mixture components,
binary mixtures can be classified in types that display vastly differ-
ent forms of the phase diagram. Details on such classification can be
found in Ref[106]., which employs the van der Waals equation of
state subject to phase-equilibrium and critical-point constraints such
as those in Appendix A (see also Ref[107]. for a historical perspective
on this subject). Specifically, the analysis and associated simplifica-
tions carried out in Ref[106]., including the assumption of equal ex-
cluded volumes bF ≈bO (or equivalently, Tc,O/Tc,F ≈ Pc,O/Pc,F), pointed
at the difference between the critical temperatures of the two compo-
nents, as an important factor in determining the struc-
ture of the coexistence region of the mixture at high pressures. Sev-
eral other factors may however participate when more complex equa-
tions of state are used because of the additional parameters involved.
In addition, in the mixtures fueled by heavy hydrocarbons ex

amined here, the less volatile component (i.e., the heavy-hydrocarbon
fuel) does not always have the largest critical pressure. Despite these
shortcomings, some of the qualitative observations made in Ref[106].,
including the occurrence of coexistence regions that are unbounded in
pressure, hold true in the present analysis.

In C12H26/N2 mixtures described by the Peng-Robinson equation
of state (14) and the mixing rules (15), the phase diagram does not
contain a continuous critical line joining the critical points of the indi-
vidual components, and the coexistence region becomes unbounded in
pressure. This phenomenon is shown in the thermodynamic phase dia-
gram in Fig. 7, where isocomposition projections of the phase-equilib-
rium surface on the P − T plane are provided. A three-dimensional vi-
sualization of the elevation of the critical point in the thermodynamic
space formed by P, T, and YF is shown in Fig. 8(a) also for C12H26/N2
mixtures. There, the coexistence region is enclosed under the surface
enveloping the isocomposition curves and reaches pressures of order
1500bar at ambient temperature.

The computation of critical points in complex mixtures involves a
number of assumptions and model-parameter values that find no clear
justification on physical grounds. For instance, the mixing rules (15)
correspond to molar weighting of the individual coefficients ai and
bi, whose expressions depend on calibrated interaction parameters and
measured critical points of the pure substances (see Appendix C). It is
however remarkable that the critical line calculated in Figs. 7 and 8(a)
agrees well with values experimentally obtained in Ref[75]., including
the divergent trend of the critical pressure.

Since N2 is a major component of air, both C12H26/N2 and
C12H26/air mixtures lead to similar thermodynamic behavior, as shown
in Fig. 8(b). Note that the mechanical critical point of air provided
in Table 1 is very similar to its diffusional critical point

obtained in Fig. 9(a) using Eqs. (A.9) and
(A.11). This is because the coexistence envelope of N2/O2 mixtures
does not exceed the critical pressures of the separate components.

Mixtures of heavy hydrocarbons with O2 do not generally lead to
coexistence envelopes unbounded in pressure. However, a bounded el-
evation of the critical point still occurs in those mixtures, as shown
in Figs. 8(c) and 9(b), where a promontory in pressure is observed

Fig. 7. Iso-composition cross-sections of the phase-equilibrium surface projected on the
P − T plane for C12H26/N2 mixtures, including (a) a qualitative description of the dia-
gram for dodecane mass fraction along with (b) a more detailed diagram for
multiple values of YF. Experimentally measured critical points obtained from Ref[75].
are denoted by triangles in panel (a).
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Fig. 8. Iso-composition cross-sections of the phase-equilibrium surface colored by pres-
sure for (a) C12H26/N2 mixtures, (b) C12H26/air mixtures, and (c) C12H26/O2 mixtures.
Pure-substance boiling lines for C12H26 (dark dashed lines) and N2/O2/air (red dotted
lines) are shown, along with their corresponding critical points (CP; squares) and the
critical line of the mixture (green dotted lines). Experimentally measured critical points
obtained from Ref[75]. are denoted by green triangles in panel (a). 2D projections of
the critical line (dark dotted lines) and experimental data (dark triangles) on the T − YF
plane are also provided. Arrows indicate diverging behavior of isocomposition lines
along the pressure axis. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

in the coexistence region up to approximately 700 bar at ambient tem-
perature.

Additional phase diagrams of relevant binary mixtures are pro-
vided in Fig. 9(c–f). Mixtures of N2 with C7H16, or with a major com-
bustion product such as CO2, along with mixtures of H2 with O2 or
N2, all lead to a very similar behavior to the one described above
for C12H26/N2 systems. However, the coexistence region in H2-fueled
mixtures exists only for a narrow interval of cryogenic temperatures,
whose width decreases rapidly with increasing pressure. In contrast,
mixtures of O2 with C7H16 or CO2 lead to bounded coexistence regions
similar to that observed in Fig. 8(c) for C12H26/O2 mixtures.

Important practical systems that do not feature any significant el-
evation of the critical point are mixtures of CH4 with O2, and CH4
with air or N2, which are relevant for new generations of rocket en-
gines (e.g., BE-4 and Raptor) and for land-based gas turbines, respec

tively. In those mixtures, the pressure of the diffusional critical line is
never too far above the critical pressures of the separate components.
As a result, those systems are mostly dominated by interfaceless, ho-
mogeneously mixed states when the pressure is supercritical with re-
spect to both components (P ≳50 bar).

Constant-pressure cross-sections of the phase diagram
are provided in Fig. 10 for C12H26/N2 mixtures. As the pressure in-
creases, Fig. 10 indicates that the mixture composition and tempera-
ture corresponding to the diffusional critical point becomes fuel-leaner
and colder, respectively. For C12H26/N2 mixtures, and within the in-
terval of pressures reported in Fig. 10, the temperature of the diffu-
sional critical point Tc,diff does not differ much from the fuel criti-
cal temperature Tc,F, with K being the largest differ-
ence observed at 200 bar. Similarly, Tc,diff is approximately equal to
the critical mixing temperature Tc,mix corresponding to the maximum
temperature attained along the VLE line at a given pressure. Table 3
shows that the difference Tc,mix − Tc,diff increases as the pressure in-
creases, although the maximum value is only 5 K at 200 bar. The sys-
tem may sample the coexistence region within the very small gap of
temperatures Tc,diff ≤T ≤Tc,mix, but the thermodynamic states there are
metastable, and for all practical purposes, they can be considered as
fully supercritical.

Although no equilibrium trajectories connecting the two injection
states of the propellants exist in general flows, it is convenient to lo-
cate along a trajectory on the phase diagram the local thermodynamic
state of points normal to the transcritical interface in the configura-
tions that will be addressed in Sections 6 and 7. In this study, these
trajectories are referred to as pseudo-trajectories to emphasize that
they are not thermodynamic trajectories followed by the system by
quasi-statically changing its state, as traditionally meant in the the-
ory of thermodynamics of closed systems. A notional envelope of
transcritical pseudo-trajectories is provided in Fig. 10 that joins the
characteristic injection-temperature ranges TF ∼ 300–450 K and TO ∼
700–1000 K of the propellant streams. It will be shown in Sections 6
and 7 that transcritical pseudo-trajectories are characterized by cross-
ing the coexistence region of the thermodynamic phase diagram of
the mixture. Note, however, that any pseudo-trajectory plotted on con-
stant-pressure cross-sections of the thermodynamic phase diagram,
such as those in Fig. 10, should be interpreted with caution, since sig-
nificant variations of the thermodynamic pressure occur across the in-
terface away from the edge, as discussed in Sections 4 and 5.

The considerations above suggest that the selection of particular
values of injection temperatures and combustor pressures may lead to
operating conditions without transcritical interfaces. For instance, if
the injection temperature of C12H26 in Fig. 10 is increased to values
larger than Tc,diff while maintaining constant the hot temperature of the
nitrogen coflow, the pseudo-trajectories will not cross the coexistence
region, and the flow will not bear any transcritical interfaces. This cir-
cumvention of the coexistence region may be achieved dynamically
because of supercriticalization of the fuel stream by heat transfer from
the coflow, as shown in Fig. 2 and discussed in Section 7.

The limiting pressure above which interfaces cannot exist at a
given injection temperature of the cold propellant stream is provided
in Fig. 11 for two different configurations: (a) one in which the fuel
is cold and the coflow (N2 or O2) is hot (a configuration relevant
for propulsion systems fueled by heavy hydrocarbons as in Fig. 1),
and (b) one in which the fuel is hot and the oxidizer is cold (a con-
figuration relevant for rocket engines fueled by hydrogen). Specifi-
cally, Fig. 11 provides Tc,diff as a function of P∞ for different mixtures.
The point of intersection between the diffusional critical temperature



UN
CO

RR
EC

TE
D

PR
OO

F

Progress in Energy and Combustion Science xxx (xxxx) xxx-xxx 15

Fig. 9. Iso-composition cross-sections of the phase-equilibrium surface projected on the P − T plane for (a) N2/O2 mixtures, (b) C12H26/O2 mixtures, (c) C7H16 mixed with O2 (left)
or N2 (right), (d) CO2 mixed with O2 (left) or N2 (right), (e) CH4 mixed with O2 (left) or N2 (right), and (f) H2 mixed with O2 (left) or N2 (right). The diagrams include diffusional
critical lines (green-dotted lines), and pure-substance VLE lines (dark dashed and red-dotted lines) with their corresponding critical points (CP; squares). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

and the horizontal line corresponding to the chosen value of the injec-
tion temperature of the cold propellant stream defines the combustor
pressure above which interfaces cannot exist because the pseudo-tra-
jectories of the system will circumvent the coexistence region. For
instance, considering an injection temperature TF = 300 K for a fuel
stream of C12H26 or C7H16 into a coflow of N2 or O2, the limit-
ing pressures that lead to absence of interfaces are P∞ ≃1500 bar
(for C12H26/N2), P∞ ≃690 bar (for C12H26/O2), P∞ ≃820 bar (for
C7H16/N2), and P∞ ≃410 bar (for C7H16/O2). Similarly, for a cryo-
genic O2 stream at K surrounded by a hot coaxial stream of
H2, the corresponding limiting pressure above which the flow cannot
bear transcritical interfaces is P∞ ≃290 bar.

3.3. Conditions suppressing transcritical behavior

The combustor pressure and injection temperatures can be varied
in the following manner in order to suppress transcritical interfaces

in the flow:

(a) Increasing the combustor pressure: The higher P∞, the smaller
Tc,mix and Tc,diff are, and the narrower the coexistence region is
along the temperature and composition axes of the thermodynamic
phase diagram.

(b) Increasing the temperature of the coflow stream: The higher TO,
the more likely pseudo-trajectories will circumvent the coexis-
tence region or will traverse it across its largest pressure values,
where the density gradients are small.

(c) Increasing the temperature of the fuel stream: The higher TF, the
less likely the pseudo-trajectories will cross the coexistence re-
gion.

These observations have been ratified by recent experiments
[18,19].
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Fig. 10. Constant-pressure T − YF cross-sections of the phase diagram, including diffusional critical points (diamond symbols with coordinates) and vapor-equilibrium lines (thick
red dashed lines) bounding the coexistence region of C12H26/N2 mixtures at different pressures, along with the corresponding diffusional spinodal lines (thin purple dashed lines) and
the loci of the maximum of the molar heat at constant pressure (thick green dot-dashed line) at each pressure. The mechanical critical point (solid circle) and the mechanical spinodal
lines (thin solid lines) are provided only for the lowest pressure case. For pressures larger than 30bar, the mechanically unstable region lies at much lower temperatures than those
shown in the figure. Solid ellipses denote characteristic injection conditions of N2 (left) and C12H26 (right), while shaded regions are notional envelopes of pseudo-trajectories joining
thermodynamic states along the normal to the interface. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Pressure, temperature, and composition at diffusional critical points and critical mixing
conditions in C12H26/N2 mixtures.

Diffusional critical point Critical mixing conditions

P∞ [bar] Tc,diff [K] YFc,diff Tc,mix [K] YFc,mix

20 658 0.99 658 0.99
50 650 0.93 651 0.94
100 639 0.85 641 0.86
200 615 0.72 620 0.76

4. Theoretical foundations of the diffuse-interface theory for
transcritical flows

Crossings of the thermodynamically unstable regions in Fig. 10 re-
quire modifications of the constitutive laws in the Navier-Stokes equa-
tions. This section introduces basic assumptions, parameters, and scal-
ings of the diffuse-interface theory, and outlines a set of conservation
equations that serve as groundwork for the derivation of constitutive
laws in Section 5.

4.1. Gradient-dependent thermodynamic potentials

The diffuse-interface theory was first formulated by van der Waals
in Ref[108]., where the finite-thickness structure of an interface be-
tween liquid and vapor phases in isothermal hydrostatic monocom-
ponent systems was described by performing spatial integrations of
the intermolecular potential in the presence of a mean density gradi-
ent. The reader is referred to seminal treatises based on the molecu-
lar theory of liquids for in-depth expositions of the topic [53]. This
formalism was later extended to study binary mixtures near the crit-
ical point by Cahn and Hilliard [109]. More recently, notable work
has been done to couple consistently the diffuse-interface theory of
van der Waals with conservation equations of fluid motion [110–115].
Developments of the diffuse-interface theory for treating the mechan-
ics of interfaces in complex mixtures have been applied mostly to
1D phase-transitioning systems in hydrostatic equilibrium at uniform
temperature to provide predictions of the surface-tension coefficients
[116–118]. The investigation of hydrodynamic and thermal effects in
the formulation is a discipline that is currently in its infancy.
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Fig. 11. Combustor pressures and injection temperatures of the cold propellant stream
leading to absence of interfaces. The lines denote the diffusional critical temperature
Tc,diff of the corresponding mixture. For a given value of TF (in configuration ⓐ) or TO
(in configuration ⓑ), the intersection with the diffusional critical temperature provides
the limiting combustor pressure P∞ above which interfaces cannot exist.

The diffuse-interface theory of van der Waals addresses mono-
component thermodynamic systems traversing the coexistence region
as they become macroscopically separated into phases. Specifically,
the diffuse-interface theory describes the mechanics of the transition
layer, which gives rise to familiar surface-tension forces emerging
from the resistance of the interface to get deformed. Although the pre-
dicted interfaces are hydrodynamically thin, and the theory is formu-
lated at the continuum level, the results agree well with experiments
and molecular dynamics simulations [99,116–119].

On average, molecules in ideal gases are separated by long dis-
tances that make the intermolecular forces negligible. In contrast, the
increased molecular packing at high pressures requires consideration
of intermolecular forces, which are manifested by the second term in
the equation of state (14) involving the coefficient a. The latter is pro-
portional to the zeroth-moment of the intermolecular potential in the
far-field attraction range [53]. In highly density-stratified conditions
as those found across interfaces in monocomponent systems, the effect
of long-range attraction forces is compounded by the fact that the inte-
gration of the spherico-symmetric intermolecular potential across the
stratified zone results in a gradient-dependent free energy [108]. This
is represented by a correction to the bulk free energy that involves a
coefficient multiplied by the square of the density gradient [111].

The equivalent description of thermodynamic potentials in mul-
ticomponent systems is based on the gradients of the partial densi-
ties [116,117]. For instance, the specific values of the gradient-de-
pendent Helmholtz free energy f, internal energy e, and entropy s are
[38,39,110]

where f is defined as

In this notation, N is the number of species, and κi,j, and are
gradient-energy coefficients discussed in Section 4.2. In this formula-
tion, f, e and s are evaluated at local conditions {P, ρ, T, and Y1, Y2...
YN − 1} within the interface.

4.2. Gradient-energy coefficients

Expressions relating and κi,j can be easily derived by sub-
stituting Eqs. (16)–(18) into Eq. (19), which gives

where the definition has been used. The de-
termination of the gradient-energy coefficients, which are directly re-
lated to the interface thickness and surface tension, constitutes a ma-
jor source of uncertainty in the formulation, since they either require
knowledge of the underlying molecular structure of the fluid, or must
be tuned by comparing theoretical results with experimental data.

Models for the gradient-energy coefficients often rely on correla-
tions such as

In this formulation, Tc,i is the critical temperature of species i, NA
is the Avogadro’s number, and ai and bi correspond to coefficients
of the equation of state. The function depends on the reduced
temperature and is calibrated from experimental data.
One class of experiments used for calibration consists in enclosing a
monocomponent fluid in an equilibrium cell [e.g., see Fig. 5(a)] and
measuring its surface-tension coefficient σ [15,72,116–118]. As dis-
cussed in Section 5.3 (see also Ref[117].), the diffuse-interface theory
for monocomponent flows predicts that σ is given by

where is a spatial coordinate locally normal to the interface. Values
of κ as a function of temperature can be inferred from Eq. (22) by us-
ing measurements of σ in the equilibrium cell. The resulting function

can be represented as [120]
(16)

(17)

(18)

(19)

(21)

(22)

(23)
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The dimensionless coefficients and are provided in Eqs.
(C.17) and (C.18) (see also Refs[116,120].). The resulting dependency
of the gradient-energy coefficient on temperature is shown in Fig. 12
for C12H26 and N2. Validations of the model (23) are provided in
Section 6 and Appendix D.

Three approximations in the gradient-energy coefficients are made
in the theory developed here:

(a) For simplicity, the gradient dependency of s is neglected in com-
parison with similar long-range effects on f and e, or equivalently

which gives and .
(b) The long-range interaction between components in mixtures, mea-

sured by the cross-influence parameters κi,j (i ≠ j) are modeled as

with chosen for simplicity [117], although no rigorous jus-
tification for such geometric averaging appears to exist yet other
than experimental observations of indirect quantities that ratify
this choice [121].

(c) As shown in Section 5.6, the largest variations of the tempera-
ture occur across distances much larger than the interface thick-
ness. Correspondingly, it is assumed herein that κi,j varies slowly
in space around the interface, and therefore commutes with spa-
tial derivatives. Temperature-induced variations in κi,j are included
explicitly by evaluating κi,j at the local temperature in all expres-
sions.

Fig. 12. Gradient-energy coefficients κi,i for monocomponent systems composed of (a)
C12H26 and (b) N2, as obtained by using expression (23) in conjunction with the equa-
tion of state (14).

These approximations were also implicitly used in the original dif-
fuse-interface theory of van der Waals [108].

4.3. Open issues of experimentally calibrated models for gradient-
energy coefficients

Gradient-energy coefficients computed from experimentally cali-
brated relations such as Eq. (23) are contrived by the manner that ex-
periments are carried out. As the equilibrium cell is heated, and start-
ing from a phase-separated state in vapor-liquid equilibrium, both P
and T reach their critical values simultaneously because of vapor-liq-
uid equilibrium. As a result, the pressure dependency on Eq. (23),
and similar ones encountered in the literature, is artificially concealed
in the temperature. Relevant steps toward improved models of gra-
dient-energy coefficients have been recently undertaken by Dahms
[100] using parametrizations of κi,j in terms of the local partial-density
gradients instead of temperature.

Contrary to theoretical predictions [53,120], which suggest that the
gradient-energy coefficient diverges near the critical point of the com-
ponent, there are experimentally calibrated models such as Eq. (23)
that remain finite there, as observed in Fig. 12. However, the singu-
larity predicted by the theory is weak and in practice is overruled by
the rapid decrease in the density gradients on approach to the critical
point, where both σ and dσ/dT vanish.

Additional complications arising from the utilization of Eq. (23) or
analogous ones [118] is that the experimentally calibrated gradient-en-
ergy coefficients are not defined for T > Tc,i. Recall that a monocompo-
nent system cannot engender any surface tension for T > Tc, since, as
indicated in Fig. 4, only a single homogeneous thermodynamic state is
possible above the critical point. As a result, the calibration of κi,i must
necessarily stop at T > Tc,i. In the transcritical conditions in Fig. 1, in
which TO > Tc,F > TF > Tc,O, the gradient-energy coefficients given by
Eq. (23) are not defined in regions of the flow where the local temper-
ature is larger than the critical temperature of the corresponding com-
ponent. This has the following implications:

(a) Since the injection temperatures considered here are TF ∼
300–450 K and TO ∼ 700–1000 K, the temperature is everywhere
larger than the critical temperatures of typical coflowing species,
including N2, O2, and air. Consequently, the only gradient-energy
coefficient that is defined and explicitly appears in the formulation
is that of the fuel, denoted here by κF,F.

(b) The fuel gradient-energy coefficient κF,F ceases to be defined on
the coflow side of the interface where T > Tc,F.

However, these limitations do not have significant consequences
on the theory developed here. As discussed in Section 1, the inter-
face vanishes at an edge when its temperature nears the temperature
of the diffusional critical point Tc,diff, which is K smaller than
Tc,F in the pressure range P∞=50–200 bar. Correspondingly, regions
where κF,F is not defined because T > Tc,F are located either far away
from the interface on the coflow side, or downstream of the inter-
face edge, as schematically indicated in Fig. 13. Since composition
gradients in those regions are small compared to those encountered
across the interface, the gradient-dependent corrections of the local
thermodynamic potentials are dynamically irrelevant there regardless
of whether κF,F is made to artificially plunge to zero at or is
extrapolated for T > Tc,F.

From a molecular-scale perspective, κi,j can be shown to be pro-
portional to the second moment of the intermolecular potential (e.g.,
see Ch. 4 in Ref[53]. for details). It can also be expressed in terms
of the direct correlation function in both single- and multicomponent
systems [122,123]. It is conceivable that future developments in hy

(24)

(25)
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Fig. 13. Schematics of the region enclosed by the fuel critical isotherm (gold
colored zone), where the fuel gradient-energy coefficient κF,F is defined according to the
model (23).

drodynamic applications of the diffuse-interface theory for high-pres-
sure interfaces would benefit from models of κi,j that could be cog-
nizant of the microscale structure of supercritical fluids and their mix-
tures. Multiscale modeling strategies based on combination of molec-
ular dynamics and continuum-level theories or simulations may bear
some potential for on-the-fly calculations of κi,j based on direct corre-
lation functions [124,125].

4.4. Characteristic scales in the diffuse-interface theory

The disparity between the interface thickness δI and the macro-
scopic flow scales δT, RI, and RF plays a central role in the dynamics
of the interface. The value of δI is closely connected with the gradi-
ent-energy coefficient and with the surface tension σ. In particular, Eq.
(22) indicates that the gradient-energy coefficient scales as

where σ0 is a characteristic value of the surface tension, and ρF is the
density of the fuel stream. In performing the estimate (26), the charac-
teristic density difference across the interface has been approximated
as with the density ratio defined in Eq.
(4).

To understand the role of the gradient-energy coefficient in the pre-
sent theory, it is important to note that any thermodynamic variable
that oscillates across the coexistence region in the phase diagram can
be mapped into physical space within an interface-like profile of an in-
dicator function such as in monocomponent flows, or the partial
densities in multicomponent flows. Although the details of the map-
ping depend on the particular problem and thermodynamic quantity
under consideration, it is illustrative to momentarily sideline the prob-
lem in Fig. 1 and focus on the most idealized case that can be ad-
dressed with the diffuse-interface theory, namely that of a flat inter-
face in a monocomponent isothermal flow. In this case, the mapping
is simpler and the free-stream densities correspond to those in phase
equilibrium, i.e., and .

As discussed in Appendix A.2, in phase equilibrium, the chemi-
cal potentials in both streams are the same and equal to the equilib-
rium value μe [see Eq. (A.16)]. Similarly, since the temperatures of the
streams must be equal in phase equilibrium, Eqs. (C.4) and (C.5) sim-
plify, respectively, to

and

In particular, Eq. (28) provides the definition of the pressure in
terms of the free energy

which can be combined with Eq. (C.7) giving

By substituting P from Eq. (14) into Eq. (29) and integrating the
resulting equation, an expression for f can be found and be later sub-
stituted into Eq. (30) to obtain one for μ. The resulting expressions for
f and μ are not essential here and are deferred to Appendix C.

Eqs. (27) –(30) are standard expressions in thermodynamics that
are useful here for the following reason. Since the pressure P is an
oscillatory function of ρ across the coexistence region of the thermo-
dynamic phase diagram (e.g., see Fig. 4), f and μ are also oscillatory
functions of ρ there. In particular, μ satisfies a Maxwell’s construc-
tion rule [126], in that the oscillation of in the coexistence re-

gion encloses zero net area, as observed by us-

ing Eqs. (30) and (C.7).
A fundamental result of the diffuse-interface theory for monocom-

ponent isothermal systems is the equation

which relates μ, ρ, and the normal coordinate to the interface . The
derivation of Eq. (31) is deferred to Section 5.3. It will also be shown
in Section 5.6 that an equation similar to (31) exists for multicom-
ponent isothermal systems. The boundary conditions of Eq. (31) are

at and at . The right-hand side of
Eq. (31) vanishes far away on both sides of the interface, where the
density gradients are negligible and the chemical potential attains the
phase-equilibrium value μe.

As illustrated in Fig. 14, the expression (31) is responsible for map-
ping the oscillations of the chemical potential in the two-phase region
of the thermodynamic space into an interface-like profile

in which ρ undergoes a rapid variation of order ρF within
a very short distance of order δI. To obtain an estimate of δI, Eq. (31)
can be rewritten in terms of a nondimensional density

and a nondimensional chemical potential with
Aμ the characteristic amplitude of the oscillation of μ in the coexis

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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Fig. 14. Schematics of the thermodynamic-to-physical space mapping (31) built in the
diffuse-interface theory for transforming the variations of the chemical potential into a
sharp monotonic density profile in a monocomponent isothermal system.

tence region. In these variables, the first integral of Eq. (31) is

Eq. (33) evaluated far away from the interface, where ρ⋆ →1 and
is consistent with Maxwell’s construction rule. The pa-

rameters κ, ρF, and Aμ can be scaled out of Eq. (33) by defining a di-
mensionless normal coordinate with

The combination of Eqs. (26) and (34) yields

In particular, Eq. (35) connects the oscillation amplitude Aμ, which
can be obtained independently from the thermodynamic relations (14)
and (30), with the intrinsic properties of the interface δI and σ0, the lat-
ter being a measurable quantity. A cornerstone of the diffuse-interface
theory is that the order of magnitude of κ is set such that δI estimated
from (34) is small enough to yield values of σ0 from Eq. (22) compa-
rable to the experimentally observed ones σ0 ∼ 0.001–0.1 N/m. This
gives δI ∼ 1–100 nm and κ∼ 10− 15–10− 17 Jm5/kg2 (see Fig. 12).

The characteristic amplitude of the pressure oscillation within the
interface, denoted by AP, is obtained from Eqs. (29), (30), and (35)
giving

Eq. (36) yields AP ∼ 10–100 bar when the estimates for σ0 and δI
introduced above are employed. A dimensionless pressure parameter

can be defined as the ratio of the characteristic pressure variation
AP across the interface to the combustor pressure P∞,

which is related by Eq. (36) to Aμ as

where

is the compressibility factor. The dimensionless pressure parameter
increases with decreasing pressures. At near-atmospheric pressures,

is much larger than unity, and the pressure oscillation predicted by
the equation of state (14) can induce large negative pressures often-
times observed in the form of tensile strength in liquids brought to
metastable states by superheating them above the boiling temperature,
or by stretching them below the vapor pressure [104,127,128]. As P∞
increases, σ0 decreases and δI increases, thereby rendering smaller val-
ues of AP and .

The numerical results presented in Sections 6 and 7 indicate that
the dimensionless pressure parameter is of order unity in transcrit-
ical conditions. As a result, despite the large values of P∞ involved,
the present theory predicts that mechanically subcritical pressures, and
even negative pressures, may occur within the interface. These aspects
are further discussed in Appendix E as they may appear controversial
in the description, although they do not have any significant effect on
the results presented here.

4.5. The interface-continuum hypothesis

The approximation of operating with a continuous field across the
transcritical interface while keeping only the gradient terms in the se-
ries expansion of the thermodynamic potentials, as in Eqs. (16)–(18),
is justified when the interface thickness δI is large compared to the
characteristic mean free path Λ, or equivalently, when the Knudsen
number

is much smaller than unity. In multicomponent mixtures described by
the hard-sphere model, Λ is given by [129]

In this formulation, dF and dO are the equivalent hard-sphere di-
ameters of the fuel and coflow species, respectively, with

the mean diameter (i.e.,
nm, nm, and nm for C12H26/N2 mix-
tures [130]).

The direct application of Eq. (41) to the present problem is prob-
lematic because of the strong composition gradients associated with
transcritical interfaces. In the calculations of KnI shown in Section 6,
the partial densities in Eq. (41) are approximated as
ρYF ∼XF,maxP∞WF/(ZF,maxR

0Te) and
where Te is a char-

acteristic interface temperature, and the subindex max denotes quan-
tities evaluated at the location of maximum density gradient

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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across the interface. With these approximations in mind, Eq. (41) be-
comes

where kB is the Boltzmann constant. For the monocomponent sys-
tems calculated in Appendix D, Eq. (42) is used with

and .
Small Knudsen numbers (40) are often found in monocomponent

systems as the critical point is neared, when δI increases and Λ de-
creases. For instance, the interface thickness calculated in Appendix D
for a monocomponent N2 system at bar is δI ∼5
nm. This translates into approximately 32N2 molecules across, along
with a Knudsen number KnI ∼0.05 (see Fig. D.3 in Appendix D).
However, it is widely accepted that the requirement KnI ≪1 is not al-
ways satisfied by the diffuse-interface theory of van der Waals as the
pressure becomes increasingly smaller than Pc [53,131,132]. This can
be seen in the same monocomponent N2 system mentioned above at

bar, for which δI ∼ 2 nm and KnI ∼0.15, thereby
indicating a larger rarefaction and a weaker foundation for the contin-
uum character of the theory. Despite these shortfalls, the diffuse-inter-
face theory of van der Waals tends to reproduce well numerical results
obtained from molecular dynamics (e.g., see Fig. 6 in Ref[99].).

The considerations above indicate that the continuum assumption
across the interface is often on the borderline of invalidity. In the hy-
drocarbon-fueled mixtures analyzed in Figs. 7–9(b–e), the pressures
that can be reached before KnI becomes much smaller than unity and
are much larger than those in monocomponent systems because of
the elevation of the critical point caused by mixing. It is however re-
markable that no excessively large values of KnI that would indicate
a flagrant violation of the continuum assumption are encountered at
the high pressures studied here. Field formulations of fluid motion are
well-known for performing correctly even in flows where the contin-
uum hypothesis may not be strictly satisfied [129]. The continuum
treatment of diffuse interfaces is reminiscent of the description of the
internal structure of weak shock waves by using the Navier–Stokes
equations despite the small shock thicknesses involved [133]. How-
ever, one important difference between shocks and interfaces is

Fig. D.3. Variations of (a) the interface thickness and (b) Knudsen number as a function
of the temperature nondimensionalized with the critical temperature of the correspond-
ing component.

that the dynamics outside the shock discontinuity are independent of
its internal structure, whereas the transport across the interface and its
mechanical coupling with the flow fundamentally depend on the inter-
nal structure of the interface, as discussed in Section 5.

The appropriateness of Eq. (41) as the relevant length scale to eval-
uate the continuum character of transcritical interfaces is also under
suspicion. Recent molecular dynamics simulations [134] indicate that
confined gases undergo higher rates of collisions than those predicted
by Eq. (41). It could be plausible that an interface may lead to an effect
similar to confinement for the fluids on each side and within the in-
terface itself. Similarly, a recent study by Dahms [135] has found that
the effective mean free path near the interface should be 0.55 times
smaller than the classic definition in Eq. (41). Whether interfaces at
high pressures fully satisfy the continuum requirement KnI ≪ 1 re-
mains a subject open to debate.

4.6. The role of antidiffusion in transcritical flows

An important characteristic of the mass transport across transcriti-
cal interfaces at sufficiently high pressures is the prevailing antidiffu-
sion of matter that is predicted by the standard transport theory in con-
junction with the equation of state (14). To understand this, notice that
the effective Fickian diffusion coefficient participating in the standard
species diffusion flux of fuel at high pressures is not the binary diffu-
sion coefficient but [136,137]

where fF is the fuel fugacity defined in Eq. (B.22) as a function of the
fugacity coefficient (B.23), the latter being particularized in Eq. (C.47)
for the Peng-Robinson equation of state (14). A formal derivation of
Eq. (43) is deferred to Section 5.

In contrast to which is always positive (see Fig. B.3 and re-
lated discussion in Appendix B.4), the effective Fickian diffusion co-
efficient DF,F can be negative for intermediate compositions at tem-
peratures smaller than Tc,diff, as shown in Fig. 15 for C12H26/N2 mix-
tures. The change in sign can be explained by the fact that the fuel
fugacity oscillates across the coexistence region (and therefore across
the interface) similarly to the fuel chemical potential, as discussed in
Appendix A.1 and illustrated in Fig. A.1(a,b) for C12H26/N2 mixtures.

At moderate pressures or high temperatures approaching ideal-gas
conditions, the non-ideal diffusion prefactor becomes unity,
(∂ln fF/∂ln XF)P,T →1. Therefore and traditional forward
molecular diffusion (i.e., diffusion in the direction of decreasing fuel
concentration) prevails. At high pressures, forward diffusion dom-
inates in the compositional mixing layer downstream of the inter-
face edge. In contrast, near the injection orifice, where the fuel is
cold, the non-ideal prefactor (∂ln fF/∂ln XF)P,T departs from unity and
its sign changes depending on the local composition. In particular,
(∂ln fF/∂ln XF)P,T varies from positive values on the coflow and fuel
sides of the interface, where forward diffusion prevails, to negative
values within the transcritical interface, where mass is transported in
an antidiffusive manner in the direction of positive composition gradi-
ents because of the diffusional instability of the mixture, as sketched
in Fig. 16. The antidiffusion of matter predicted by the standard trans-
port theory, which would lead to unphysical results, can be regularized
by a an extra diffusion flux derived from the diffuse-interface theory,
as described in Section 5.

(42)

(43)
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Fig. B.3. Constant-pressure distributions of (a) dynamic viscosity, (b) thermal conductivity, (c) binary diffusion coefficient, and (d) thermal-diffusion ratio for C12H26/N2 mixtures
at high pressures as a function of temperature and mass fraction of dodecane YF [refer to the legend in the right panel in (a)]. The plots include the diffusional critical point of the
mixture at the corresponding pressure (diamond symbol), as well as projections of the loci of the maximum of the molar heat at constant pressure (thick dot-dashed line), and the VLE
line (thick dashed line) on the planes and . In interpreting these plots, it is important to note that the entire coexistence region is not exactly enclosed
within the space bounded by the VLE line in panels (a), (b) and (d) since the partial variation of the transport coefficient with respect to YF attains negative values there.

Fig. 15. Constant-pressure distributions of the effective Fickian diffusivity of dodecane
in C12H26/N2 mixtures at (a) P = 50 bar and (b) 100 bar as a function of temperature and
mass fraction of dodecane YF (refer to the legend in the left panel). The plots include the
diffusional critical point of the mixture at the corresponding pressure (purple diamond
symbol) and the diffusional spinodals (thick purple dashed lines). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

4.7. Conservation equations for transcritical flows

The consideration of gradient-dependent thermodynamic poten-
tials, as in Eqs. (16)–(17), leads to interface-related transport fluxes
and mechanical stresses in the conservation equations. In this study, a
phenomenological approach described in Section 5 is followed based
on linear augmentations of the deviatoric part of the stress tensor τ,
and the heat and species diffusion fluxes q and Ji, with the interfacial
stress tensor and transport fluxes and . Expressions for

and are derived in Section 5. In terms of the material-derivative
operator the resulting conservation equations for
mass, momentum, species, and total energy are

which describe the continuum mechanics of a multiphase, multicom-
ponent fluid of N species that moves at a mass-averaged velocity v and
has a density ρ and total energy E. The latter is related to the specific
gradient-dependent internal energy (17) by the definition

Additionally, q is a molecular heat flux defined as

(44)

(45)

(46)

(47)

(48)

(49)
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Fig. 16. Schematics of diffusional processes across a notional transcritical interface sep-
arating fuel and coflow streams at high pressures. The sketch includes (a) diffusional
processes in physical space, and (b) associated evolution of the fugacity of the fuel
species fF in thermodynamic space. Note that the fugacity profile in panel (b) does not
necessarily correspond to one at uniform pressure such as those presented in Fig. A.1(a),
since the pressure generally varies within the coexistence region.

The first term qt on the right-hand side of Eq. (49) comprises
Fourier and Dufour mechanisms of heat transfer, while the second
term corresponds to heat transport by interdiffusion of species with
different partial specific enthalpies hi, which are discussed in
Appendices B.1 and C.8. In addition, the symbol is a gradient-de-
pendent pressure given by

with P being related to ρ, T and Yi through the equation of state (14).
The convenience of delocalizing the pressure as in Eq. (50) will be-
come clearer upon deriving an expression for the interfacial stress ten-
sor in Section 5.

An alternative form of the energy Eq. (47) that will be employed in
the analysis is the enthalpy conservation equation

Eq. (51) is obtained by subtracting the momentum conservation
Eq. (45) multiplied by v from the total-energy conservation Eq. (47),
and by making use of the relation

obtained from the definition of the local specific enthalpy h (C.3)
along with Eqs. (17) and (50). Methods for calculation of h at high
pressures are discussed in Appendices B.1 and C.6.

The integration of the conservation Eqs. (44)–(47) is complicated
by the additional terms and which will be shown to de

Fig. A.1. Thermodynamic phase diagrams for C12H26/N2 mixtures at uniform temperature T = 500 K in terms of (a) fuel fugacity fF as a function of the fuel molar fraction at different
constant pressures, (b) fuel molar chemical potential as a function of the fuel molar fraction at different pressures [refer to legend in panel (a)], and (c) pressure as a function of the
fuel molar fraction indicating different stability regions of the diagram.

(50)

(51)

(52)
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pend on the square of gradients and higher-order derivatives of the
partial densities across the interface. For instance, a full numerical in-
tegration of the momentum Eq. (45) in the flow sketched in Fig. 1
would incur significant numerical stiffness, because the ratio of the in-
terfacial terms to the convection terms would be a large parameter,

where

is a Weber number, and ϵR is a large-scale Cahn number defined in
Eq. (9). Typical orders of magnitude are and

in the present conditions, thereby making the
ratio (53) a large number of order due to
the much smaller value of δI compared to RF.

5. The structure of transcritical interfaces

This section focuses on the derivation of the additional terms
and in the constitutive laws of the Navier–Stokes Eqs.

(44)–(47) by using the diffuse-interface theory of van der Waals ex-
tended to multicomponent flows. Using those expressions and exploit-
ing the small thickness of the interface relative to all other macro-
scopic lengths, a local formulation in the moving frame attached to the
interface is developed that provides mechanical and transport equilib-
rium constraints applicable to interfaces in isothermal systems. Mod-
erate temperature gradients across the interface, such as those encoun-
tered in Fig. 1, are shown to require the consideration of small devia-
tions from equilibrium.

5.1. Entropy-production sources

The derivation of and is performed here using the
method of irreversible thermodynamics and Onsager’s reciprocal rela-
tions. The premise of this method is that the constitutive relations must
lead to non-negative entropy production in accordance with the second
principle of thermodynamics. This method parallels the one utilized to
determine the analytical form of the transport fluxes in the standard
theory [138–140]. However, this method cannot give expressions for
the transport coefficients in terms of molecular properties. Those are
provided separately in Appendices B.4 and Appendix F.

The analysis begins by substituting Eqs. (17) and (50) into the first
principle (C.1), and using the assumption of constant and symmetric
κij coefficients, which leads to

where

is an auxiliary vector. A transport equation for the specific entropy s
can be derived by substituting Eqs. (44)–(47) and the definition (49)
into the expression resulting from taking the material derivative of Eq.
(55), which yields

where

are generalized versions of the partial specific entropy
and specific chemical potential μi, re-

spectively. In addition, is an entropy source given by

with I being the identity matrix and ⊗ denoting the dyadic product.
The definition

the mass-conservation constraint

and the vector identity

have been used in deriving Eq. (59), with D(ρYi)/Dt being replaced
by in accordance with Eq. (46). To separate
transport by temperature gradients, the decomposition

(53)

(54)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

(63)
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is performed, where use of Eq. (58) and of the reciprocity relation
for the partial specific entropy have been
made. In the formulation, the operator ∇T indicates spatial differen-
tiation at constant temperature. Substitution of Eq. (63) into Eq. (59)
yields

where

is an auxiliary variable. The last term on the right-hand side of Eq.
(65) can be expressed as

by making use of the equation of state (14) and the definition of ψi in
Eq. (56). In this formulation, βv is the volume expansivity defined in
Eq. (B.7) and particularized for the Peng-Robinson equation of state
(14) in Eq. (C.22).

Following an approach similar to that provided by Onsager [138]
(see also Ch. 11.2 in [140], and Ch. 6 in Ref[139].), the entropy source
(64) is interpreted as consisting of three production terms that have a
similar form. Specifically, each term consists of a current multiplied
by one of the following thermodynamic forces:

The quantities (67) are drivers of molecular transport, and conse-
quently of entropy production.

Different transport processes induced by different thermodynamic
forces interfere with one another. For instance, in addition to caus-
ing heat conduction, temperature gradients also induce mass transport
through the Soret effect. More generally, the transport fluxes in the
conservation equations can be written as a combination of all ther-
modynamic forces, and such combination is linear in the first ap-
proximation [138–140]. The derivation of these expressions is facili

tated by assuming that the transport fluxes and thermodynamic forces
of different tensorial character do not couple [141]. This simplifica-
tion implies that there are no crossed effects between the mechani-
cal stresses, which are driven by the velocity-gradient tensor, and the
fluxes of heat and species, which are driven by gradients of temper-
ature and chemical potentials. Based on these considerations, a clo-
sure is formulated for in Section 5.2, followed by a discussion in
Section 5.3 on the effective surface-tension coefficient σ arising from
this formulation. Onsager’s methodology will be used in Section 5.4
to determine the interfacial fluxes of heat and species .

5.2. Closure for the interfacial stress tensor

In the case of Newtonian fluids under zero bulk viscosity, the ex-
pression for the viscous stress tensor is

where η is the dynamic viscosity modeled in Appendix F.1. Variations
of η with temperature and composition are studied in Appendix B.4
for C12H26/N2 mixtures at high pressures. Eq. (68) implies that the vis-
cous dissipation τ: ∇v≥0 is a positive quadratic and therefore leads to
positive entropy production. In contrast, the interfacial stress tensor

is assumed to be elastically restoring, such that the production of
entropy by the diffuse-interface terms multiplying the velocity-gradi-
ent tensor in Eq. (64) is zero, namely

which gives

The interfacial stress tensor was originally introduced by Kor-
teweg in a phenomenological manner [142]. The effects of are con-
centrated in the vicinity of the interface, where the partial-density gra-
dients are the largest. In that region, the first of the two terms on the
right-hand side of Eq. (70) represents a hydrostatic stress. As shown
in Section 5.3, this term gives rise to a curvature-dependent pressure
jump across the interface. The second term is an anisotropic stress that
acts primarily in the direction normal to the interface.

In this formulation, there is no explicit surface-tension coefficient
σ appearing in Eqs. (44)–(47) and (70). However, σ resurfaces when
the integral form of the momentum conservation Eq. (45) is consid-
ered, as shown in the next section.

5.3. Mechanical equilibrium conditions

This section focuses on the derivation of mechanical equilibrium
conditions across the interface. The analysis is first particularized
for the bicomponent flow depicted in Fig. 1. The problem is best il-
lustrated by analyzing a zoomed-up view of a segment of an inter-
face embedded in a much wider thermal mixing layer, as sketched
in Fig. 17. The thickness of the mixing layer δT grows slowly with
distance downstream and mostly coincides with the shear-layer thick-
ness because of the near-unity Prandtl numbers and the order-unity
relative differences of velocities and temperatures between the

(64)

(65)

(66)

(67)

(68)

(69)

(70)
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Fig. 17. Zoomed-in schematics of a transcritical interface embedded in a thermal mix-
ing layer.

free streams, as discussed in Section 1. The thermal mixing layer
is slanted toward the coflow side because DT,O/DT,F ≪1 (e.g.,
DT,O/DT,F ≃51 in C12H26/N2 systems at P∞ = 50 bar, TF = 350 K, and
TO = 1000 K).

The asymptotic limit considered in this analysis corresponds to
thin interfaces compared to the thermal mixing layer, or equivalently,
ϵT ≪1, with ϵT being a thermal Cahn number defined in Eq. (10). As
the pressure increases, δT decreases and δI increases, and therefore ϵT
becomes increasingly larger. However, despite the high pressures, ϵT
always remains small because of the critical-point elevation phenom-
enon discussed in Section 3.2.

This analysis is limited to two dimensions, although the formula-
tion can be easily extended to a third dimension by incorporating a
second curvature. More general multiscale treatments, albeit based on
a significantly simpler incompressible diffuse-interface formulation,
can be found in Ref[143].

Two different reference frames are sketched in Fig. 17 that are rel-
evant for this analysis: the Cartesian laboratory frame {x, y} and the
curvilinear orthogonal frame . The latter moves with the inter-
face at its local absolute velocity vI. The local curvature interface is
denoted as with KI > 0 for interfaces concave toward the
coflow (i.e., for interfaces such as the one sketched in the upper panel
in Fig. 17). In all cases of practical interest, the radius of curvature is
much larger than the interface thickness, RI ≫δI. In contrast, the mag-
nitude of RI relative to δT depends on the particular problem under
consideration. This scaling analysis considers the case in which

is an order-unity parameter.
Under the conditions ϵT ≪1 and the interface is slen-

der and the largest variations in all variables are along the normal
. Consequently, is diagonally dominant with diagonal

components given by

and

where use of Eqs. (50) and (70) has been made in conjunction with the
assumption that only the fuel gradient-energy coefficient participates
in the conditions addressed in this study, as discussed in Section 4.2.
The curvature-related terms in Eqs. (72) and (73), which arise from the
divergence operator in the curvilinear system, are much smaller than
the terms involving squared and second-order gradients normal to the
interface. Eqs. (72) and (73) can be combined to give

In the reference frame the continuity Eq. (44) can be writ-
ten as

whereas the normal and tangential components of the momentum con-
servation Eq. (45) can also be expressed as

and

respectively, where

are viscous stresses. In this formulation, and
are, respectively, the normal and tangential components of the inter-
face absolute velocity, and is the normal component
of the relative fluid velocity, with en and es being unit vectors in the
normal and tangential directions, respectively. The interface does not
slip on the fluid in the tangential direction because of the continu

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)
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ity of the tangential velocity. As a result, the tangential component of
the relative velocity vanishes in the vicinity of the
interface, as depicted in Fig. 17.

In general, the absolute velocity of the interface vI,n is a function
of time, and consequently the momentum Eqs. (76) and (77) require
a fictitious acceleration given by the last term on their corresponding
right-hand sides. Following experimental analyses of interface accel-
eration in liquid jets at normal pressure [144], it is assumed herein that
the characteristic value of the interface acceleration is a fraction of or-
der of the convective acceleration in the shear layer.

5.3.1. Mechanical equilibrium normal to the interface
The transfer of heat into the fuel stream decreases the fuel density

near the interface and produces an outwards flow-displacement veloc-
ity whose order of magnitude is given by a balance between convec-
tion and heat conduction across the thermal mixing layer,

The interface temperature Te is much closer to TF than to TO
because DT,O/DT,F ≫1. The symbol Te, which coincides with the
phase-equilibrium temperature in Eq. (A.13), is purposely chosen here
because it will be shown in Section 5.6 that the conditions in the vicin-
ity of the interface are near phase equilibrium when the temperature
gradients are not too large. The balance (79) yields the thermal-expan-
sion velocity scale

with being the inverse of a large Péclet number.
In order to normalize Eq. (76), consider the dimensionless normal

coordinate

and the dimensionless relative velocity

Based on (81) and (82), the nondimensional time coordinate is de-
fined as

where

represents a flow transit time across the interface. The pressure is nor-
malized by its variation (36) through the interface

whereas the gradient-energy coefficient is nondimensionalized using
Eq. (26) as

The unit of interfacial stresses is obtained by utilizing Eq. (86) and
the estimate in Eq. (70), which gives

The rest of the variables are nondimensionalized as

In the dimensionless variables (81)–(88), the normal component of
the momentum conservation Eq. (76) becomes

with

as the nondimensional gradient-dependent pressure,

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)
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as the nondimensional interfacial stresses, and

as the nondimensional viscous stresses, where

is the nondimensional dynamic viscosity. Additionally,
is the Prandtl number based on the kinematic viscos-

ity in the coflow, and is an Ohne-
sorge number.

Characteristic parameters are provided in Table 4 for typical tran-
scritical conditions. Following those, the orders of magnitude of the
dimensionless groups multiplying the last four terms on the right-hand
side of Eq. (89) are

and . Of partic-
ular interest is the much larger value of the inverse of the mechani-
cal-equilibrium parameter multiplying the first term on the right
hand side of Eq. (89),

These estimates indicate that the derivative of along
the normal direction in Eq. (89) is zero in the first approximation. Re-
taining the higher-order effects of the normal derivative of the normal
viscous stress and the curvature terms arising from the divergence of
the interfacial stress tensor, Eq. (89) simplifies to

The integral of Eq. (96) yields the mechanical equilibrium condi-
tion in the normal direction to the interface

where use of Eqs. (72), (74), and (90) has been made, and where di-
mensional variables have been recovered in the notation. In this for-
mulation, PO and τn,nO are the local thermodynamic pressure and nor-
mal viscous stress away from the interface at intermediate distances

on the coflow side.
Eq. (97) is a fundamental mechanical equilibrium condition that

relates – locally through the interface – the partial-density gradients,
the thermodynamic pressure, the interface curvature, and the normal
viscous stress. It corresponds to the first integral of the normal com-
ponent of the momentum Eq. (76) in the moving frame. Evaluation of
Eq. (97) at large negative into the fuel stream yields the familiar
Young-Laplace jump condition

where PF and τn,nF are the local thermodynamic pressure and nor

Table 4
Characteristic dimensional and nondimensional parameters for a typical high-pressure two-stream flow similar to that depicted in Fig. 1, where the coflow and fuel streams consist of
N2 and C12H26, respectively.

Dimensional parameters

RF [m] RI [m] δT [m] δI [m]

UO UF

P∞ [bar] TO [K] TF [K] Te [K] ρO ρF

WO

5·10 − 4 5·10 − 5 5·10 − 5 5·10 − 9 50 10 50 1000 350 500 16.67 640.62 28·10 − 3

ηO [Pa · s] ηF [Pa · s] λO λF cp,O cp,F DT,O DT,F

4.11·10 − 5 4.76·10 − 4 0.07 0.10 1.17 2.25 3.53·10 − 6 6.93·10 − 8 6.20·10 − 7 1.03·10 − 8

UT cO
cF βvO βvF σ0 κF,F

tI [s] ℓca [m]

0.07 642 630 1,100 0.99·10 − 3 0.64·10 − 3 0.01 1.22·10 − 16 7.15·10 − 8 2.40·10 − 7

Nondimensional parameters
PrF PrO ReF ReO WeF WeO ϵR ϵT PeT OhT MaF

1.34 10.38 0.70 33,646 10,140 3300 2084 10 − 5 10 − 4 1.0 714 0.01 0.01
LeF α ZO ZF τ

38.42 5.69 1.85 1.01 0.44 0.99 0.22 1.01 0.40 6.07 1.42

(92)

(93)

(94)

(95)

(96)

(97)

(98)
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Table 5
Dimensional formulation for equilibrium transcritical flat interfaces in isothermal bi-
component systems.

Conservation equations
Mechanical and transport

equilibrium
.

Boundary conditions
Phase-equilibrium composition

Supplementary expressions (see Appendix B, Appendix C, and Appendix F for
details)

Equation of state Eq. (14),
Coefficients of the equation of state Eqs. (212), and (C.10)-(C.12),
Gradient-energy coefficient Eqs. (23), (C.17), and (C.18),
Thermodynamic relations Eqs. (213), (214), (B.20), (B.21),

(C.43), and (C.47).

mal viscous stress away from the interface at intermediate distances
on the fuel side. Additionally, σ is the surface tension

coefficient

which represents the extension of Eq. (22) to bicomponent systems.
Physical interpretations of σ based on the excess of the Landau’s po-
tential energy of the interface are discussed in Section 5.6.3.

5.3.2. Mechanical equilibrium tangential to the interface
Additional considerations are required in order to normalize Eq.

(89). Close to the interface, the tangential relative velocity vs vanishes
and its normal gradient is locally a constant of order UO/δT.
This motivates the introduction of the dimensionless variable

The tangential coordinate is normalized with the thermal mix-
ing-layer thickness as

whereas the units of interface acceleration in the tangential and nor-
mal directions are assumed to be the same and equal to that used in
Eq. (88). In the dimensionless variables (81)–(88) and (100) and (101),
the tangential component of the momentum conservation Eq. (77) be-
comes

with

the nondimensional shear stress. Upon substituting (92) into Eq. (102),
making use of Eqs. (74) and (97), neglecting the tangential gradi-
ents of thermodynamic pressure, and retaining the two most dominant
terms multiplied by the largest dimensionless groups in accordance
with Table 4, the simplified tangential momentum balance

is obtained, with in the conditions addressed
in Table 4. The integration of Eq. (104) and the substitution of Eqs.
(74) and (99) provides the mechanical equilibrium condition in the
tangential direction to the interface

where dimensional variables have been recovered in the notation. Eq.
(105) is commonly known as the Marangoni effect, and describes the
onset of fluid motion along the interface due to tangential variations
of the surface tension.

5.3.3. The thermodynamic pressure near the interface
The analyses in Sections 5.3.1 and 5.3.2 highlight the multiscale

nature of the problem and the corresponding challenges associated
with the integration of the momentum Eq. (45) because of the mostly
balanced, spatially localized behavior of the gradient-dependent pres-
sure and the interfacial stress tensor in the vicinity of the interface. The
role of the thermodynamic pressure, which participates in this balance
by linking the mechanical equilibrium conditions with the equation of
state, is studied in this section.

Consider the schematics in Fig. 18(a) depicting the spatial distrib-
ution of the thermodynamic pressure P around the interface at scales
much larger than δI. The Young-Laplace condition (98) states that the
local thermodynamic pressures PF and PO on each side of the curved
interface in Fig. 18(a) differ from one another by amounts of order
σ0/RI. However, this pressure difference is much smaller than the com-
bustor pressure P∞ because RI is typically much larger than σ0/P∞
even at high pressures (e.g., nm at P∞ = 100 bar in the con-
ditions addressed in Table 4.).

The interfacial stresses and the gradient component of the pressure
are negligible at distances |n| ≫δI on both sides away from the inter-
face, where the momentum Eq. (45) becomes

In Eq. (106), the thermodynamic pressure P has been replaced by
a hydrodynamic pressure p by assuming . This decom-
position requires the free-stream Mach numbers and

to be small compared to unity. In the notation, cO and cF
are the speed of the sound waves in the coflow and fuel free streams,
respectively. An expression for the speed of sound c at high pressures,
which generally differs from that of an ideal gas, is provided in Eq.
(C.48). At small Mach numbers, the local departures of P from its cor-
responding mean values on each side of the interface and
are small. The condition that must be satisfied for these departures to
be larger than the Young-Laplace pressure jump σ0/RI is that RI must
be larger than the capillary length

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)
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Fig. 18. Schematics of the pressure variations (a) near the interface, (b) within the inter-
face, and (c) in thermodynamic space, the latter being particularized for a flat interface
in a monocomponent isothermal flow.

. This condition tends to be always satisfied at high
pressures, since ℓca becomes very small because of the large values
of density encountered in conjunction with the small values of surface
tension, as suggested by the estimates provided in Table 4.

The above considerations suggest that the curvature-related terms
in the mechanical equilibrium condition (97) can be neglected with
relative errors of order σ0/(P∞RI) ≪1, and the local coflow pressure
PO can be replaced by the combustor pressure P∞ with relative errors
of order . With these simplifications in mind, and neglect

ing also the viscous stresses, Eq. (97) becomes

Eq. (107) can be integrated once yielding

which indicates that the surface tension is originated by a net under-
pressure within the interface. Specifically, Eq. (108) predicts strongly
localized variations of the thermodynamic pressure of order AP ∼σ0/δI
within the interface, as anticipated in Section 4.4 and shown schemati-
cally in Fig. 18(b). These variations are always much larger than those
engendered by curvature by a factor of order and they
are also much larger than the hydrodynamic pressure variations by a
factor of order 1/(ϵRWeO)≫1.

The boundary conditions employed in integrating Eq. (107) corre-
spond to the fuel partial densities away from the interface. In the limit
ϵT ≪1, it will be shown in Section 5.6 that the temperature gradient
across the interface is small compared to the composition gradient. To
leading order in ϵT, the interface is in phase equilibrium and conse-
quently the fuel partial densities tend to their phase-equilibrium values
on both sides of the interface,

where the limit denotes distances much larger than δI but
much smaller than δT. In this limit, the relative temperature variations
across the interface are of order ϵT, and as a result the temperature be-
comes approximately uniform in the vicinity of the interface. The in-
terface temperature Te evolves with distance downstream, with Te ∼TF
near the injector orifice, and Te ∼Tc,diff near the interface edge. Both
phase-equilibrium values and are therefore evaluated at P∞
and Te. Because of the locally uniform temperature, the normal direc-
tional derivative of the Gibbs-Duhem Eq. (C.9) simplifies to

Upon substituting Eq. (111) into Eq. (107) differentiated with re-
spect to the alternative form of the mechanical equilibrium condi-
tion (107)

is obtained. At long distances from the interface, Eq. (112) is sub-
ject to conditions (109) and (110), to the phase-equilibrium values for
chemical potentials,

(107)

(108)

(109)

(110)

(111)

(112)

(113)
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and to vanishing composition gradients,

5.3.4. Generalizations to multicomponent systems
The formulation above can be straightforwardly generalized to

multicomponent flows. Specifically, the definition (90) for along
with general forms of Eqs. (72)–(74), namely

and

can be substituted into Eq. (96) yielding

which represents the mechanical equilibrium condition normal to the
interface for multicomponent flows. Evaluation of Eq. (118) away
from the interface yields the Young-Laplace jump condition (98), with
σ given by the general expression

It can be shown by using Eqs. (116)–(118) that variations of the
surface tension coefficient along the interface in multicomponent
flows give rise to the same tangential mechanical equilibrium condi-
tion (105) as in bicomponent flows.

Under the same assumptions used in Section 5.3.3 with regard to
small curvatures and Mach numbers, Eq. (118) simplifies to

which represents the multicomponent version of Eq. (107). For ϵT ≪1,
the boundary conditions employed to integrate Eq. (120) are analo-
gous to (109) and (110) for every component. In that limit, the gener-
alization of Eq. (112) to multicomponent mixtures is

For k = 1,⋯N, Eq. (121) is subject to equilibrium values of the
chemical potentials,

and to vanishing composition gradients,

5.4. Closures for the interfacial transport fluxes of heat and species

Upon substituting Eq. (70) into Eq. (64), the entropy production
source can be expressed as

in terms of the scalar product of a vector of N thermodynamic forces

and a vector of N currents

In dissipative systems, the second principle of thermodynamics re-
quires which translates into

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)
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because the viscous dissipation τ: ∇v in Eq. (124) is a positive qua-
dratic. The transport fluxes in ϕ must be such that Eq. (127) is satis-
fied. The linear relation

is the simplest approach that satisfies 127. In Eq. (128),
is a matrix of Onsager phenomenological coefficients, with

. Specifically, in order to satisfy Eq. (127), must be
symmetric and positive semidefinite, in that its elements must sat-
isfy the conditions [138–140]

Using Eq. (128) in Eq. (124), the expression

is obtained. In Eq. (130), the symbols Fi, Fk, and Fk + 1 denote com-
ponents of F, with and

for . In writing Eq. (131), use has been made of the de-
finition (58) for the generalized chemical potential . Additionally, in
Eq. (130), the Onsager coefficients have been renamed as

with . A physical interpretation of these coefficients
will be provided in Section 5.5.

The first bracketed term in the second line in Eq. (130) corresponds
to the first element of the vector of currents (126). Equating these
quantities gives

Similarly, the second bracketed term in the second line in Eq. (130)
corresponds to the element of the vector of currents (126),

with i = 1,⋯N − 1.
In Eqs. (133) and (134), terms on the left-hand side can be asso-

ciated with those on the right-hand side depending on whether they
are functions of the gradient-energy coefficients. For instance, on the
left-hand side of Eq. (133), qt can be matched with those terms on
the right-hand side that are independent of the gradient-energy coeffi-
cients,

Substituting Eq. (135) into Eq. (49) gives the standard heat flux

Similarly, on the left-hand side of Eq. (134), Ji can be matched
with those terms on the right-hand side that are independent of the gra-
dient-energy coefficients, giving the standard species diffusion flux

In Eqs. (136) and (137), the constant-temperature gradient of the
chemical potential can be expanded in terms of gradients of composi-
tion and pressure, as shown in Appendix F.3, leading to the more fa-
miliar representation of these fluxes in Stefan–Maxwell form.

The interfacial corrections to q and Ji are derived by matching the
remainders on both sides of Eqs. (133) and (134), respectively. This
procedure gives the interfacial heat flux

and the interfacial species flux

with ψi and χi being defined in Eqs. (56) and (65), respectively. Simi-
larly to the interfacial stress tensor the species and heat fluxes
and are also highly localized at the interface, where the partial-den

(128)

(129)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)
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sity gradients multiplied by the gradient-energy coefficients are dy-
namically relevant quantities.

In practical implementations of the transport fluxes (136)–(139),
the constant-temperature gradients of μi and ψi are eliminated in favor
of the full gradients ∇ by making use of Eqs. (63) and (65). The re-
sulting expressions

can be readily used to exchange for and
for respectively.

5.5. The Onsager coefficients in transcritical conditions

The fluxes (136)–(139), along with the viscous and interfacial
stresses (68) and (70), can be substituted into the entropy production
rate (64), yielding

It is shown in this section that the right-hand side of Eq. (142) is a
positive quadratic in the transcritical conditions studied here.

In Eqs. (136)–(139) and (142), the N2 coefficients Lq,q, Lq,i (
i = 1,⋯N − 1), and Li,k ( ) are arranged in the Onsager
matrix as

The first subset of consists of the single coefficient Lq,q, which
participates in the Fourier conduction component of the standard heat
flux q. By simple inspection of Eqs. (136) or (F.24), the coefficient
Lq,q can be written as

with λ being a thermal conductivity modeled in Appendix F.2.
The second subset of corresponds to the coefficients Li,k [i.e.,

dot-dashed line rectangle in Eq. (143)], which are related to the inter-
facial species flux in Eq. (139) and to the Fickian component of Ji
in Eq. (F.25). The calculation of Li,k is summarized in Appendix F.4
and involves the utilization of Eq. (F.34) relating the coefficients Li,k
with the binary diffusion coefficients modeled in Appendix F.5

. For binary mixtures, Eq. (F.34) becomes a scalar equation that yields

The third subset of are the coefficients Lq,i [i.e., solid line rec-
tangles in Eq. (143)], which are involved in the computation of the
Soret and Dufour effects appearing, respectively, in the standard diffu-
sion fluxes of heat q in Eq. (136) and species Ji in Eq. (137) [see also
Eqs. (F.24) and (F.25) for the corresponding Stefan–Maxwell forms of
these fluxes]. In particular, the coefficients Lq,i can be related through
Eq. (F.43) to the diagonal coefficients Li,i and to the thermal-diffusion
ratio ki,T, the latter being modeled in Appendix F.6. For binary mix-
tures, Eq. (F.43) simplifies to

The distributions of λ, and kF,T with temperature and com-
position are studied in Appendix B.4 for C12H26/N2 mixtures at high
pressures.

The size of the Onsager matrix in binary mixtures is 2× 2 and
its determinant is given by . The require-
ment that be positive semidefinite, and therefore that the entropy
production source (142) be zero or positive, implies the condition

. Numerical evaluations for 15 bar ≤P ≤100 bar indicate
that the condition is satisfied for C12H26/N2 mixtures at
temperatures 300 K ≤T ≤1000 K as long as the parameter constant ι
participating in the calculation of kF,T is recalibrated within 10% of
its standard value (see Appendix F.6 for details). These considerations
are illustrated in Fig. 19 for two representative pressures.

Upon substituting the Onsager coefficients (144)–(146) into Eqs.
(136)–(139) particularized for the expressions

Fig. 19. Constant-pressure distributions of the determinant of the Onsager matrix for
C12H26/N2 mixtures at (a) P = 50 bar and (b) 100 bar as a function of temperature and
mass fraction of dodecane YF (refer to the legend in the left panel). The plots include the
diffusional critical point of the mixture at the corresponding pressure (purple diamond
symbol). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

(140)

(141)

(142)

(143)

(144)

(145)

(146)
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and

are obtained for the interfacial fluxes of heat and species, respectively,
along with

and

for the standard diffusion fluxes of heat and species, respectively,
where additional use of Eqs. (140) and (141) has been made. In Eqs.
(149) and (150), the difference of partial specific entropies can be cal-
culated as

by making use of the definition (60). Alternatively, based on the
analysis outlined in Section F.3, q and JF can be recast in traditional
Stefan–Maxwell form as

and

as shown by evaluating Eqs. (F.24) and (F.25) for N = 2 and utilizing
Eqs. (145) and (146). Despite the fact that the Stefan-Maxwell forms
(152) and (153) are more insightful than their unexpanded counter-
parts (149) and (150), their utilization in transcritical flows is not ad-
vantageous when the combustor pressure is not sufficiently high and
the system crosses the mechanical spinodals. In those conditions, sin-
gularities arise in the non-ideal diffusion prefactor (∂ln fF/∂ln XF)P,T
and in the fuel partial molar volume [defined in Eq. (B.19) and
particularized for the Peng-Robinson equation of state in Eq. (C.43)]
that prevent from splitting the constant-temperature gradient of chem

ical potential into barodiffusion and Fickian diffusion, as discussed in
Appendix E.1.

5.6. Transport equilibrium condition

In a similar way as the gradient-dependent pressure and interfacial
stresses are balanced when the interface is in mechanical equilibrium,
a balance between interfacial fluxes and standard diffusion fluxes ex-
ists when the interface is in transport equilibrium, as discussed in this
section.

5.6.1. The transport equilibrium condition in terms of a balance of
species fluxes

Consider again the slender interface separating two propellant
streams in Fig. 17. The analysis begins by recalling that the charac-
teristic length of the variation of the temperature downstream of the
injection orifice is the thickness of the thermal mixing layer δT. In
contrast, the composition across the interface undergoes rapid changes
along much smaller distances of the same order as the interface thick-
ness . This large composition gradient is due to the
suppression of molecular diffusion in thermodynamically unstable
conditions at high pressures, where the standard transport theory pre-
dicts antidiffusion of fuel and an ever-increasing composition gradi-
ent, as discussed in Section 4.6. It will be shown here that a mutual
cancellation of the standard and interfacial species fluxes occurs at
the interface in the limit ϵT ≪1 corresponding to small temperature
gradients compared to the composition gradients across the interface.
The resulting transport equilibrium condition provides a quasi-steady
thermochemical description of the interface structure that is shown
schematically in Fig. 20 and is elaborated in the remainder of this sec-
tion.

The normal components of the species fluxes (148) and (153) ca be
decomposed as

In this notation, the prime symbols refer to portions of the standard
and interfacial species fluxes (153) and (148) that are independent of
the temperature gradients:

The superindex ΔT refers to the portions of fluxes directly propor-
tional to the temperature gradients:

(148)

(149)

(150)

(151)

(152)

(153)

(154)

(155)
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Fig. 20. Schematics of the quasi-steady thermochemical structure of a transcritical interface near transport equilibrium in a non-isothermal system at small thermal Cahn numbers,
ϵT ≪1.

Using this notation, and in the moving curvilinear frame described
in Section 5.3, the species conservation Eq. (46) for the fuel near the
interface becomes

In order to isolate the most important terms in Eq. (159), consider
nondimensionalizing Eq. (159) with the same units as those employed
to write the momentum Eq. (89), namely Eqs. (32) and (81)–(86). Ad-
ditional characteristic scales for the temperature and species fluxes are
obtained as follows.

For ϵT ≪1, the temperature gradient near the interface is locally a
constant that can be approximated as . As a re-
sult, the variations of the temperature across the interface with respect
to the interface temperature Te are of order ϵT relative to the tempera-
ture difference between the free streams . The dimensionless
temperature is therefore defined as

The chemical-potential variations through the interface Aμ, defined
in Eq. (35), also correspond to the variations of μF through the co-
existence region in thermodynamic space. These variations are re

lated by Eq. (F.23) to the variations of the logarithm of the fugacity
with respect to composition as

across the interface, where the fuel molar fraction XF is of order unity.
In writing Eq. (161), use of Eq. (38) has been made in conjunction
with the definitions (37) and (39) for the pressure ratio and the
fuel compressibility factor ZF, respectively. Utilization of Eqs. (32)
and (161) in Eq. (155), along with as the binary
diffusion coefficient normalized with its value in the coflow
stream, provides the definition of the nondimensional portion of the
standard species flux involving barodiffusion transport,

Using Eqs. (81) and (160) in Eq. (157), the remainder corre-
sponding to the Soret effect, is nondimensionalized as

where α is a thermal-expansion ratio defined in Eq. (5).
The portion of the interfacial flux independent of the temperature

gradient is normalized by substituting Eqs. (32), (81), (86), (32),
(160), the nondimensional molecular weight and the
nondimensional partial molar volume into Eq. (156),
thereby yielding

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)
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The remainder is normalized as

by using Eqs. (81), (86), (32), and (160) in Eq. (158), along with
for the nondimensional volume expansivity, with βvF be-

ing the corresponding value in the fuel stream [see Eqs. (C.22) for an
expression of βv particularized for the equation of state (14)]. In this
formulation, is the ratio of βvF to the ideal-gas volume ex-
pansivity in the fuel stream 1/TF, whereas is the ratio of
molecular weights.

The scalings in Eqs. (162)–(165) anticipate that the effect of the
temperature gradients on the species transport fluxes near the interface
is small,

(see Table 4 for typical values of α, ϵT, ZF, and ), whereas
the dominant components of the standard and interfacial species fluxes
are of the same order of magnitude

Eq. (167) suggests a balance between the two portions of the
species fluxes that are independent of the temperature gradients. This
aspect is further investigated below by examining the species conser-
vation equation and is ratified by the numerical examples that will be
provided in Sections 6 and 7.

Upon substituting the variables (32), (81)–(86), and (162)–(165)
into Eq. (159), the nondimensional species conservation equation

is obtained, with

In this formulation, is the nondimensional fuel
partial volume, is a temperature ratio, and

is the fuel Lewis number evaluated in the coflow
stream (see Table 4 for typical values of τ and LeF). Additionally,

denotes the partial derivative of the logarithm of
the fugacity with respect to the logarithm of the fuel molar fraction di-
vided by as suggested by Eq. (161).

Following Table 4, the largest factor premultiplying the different
terms in Eq. (168) is the one associated with the first term on the
right-hand side, which is inversely proportional to ϵT and corresponds
to the inverse of the transport-equilibrium parameter

whereas
and are

much smaller. Correspondingly, the first approximation to Eq. (168)
is

The integration of Eq. (174) up to large distances compared with
the interface thickness involves a constant that corresponds to the sum
of fluxes . While the interfacial com-

ponent of that constant is zero for all practical purposes, the stan-
dard one may not be zero away from the interface, since
the coflow may mix with hot gas-like fuel transferred from the fuel
side. This large-scale mixing of propellants away from the interface

(167)

(169)

(170)

(171)

(172)

(173)
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is described by the species conservation Eq. (46) minus the interfacial
transport term,

whose solution near the interface provides the aforementioned inte-
gration constant . However, since Eq. (175) is driven by
gradients of composition over distances comparable to the thermal
mixing-layer thickness, the standard flux away from the interface

is anticipated to be of order ϵT compared to that near the in-
terface and can therefore be neglected. As a result, the integration
of Eq. (174) leads to the transport equilibrium condition

or equivalently

where use of Eqs. (155) and (156) has been made, and where dimen-
sional variables have been recovered in the notation. The transport
equilibrium condition (176) states that the Fickian and barodiffusion
components of the standard species flux (153) balance the portion of
the interfacial species flux (148) independent of the temperature gra-
dient, as sketched in Fig. 20.

The interface temperature Te, which is generally a function of time
and the tangential coordinate participates in Eq. (177) as demanded
by the leading-order asymptotic expansion of the fluxes (169) and
(170) for ϵT ≪1. The temperature field around the interface evolves
in time scales of order which are much larger than the flow
transit time across the interface δI/UT. As a result, Te is a quantity that
varies mostly quasi-steadily at interfacial scales.

The boundary conditions required in the integration of Eq. (177)
can be summarized as follows. First, the local thermodynamic pres-
sure on the coflow side of the interface (see Fig. 17), which can be ap-
proximated as the combustor pressure P∞ at sufficiently small Mach
numbers, is recovered by the solution away from the interface,

Second, the fuel partial densities tend to their phase-equilibrium
values away from the interface,

Concurrent with (180) and the equation of state (14) is the recov-
ery of the phase-equilibrium molar fraction on the coflow side of the
interface,

In Eqs. (178)–(181), the limit denotes distances much
larger than δI but much smaller than δT. Both phase-equilibrium val-
ues and are evaluated at P∞ and Te.

5.6.2. The transport equilibrium condition in terms of a balance of
heat fluxes

Utilizing Eqs. (147) and (152), it can be shown that the transport
equilibrium condition (177) is equivalent to a balance of heat fluxes
across the interface,

where is the sum of the Dufour effect and the interdiffusion of heat
by

and is the portion of the interfacial heat flux independent of tem-
perature gradients

Both and participate in the enthalpy conservation Eq. (51)
when referred to the same curvilinear, moving coordinate system de-
scribed above,

where the viscous dissipation has been neglected by assuming small
Mach numbers. In Eq. (185), the flux is the sum of Fourier con-
duction and interdiffusion of heat by the Soret effect,

while is the portion of the interfacial heat flux that depends

(175)

(176)

(177)

(178)
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on temperature gradients,

Similarly to the scaling analysis made for the species conservation
Eq. (159), it can be shown that the heat balance (182) is the result
of integrating the first approximation to the enthalpy conservation Eq.
(185),

Expressions (183), (184), (186) and (187), along with the relation
(161) and the dimensionless variables (32), (81), (82), (85), (86), and
(160)–(165), motivate the characteristic scales

for the heat fluxes. These expressions indicate that and are of the
same order of magnitude, whereas and are negligible since

In Eq. (190), is the ideal-gas adiabatic coefficient defined in
Eq. (C.27), and is a ratio of real-to-ideal specific heats
at constant pressure, both parameters being evaluated in the coflow
stream (see Table 4 for typical values of and ). In the vicinity of
the interface, it can be also shown that convection of enthalpy, viscous
dissipation, pressure advection, curvature-related terms, and enthalpy
production by interfacial forces in Eq. (185) are negligible compared
to the normal derivative of the sum .

5.6.3. Combination of mechanical and transport equilibrium
conditions in terms of chemical potentials

As discussed in Appendix E.1, the pressures within the interface
may become small enough to cross the mechanical spinodals

when the combustor pressure decreases but it is still high relative
to the atmospheric value. In that case, singularities in and
(∂ln fF/∂ln XF)P,T arise that can be regularized by combining the Fick-
ian and barodiffusion components into a single finite term given by
the relation

obtained by evaluating Eq. (F.22) for N = 2 and approximating the
constant-temperature gradients by ordinary ones because of the locally
uniform temperature prevailing in the vicinity of the interface in the
limit ϵT ≪1. When expression (191) is used in Eqs. (155) and (183),
the scaling analysis performed above does not change in any funda-
mental manner and gives a transport equilibrium condition valid over
the entire high-pressure range that can be written as

Eq. (192) is subject to the boundary conditions (113)-(114) away
from the interface.

The transport equilibrium condition (192) can be combined with
the mechanical equilibrium condition (112) and integrated once giving
the system of equations

Eq. (193) is subject to the boundary conditions (109)–(110),
whereas Eq. (194) predicts that the chemical potential of the coflow
species remains constant across the interface, and equal to its
phase-equilibrium value, when only the fuel gradient-energy coeffi-
cient is considered in the analysis.

5.6.4. Generalizations to multicomponent systems
The formulation can be easily generalized to multicomponent sys-

tems. First, consider the generalized version of the species flux bal-
ance (176), namely

In multicomponent systems, the species fluxes of the i-th compo-
nent, Eqs. (139) and (F.25), depend on the Onsager coefficients of
N − 1 components, thereby making Eq. (195) of little interest for large
N. A more useful version of Eq. (195) independent of the Onsager co-
efficients is derived in this section.

Upon substituting the species fluxes (139) and (F.25) into Eq.
(195), the system of N − 1 equations

(187)

(188)

(191)

(192)

(193)

(194)

(195)

(196)
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is obtained, with i = 1,⋯N − 1. In this formulation, are compo-
nents of an auxiliary vector defined as

where use of Eqs. (56) and (140) has been made in order to replace the
symbols ∇T, ψk, and ψN in Eq. (139) by their corresponding expres-
sions under the approximation of locally uniform temperature. A sim-
ilar substitution of the definition of heat fluxes (138) and (F.24) into
Eq. (182) yields

The concatenation of Eqs. (196) and (198) represents an over-de-
termined system with N equations for N − 1 unknowns.
The resulting matrix of coefficients is the Onsager matrix given
in Eq. (143) excluding the first column, with be-
cause is positive semidefinite. In particular, is
achieved when is positive definite, or equivalently, when the en-
tropy production (142) is strictly positive. In that case, the only possi-
ble solution to the over-determined system (196) and (198) is the triv-
ial one,

for k = 1,⋯N − 1.
Eq. (199) represents the multicomponent version of the transport

equilibrium condition (177) and is also equivalent to the simultane-
ous verification of the heat and species flux balances (182) and (195).
Using Eq. (F.22), the multicomponent transport equilibrium condition
(199) can be rewritten in terms of gradients of chemical potentials as

for k = 1,⋯N − 1. The combination of the multicomponent mechan-
ical equilibrium condition (121) and the multicomponent transport
equilibrium condition (200) gives

for k = 1,⋯N, which can be integrated once subject to the boundary
conditions (122) and (123) yielding

for k = 1,⋯N. The system of Eq. (202) is subject to the boundary con-
ditions

corresponding to the phase-equilibrium compositions away from the
interface evaluated at P∞ and Te. Additional approximations made to
arrive at Eq. (202) involve negligible curvatures, small Mach num-
bers, and negligible effects of viscous stresses at interface scales, as
explained in Section 5.3.3; the consideration of these effects would re-
quire modification of Eq. (202) by using instead the general form of
the mechanical equilibrium condition (118) in the derivations above.

A relation exists between σ and the energy excess, or Landau po-
tential, at the interface in conditions of me-

chanical and transport equilibrium. Upon multiplying Eq. (202) by
ρYk, summing the resulting expression from to N, and using Eqs.
(120), (16), and (C.7) and (C.8), the equation

is obtained. In Eq. (205), is the phase-equilibrium value of
Ω, as prescribed by Eq. (C.7), and ΩGD is the gradient-dependent Lan-
dau potential

The integration of Eq. (205) across the interface yields

which provides a quantitative link between the interfacial excess en-
ergy and the surface-tension coefficient.

5.7. Remarks on transcritical interfaces in equilibrium and near-
equilibrium conditions

The dimensionless parameters in Eq. (95) and in Eq. (173)
measure, respectively, the tendency of the interface to attain mechani-
cal and transport equilibrium. The smaller and the more equili-
brated the interface is. Both and are proportional to the thermal
Cahn number ϵT, or dimensionally, to the temperature gradient across
to the interface.

In isothermal systems, the thermal Cahn number is exactly zero,
ϵT = 0, and therefore . The interface is in mechanical
and transport equilibrium, in that the variations of the gradient-de

(198)

(199)

(200)

(201)

(202)

(203)

(204)

(205)

(206)

(207)
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pendent pressure are exactly balanced with the variations of the in-
terfacial stress normal to the interface, and the sum of the standard
and interfacial species fluxes is exactly zero. The structure of the in-
terface can be described by the combination of the mechanical equi-
librium condition (120) and the transport equilibrium condition (199),
or equivalently, by the system of Eq. (202) subject to the phase-equi-
librium partial densities (203) and (204) in the far field. The sys-
tem of Eqs. (202) has been utilized in early work addressing in-
terfaces in multicomponent equilibrium isothermal systems
[17,37,100,109,118,121,131,132], and can be alternatively derived by
minimizing the volume integral of the gradient-dependent Helmholtz
free energy [116,117,120]. In addition, the system (202) equivalently
states that the generalized chemical potential given by Eq. (58) re-
mains constant through the interface and equal to the phase-equilib-
rium chemical potential μke. Correspondingly, the sources of entropy
related to gradients of temperature and generalized chemical potential
in Eq. (142) are exactly zero in mechanical and transport equilibrium.

For the binary mixtures studied here, the system of Eqs. (202)
simplifies to Eqs. (193) and (194) subject to the boundary conditions
(109) and (110). The solution to that problem is a steady planar tran-
scritical interface bearing surface tension and separating a liquid-like
supercritical mixture rich in fuel from a gas-like supercritical mixture
rich in coflow species, with both mixtures being in phase equilibrium
as discussed in Section 6.

None of the different forms of the transport equilibrium condition
[i.e., Eqs. (176), (177), (182), (192), (199), (200), and (202)] depend
on transport coefficients. Similarly, although high-order viscous ef-
fects can be retained in the derivation of the mechanical equilibrium
condition in Eq. (97), the leading-order balance is independent of vis-
cosity, as suggested by Eqs. (107), (112), and (120). As a result, the
internal structure of a transcritical interface in mechanical and trans-
port equilibrium is independent of viscosity, thermal conductivity, bi-
nary diffusion coefficient, and thermal-diffusion ratio.

In non-isothermal systems, the thermal Cahn number is larger than
zero, although in practical situations it remains small compared to
unity, ϵT ≪1, because the temperature gradients created by the flow
are never as large as the composition gradients across the interface.
Even in the wake of the orifice ring separating both propellant streams
in Fig. 1, where the temperature gradient is the largest, the characteris-
tic length for the temperature variations is the thickness of the orifice
ring, which is always much larger than the interface thickness.

For 0< ϵT ≪1, the mechanical (95) and transport (173) equilib-
rium parameters attain small but non-zero values,
. As a result, the interface is neither in mechanical equilibrium nor
in transport equilibrium. However, the departures from equilibrium
are small, and the equilibrium conditions still describe the overall
structure of the interface to a good approximation, as discussed in
Section 7. The interface temperature Te and the far-field boundary
conditions away from the interface may become functions of space
and time because of the large-scale evolution of the flow, but the
characteristic length and time scales of these variations,
and are much larger, respectively, than the interface
thickness δI and the flow transit time across the interface tI (see
Table 4 for typical values of δI and tI). As a result, the structure of

the interface evolves quasi-steadily in response to those flow varia-
tions, as sketched in Fig. 20. The complete description of the evolution
of the interface and the flow surrounding it requires the Navier-Stokes
equations outlined in Section 4.7 supplemented with the closures for
interfacial terms derived above.

An intermediate case may exist in non-isothermal systems in which
the interface is much closer to mechanical equilibrium than to trans-
port equilibrium, [e.g., in the
conditions addressed in Table 4]. In this case, the species conservation
Eq. (46) can be integrated simultaneously with the mechanical equilib-
rium condition (120). The latter is subject to boundary conditions cor-
responding to partial densities generally away from phase equilibrium,
and may involve pure components in the propellant streams. This in-
termediate case is addressed in Section 7. The solution provides the
spatiotemporal evolution of the transcritical interface and the associ-
ated surface-tension coefficient downstream of the injection orifice, as
previewed in Figs. 2 and 3.

6. Transcritical interfaces in isothermal bicomponent systems

This section provides numerical results describing steady transcrit-
ical interfaces in C12H26/N2 isothermal systems. The configuration an-
alyzed here corresponds to the limit of infinitely thick thermal mix-
ing layers, or equivalently, to the case of zero thermal Cahn numbers,
ϵT = 0, in which the interface is in mechanical and transport equilib-
rium.

6.1. Formulation

The equations integrated here are (193) and (194), which are sup-
plemented with the equation of state (14) and mixing rules (15) partic-
ularized for binary mixtures [see Eq. (212) introduced below], along
with the expressions for the gradient-energy coefficient (23), chemical
potential (B.24), ideal-gas Gibbs free energy (C.46), fugacity coeffi-
cient (C.47), and the constants provided in Table C.1 and Appendix C.
The boundary conditions away from the interface are the phase-equi-
librium partial densities (109) and (110). The problem has a steady so-
lution consisting of a thin interface that bears surface tension and sep-
arates a liquid-like C12H26-rich supercritical mixture from a gas-like
nitrogen-rich supercritical mixture. A summary of the formulation is
provided in Table 5. Details associated with the numerical integration
of these equations are discussed in Appendix G.

The calculations focus on the four cases summarized in Table 6.
In all cases, the thermodynamic pressure away from the interface

bar is larger than the critical pressures of the individ-
ual components, while the temperature K is smaller
than both the fuel critical temperature K and the temper-
ature of the diffusional critical point Tc,diff at the corresponding pres-
sure (i.e., see Table 3). As a result, the pseudo-trajectories along the
interface in thermodynamic space traverse the coexistence region, as
shown in Fig. 21. Furthermore, while case D only involves crossings
of the diffusional spinodal, cases A, B, and C involve crossings of both
diffusional and mechanical spinodals. It is therefore convenient to use
the combined mechanical and transport equilibrium conditions written
in terms of gradients of chemical potentials (193) and (194)

Table C.1
Coefficients for the evaluation of the ideal-gas specific heats, entropies, enthalpies and Gibbs free energies for selected species [151].

Species r1,i [-] r2,i [K− 1] r3,i [K− 2] r4,i [K− 3] r5,i [K− 4] r6,i [K] r7,i [-]

C12H26 2.133× 101

N2 3.531 2.967
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Fig. 21. Thermodynamic-space pseudo-trajectories across transcritical interfaces in C12H26/N2 isothermal systems for cases A-D described in Table 6. The figure includes isocompo-
sition cross-sections of the phase-equilibrium surface colored by fuel mass fraction.

Table 6
Thermodynamic conditions and phase-equilibrium composition corresponding to the
pseudo-trajectories A-D in Fig. 21 for transcritical interfaces in C12H26/N2 isothermal
systems.

Phase-equilibrium composition

(liquid-like
supercritical) (gas-like supercritical)

case
Te
[K]

P∞
[bar]

A 350 50 642.1 0.983 48.1 0.002
B 350 100 642.5 0.966 95.3 0.003
C 500 50 541.9 0.979 40.2 0.202
D 500 100 539.8 0.957 74.9 0.151

, since, as explained in Appendix E.1, these forms are unaffected by
singularities arising in the fuel partial molar volume and non-ideal dif-
fusion prefactor near the mechanical spinodals. It is also in cases A,
B, and C where the thermodynamic pressure reaches negative values
within the interface. This effect is inconsequential because the formu-
lation in Table 5 is independent of the transport coefficients.

6.2. Results: the steady transcritical interface

The profiles of density, fuel mass fraction, and thermodynamic
pressure across the interface are shown in Fig. 22(a–c). Density ratios
of order (for cases A and C at P∞ = 50 bar) and (for
cases B and D at P∞ = 100 bar) are observed in the solution that are
spatially localized and accompanied by order-unity variations of the
fuel mass fraction in accordance with the phase-equilibrium compo-
sition on each side of the interface. In particular, on the fuel side of
the interface, the mixtures are rich in C12H26 and have compressibil-
ity factors within the range Z ∼ 0.30–0.75, which clearly depart from
the ideal behavior corresponding to unity. The oscillation of the pres-
sure across the coexistence region is localized near the fuel side of
the interface, where an underpressure of order unity relative to P∞ oc-
curs. It will be shown that this large underpressure leads to signifi-
cant values of surface tension in accord with Eq. (108). In contrast,
on the other side of the interface, the mixture is rich in N2 and much

less dense. The corresponding compressibility factors are within the
range Z ∼ 1.01–1.03, thereby indicating that the fluid approaches there
the behavior of an ideal gas despite the high pressures, the reason be-
ing that N2 is highly supercritical in temperature.

A point-wise cancellation between the standard and interfacial
fluxes of species is observed within the interface in Fig. 22(d). Posi-
tive values of the standard diffusion flux JF (i.e., in the direction of de-
creasing fuel concentration) are observed on both flanks of the inter-
face, whereas negative values (i.e., in the direction of increasing fuel
concentration) occur inside.

A detailed breakdown of the species fluxes is provided in
Fig. 23(a) for case D. In the diffusionally unstable region of the in-
terface, the Fickian component of the species flux antidiffuses fuel in
the direction of increasing concentration, as anticipated in Section 4.6.
In contrast, the barodiffusion component acts in the opposite direction
by transporting fuel along the positive pressure gradient, albeit with
less intensity than the Fickian component. As a result, the standard
species flux JF is dominated by Fickian antidiffusion within the in-
terface, with zero-flux points being coincident with the diffu-
sional-spinodal states given by the maximum and minimum locations
of the fuel chemical potential, as shown in Fig. 23(b).

No steady solution of the problem exists for κF,F = 0 (i.e.,
). Specifically, κF,F = 0 would impede the balance shown in Fig. 23(a)
between the interfacial species flux and the standard one JF. The
interfacial species flux provides the necessary amount of positive
transport of fuel, in the direction of decreasing fuel concentration, to
yield a finite-thickness interface that persists indefinitely in time.

The interface thickness can be computed as

Despite the high pressures considered here, Fig. 24(a) indicates
that δI calculated using Eq. (208) remains small compared to hydro-
dynamic scales of interest in practical systems (i.e., δI=1.59–2.98 nm).
Specifically, the values of δI observed here are comparable to those
arising in subcritical monocomponent systems of separate N2 or
C12H26 close to their critical points (see Appendix D). How

(208)
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Fig. 22. (a) Density, (b) fuel mass fraction, (c) thermodynamic pressure, and (d) fuel
species flux across transcritical interfaces in C12H26/N2 isothermal systems at
K (left column) and Te = 500 K (right column) at the pressures indicated in panel (a).
Panel (d) includes the interfacial species flux (green lines), and the standard species
flux JF (dark lines). The spatial coordinate is normalized with nm, 1.71nm,
2.75 nm, and 2.98nm for cases A, B, C, and D, respectively (see Table 6). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 23. (a) Standard species flux JF (dark line), including the Fickian (dot-dashed line)
and barodiffusion (dashed line) components, along with the interfacial species flux
(green line) arising from the present diffuse-interface theory. (b) Specific fuel chemical
potential highlighting the diffusional-spinodal states. The results shown in this figure
correspond to case D in Table 6 for transcritical interfaces in C12H26/N2 isothermal sys-
tems. The normalizations in this figure have been carried out with the phase-equilibrium
composition provided in Table 6 along with the phase-equilibrium values for the binary
diffusion coefficient m2/s, compressibility factor molec-
ular weight g/mol, fuel specific chemical potential MJ/kg, and
pressure parameter . (For interpretation of the references to color in this fig-
ure legend, the reader is referred to the web version of this article.)

ever, because of the high pressures attainable in the coexistence region
of hydrocarbon-fueled mixtures, the associated Knudsen numbers

are relatively smaller here [see Fig. 24(b)], and can
be made arbitrarily smaller by further increasing the pressure, or by in-
creasing the temperature, with KnI →0 as the pressure or temperature
conditions approach those of the diffusional critical point. As a result,
the continuum hypothesis underlying the present diffuse-interface the-
ory may be much more appropriate in transcritical bicomponent sys-
tems than in subcritical monocomponent ones.

The surface tension coefficient σ computed from Eq. (99) is shown
in Fig. 25(a). Despite the high pressures, the predicted values of σ are
dynamically significant over a wide temperature range. They amount
to 30–40% of σ of water in air at atmospheric pressure. Discrepancies
of 10–20% are observed between these calculations and experimental
measurements of σ in diesel/nitrogen interfaces reported in Ref[15].
[e.g., σ(50 bar, 308, K) ≈23.0 mN/m and σ(50 bar, 323 K) ≈21.0 mN/
m in experiments [15], versus mN/m and

mN/m in the present work]. Similar discrep-
ancies are observed in Fig. 26 between the present work and the ex-
periments in Ref[16]. when decane and pentane are used instead of do-
decane.
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Fig. 24. (a) Interface thickness and (b) Knudsen number as a function of temperature in
C12H26/N2 isothermal systems at two pressures [refer to legend in panel (a)].

As P∞ and Te increase, the amplitudes of the species fluxes de-
crease, the interface becomes thicker, the Knudsen number decreases,
and the variations of density, pressure, and composition across the
interface decrease, thereby causing a decrease in σ, as shown in
Fig. 25(a). In particular, the surface tension vanishes and δI diverges
to infinity when Te equals the temperature of the diffusional critical
point Tc,diff at P = P∞. Steady transcritical interfaces cannot exist for
Te > Tc,diff in C12H26/N2 mixtures. In those conditions, the mixture is
fully supercritical, there is no mechanism that opposes the diffusion
of fuel in the direction of decreasing concentrations, and therefore the
composition gradient decreases with time.

The limiting value for the temperature above which transcritical
interfaces disappear may not necessarily be Tc,diff in mixtures whose
thermodynamic phase diagram is substantially different from the ones
engendered by the hydrocarbon-fueled mixtures studied here. For in-
stance, while C12H26/N2 mixtures are characterized by Tc,diff ≃Tc,mix
(see Table 3), other mixtures may have Tc,mix ≫Tc,diff, in such a way
that the maximum temperature of the diffusional spinodal surface
could be intermediate to Tc,diff and Tc,mix. In that case, transcritical in-
terfaces could still exist for Te > Tc,diff, but would disappear if Te be-
comes larger than the maximum temperature of the diffusional spin-
odal surface.

Transcritical interfaces persist even after large increments in pres-
sure. As shown in Fig. 25(b), at fixed temperatures of practical in-
terest, Te=350–500 K, transcritical interfaces survive until pressures
P∞ ∼ 600–1200 bar, above which the coexistence region disappears
and the mixture becomes fully supercritical.

Fig. 25. Surface-tension coefficient (a) as a function of temperature at different pres-
sures, and (b) as a function of pressure for different temperatures. All cases correspond
to C12H26/N2 isothermal systems.

Fig. 26. Surface-tension coefficient as a function of pressure in isothermal systems at
K composed of N2 and decane (C10H22) or pentane (C5H12), including experi-

ments (symbols from Ref[16].) and numerical results from the present work (solid and
dashed lines).

6.3. The generalized Cahn-Hilliard equation

In isothermal systems, the constant-temperature gradient of chem-
ical potentials becomes an ordinary gradient, and therefore the species
conservation Eq. (46) can be written as
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for where use of Eqs. (137) and (139) has been made. In
Eq. (209), the auxiliary vectors ψk are defined in Eq. (56), whereas the
Onsager coefficient Li,k are calculated using Eq. (F.30) and the method
described in Appendix F.4.

Eq. (209) is a generalized multicomponent version of the origi-
nal Cahn-Hilliard equation derived in Ref[109]. for binary systems
near the critical point. In contrast to Ref.[109], no assumption of a
simplified predetermined form of the difference of chemical poten-
tials has been made here. Instead, the chemical potentials are
described exactly by Eqs. (B.23), (B.24), and by Eq. (C.47) for the
Peng-Robinson equation of state (14). Setting the right-hand side of
the generalized Cahn-Hilliard Eq. (209) to zero gives the transport
equilibrium condition (200). That is an undetermined system of N − 1
equations that needs to be combined with the mechanical equilibrium
condition (121) and integrated once to yield the determined system of
N Eq. (202), as described in Section 5.6.4.

Numerical simulations employing diffuse-interface frameworks in
CFD codes have been aimed at predicting complex two-phase flows
at near-atmospheric pressures [145–148]. Those simulations employ
ad-hoc versions of Eq. (209) to avoid numerical smearing of the inter-
face [e.g., see Eq. (57) in Ref.[147]]. Key assumptions made in those
formulations are:

(a) P and ρ are uniform through the interface.
(b) Li,k and κi,j are constants.
(c) The standard component of the species flux is approximated by a

polynomial expansion.
(d) The order of the Cahn-Hilliard equation is dropped twice to make

it second order, and therefore numerically more manageable.
It is shown in this section that approximations (a), (b), and (c) in-

cur large errors in the predictions of this theory unless the conditions
are very close to the diffusional critical point. Approximation (d) does
not bear any physical justification.

To examine approximations (a-c), consider Eq. (209) particular-
ized for a bicomponent hydrocarbon-fueled system,

with κF,F and LF,F being defined, respectively, in Eqs. (23) and (145).
Upon combining Eqs. (B.20), (B.21), and (C.47), the difference be

tween chemical potentials can be expressed in dimensionless form as

In this formulation, and are ideal-gas Gibbs free energies de-
fined in Eq. (C.46). In addition, a and b are the Peng-Robinson coef-
ficients obtained from the mixing rules (15) particularized for binary
mixtures, namely

with aF, aO, bF, and bO being functions of temperature defined in Eqs.
(C.10) and (C.11), whereas ϑF,O is a binary-interaction parameter pro-
vided in Appendix C. In Eqs. (211) and (212), the molar and mass
fractions of fuel species are related as

where is the mean molecular weight defined as

The substitution of Eqs. (C.46) and (212)–(214) into Eq. (211),
with P being computed from the equation of state (14), makes μF − μO
a sole function of ρ and YF in isothermal systems.

A constant-pressure approximation P ≈P∞ in Eq. (211) becomes
appropriate only at sufficiently high pressures near the diffusional crit-
ical point. For C12H26/N2 mixtures at uniform temperature of 500 K,
the pressure at the diffusional critical point is 688 bar, as shown in
Fig. A.1. On approach to the diffusional critical point at that tem-
perature, the pressure parameter defined in Eq. (38), correspond-
ing to the ratio of the characteristic amplitude of the pressure oscilla-
tion through the interface to the combustor pressure, is
8·10 − 4, 1·10 − 4, and 6·10 − 7 at P∞ = 500, 600, 650, and 685 bar, re-
spectively. As a result, the thermodynamic pressure becomes increas-
ingly more uniform near the diffusional critical point.

The equation of state (14) with fixed P = P∞ and makes
the density an implicit function of the fuel mass fraction,
. However, the density variations across the interface decrease as the
diffusional critical point is approached. For C12H26/N2 mixtures at uni-
form temperature of 500 K, the relative density variations across the
interface are 24%, 15%, and 4% at

(210)

(211)

(212)

(213)

(214)
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P∞ = 500, 600, 650, and 685 bar, respectively. These variations de-
crease with pressure at a much slower rate than the pressure variations.

The gradient-energy coefficient κF,F is a sole function of tempera-
ture, and therefore remains constant in the isothermal conditions that
lead to Eq. (210). In contrast, the Onsager coefficient LF,F is a func-
tion of P, T, and XF, as indicated by Eq. (145). For C12H26/N2 at uni-
form temperature of 500 K, the variations of LF,F induced by variations
of composition across the interface are

60%, 45%, and 15% at P∞ = 500, 600, 650, and 685 bar, respectively.
Similarly to the approximation of constant density, the approximation
of constant LF,F involves significant errors of order 15% even at 99.5%
of the diffusional critical pressure.

As shown in Fig. 23, the standard species flux engenders antidiffu-
sive transport of fuel species within the diffusionally unstable zone of
the interface, and forward diffusion everywhere else. The slope of the
chemical-potential difference must therefore change sign twice along
the YF axis. An approximate model for μF − μO that fulfills this re-
quirement is [149]

where is a calibrated model coefficient. The model
(215) intersects the ordinate at the phase-equi-
librium fuel mass fractions and and at their average value

. Its oscillatory trend is such that the integral of μF − μO
with respect to YF equals in accordance with
Maxwell’s construction rule.

Comparisons between the model (215) and the exact difference of
chemical potentials (211) are provided in Fig. 27(a). The coefficient

has been tuned such that the model (215) reproduces the maximum
value of (211) evaluated at P = P∞. However, the amplitude match
occurs at increasingly dissimilar fuel mass fractions as the pressure
decreases, since the exact profile of μF − μO becomes increasingly
asymmetric.

The good agreement between the model and the exact expression
(211) at high pressures in Fig. 27(a) translates into correspondingly
good predictions of the spatial distribution of fuel, with discrepancies
with the numerical results subsiding with increasing pressures, as ob-
served in Fig. 27(b). An expression for can be derived from the
model (215) by integrating twice the right-hand side of Eq. (210), sub-
ject to zero gradients and phase-equilibrium conditions away from the
interface, giving

Eq. (216) can be integrated once more by using the identity
and by assuming uniform pressure

and density, the latter being approximately equal to the phase-equi-
librium density on the liquid-like side, . With these approxima-
tions, Eq. (216) becomes

Fig. 27. Comparison between modeled (blue dashed lines) and exact (dark solid lines)
profiles of (a) dimensionless chemical-potential difference in C12H26/N2 isothermal sys-
tems at Te = 500 K and different pressures, and (b) corresponding mass fractions as
a function of distance normalized with the interface thickness computed using Eq.
(208) based on the exact solution ( nm, 9.9 nm, 16.4 nm, and 62.3 nm for
P∞ = 500, 600, 650, and 685 bar, respectively). To obtain these profiles, the coefficient

in Eq. (215) has been calibrated as kJ/kg, 344.4 kJ/kg, 323.5 kJ/kg, and
313.2 kJ/kg for P∞ = 500, 600, 650, and 685 bar, respectively. Similarly, the equilib-
rium densities on the liquid-like side are kg/m3, 509.7 kg/m3, 499.0 kg/m3,
and 478.8 kg/m3 for P∞ = 500, 600, 650, and 685 bar, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

subject to at . The solution of Eq. (217) is

with

(215)

(216)
(217)

(218)
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being a modeled interface thickness. The mass fraction profile (218)
can be substituted into Eq. (99) under the assumption of constant den-
sity which gives the modeled surface-tension coefficient

The model leads to large errors with respect to the exact sur-
face-tension σ coefficient because (a) the density is not constant across
the interface, and (b) the discrepancies in the mass-fraction profiles in
Fig. 27(b) get amplified when they are differentiated, squared, and in-
tegrated to obtain . For instance, at bar and Te = 500 K,
the model predicts mN/m, while the exact calculation gives

mN/m. Similar errors are observed for all tested pressures up
to 685bar. Additional shortfalls of the model expressions (218)–(220)
are that their derivation does not involve the equation of state (14) nor
the mechanical equilibrium condition (107). Near the diffusional crit-
ical point, it is however plausible that Eq. (107) simplifies to P ≈P∞
with relative errors of order . In contrast, the equation of state
(14) is strictly incompatible with variations in YF once P, T, and ρ are
set to their constant values P∞, Te, and .

7. Transcritical interfaces in non-isothermal bicomponent
systems

This section provides numerical results describing unsteady tran-
scritical interfaces in C12H26/N2 non-isothermal systems. This con-
figuration corresponds to small but non-zero thermal Cahn numbers,
0< ϵT ≪1. In this limit, which is perhaps the one that has the most
practical interest, temperature gradients exist across the interface that
are however small compared to the composition gradients.

7.1. Formulation

The temperature gradient across the interface changes fundamen-
tally the solution with respect to that described in Section 6. Here,
Te varies along the interface, and therefore the structure of the inter-
face evolves with distance downstream of the injection orifice. The
spatial functionality of Te is determined by the rate of heat transfer
across the interface. The solution provides the size of the transcritical
region, within which the interface survives, and where σ attains values
of practical relevance before vanishing at the interface edge. The tran-
scritical interface is away from equilibrium, although the departures
are small, as discussed in Section 5.7. The problem must be solved
using the Navier-Stokes equations in Section 4.7, along with the clo-
sures for the interfacial stress and interfacial fluxes and pro-
vided in Section 5. The numerical simulation of the problem sketched
in Fig. 1 is not straightforward, in that the large disparity between the
interface thickness δI and the orifice radius RF involves significant nu-
merical stiffness, as discussed in Section 4.7. A number of simplifica-
tions outlined below are employed in order to facilitate the analysis.

The configuration studied in this section is summarized in Fig. 28
and corresponds to a simpler version of that depicted in Fig. 1. This
configuration does however serve to illustrate the development and
disappearance of the transcritical interface in a manner qualitatively
analogous to that sketched in Fig. 1. The two propellant streams are
injected at the same velocity U creating a slender, planar, laminar
thermal mixing layer at a moderately high Péclet number

. The transcritical interface separating both pro-
pellant streams remains hydrodynamically thin and slender until it
vanishes downstream at an edge, where the transverse velocity, which
is of the same order as the thermal-expansion velocity scale UT de-
fined in Eq. (80), is much smaller than U by a factor of order

. Because of this slenderness, the transversal coordi-
nate y and the coordinate normal to the interface are approximately
equal, . The Marangoni effect is neglected for simplicity.

Table 7 summarizes the operating conditions of the configuration.
The fuel (C12H26) and coflow (N2) injection conditions correspond,
respectively, to liquid-like and gas-like supercritical fluids, with in-
jection temperatures TF = 450 K and TO = 1000 K. Additionally, the
combustor pressure P∞ = 100 bar is larger than the critical pressures
of the separate components.

Under these simplifying assumptions, the boundary-layer approx-
imation, in which streamwise diffusion is neglected, may be used
for describing the dynamics of the interface along with the mixing
process. A solution of the streamwise momentum equation exists in
which the streawmise velocity remains equal to U everywhere. In this
way, time and space can be used interchangeably in the equations of
motion by means of the relation

The origins t = 0 and x = 0 are chosen such that the initial mater-
ial surface coincides with the fluid state of the propellants at the in-
jection plane. Using Eq. (221), the characteristic supercriticalization
length (13) can be alternatively expressed as the time scale

which is used for normalization of the results.

Fig. 28. Schematics of the non-isothermal bicomponent model problem.

(219)

(220)

(221)

(222)
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Table 7
Operating conditions employed for the investigation of transcritical interfaces in C12H26/N2 non-isothermal systems. The regularization constant is m = 0.01 in Eq. (E.8), and the
dimensional radius of the orifice is assumed to be μm.

propellant streams

fuel coflow

liquid-like supercritical gas-like supercritical

C12H26 (YF = 1) N2 (YF = 0) parameters for initial conditions

P∞ [bar] TF [K] ρF TO [K] ρO [nm] [K]

100 450 606 1000 33 5·10 − 5 5·10 − 4 2.5 460

The formulation integrated in this section is summarized in
Table 8, where t plays the role of the streamwise marching coordi-
nate x in accordance with Eq. (221). Listed in Table 8 are the con-
servation equations (44), (46) and (47), along with the species and
heat fluxes (148), (147), (150), and (152). The mechanical equilib-
rium condition (107) is employed in place of the full momentum Eq.
(45). These equations are supplemented with the equation of state (14)
and the mixing rules (212), along with the expressions for the spe-
cific gradient-dependent internal energy (17), gradient-energy coeffi-
cient (23), total energy (48), specific entropy (151), fuel molar frac-
tion (213), mean molecular weight (214), enthalpy (B.9), partial en-
thalpy (B.12), chemical potential (B.20) and (B.21), volume expan-
sivity (C.22), enthalpy departure function (C.23), ideal-gas partial en-
thalpies (C.33), partial-enthalpy departure function (C.34), partial mo-
lar volume (C.43), ideal-gas Gibbs free energies (C.46), fugacity coef-
ficient (C.47), and the associated constants and supplementary expres-
sions provided in Appendix C. Effects of shear and interface roll-up
require the consideration of streamwise transport and interface curva-
ture. Although these effects are not included in this section, they are
accounted for in the general formulation provided in Sections 4.7 and
5.

The thermal conductivity, binary diffusion coefficient, and ther-
mal-diffusion ratio are calculated using Eqs. (F.13), (F.36), and (F.43),
respectively, along with the supplementary relations in Appendix F.
Those expressions are evaluated at as discussed in
Appendix E.2. In addition, the regularization (E.8) introduced in
Appendix E.1 is employed here to maintain finite values of the differ-
ence of partial specific enthalpies hF − hO and of the volume expan-
sivity βv, since both would otherwise diverge across the mechanical
spinodal surface. Specifically, Eq. (E.8) is used with m = 0.01 from
x = 0 (or t = 0) until a distance x (or time t) where Te becomes larger
than the corresponding temperature threshold provided in Fig. E.1 at
the operating pressure (i.e., Te > 480 K at P∞ = 100 bar). A sweep in
the regularization constant m is performed in Appendix E.1 that sug-
gests negligible influences on the streamwise evolution of σ, as shown
in Fig. E.4.

The boundary condition far away from the axis ( ) cor-
responds to the coflow temperature and composition YF = 0.
A symmetry boundary condition is used at the axis where the
transversal velocity along with the gradients of temperature, fuel mass
fraction, and density are zero.

The presence of the interface complicates the characterization of
the initial conditions, which may otherwise be calculated from the
self-similar solution of the conservation equations near the orifice at
x/RF ≪1 and when the thickness of the separating plate is
also neglected. This procedure is not attempted here because of the
relatively unknown character of the formulation in Table 8 at pre-
sent time, and is deferred to future work. Instead, at t = 0 (or x = 0
), the initial conditions for the density and fuel mass fraction are as-
sumed to be hyperbolic tangents centered at whereas that of

the temperature has a wider support and is centered at as
formulated in Table 8. The origin of the temperature profile Re is cho-
sen such that the initial value of the interface temperature, denoted by

is initially imposed at . Specifically, the value of is se-
lected such that and is assumed to be closer to the fuel tem-
perature than to the coflow one because of the much smaller thermal
diffusivity of the fuel stream. The parameters and for the ini-
tial profiles of density and fuel mass fraction are such that the result-
ing initial value of the interface thickness is equal to that calcu-
lated in the isothermal case at using the formulation outlined
in Section 6. In particular, can be obtained by substituting the ini-
tial value of the fuel partial density at the symmetry axis (i.e.,

kg/m3) into the definition

The resulting value of the initial large-scale Cahn number is
. Similarly, the initial value of the thermal

mixing-layer thickness can be obtained by substituting the initial value
of the temperature at the symmetry axis (i.e., K)
into the definition

which yields an initial thermal Cahn number of
with . Further details of the configuration, in-
cluding the numerical methods employed to integrate the formulation
in Table 8, are provided in Appendix G.

7.2. Results: The evolution of a transcritical interface downstream of
the injection orifice

The slowly growing values of ϵR in Fig. 29(a) indicate that the
large composition gradients persist until the interface edge is neared.
In contrast, the temperature gradient across the interface becomes in-
creasingly smaller as the thermal mixing layer grows, thereby leading
to decreasingly small values of ϵT for most of the length or lifetime
of the interface. The interface temperature Te, shown in Fig. 29(b), in-
creases monotonically because the fuel is increasingly heated by the
hot coflow as it flows downstream of the injection orifice. Near the
interface edge, where the interface approaches the supercriticalization
temperature TTR ≃Tc,diff, the interface thickness increases sharply, be

(223)

(224)
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Fig. E.1. Constant-pressure distributions of (a) isothermal compressibility, (b) volume expansivity, (c) fuel partial molar volume, (d) non-ideal diffusion prefactor, and partial specific
enthalpies of (e) C12H26 and (f) N2 as a function of the C12H26 molar fraction at mechanically supercritical pressure (P = 50 bar, solid lines) and mechanically subcritical pressure (

bar, dashed lines). All panels correspond to C12H26/N2 mixtures at uniform temperature T = 500 K.

Fig. E.4. Surface-tension coefficient in the C12H26/N2 non-isothermal system analyzed in Section 7 as a function of downstream distance (or time), including the baseline case with
regularization constant m = 0.01 (solid line), along with two supplementary calculations with m = 0.1 (dotted line) and (dot-dashed line), all other parameters being the
same.

coming more than 100 times thicker than its initial value and caus-
ing a noticeable increase in both ϵR and ϵT.

The bathtub-like shape of the evolution of the thermal Cahn num-
ber ϵT in Fig. 29(a) indicates that the interface is closest to trans-
port equilibrium in the intermediate region away from the orifice

(where the temperature gradients are the largest) and away from the
interface edge (where the composition gradients are the smallest). The
near-equilibrium behavior in that intermediate region is manifested
in Figs. 30(a,b) as almost-complete cancellations between the com-
ponents of the standard ( ) and interfacial ( ) heat fluxes indepen
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Fig. 30. Spatial distributions of heat and species fluxes across the interface at t/tTR = x/LTR = 0.4, where its thickness computed using Eq. (223) is nm. (a) Temperature-gra-
dient-independent components of the standard heat flux [dark solid line, Eq. (183)] and interfacial heat flux [green dashed line, Eq. (184)]. (b) Temperature-gradient-indepen-
dent components of the standard species flux [dark solid line, Eq. (155)] and interfacial species flux [green dashed line, Eq. (156)]. (c) Temperature-gradient-dependent
components of the standard heat flux [dark solid line, Eq. (186)] and interfacial heat flux [green dashed line, Eq. (187)], along with the net heat flux. (d) Temperature-gra-
dient-dependent components of the standard heat flux [dark solid line, Eq. (157)] and interfacial species flux [green dashed line, Eq. (158)], along with the net species flux.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

dent of the temperature gradient [see Eqs. (183) and (184)], and be-
tween the corresponding components of the standard ( ) and in-
terfacial ( ) species fluxes [Eqs. (155) and (156)]. In contrast,
Fig. 30(c) shows that the standard ( ) and interfacial ( ) compo-
nents of the heat fluxes that depend on the temperature gradient [Eqs.
(186) and (187)] do not cancel each other, but are much smaller than
their counterparts and as anticipated in Eq. (190). A similar re-
sult is observed in Fig. 30(d) for the species fluxes and [Eqs.
(157) and (158)], which do not cancel each other and are much smaller
than and as anticipated in Eq. (166).

These results ratify the analysis in Section 5.6, in that most of the
interfacial species flux is invested in counteracting the antidiffusion
of fuel induced by the sum of Fickian and barodiffusion mechanisms,
whereas most of the interfacial heat flux is invested in counteract-
ing the Dufour effect. The small remainders of those cancellations,
along with the components of the standard fluxes that are dependent
on temperature gradients (Soret, Fourier, and interdiffusion), describe
the transport of mass and energy across the interface in non-equilib-
rium conditions.

The near-equilibrium behavior persists until the interface vanishes
downstream at an edge. Because of the much smaller thermal dif-
fusivity of the fuel, the cold fuel stream cools

down the hot coflow more than what the hot coflow is capable of heat-
ing the fuel stream, as observed in the large-scale view of the tempera-
ture field in Fig. 31. As a result, all isotherms, including the supercrit-
icalization one TTR ≃Tc,diff, are initially displaced outwards away from
the axis into the coflow. This phenomenon is exacerbated by a mix-
ing-induced augmentation of the constant-pressure specific heat cp,
whose global maximum is attained within the interface for a signifi-
cant portion of its length or lifetime, as shown in Fig. 33. The line join-
ing the global maxima of cp is the physical-space representation of the
pseudo-boiling line discussed in Section 2.2 and Appendix B.2. Simi-
larly to the abrupt termination of the pseudo-boiling line observed be-
fore intercepting the diffusional critical point in the C12H26/N2 phase
diagram in Fig. 10(c), the global maximum of cp in physical space in
Fig. 33(a) ceases to be within the interface upstream of the interface
edge, and switches abruptly thereafter to the jet axis.

As the fuel is heated by the hot coflow, the supercriticalization
isotherm eventually turns back toward the jet axis and crosses the tran-
scritical interface. It is at that crossing point where the interface van-
ishes at an edge. The latter is located at a distance of order unity from
the orifice when normalized with the characteristic supercriticalization
length (13) [or after a time of order unity has passed when normal-
ized with the characteristic supercriticalization time (222)], as shown
in Figs. 32 and 33.
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Fig. 33. (a) Solid contours of density (upper half) and constant-pressure specific heat (lower half), along with (b) corresponding profiles extracted at t/tTR = x/LTR = 0.4, 1.4, and 2.4.
In panel (a), the thick green dashed line indicates the loci of points where the constant-pressure specific heat attains a global maximum; this line is not plotted for
when the global maximum switches from the interface to the jet axis. Additionally, panel (a) includes isotherms corresponding to the critical mixing temperature (blue dashed line),
diffusional critical temperature (white dashed line), along with isocomposition lines corresponding to YF = 0.82 (blue dotted line) and YF = 0.87 (green dotted line).. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web version of this article.)

A zoomed view of the structure of the interface edge is provided
in Fig. 2. For C12H26/N2 systems, the diffusional critical point at the
combustor pressure P∞ = 100 bar plays a central role at the interface
edge because of the following reasons:

(a) Whereas the thermodynamic pressure undergoes order-unity os-
cillations across the interface in the near-equilibrium region, the
flow in the vicinity of the interface edge is characterized by being
mostly isobaric at P ≃P∞.

(b) The isocontour corresponding to the fuel mass
fraction of the diffusional critical point at 100 bar (see Table 3),
must necessarily emanate from within the transcritical interface
since it is engendered in the coexistence region of the thermody-
namic phase diagram, as shown in Fig. 10(c).

(c) The temperature of the diffusional critical point Tc,diff is the maxi-
mum temperature of the diffusionally unstable region.

As discussed in Sections 3.2 and 6.2, different mixtures may ex-
ist that may lead to a maximum value of the diffusional spinodal sur

face that may be larger than the diffusional critical temperature. In
those mixtures, the supercriticalization isotherm would correspond to
the maximum temperature of the diffusional spinodal surface, and the
diffusional critical point would not be located at the interface edge, but
at some distance upstream within the transcritical interface.

Downstream of the interface edge, the temperature is everywhere
larger than Tc,diff, and consequently the system becomes diffusionally
stable. The interfacial fluxes of heat and species become negligible,
and the standard diffusion flux of fuel reverses to the usual forward di-
rection along decreasing fuel concentrations, as shown in Fig. 34. The
transcritical interface morphs into a fully supercritical mixing layer
that grows with distance downstream and is characterized by unim-
peded mixing of the propellants by molecular diffusion, as observed
in Fig. 2. In this zone, both propellants resemble supercritical gas-like
fluids.

The evolution of the pseudo-trajectories of the system with dis-
tance (or time) are overlaid in Fig. 35 on a T − YF thermodynamic
phase diagram evaluated at P = P∞. As the edge conditions are ap
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Fig. 32. Zoomed version of Fig. 31 showing (a) solid contours of temperature (upper half) and fuel mass fraction (lower half), along with (b) corresponding profiles extracted at
t/tTR = x/LTR = 0.4, 1.4, and 2.4. Panel (a) includes isotherms corresponding to the critical mixing temperature (blue dashed line), diffusional critical temperature (white dashed line),
along with isocomposition lines corresponding to YF = 0.82 (blue dotted line) and YF = 0.87 (green dotted line).. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

proached, Fig. 35 shows that the thermodynamic states of the mixture
across the interface tend to intersect the coexistence region at increas-
ingly higher temperatures until the diffusional critical temperature is
reached, above which intersections cannot occur.

As indicated by the solid line in Fig. 36, the surface-tension coef-
ficient σ, obtained from Eq. (99), decays monotonically with down-
stream distance (or time) and vanishes simultaneously with the in-
terface at the edge. The first stage of the decay is from

to 0.3, and is characterized by a rapid increase
of the interface temperature near the orifice, as shown in Fig. 29(b).
The decay of σ slows down from to 1.5, where
near-equilibrium transport conditions are attained. Beyond

the decay rate increases on approach to the dif-
fusional critical point, with σ plunging at the interface edge to dynam-
ically irrelevant values.

An accurate prediction of σ, given by the square symbols in
Fig. 36, can be obtained by solving an isothermal interface at every
time step using the formulation in Table 6 and the set-up described

Section 6, where the local interface temperature Te is obtained from
Fig. 29(b). This observation is consistent with the attainment of
near-equilibrium conditions for most of the transcritical region. Most
importantly, it also suggests a potential route for subgrid-scale mod-
eling of transcritical flows based on pre-tabulation of equilibrium
isothermal cases, with Te acting as a table input obtained from a
coarse-grained calculation of the temperature field.

8. Concluding remarks

Despite the remarkable progress made on augmenting the thrust,
range, and reliability of chemical propulsion technologies over the last
several decades, which has often relied on large investments in ex-
perimentation and testing, the fundamental fluid mechanical processes
participating in the injection, atomization, vaporization, mixing, and
combustion of propellants at high pressures remain largely unknown.
Specifically, the extreme pressure conditions involved in the tran-
scritical flow of propellants into combustors
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Fig. 31. Large field of view of (a) solid contours of temperature (upper half) and fuel mass fraction (lower half), along with (b) corresponding profiles extracted at t/tTR = x/LTR = 0.4,
1.4, and 2.4. The figure includes isotherms corresponding to the fuel critical temperature (dark dashed line), critical mixing temperature (blue dashed line), and diffusional critical
temperature (white dashed line).. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

make this problem quite formidable compared to many other open
questions in the technical discipline of general multiphase flows.

The present study has focused on a selected number of basic as-
pects of the problem of transcriticality. Particular emphasis has been
made on describing thermodynamically complex systems involving
two components at high pressures. When the pressure is supercritical
with respect to both components, and when at least one of the propel-
lants is injected at subcritical temperature, transcritical conditions de-
velop that appear to lead to atomization and spray phenomena accord-
ing to existing experimental visualizations.

The process of interface formation at high pressures cannot be ex-
plained using the thermodynamics of monocomponent systems, since
only one thermodynamic state is possible in those when the tem-
perature is fixed at supercritical pressures. In contrast, in bicompo-
nent systems, at least two states may be possible at a given temper-
ature for pressures above the critical pressures of the separate com-
ponents. Using previously well-established high-pressure equations of
state and mixing rules, it is shown that the coexistence region extends
up to more than 100-fold higher pressures than the critical pressures of

the separate components in systems of heavy-hydrocarbon fuels mixed
with N2, O2, or air.

At high pressures, the thermodynamic structure of the coexistence
region is dominated by diffusional instabilities. Specifically, the com-
ponents tend to separate in the coexistence region because of an antid-
iffusion process that proves energetically favorable. In ordinary prac-
tice, systems like water brought into the coexistence region of their
thermodynamic phase diagram at standard pressure tend to separate
into different phases, namely liquid and vapor, across an interface.
However, at high pressures, the phases are no longer vapor and liq-
uid, but two supercritical fluids of distinct character which, in the tran-
scritical conditions addressed in this study, behave at injection as a
liquid-like supercritical fluid (for the heavy hydrocarbon fuel) and a
gas-like supercritical fluid (for N2, O2, or air).

The problem of translating by theoretical means the aforemen-
tioned diffusional instability into an observable process in physical
space is nothing short of laborious. Such translation requires a tight
connection between the thermodynamic space and the transport of
the propellants in physical space, and must therefore involve finite-
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Fig. 34. Spatial distributions of (a) heat and (b) species fluxes at
shortly downstream of the interface edge.

Fig. 35. Thermodynamic-space pseudo-trajectories at 0.4, 1.4, and
2.4, projected on a constant-pressure ( bar) cross-section of the thermo-
dynamic-phase diagram. The figure includes the diffusional critical point (purple dia-
mond symbol), the VLE line (thick red dashed line), the diffusional spinodals (thin pur-
ple dashed lines), and the loci of the maximum of the molar heat at constant pressure
(thick green dot-dashed line). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

rate processes of molecular diffusion that cannot be described with
the standard transport theory. This work has investigated one possible
way of addressing this question by coupling an extension of the dif-
fuse-interface theory of van der Waals flows with the Navier-Stokes
conservation equations. The core of this theory is the folding of the
coexistence region in thermodynamic space into a thin interface in
physical space. This can only be made possible by redefining the
thermodynamic potentials in the presence of strong composition gra-
dients, and by revisiting the constitutive laws participating in

the Navier-Stokes conservation equations. When these modifications
are coupled with a high-pressure equation of state that reproduces a
single Maxwell loop within the coexistence region, the formulation
can describe separation or mixing of phases or fluids in accordance
with their thermodynamic phase diagram. The ensuing interface has a
non-zero thickness set by the nearly mutual cancellation between an
antidiffusion flux of matter provided by the standard transport theory,
and an opposing interfacial flux arising as a regularization introduced
by the diffuse-interface theory. The formulation is not exempt of ap-
proximations, among which the most notable one is related to the con-
tinuum hypothesis across the interface. This is a comfortable approx-
imation only at high pressures because the interface broadens relative
to intercollision distances.

The theory of transcritical flows outlined in this work incorpo-
rates high-pressure models for thermophysical and transport proper-
ties. Those are subject to large uncertainties, and their determina-
tion through analysis or experiments is a broad and active area of re-
search. Furthermore, the formulation has introduced additional para-
meters in the form of gradient-energy coefficients that are directly re-
lated to the thickness and surface tension of the interface. Most of
the existing models for these coefficients rely on experimental cal-
ibration. Recent improvements in experimental techniques for diag-
nostics of high-pressure flow fields, along with new developments in
molecular-dynamics simulations for the computation of thermophysi-
cal properties, transport coefficients, and possibly gradient-energy co-
efficients, may assist in future work to reduce the uncertainties.

The utilization of this theory has discovered quantitative informa-
tion about the dynamics of transcritical interfaces in coflowing con-
figurations consisting of two propellant streams injected at different
temperatures. The interface separating both propellant streams, along
with the surface tension it engenders, survive from the injection orifice
until a supercriticalization zone downstream, where the interface van-
ishes at an edge upon reaching the temperature of the diffusional criti-
cal point. The latter plays a prominent role at the interface edge in the
C12H26/N2 systems tested here. Specifically, the interface edge is char-
acterized by a fundamental transition in the transport characteristics of
the mixture that prevents separation of the components thereafter. A
fully supercritical mixing layer ensues from the interface edge, across
which the propellants mix by molecular diffusion as if they were two
gas-like fluids.

A central motivation of this study has been to highlight that a num-
ber of extensions of this theory could be made in order to relax the
simplifying assumptions used in the examples above. These exten-
sions could include the effects of turbulence, which is expected to play
an important role in the transport of heat in practical systems at high
pressures, and consequently in the determination of the supercritical-
ization length. However, even in the simple cases that have been ad-
dressed in this work, the description of the coupling between the in-
terface structure and the hydrodynamic field is computationally ex-
pensive because of the resulting large disparity of scales. The reader
should therefore be forewarned that the formulation that has been pre-
sented here involves interfacial terms in the conservation equations
whose spatiotemporal resolution requirements are most likely unten-
able in CFD simulations of full engineering systems with current stan-
dard hardware and numerical methods.

Worthy extensions of this work that may decrease the compu-
tational cost could involve investigations of filtered versions of the
Navier-Stokes conservation equations augmented with the interfacial
terms derived here, where the filter width would be much larger
than the interface thickness but much smaller than the hydrodynamic
scales. This would necessarily lead to closure problems in sub-
grid-scale interfacial terms, including the surface-tension force. The
re
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Fig. 36. Surface-tension coefficient in a C12H26/N2 non-isothermal system as a function of downstream distance (or time). The figure includes the solution obtained by a numerical
integration of the formulation in Table 8 for non-isothermal bicomponent systems (solid line), along with solutions in mechanical and transport equilibrium (square symbols) obtained
by a numerical integration of the formulation in Table 6 for isothermal systems assuming constant temperature equal to the local (or instantaneous) interface temperature Te read from
Fig. 29(b).

Fig. 29. Evolution with downstream distance (or time) of (a) large-scale (ϵR) and ther-
mal (ϵT) Cahn numbers, and (b) interface temperature Te. In this figure, the interface
thickness δI and the thermal mixing-layer thickness δT are computed, respectively, us-
ing Eqs. (223) and (224). The interface temperature Te is computed as the temperature
where the absolute value of the fuel partial-density gradient attains its max-
imum value.

sults presented here suggest that the interface is in mechanical and
transport near-equilibrium for a significant portion of its length, ex-
cept near the orifice and near the interface edge, where non-equi-
librium considerations may become important. It could therefore be
of some interest to investigate the closure of subgrid-scale interfa-
cial terms by reading them on-the-fly from pre-tabulated solutions of
isothermal transcritical interfaces at a local interface temperature pro-
vided by the resolved flow field.
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Appendix A. Basic aspects of thermodynamic stability and phase
equilibrium for transcritical systems

The coupling between the diffuse-interface theory and the
Navier-Stokes conservation equations depends fundamentally on the
diffusional stability of the mixture. In unstable conditions, a trans-
critical interface is generated that separates mixtures near phase equi-
librium. This appendix reviews basic concepts related to thermody-
namic stability and phase equilibrium that are ubiquitously employed
throughout the main text.

A1. Thermodynamic-stability considerations

The Peng-Robinson equation of state (14), and all others available,
constrain all possible thermodynamic states of the system on a hyper-
surface . However, not all thermodynamic
states on that hypersurface are observable. Specifically, there exist re-
gions on that hypersurface where the system is thermodynamically un-
stable. There, a homogeneous mixture of the components is energeti-
cally less favorable than a configuration where different phases or dif-
ferent fluids are separated by interfaces. The criteria that determine
whether the system is thermodynamically stable are independent of
the equation of state. However, the single Maxwell loop predicted by
cubic equations of state such as (14) naturally accommodates the sta-
bility landscape.
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Table 8
Dimensional formulation for transcritical interfaces in non-isothermal bicomponent sys-
tems. (⋆) Using Eq. (221), ∂/∂x has been replaced by (1/U)∂/∂t.

Conservation equations⋆

Continuity

Mechanical equilibrium

Fuel species

Total energy .
Transport fluxes
Standard (fuel species)

Interfacial (fuel species)

Standard (heat)

Interfacial (heat)

.

Boundary conditions
Symmetry at the axis

Coflow free stream .
Initial conditions (t = 0)
Density

Fuel mass fraction

Temperature

Velocity .
Supplementary expressions (see Appendix B, Appendix E, Appendix C, and

Appendix F for details)
Equation of state Eq. (14).
Coefficients of the

equation of state
Eqs. (212), and (C.10)-(C.12).

Gradient-energy
coefficient

Eqs. (23), (C.17), and (C.18).

Transport coefficients Eqs. (F.13), (F.36), and (F.43).
Regularizations† Eqs. (E.8) and (E.9).
Thermodynamic

relations
Eqs. (17), (48), (B.9), (B.12), (B.20), (B.21),

(C.22), (C.23), (C.33), (C.34), (C.43), (C.46), and
(C.47).

In closed multicomponent systems subject to differential distur-
bances from equilibrium, thermodynamic stability occurs when three
different conditions corresponding to thermal, mechanical, and diffu-
sional stability are simultaneously satisfied. Motivated by Fig. 1, the
discussion here will be precluded to bicomponent systems (N = 2),
with brief references being made to monocomponent systems (
) for conceptual comparisons. The explanations are supplemented by
the thermodynamic phase diagrams in Figs. 4 and A.1. The reader is
referred to Refs. [103–105] for generalizations and full derivations of
these conditions.

Thermal stability is observed when the constant-volume molar heat
of the mixture is positive,

where XF is the molar fraction of fuel. In particular, Eq. (A.1) ensures
that the molar internal energy increases with increasing tempera-
tures at constant volume and composition. The condition (A.1) is satis-
fied by specific heats calculated using the Peng-Robinson equation
of state (14) in the conditions of interest for the present study. Formu-
las for the calculation of are outlined in Appendix C.7, and a closer
analysis of the resulting variations of specific heat with temperature
and composition is provided in Appendix B.2 for C12H26/N2 mixtures.

Mechanical stability is attained when the isothermal compressibil-
ity of the mixture βT is positive,

which guarantees that the molar volume decreases as the pressure in-
creases at constant temperature and composition. An expression for βT
particularized for the Peng-Robinson equation of state (14) is provided
in Eq. (C.44). It can be shown that a system that is mechanically stable
is also thermally stable, but a system thermally stable is not necessar-
ily mechanically stable [104]. Most importantly, the limit of mechan-
ical stability is delineated by the mechanical spinodal surface, whose
equation is given by

or equivalently βT →∞. In monocomponent systems, the mechanical
spinodals are easily visualized as lines intersecting all minima and
maxima of the Maxwell loop in a P − v diagram, as shown in Fig. 4.
Within the region of the P − v diagram enclosed by the mechanical
spinodals, the isothermal compressibility is negative and the system
becomes mechanically unstable. In this unstable region, the system
tends to separate into two phases by means of a thin interface.

A mechanical critical line exists on the mechanical spinodal sur-
face where the pressure reaches an inflection point along the v axis at
constant temperature and composition. The mechanical critical line is
therefore defined as the locus of points in the thermodynamic space
{P, T, XF} where the condition (A.3) is satisfied simultaneously with

A mechanical critical point is therefore defined as the intersection
of the mechanical critical line with constant-pressure, constant-tem-
perature, or constant-composition planes.

In monocomponent systems, the mechanical critical line (A.3) and
(A.4) collapses on a single critical point in the thermodynamic phase
diagram, as observed in Fig. 4. This critical point determines the crit-
ical pressure above which the two-phase region ceases to exist, or
equivalently, the pressure above which the monocomponent system is
unconditionally stable. In contrast, mechanical stability is not a suffi

(A.1)

(A.2)

(A.3)

(A.4)
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cient condition for thermodynamic stability in multicomponent sys-
tems, since diffusional processes can additionally drive separation of
components at pressures above the mechanical critical point. Diffu-
sional stability requires that the molar chemical potential of one of the
constituents, for instance that of the fuel increases upon increasing
the concentration of the same species, namely

The partial derivative of the fuel chemical potential with respect
to XF can be rewritten in terms of the fuel fugacity as

where φF is the corresponding fugacity coefficient defined in Eq.
(C.47). The formal justification for Eq. (A.6) can be found in
Appendix B.3. In particular, Eq. (A.6) indicates that the diffusional
stability criterion (A.5) can be alternatively stated as

It can be shown that a diffusionally stable system is also both
thermally and mechanically stable, but a system both thermally and
mechanically stable is not necessarily diffusionally stable [104]. The
limit of diffusional stability is attained at the diffusional spinodal sur-
faces, where

is satisfied, or alternatively

as prescribed by Eq. (A.6).
The transcritical C12H26/N2 systems analyzed in this study are dif-

fusionally unstable but thermally and mechanically stable at pressures
larger than approximately 200 bar, whereas they become both me-
chanically and diffusionally unstable at pressures lower than those
(see Appendix E). It is the breach of the diffusional stability constraint
(A.5) what induces transcritical interfaces in the flow field, as dis-
cussed in Sections 4.6 and 5.4–5.6. Briefly, the diffusional spinodals
represent thermodynamic states where the Fickian diffusion coeffi-
cient becomes zero. In particular, the quantity (∂ln fF/∂ln XF)P,T funda-
mentally participates as a non-ideal prefactor in the Fickian diffusion
coefficient at high pressures defined in Eq. (43), in such a way that
changes in the sign of (∂ln fF/∂ln XF)P,T change the direction of the dif-
fusion flux. Outside the region delimited by the diffusional spinodals
[i.e., (∂ln fF/∂ln XF)P,T > 0], the mixture is stable and the components
tend to diffuse into flow regions in directions aligned with decreasing
gradients of their concentration. In contrast, within the region delim-
ited by the diffusional spinodals [i.e., (∂ln fF/∂ln

XF)P,T < 0], the chemical potential decreases with increasing molar
fraction. As a result, the mixture is unstable there and tends to separate
by means of antidiffusion of matter. This phenomenon is well char-
acterized in physical chemistry [136], and cannot be described by the
standard transport theory.

A relevant curve on the diffusional spinodal surfaces is the dif-
fusional critical line of the mixture, which is defined as the locus of
points where (A.8) is satisfied along with

or equivalently, where the chemical potential reaches an inflection
point along the XF axis at constant pressure and temperature. Alterna-
tively, based on Eq. (A.6), the diffusional critical line can be defined
as the locus of points in the thermodynamic space {P, T, XF} where
Eq. (A.9) is satisfied along with

The diffusional and mechanical critical lines of the mixture are
generally different. The intersection of the diffusional critical line
with constant-pressure, constant-temperature, or constant-composition
planes gives rise to a diffusional critical point. These considerations
are summarized in the thermodynamic phase diagrams shown in
Fig. A.1.

The verification of the stability criteria (A.1), (A.2), and (A.5)
[or (A.7)], does not prevent the system from becoming unstable to
finite-amplitude disturbances. Whereas unconditional stability is
achieved along the phase-equilibrium surface, or coexistence enve-
lope, and everywhere outside the volume enclosed by it, interstitial re-
gions exist in the thermodynamic phase diagrams in Fig. 4 and A.1(c)
that are enclosed between the phase-equilibrium and spinodal sur-
faces. The system is metastable there, in that finite-amplitude distur-
bances can render it unstable [103,104].

A2. Phase equilibrium

Consider two thermodynamic states and
in the same bicomponent system addressed above. These states are in
phase equilibrium across flat interfaces when the following three con-
ditions corresponding to equal pressures

equal temperatures

and equal chemical potentials

are simultaneously satisfied [103,104], with the subindex e being em-
ployed here to indicate phase-equilibrium values. At low pressures, ℓ

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
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and g denote liquid and vapor phases, respectively. In the high-pres-
sure systems studied here, and more particularly above the critical
pressures of the separate components, ℓ and g denote liquid-like and
gas-like supercritical fluids, respectively.

Based on Eq. (A.6), the condition (A.14) is equivalent to the con-
dition of equal fugacities,

In monocomponent systems, the two conditions in (A.14) are re-
placed by the single constraint

where is the molar Gibbs free energy.
At the equilibrium values of pressure Pe and temperature Te, the

combination of Eqs. (A.12), (A.13) and (A.15), along with the equa-
tion of state (14) and the fugacity (B.22), provides the equilibrium mo-
lar volumes and as well as the equilibrium molar fractions
and . The subspace of states satisfying the above phase-equilib-
rium constraints forms a surface or coexistence envelope in the ther-
modynamic space {P, T, XF}. A constant-temperature cross-section of
the coexistence envelope, indicated by the VLE lines, is provided in
the phase diagrams presented in Fig. A.1.

As discussed in Appendix A.1, the system is thermodynamically
stable along the coexistence envelope and everywhere outside the vol-
ume enclosed by the coexistence envelope. The system is metastable
in the concentric volume enclosed between the coexistence envelope
and the diffusional spinodal surface, as indicated in Fig. A.1(c). Ther-
modynamic instability occurs within the volume enclosed by the dif-
fusional spinodal surface, where no homogeneously mixed state con-
sisting of phases ℓ and g can exist. Under these unstable conditions,
the system tends to become separated into the two equilibrium states
ℓ and g by means of a thin interface.

As explained in Section 4.4, the diffuse-interface theory maps the
volume enclosed by the phase-equilibrium surface in thermodynamic
space into a thin interface in physical space. In its simplest represen-
tation corresponding to isothermal systems, the theory predicts that
phase-equilibrium conditions are exactly satisfied on both sides of
the interface. In most practical cases, however, the propellant streams
are injected in the combustor at different temperatures, as depicted in
Fig. 1. In the presence of temperature gradients across the interface,
the phase-equilibrium conditions (A.12)–(A.14) are only satisfied in
an asymptotic sense up to an appropriate order of approximation pro-
vided in Sections 5.3 and 5.6.

Appendix B. Transcritical behavior of thermophysical properties
and molecular transport coefficients

A complete description of the fluid motion requires specification
of the thermophysical properties and transport coefficients of the mix-
ture. At high pressures, increasing departures from the ideal-gas the-
ory are observed, and consequently derivation of more complex ex-
pressions are necessary.

B1. Molar enthalpy

The specific gradient-dependent internal energy can be ob-
tained from the total energy using Eq. (47). The molar enthalpy can
be easily related to by rewriting Eq. (52) on a molar basis as

where is given by Eq. (50). An expression for as a function of
the state variables at high pressures is provided in this section.

The utilization of molar rather than specific values is expedient
since the resulting departure of the enthalpy from its ideal-gas coun-
terpart involves integration of the equation of state (14), which is writ-
ten in terms of the molar volume v and of the coefficients a and b
on a molar basis. Specific and molar values of the enthalpy are sim-
ply related through the mean molecular weight as . Similarly,
partial specific and partial molar values of the enthalpy are related
through the molecular weight of the particular component, .
Analogous relations apply to the entropy and all other thermodynamic
potentials, including their partial values.

The variation of enthalpy at high pressures can be calculated in the
following way. Consider the exact differential of the enthalpy of the
system H,

with ni being the number of moles of species i and
as the partial molar enthalpy. The en-

thalpy of the system can be expressed in additive form as
which can be differentiated and combined with Eq.

(B.2) yielding

Further simplifications of Eq. (B.3) can be made by rewriting the
first principle of thermodynamics (C.1) on a molar basis, namely

where the last term represents a chemical work done at constant vol-
ume due to a variation in the composition, with being the molar
chemical potential of species i [defined formally further below in Eq.
(B.24)]. In particular, the partial differentiation of Eq. (B.4) with re-
spect to pressure yields

Substituting (B.5) into (B.3) and using the definition of the con-
stant-pressure molar heat and the Maxwell

relation the expres-
sion

(A.15)

(A.16)

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)
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is obtained, where

is the volume expansivity. An expression for βv particularized for the
Peng-Robinson equation of state (14) is given in Eq. (C.22).

Because of its form amenable to isolation of non-ideal effects aris-
ing when Tβv ≠1, the second term on the right-hand side of Eq. (B.6)
is the basis for the computation of the pressure-induced departure of
the enthalpy with respect to that of an ideal gas [54]. Since that term
cannot be straightforwardly expressed as a linear sum of contribu-
tions from the different components when the equation of state (14)
and the mixing rules (15) are employed, in multicomponent systems
the standard approach neglects enthalpy variations due to mixing, in
such a way that the total variation of the enthalpy is assumed to be
given by the linearized weighted sum of the variations of the partial
enthalpies, namely [150]. This pro-

cedure is equivalent to neglecting the last term on the right-hand side
of Eq. (B.2) by freezing the chemical composition. In this way, Eq.
(B.6) becomes

For ideal gases, and therefore the second term on the
right-hand side of Eq. (B.8) vanishes, with being only a function
of T and composition. In contrast, the second term on the right-hand
side of Eq. (B.8) is not zero at high pressures when real-gas effects
are considered, which makes to additionally depend on pressure,

.
In coupling Eq. (B.8) with the Navier-Stokes equations, it is im-

portant to note that the integration of Eq. (B.8) is independent of the
thermodynamic trajectory. Consider an arbitrary reference state {P0,
T0} in which the gas is approximately ideal, with the enthalpy there
being denoted as . The change in molar enthalpy
between {P0, T0} and the final state {P, T} can be expressed as the
sum of an isobaric change from {P0, T0} to {P0, T}, and an isothermal
change from {P0, T} to {P, T}. The value of the reference pressure P0

is chosen to be small compared to P (i.e., P0/P ≪1), which makes the
change in enthalpy along the isobar of this particular integration path
to occur under ideal-gas conditions. The integration of Eq. (B.8) using
this combined trajectory yields the expression

for the molar enthalpy at the high-pressure state {P, T}.
The right-hand side of Eq. (B.9) is composed of two different terms

corresponding to the two legs of the particular trajectory mentioned
above. In particular, is the molar enthalpy of an ideal gas evalu-
ated at the end of the isobaric portion of the trajectory, namely

where is the enthalpy of an ideal gas at the reference temper-
ature T0, and is the ideal-gas value of the constant-

pressure molar heat of the mixture, which depends on composition and
temperature. A more practical way of computing consists in fixing
the arbitrary reference temperature at K and rewriting (B.10)
as

where is the standard enthalpy of formation of element i. The
bracketed quantity in (B.11) is the ideal-gas partial molar enthalpy

whose origin is chosen to be the formation value. By using the
conservation equations of mass (44) and species (46), it can be shown
that the conservation equations for total energy (47) and enthalpy (51)
are independent of this origin as long as there are no chemical reac-
tions in the problem. In chemically reacting systems, the first term
on the right hand side of Eq. (B.11), which involves the sum of the
formation partial enthalpies multiplied by their corresponding molar
fractions, is responsible for the changes in enthalpy due to chemical
heat release without the need of adding any chemical sources on the
right-hand sides of neither the total-energy Eq. (47) nor the enthalpy
equation (51). A chemical source would however have to be added
on the right-hand side of the species conservation Eq. (46). Despite
the absence of chemical reactions in the present study, the choice is
made here to use the formation enthalpy as reference value to

facilitate the computation of for different species as a function of
temperature from existing tables, since the latter are most prominently
found within the combustion-related literature [e.g., see Ref[151]. and
Eq. (C.33) in Appendix C].

The second term on the right-hand side of Eq. (B.9) corresponds to
the enthalpy departure function

which quantifies the enthalpy variations of a real gas along the
isotherm at temperature T as the pressure changes from P0 →0 to P.
A closed expression for (B.12) can be obtained upon substituting the
equation of state (14) into the integrand [e.g., see Refs.[92,152] and
Eq. (C.23) in Appendix C].

A similar methodology can be employed for calculating partial mo-
lar enthalpies at high pressures using the expression

Here, is a partial-enthalpy departure function that can be ex-
pressed in closed form by making use of the Peng-Robinson equation
[e.g., see Ref.[153] and Eq. (C.34) in Appendix C].

B2. Constant-pressure molar heat

Similar departures to those observed above in the enthalpy oc-
cur in the molar heat as a result of the high pressures. To account
for these, the constant-pressure molar heat of the mixture can be de-
rived by differentiating Eq. (B.9) with respect to temperature at con

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)
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stant pressure and composition, which gives

The right-hand side of Eq. (B.14) is the sum of two terms corre-
sponding to ideal and non-ideal components. The ideal component is
the ideal-gas constant-pressure molar heat that can be obtained from
weighted sums of the ideal-gas molar heats of the individual com-
ponents as with being a temperature-dependent
function typically obtained from tabulated data from different species
[e.g., see Ref.[151] and Eq. (C.25) in Appendix C]. The overall depen-
dence of on temperature and composition for C12H26/N2 mixtures
of ideal gases is illustrated in Fig. B.1(a), which indicates that the vari-
ations are smooth and monotonic within the range of operating condi-
tions studied here.

The non-ideal component in Eq. (B.14) corresponds to the partial
derivative of the enthalpy departure function with respect to tempera-
ture. The resulting combined expression (B.14) for the constant-pres-
sure molar heat of the mixture which can be readily calculated by
making use of the Peng-Robinson equation of state [see Ref.[92] and
Eq. (C.28) in Appendix C], accounts for real-gas effects and is plotted
in Fig. B.1(b) for C12H26/N2 mixtures at two pressures. Much larger
values of are observed for dodecane than for nitrogen, with

Fig. B.1. Constant-pressure molar heats for C12H26/N2 mixtures as a function of tem-
perature and mass fraction of dodecane YF for (a) ideal gases, and (b) real gases at two
pressures and different compositions (refer to the legend in the top panel). The plots
in (b) include the diffusional critical point of the mixture at the corresponding pressure
(purple diamond symbol), the loci of the maximum of the molar heat at constant pres-
sure (thick green dot-dashed line), along with the VLE line (thick red dashed line). (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

under typical injection temperatures. However, as
indicated in Eqs. (12) and (13), the relevant ratio of free-stream heat
capacities that influences the supercriticalization length is written in
specific form and is therefore much smaller, with at
P∞ = 100 bar, TF = 350 K and K.

Fig. B.1 (b) also provides the loci where local maximum values
of are attained inside and outside the coexistence region. The re-
sulting line is reminiscent of the pseudo-boiling, or Widom line, ob-
served in monocomponent systems (i.e., see thick green dot-dashed
line in Fig. 4), although important differences are worth highlighting.
In monocomponent systems undergoing phase change, the tempera-
ture remains constant and therefore develops a singularity at boil-
ing, where a finite change of enthalpy occurs under zero variations of
the temperature. As the pressure is increased above the critical point, a
finite-amplitude peak occurs in across the pseudo-boiling condition
that is characteristic of a second-order phase transition of the mono-
component system and, as described in Section 2.1, is often associ-
ated with transcriticality in the existing literature. In monocomponent
systems, the pseudo-boiling line therefore emanates from the critical
point and penetrates in the supercritical region of the phase diagram
to progressively fade away as the peak amplitude of vanishes with
increasing pressures, as shown in Fig. 4. In contrast, in multicompo-
nent systems, the phase change necessarily requires a finite tempera-
ture change at all pressures because of the unfolding of the vapor-equi-
librium line into dew and boiling branches, thereby yielding finite-am-
plitude peaks in even inside the coexistence region, as shown in
Figs. 10 and B.1(b). The resulting line that joins all local maxima of

does not necessarily emanate from the critical point, and, depend-
ing on the pressure and mixture components, may not even enter the
fully supercritical region of the thermodynamic phase diagram.

While the peak in for pure dodecane is visible in Fig. B.1(b) at
50bar and 730 K, the corresponding peak in for nitrogen occurs at
much lower temperatures of order 130 K that are of no interest for the
problem analyzed in Fig. 1. When both components are mixed at not
too high pressures such that the peak in for each individual compo-
nent is still discernible, a line can be traced that joins all peaks of the
mixture traverses the coexistence region, crosses the vapor-liquid
equilibrium line at the diffusional critical point, and terminates within
the single-phase supercritical region at the peak of for dodecane, as
shown in the left panel of Fig. B.1(b). However, at higher pressures,
as in the right panel in Fig. B.1(b), where the peak of for dodecane
is no longer discernible, the line of maximum ends short within
the coexistence region and never crosses the diffusional critical point.
Additional lines of maximum are observed in molecular-dynamics
simulations that tend to occur at much lower temperatures and may be
of interest for cryogenic propellants, but those may not be computable
using the Peng-Robinson equation of state [154].

B3. Chemical potentials

As shown in Section 5, the diffuse-interface theory for multicom-
ponent flows makes ubiquitous use of chemical potentials. Specifi-
cally, the energy excess inherent to the interface structure, along with
the different chemical composition of the propellant streams, results
in gradients of chemical potentials that are responsible for molecular
diffusion.

The molar chemical potential of species i,
is defined as the partial molar Gibbs

free energy,

(B.14)



UN
CO

RR
EC

TE
D

PR
OO

F

60 Progress in Energy and Combustion Science xxx (xxxx) xxx-xxx

where is the Gibbs free energy of the system, is the molar
chemical potential of the mixture, and n the total number of moles. A
more useful definition of can be derived by applying the fundamen-
tal reciprocity relation to G,

or equivalently,

where use of Eq. (B.15) has been made along with the definitions of
the system volume and the partial molar vol-
ume

A closed expression for the partial molar volume is provided in
Eq. (C.43) for the case of the Peng-Robinson equation of state (14).

Direct integration of Eq. (B.18) yields the expression for the chem-
ical potential

where is the chemical potential of an ideal gas given by

In the notation, P0 is an arbitrary reference value for the pressure
that is chosen to be sufficiently low for ideal-gas conditions to prevail,
and is the partial molar Gibbs free energy of the pure
component at that pressure. In practice, P0 = 1 bar and tables are ac-
cessed to evaluate the temperature dependence of [e.g., see Ref.

[151] and Eq. (C.46)]. Additionally, φi is a fugacity coefficient whose
logarithm is defined as

The fugacity coefficient φi is related to the fugacity fi by the ex-
pression

A closed expressions for φi is provided in Eq. (C.47) by substi-
tuting the Peng-Robinson equation of state (14) into Eq. (B.22). The
combination of Eqs. (B.20), (B.21) and (B.23) yields the alternative
definition of the chemical potential

directly in terms of the fugacity fi. The differentiation of Eq. (B.24)
with respect to Xi readily leads to Eq. (A.6) anticipated in
Appendix A.1.

The partial molar volume and the molar volume are the same for an
ideal gas, as shown by substituting
along with into Eq. (B.19). Correspondingly, the fugacity
coefficient φi tends to unity and the fugacity fi tends to the partial pres-
sure in thermodynamic conditions where the ideal-gas approximation
is appropriate. Such conditions typically consist of high temperatures
in the pressure range studied here, as shown in Fig. B.2 for C12H26/N2
mixtures. Departures from ideality in chemical potentials, which are
caused by the second term on the right-hand side of Eq. (B.20), are ob-
served to be the largest at low temperatures, and become increasingly
important as the pressure increases. Away from ideality, departs
from v, φi attains values which are far from unity, and fi ceases to be
the partial pressure.

B4. Molecular transport coefficients

The high pressures involved in the multicomponent systems stud-
ied in this work prevent the use of simple relations for the calculation
of the dynamic viscosity η, the thermal conductivity λ, the binary dif-
fusion coefficients and the thermal-diffusion ratio ki,T. Standard
methods for computing η and λ are detailed in Appendix F, and fol-
low the modeling approaches in Refs.[155,156]. Those models have
been used in previous studies on direct numerical simulations (DNS)
of mixing layers [157], large-eddy simulations (LES) of diesel jets
[158] and thermoacoustic instabilities [159], and have been success-
fully utilized to numerically predict experiments of N2 jets into N2 en-
vironments at high pressures [28,160,161]. The formulation developed
in Refs.[162,163] is employed here to compute and ki,T, and is
also explained in Appendix F. That methodology accounts for real-gas
effects and has been satisfactorily compared against experimental data
involving liquid and gas mixtures of alkanes, CO2, and N2 [164–166].

The temperature and composition dependence of η, λ, and
kF,T for C12H26/N2 mixtures at high pressures is shown in Fig. B.3. In
N2-rich mixtures, η, λ, and increase monotonically with tem-
perature in a manner that is reminiscent of that encountered in gases,
since the range of temperatures studied here is well above the crit-
ical temperature of nitrogen. A similar behavior is also observed
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Fig. B.2. Constant-pressure distributions of the logarithm of fugacity coefficients for the
individual components (φF for C12H26 and φO for N2) of a C12H26/N2 mixture as a func-
tion of temperature and mass fraction of dodecane YF at (a) P = 50 bar and (b)
bar. The plots include the zero-fugacity line corresponding to an ideal gas (thick blue
dot-dashed line), the diffusional critical point of the mixture at the corresponding pres-
sure (purple diamond symbol), along with the VLE line (thick red dashed line). (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

in C12H26-rich mixtures at sufficiently high temperatures, and more
particularly, at temperatures much larger than the critical temperature
of C12H26.

By definition, the thermal-diffusion ratio of C12H26, kF,T, becomes
zero in the limits YF = 0 and YF = 1 corresponding to pure compo-
nents. At intermediate concentrations and high temperatures, kF,T de-
cays to small values as a result of the particular model employed here,
in which kF,T is proportional to the energy-departure function (see
Ref.[167] and Appendix F). Linear superposition of the high-pressure
model of kF,T in Ref[167]. with the ideal-gas counterpart from kinetic
theory [140] would likely yield more realistic values at high temper-
atures, as suggested by the comparisons between different models in
Ref.[168].

The positive values kF,T ≥ 0 observed in all cases indicate that
C12H26 tends to migrate toward cold flow zones, thereby sharpening
the transcritical interface. Despite the fact that kF,T is an order-unity
parameter at high pressures, the contribution of the Soret effect to
the species diffusion flux is only fractional compared to the contribu-
tion of the composition gradients because of the comparatively smaller
temperature gradients across the interface, as discussed in Section 5.6.

A significant change in the temperature dependence of η, λ, and
is observed in C12H26-rich mixtures near ambient temperatures.

In particular, it is found that μ and λ increase as T decreases, while
attains values that are mostly independent of temperature. The

aforementioned trends are typical of liquids, and suggest that
C12H26-rich mixtures behave in a liquid-like manner at high pressures
and ambient temperatures. Those correspond to typical conditions in
the fuel injection port. This shift in the trend of the transport coeffi-
cients is accompanied by a maximum in kF,T at intermediate concen-
trations, and occurs at a pressure-dependent temperature that is well
correlated with the pseudo-boiling one corresponding to the maximum
molar heat capacity.

Appendix C. Supplementary thermodynamic expressions
applicable to multicomponent systems at high pressures

Despite the gradient corrections used in the thermodynamic po-
tentials (16)–(18), the classic theory of thermodynamics must still be
locally satisfied. A number of standard thermodynamic relations are
listed in this appendix for use in the analysis. In addition, the for-
mulation of thermodynamic systems at high pressures requires com-
plex equations of state. Quantities including thermodynamic poten-
tials, specific heats, volume expansivity and others are involved in the
diffuse-interface formulation described above and depend on the par-
ticular form of the equation of state. This appendix provides a sum-
mary of expressions for those quantities. A number of relations are
particularized for the Peng-Robinson equation of state (14), whose co-
efficients are also listed here, but general definitions are given as well
that allow for utilization of other equations of state by direct substi-
tution. Closure parameters for the gradient-energy coefficient (23) are
also supplied here.

C1. Local thermodynamic relations

The first principle of thermodynamics

or its alternative form

are both satisfied locally, with h denoting the specific enthalpy

which will be shown to be an exclusively local quantity in this for-
mulation under the approximation (24). In writing Eqs. (C.1) and
(C.2), the mass conservation constraint has been
used. Eqs. (C.1) and (C.2) can be recast in terms of the local specific
Helmholtz free energy f as

(C.1)

(C.2)

(C.3)

(C.4)
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or in terms of the local specific Gibbs free energy, or local specific
chemical potential of the mixture μ, as

with

The combination of Eqs. (19), (C.3) and (C.6) leads to

In addition, an alternative definition of μ can be given in terms of
the weighted sum of partial specific chemical potentials μi as

with μi being related to its corresponding partial molar value as
. Eq. (C.8) can be substituted into Eq. (C.5) yielding the

Gibbs-Duhem relation

Interfacial effects are incorporated in the above relations in
Section 5 leading to important modifications of the constitutive laws
in the Navier-Stokes equations.

C2. Coefficients of the Peng-Robinson equation of state

The individual coefficients ai and bi in the mixing rules (15) for the
Peng-Robinson equation of state are given by [92]

where Pc,i and Tc,i are, respectively, critical pressures and temperatures
obtained from Table 1. Additionally, the coefficients ci are defined as

with ωi as the acentric factor. The values of ωi used in this study are

[40]

The binary-interaction parameters ϑi,j utilized in Eq. (15) are
[75,157]

for mixtures of alkanes with N2 or O2, and

for mixtures of CO2 with N2 or O2. Additionally, the binary-interac-
tion parameter of an element with itself is assumed to be zero,

C3. Parameters of the model for the gradient-energy coefficient

The dimensionless coefficients and in the model expression
for the gradient-energy coefficient (23) are given by [120]

where the acentric factors ωi for dodecane and nitrogen are given by
Eq. (C.13).

C4. Molar Helmholtz free energy and chemical potential

The molar Helmholtz free energy and chemical potential corre-
sponding to the Peng-Robinson equation of state (14) are

and

respectively. In the notation, is the molar Helmholtz
free energy of an ideal-gas mixture, where

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)
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is the corresponding chemical potential and is the ideal-gas molar
Gibbs free energy of species i defined in Appendix Appendix C at a
reference pressure P0.

C5. Volume expansivity

The volume expansivity (B.7) can be expressed as

for the Peng-Robinson equation of state (14).

C6. Enthalpy departure function

The enthalpy departure function (B.12) particularized for the
Peng-Robinson equation of state is [92]

where

while the coefficients a and b are obtained by combining Eqs. (15) and
(C.10)–(C.12). For a given specific volume and composition field, P
and T are related in Eq. (C.23) through the equation of state (14).

C7. Molar heats, adiabatic coefficient, and isentropic compressibility

The ideal-gas constant-pressure molar heat of species i is given by
[151]

where the coefficients r1,i, r2,i⋯r5,i are listed in Table C.1 for C12H26
and N2. The corresponding value of the constant-volume molar

heat for an ideal gas can be easily derived by substituting Eq. (C.25)
into the Mayer’s relation

The ideal-gas adiabatic coefficient of the mixture is defined as

with and being the ideal-gas spe-
cific heats of the mixture.

The real-gas constant-pressure molar heat of the mixture for the
Peng-Robinson equation of state (14) is obtained by substituting Eq.
(C.23) into Eq. (B.9), which gives [103]

In this formulation, is the compressibility factor. Its
derivative with respect to temperature is given by

where and . The partial derivative
in Eq. (C.29) can be calculated by combining Eqs. (C.10)

and (C.24).
An expression for the real-gas constant-volume molar heat of the

mixture for the Peng-Robinson equation of state (14) can be derived
by substituting Eqs. (C.28) and (C.22), along with the isothermal com-
pressibility βT introduced below in Eq. (C.44), into the fundamental
equation for the heat capacities

which is obtained by substituting the identity
into Eq. (E.5). Correspondingly, the

adiabatic coefficient for a real gas, defined here as the ratio of molar
heats, can be calculated as

with

(C.21)

(C.22)

(C.23)

(C.24)

(C.25)

(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)
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the isentropic compressibility.

C8. Partial molar enthalpies and partial-enthalpy departure
functions

The partial molar enthalpy of an ideal gas referred to the stan-
dard reference state can be expressed as the polynomial expansion

where the coefficients r1,i, r2,i⋯r6,i are listed in Table C.1 for C12H26
and N2 [151]. Note that Eq. (C.33) is equivalent to substituting the
polynomial expansion of the specific heat (C.25) into the definition

. The coefficient

is a constant employed to refer the en-

thalpy to the formation value .
The departure function of the partial molar enthalpy of a real gas

described by the Peng-Robinson equation of state (14) is given by
[153]

In Eq. (C.34), the quantity can be obtained using Eq.
(C.24), whereas the remaining partial derivatives are calculated as

The partial-enthalpy departure function (C.34) is a sole function
of P when the values of the specific volume and molar fractions are
fixed, since pressure and temperature are related through the equation
of state (14).

C9. Internal-energy departure function

Using the definition

the internal molar energy can be computed at high pressures after
obtaining from Eq. (B.9). Similarly, its ideal-gas counterpart can
be expressed as

where is the ideal-gas enthalpy defined in Eq. (B.10). Correspond-
ingly, the departure function for the molar internal energy is

with being provided in Eq. (C.23) for the Peng-Robinson equa-
tion of state (14).

C10. Partial molar internal energies

The partial molar internal energy of an ideal gas referred to the
standard reference state can be expressed as

where is the partial molar enthalpy obtained from the polynomial
expansion (C.33). By definition, the partial molar internal energy of a
real gas is related to the partial molar enthalpy as

with and . The combination of Eqs. (C.40) and
(C.41) yields the departure function of the partial molar internal en-
ergy

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

(C.37)

(C.38)

(C.39)

(C.40)

(C.41)
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where is the departure function of the partial molar enthalpy pro-
vided in Eq. (C.34) for the Peng-Robinson equation of state (14).

C11. Partial molar volume and isothermal compressibility

The partial molar volume is given by [92]

for the Peng-Robinson equation of state (14). In Eq. (C.43), βT is an
isothermal compressibility that can be calculated as

with BT being a dimensionless variable defined as

C12. Ideal-gas Gibbs free energies

The molar Gibbs free energy of an ideal gas at the reference pres-
sure P0 = 1 atm is [151]

where the coefficients r1,i, r2,i⋯r7,i are listed in Table C.1 for C12H26
and N2.

C13. Fugacity coefficients

The logarithm of the fugacity coefficient φi is [103]

for the Peng-Robinson equation of state (14).

C14. Speed of sound

The speed of sound c of a real gas is given by

where βs is the isothermal compressibility defined in Eq. (C.32).

Appendix D. High-pressure interfaces in subcritical
monocomponent systems

This appendix focuses on interfaces arising in monocomponent
systems. In this case, interfaces can only emerge at pressures and tem-
peratures below the critical point, where two thermodynamic states
are possible at the same pressure. The resulting system is therefore
subcritical everywhere. Nonetheless, only relatively high pressures
not too far from the critical point can be considered because of the
continuum assumption, as emphasized in Section 4.5. Further details
on the utilization of diffuse-interface concepts in monocomponent
systems can be found in a number of previous investigations
[53,111,149,168,169] and in van der Waals’ original contribution
[108].

D1. Formulation

Similar arguments to the ones made in Section 4.4 for conceptual-
izing the diffuse-interface formalism as a thermodynamic-to-physical
space mapping of the oscillations of the chemical potential also ap-
ply to the pressure variations within the interface. To illustrate this,
consider the simplified form of the mechanical equilibrium condition
(120) for N = 1,

subject to the phase-equilibrium densities

Similarly to Eq. (31) for the chemical potential in systems in phase
equilibrium, Eq. (D.1) maps the pressure oscillations from thermody-
namic space into a thin interface in physical space. The oscillation of
the pressure in thermodynamic space is induced by the equation of
state (14) evaluated in conditions where two phases exist, as sketched
in Fig. 18(c) for the simplest case corresponding to a flat interface in
phase equilibrium. In that case, a Maxwell’s construction rule for P
can be obtained by integrating Eq. (28) and using Eq. (C.7) subject to
the phase-equilibrium condition (A.16), which gives

(C.42)

(C.43)

(C.44)

(C.45)

(C.46)

(C.47)

(C.48)

(D.1)

(D.2)

(D.3)



UN
CO

RR
EC

TE
D

PR
OO

F

66 Progress in Energy and Combustion Science xxx (xxxx) xxx-xxx

with and being the phase-equilibrium Helmholtz free energies.
Eq. (D.4) indicates that the oscillation of the pressure encloses zero net
area along the v axis. In contrast, Eq. (108) states that the net area un-
der the oscillation of the pressure in physical space is non-zero and is
proportional to the surface tension. It can be shown that the mechani-
cal equilibrium condition (D.1) is consistent with Maxwell’s construc-
tion rule (D.4) by substituting the former into the latter and using the
identity

as prescribed by the vanishing gradients of the density away from the
interface. Analogous oscillatory profiles of P are observed in bicom-
ponent systems, as shown in Section 6.

The origin of Eq. (31) anticipated in Section 4.4, which relates the
chemical potential with the density gradients through the interface, is
the mechanical equilibrium condition for monocomponent flows (D.1)
evaluated at uniform temperature. In this particular case, Eqs. (31)
and (D.1) are equivalent, as easily shown by evaluating Eq. (121) for
N = 1, which gives

Eq. (D.6) can be integrated once subject to the phase-equilibrium
boundary condition at thus leading to Eq. (31).

The equations integrated in this appendix are summarized in
Table D.1 and consist of the mechanical equilibrium condition for
monocomponent systems (D.1) supplemented with the equation of
state (14) and the model (23) for the gradient-energy coefficient. The
numerical results are obtained by solving the system of equations
on uniform 1D meshes with approximately 50–75 grid points across
the interface. The boundary conditions away from the interface cor-
respond to phase-equilibrium densities (D.2) and (D.3). The prob

Table D.1
Dimensional formulation for high-pressure subcritical interfaces in isothermal mono-
component systems.

Conservation equation
Mechanical equilibrium

Boundary conditions
Phase-equilibrium densities

Supplementary expressions
Equation of state Eq. (14),
Coefficients of the equation of state Eqs. (C.10)–(C.12),
Gradient-energy coefficient Eqs. (23), (C.17), and (C.18).

lem has a solution consisting of a steady high-pressure subcritical in-
terface that separates a liquid from its vapor in phase equilibrium.

The isothermal cases summarized in Table D.2 for C12H26 and N2
are considered here. In all cases, the temperature Te and the thermo-
dynamic pressure away from the interface P∞ are smaller than their
corresponding critical values Tc and Pc. As a result, the pseudo-trajec-
tories along the interface in thermodynamic space are subcritical and
traverse the coexistence region, as shown in Fig. D.1.

D2. Results

The profiles of density and pressure obtained from integrating the
formulation in Table D.1 are provided in Fig. D.2. Density ratios of
order 10 are observed in cases D and H, which correspond to the far-
thest conditions from the critical point. As the critical point is ap-
proached, the density and pressure profiles become increasingly flat.
This limiting behavior is accompanied by (a) an increase of the inter-
face thickness δI [defined in Eq. (208)] and a decrease in the Knudsen
number [Eq. (40)], as shown in Fig. D.3, along with (b) a decrease in
the surface-tension coefficient [Eq. (22)], as shown in Fig. D.4. The
Knudsen number attains acceptable values for the continuum range
only when conditions are close to the critical point. The interface dis-
appears and the surface tension vanishes when the critical point is
reached.

Fig. D.4 shows comparisons between the surface-tension coeffi-
cient calculated by utilizing the numerical solution in Eq. (22) and the
standard correlation [170]

[see also Eq. (12-3.7) in Ref[54].], with ω being the acentric factor
provided in Appendix Appendix C. Whereas good agreement is ob-
served in the case of nitrogen over the entire range of tested condi-
tions, the comparison reveals disagreements of order 20%-30% for do-
decane. These discrepancies are caused by the relatively large accen-
tric factor of dodecane, for which the standard correlation is not de-
signed to operate accurately [54]. In contrast, the numerical solution
agrees well with experimental data in Refs.[72–74]. Remarkably, the
agreements between experiments and numerical results occur even at
conditions far away from the critical point, where the continuum hy-
pothesis across the interface becomes hardly justifiable.

Appendix E. Transcritical bicomponent systems approaching
mechanically unstable conditions

Relevant aspects of the formulation outlined above lead to intrinsic
singularities at conditions approaching the limit of mechanical stabil-
ity (A.2). The analysis in this section builds on considerations made
by Gaillard et al. [38,39], and provides thresholds in thermodynamic
conditions leading to this behavior along with a palliating regulariza-
tion.

E1. Singularities of the theory at the limit of mechanical stability

As discussed in Secs. 1, 2.2, and 3.2, transcritical conditions in
systems fueled by heavy hydrocarbons involve combustor pressures
P∞ ≳34 bar (for pure nitrogen coflows), P∞ ≳36 bar (for air coflows),
and P∞ ≳50 bar (for pure oxygen coflows). These combustor pres-
sures lead to fully supercritical pressures with respect to

(D.4)

(D.5)

(D.6)

(D.7)
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Fig. D.1. Thermodynamic pseudo-trajectories of cases A-H listed in Table D.2 for (a) dodecane and (b) nitrogen subcritical isothermal systems. The portion of the pseudo-trajectories
involving negative pressures is not plotted in these diagrams.

Table D.2
Thermodynamic conditions corresponding to cases A-H in Fig. D.1 for subcritical inter-
faces in monocomponent systems.

case P∞ [bar] Te [K]

A 14.6 641.6 302.0 92.0 0.816 0.975
B 11.7 625.2 353.8 63.2 0.652 0.950
C 9.3 608.7 393.1 46.4 0.516 0.925
D 5.5 575.8 453.0 25.4 0.310 0.875
N2 system
case P∞ [bar] Te [K]

E 29.2 123.0 446.9 170.9 0.861 0.975
F 25.1 119.9 514.8 129.6 0.738 0.950
G 21.3 116.7 567.7 102.1 0.628 0.925
H 15.1 110.4 651.6 65.9 0.444 0.875

both fuel and coflow propellants (see Table 1). Within the practical
range of propellant injection temperatures ( K), those com-
bustor pressures are also larger than the maximum mechanical crit-
ical pressures of mixtures of heavy hydrocarbons with N2, O2, or
air (15–25 bar), and smaller than the maximum diffusional critical
pressures (500–1000 bar). However, it is shown in Sections 4.4 and
5.3.3 that the thermodynamic pressure undergoes order-unity oscil-
lations within the interface. These oscillations are the physical-space
counterparts of the Maxwell loops in the coexistence region of the
thermodynamic phase diagram, and are predicted by the equation of
state (14), or any other cubic equation of state available in the liter-
ature. Consequently, when P∞ is not sufficiently high, the Maxwell
loops may generate underpressures within the interface smaller than

the mechanical critical pressure, including negative thermodynamic
pressures.

The Stefan-Maxwell forms of the standard diffusion fluxes of heat
and species, given by Eqs. (152) and (153), are of limited practical
use in conditions where the mechanical stability criterion (A.2) is not
satisfied. This is because both the fuel partial molar volume and
the non-ideal diffusion prefactor (∂ln fF/∂ln XF)P,T participating in the
Fickian, barodiffusion, and Dufour components of those fluxes di-
verge at the mechanical spinodal surface defined in Eq. (A.3). To un-
derstand this, note that the partial molar volume defined in Eq. (B.19)
can be equivalently expressed for the fuel species as

where βT is the isothermal compressibility defined in Eq. (A.2) and
particularized for the Peng-Robinson equation of state in Eq. (C.44) in
Appendix Appendix C. The coflow partial volume satisfies the similar
expression

Whereas the partial derivatives of the pressure with respect to the
number of moles of fuel or coflow species in Eqs. (E.1) and (E.2) are
generally finite and different from zero on approach to the mechani

(E.1)

(E.2)
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Fig. D.2. Profiles of (a) density and (b) pressure across the interface in isothermal sys-
tems composed of dodecane (left panels) and nitrogen (right panels). In dodecane sys-
tems, the interface thicknesses used for normalizing the spatial coordinate are
nm, 3.59 nm, 2.91 nm, and 2.18 nm for cases A, B, C, and D, respectively. In nitrogen

systems, the corresponding values are nm, 3.07 nm, 2.42 nm, and 1.77 nm for
cases E, F, G, and H, respectively.

Fig. D.4. Surface-tension coefficient as a function of normalized temperature in mono-
component isothermal systems consisting of nitrogen or dodecane, including numerical
results from the present work (solid lines), the standard correlation (D.7) (dashed lines),
and experimental measurements for nitrogen (triangles, Ref[72].) and dodecane (aster-
isks, Ref [73]; squares, Ref[74].).

cal spinodals, the isothermal compressibility diverges there as de-
manded by Eq. (A.3) and illustrated in Fig. E.1(a). As a consequence,
the partial molar volumes diverge, as shown in Fig. E.1(b), although
the molar volume remains finite.

It is also at the mechanical spinodals where the fuel molar chemi-
cal potential develops two turning points along the composition axis,
as shown in Fig. A.1(b). As a result, its derivative be-
comes infinite there, and correspondingly the non-ideal diffusion pref-
actor (∂ln fF/∂ln XF)P,T also diverges there, as observed in

Fig. E.1(c) and prescribed by Eq. (A.6). The singularity in the
non-ideal diffusion prefactor can be traced back to the partial molar
volume as a consequence of a non-integrable singularity of the latter
in pressure,

as indicated by differentiating Eq. (B.18) and utilizing the fundamen-
tal reciprocity relation of thermodynamics.

The singularities in and (∂ln fF/∂ln XF)P,T arising at the me-
chanical spinodals cancel out each other upon summation in Eq.
(F.22), in such a way that the constant-temperature gradient of the
chemical-potential difference

remains finite. Note that other singularities emerging when
in Eq. (E.4) is evaluated in the pure components (i.e.,

and ) disappear upon multiplying Eq. (E.4) by the On-
sager coefficients (145) and (146) to construct the standard diffusion
fluxes of heat and species (149) and (150).

The considerations above indicate that, in configurations where
the temperature gradients are exactly zero, such as those addressed in
Section 6, the standard species diffusion flux can be computed across
the mechanical spinodals by direct spatial differentiation of the chem-
ical potentials as in Eq. (150), instead of using the Stefan-Maxwell
form (153). Similarly, the Dufour effect in the standard heat diffu-
sion flux can also be safely computed across the mechanical spinodals
using Eq. (149) instead of the corresponding Stefan-Maxwell form
(152).

Additional singularities need to be tackled in configurations such
as that addressed in Section 7, in which there is a temperature gradi-
ent across the interface. In particular, singularities arising in the vol-
ume expansivity βv and in the partial specific enthalpies hF and hO at
the mechanical spinodals play a role in transport mechanisms associ-
ated with temperature gradients. Note that βv participates in the por-
tion of the interfacial species flux (148) that depends on the tempera-
ture gradient. It is also required for the calculation of the terms in the
interfacial heat flux (147) that depend on the temperature gradient and
on the heat transport by the net species flux the latter be-
ing small but non-zero in practice because of the small but non-zero
thermal Cahn numbers resulting from moderate temperature gradients.
The difference of partial specific enthalpies hF − hO participates in the
interdiffusion heat flux in Eq. (149), in the last term of the interfacial
heat flux (147), and implicitly in the calculation of the constant-tem-
perature gradient of chemical potentials in Eq. (E.4) through the dif-
ference of partial entropies in Eq. (151).

Since βT diverges at the mechanical spinodals by definition, and βT
is related to βv by the identity

then βv also diverges there, as shown in Fig. E.1(d). In Eq. (E.5), the
partial derivative of P with respect to temperature generally remains
finite and different from zero.

(E.3)

(E.4)

(E.5)
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The singularities of the partial enthalpies at the mechanical spin-
odals, shown in Fig. E.1(e and f), can be understood by considering
the identities

which can be combined with Eqs. (E.1) and (E.2) for the partial molar
volumes, thereby suggesting that the singular behavior of and
is closely related to that of βT, since the remaining partial derivatives
generally remain finite and different from zero. Despite the singular-
ities arising in the partial molar enthalpies, the molar enthalpy of the
mixture remains finite across the mechanical
spinodals.

The need to regularize βv, hF, and hO occurs at conditions where
temperature gradients exist across the interface and the combustor
pressure P∞ is not sufficiently high. The threshold for P∞ depends
on the interface temperature Te, since both Te and the local pressure
P determine the values of the fuel molar fraction on the mechanical
spinodal surface. A quantification of the range of operating conditions
{P∞, Te} within which the mechanical spinodal surface is crossed in
C12H26/N2 mixtures is provided in Fig. E.2 as the region hatched with
red solid lines. Specifically, the results shown in Fig. E.2 pertain to 1D
interfaces arising in a phase-equilibrium mixture at pressure P∞ and
uniform temperature equal to Te. In this case, whose details are pro-
vided in Section 6, the singularities in βv,

Fig. E.2. Regime map for C12H26/N2 mixtures showing the range of operating combus-
tor pressures leading to crossings of the mechanical spinodals (region hatched with red
solid lines) and to negative underpressures (region hatched with blue dashed lines) as
a function of the interface temperature. The plot includes the critical point of dodecane
(square symbol), the VLE line of dodecane (dotted line), and the maximum mechanical
critical pressure (brown dot-dashed line). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

and have no effect since and . In this way, the
local pressure and composition can be monitored in the calculations to
ascertain whether the mixture has entered the mechanically unstable
region of the thermodynamic phase diagram, and to evaluate the two
problematic quantities βv and hF − hO participating in the formulation
of non-isothermal systems.

As indicated in Fig. E.2, the minimum combustor pressure P∞ re-
quired to initiate crossings of the mechanical spinodals in C12H26/N2
mixtures increases with decreasing values of the interface temperature
Te. No regularizations are needed at sufficiently high combustor pres-
sures P∞ ≳200 bar over the entire range of relevant injection temper-
atures, since the system is always mechanically stable.

In the configuration sketched in Fig. 1, Te is much closer to TF than
to TO near the injection orifice. As a consequence, Te in Fig. E.2 can
be approximated as TF plus a small temperature differential that de-
pends on the details of the wake flow created by the orifice ring. In
practice, the boundary of the mechanically unstable region in Fig. E.2
indicated by the red thick solid line provides approximately the mini-
mum TF necessary for warranting mechanical stability for a given P∞.
For instance, at the pressure P∞ = 100 bar considered in the results
presented in Section 7 for non-isothermal C12H26/N2 systems, the me-
chanical spinodal surface is crossed if TF ≲480 K. Downstream of the
injector, however, the interface temperature increases because of the
heat received from the hot coflow. When Te > 480 K, the system ceases
to cross the mechanical spinodal surface and regularizations of βv and
hF − hO become unnecessary. These aspects are further analyzed in
Section 7.

Since the unboundedness of βT on the mechanical spinodal surface
dominates the divergent behavior of βv, hF, and hO, a simple way of
limiting the value of βT is by using the regularization

where BT is a dimensionless variable defined in Eq. (C.45), and m is
a positive dimensionless regularization constant whose value is much
smaller than unity. Fig. E.3 shows the resulting regularized profiles of
βv and hF − hO.

The differences in the regularized profiles of βv and hF − hO in
Fig. E.3 have a negligible impact on the overall solution of the
non-isothermal system addressed in Section 7. This is shown in
Fig. E.4, which shows that distribution of σ over the transcritical re-
gion is largely independent of the regularization constant m used in
Eq. (E.8). The reason for the lack of sensitivity of the solution to m
is that the terms multiplying βv and hF − hO in the fluxes of heat and
species become increasingly smaller as mechanical and transport equi-
librium are approached, a condition that is always satisfied for a long
portion of the interface, as discussed in Sections 5.7 and 7.2.

The singularities observed above at the limit of mechanical stabil-
ity are not unique to the Peng-Robinson equation of state (14). They
also occur when employing other cubic equations such as the van der
Waals [51] or Redlich-Kwong [96,97] equations of state.

E2. Negative thermodynamic pressures

The thermodynamic pressure P is always a positive quantity in
ideal gases, in which the intermolecular forces are negligible. In con-
trast, P can attain negative values in liquids since the molecules are
closer and therefore exert a non-negligible attractive force on each
other. Negative pressures in liquids are well-documented in the lit-
erature and are always associated with fully tensile mechanical

(E.6)

(E.7)

(E.8)
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Fig. E.3. Regularized profiles of (a) volume expansivity and (b) difference of par-
tial specific enthalpies across transcritical interfaces in C12H26/N2 isothermal systems
at P∞ = 50 bar and Te = 500 K. The plot includes regularized profiles with m = 0.01
(dot-dashed line) and m = 0.1 (dashed line), along with the non-regularized case
(solid line).

states such as those participating in cavitation, nucleation, or cap-
illary flows [104,127,128]. These processes are thermodynamically
metastable or unstable, thereby suggesting that negative pressures of-
ten correspond to transient states in which the fluid is transitioning to
a different phase. Negative pressures may also arise in fluids at high
pressures, when the density is large and cohesive forces become im-
portant, as represented by the second term on the right-hand side of
Eq. (14), or by equivalent terms in other equations of state [99].

The combustor pressure P∞ and interface temperature Te leading to
locally negative pressures within the interface in C12H26/N2 mixtures
are associated with near or full transgression of the mechanical-sta-
bility limit, and are denoted in Fig. E.2 as the region hatched with
dashed lines. It should be emphasized that negative pressures do not
lead to any transcendental behavior in the conservation equations, nei-
ther do they induce any singularities in the thermodynamic variables
discussed in Appendix E.1. They do, however, influence the calcula-
tion of transport coefficients in the following manner.

The dynamic viscosity μ, thermal conductivity λ, binary diffusion
coefficient and thermal-diffusion ratio kF,T are generally func-
tions of the thermodynamic pressure and participate in the conserva-
tion Eqs. (44)–(47) through the viscous stress tensor and the fluxes of
heat and species. In particular, λ, and kF,T are required for the
calculation of the Onsager coefficients (144)–(146). Whereas models
for these coefficients are well-established in the literature for ideal
and real gases, including fully supercritical fluids, relatively much less
is known about their behavior within the mechanically unstable re-
gion of the thermodynamic phase diagram, since homogeneous mix-
tures of phases or fluids of fundamentally different nature are un-
tenable there. The standard models for μ, λ, and kF,T in flu-
ids at high pressures, employed in Appendices B.4 and Appendix F,

cease to have physical significance at negative pressures where, for
instance, becomes undefined because of Eq. (F.41). However,
note that the mechanical and transport equilibrium conditions (107)
and (177) [or their equivalent forms (193) and (194) in terms of chem-
ical potentials] are independent of viscosity and of the Onsager coef-
ficients, and therefore are not influenced by the locally erroneous be-
havior of any of the transport coefficients under conditions leading to
negative pressures.

The considerations above suggest that, in isothermal systems such
as the ones treated in Section 6, the structure of the interface is com-
pletely insensitive to the specific manner in which λ, and kF,T
are modeled. In contrast, in non-isothermal systems such as the one in
Fig. 1, the mechanical and transport equilibrium conditions are only
satisfied asymptotically to leading order in the limit of small thermal
Cahn numbers, ϵT ≪1. Second-order effects lead to departures from
equilibrium and require consideration of transport induced by temper-
ature gradients. This involves evaluation of λ, and kF,T across
the interface, and gives rise to small fluxes of heat and species. In ab-
sence of improved models for transport coefficients at mechanically
unstable conditions, the approximations

are used in this study, where the transport coefficients are evaluated at
the combustor pressure P∞, the latter being representative of the ther-
modynamic pressure everywhere away from the interface in flows at
small Mach numbers.

Appendix F. Supplementary expressions for molecular transport
coefficients at high pressures

This appendix reviews models for the calculation of the viscosity,
thermal conductivity, diffusion coefficient, and thermal-diffusion ra-
tio at high pressures.

F1. Dynamic viscosity

The dynamic viscosity η of the mixture can be modeled as
[155,156]

where Tc [K], vc [cm3/mol], and W′ [g/mol] are, respectively, repre-
sentative values of the critical temperature, critical molar volume, and
molecular weight of the mixture given by the expressions

In Eq. (F.2), ε [K] is the minimum of the pair-potential energy di-
vided by the Boltzmann constant, and σ [Å] is the hard-sphere diame-
ter. Both of these quantities are obtained by the empirical mixing rules

(E.9)

(F.1)

(F.2)
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where ϵi,j and σi,j are obtained from

with the corresponding quantities for the individual components be-
ing given by and . Using the
Peng-Robinson equation of state (14), the critical molar volume of
the species i can be computed as with
[92], thereby yielding cm3/mol for C12H26, and

cm3/mol for N2. Note, however, that these values do not
match the experimentally measured ones cm3/mol and

cm3/mol [40], since the Peng-Robinson equation of state
has only two coefficients, and therefore cannot be forced to simulta-
neously satisfy measured critical values of pressure, temperature and
molar volume.

In Eq. (F.1) the prefactor η* is given by

where and . The remaining parameters are com-
puted using the relations

where the coefficients w1,k,⋯w4,k are provided in Table F.1. In this
formulation, ω is an acentric factor of the mixture defined as

Table F.1
Coefficients for Ek in Eq. (F.11) [155].

k w1, k w2, k w3, k w4, k

1 6.324 50.412 − 51.680 1189.0
2 0.03728
3 5.283 254.209 − 168.48 3898.0
4 6.623 38.096 − 8.464 31.42
5 19.745 7.630 − 14.354 31.53
6 − 1.900 − 12.537 4.985 − 18.15
7 24.275 3.450 − 11.291 69.35
8 0.7972 1.117 0.01235 − 4.117
9 − 0.2382 0.06770 − 0.8163 4.025
10 0.06863 0.3479 0.5926 − 0.727

with . The reduced dipole moment and the as-
sociation factor of the mixture ka can be obtained from tables [54] and
are set to zero for C12H26/N2 mixtures.

F2. Thermal conductivity

In this study, the thermal conductivity λ of the mixture is modeled
as [155,156]

where W′ and Tc are given in (F.2). The rest of the parameters in Eq.
(F.13) are

where

with Tc and ω given in (F.2) and (F.12), respectively. The parameters
z1,k,⋯z4,k are calculated based on Table F.2.

F3. Stefan-Maxwell forms of the standard fluxes of heat and species

The expressions (136) and (137) for the standard diffusion fluxes
of heat and species can be recast in more physically insightful

(F.3)

(F.4)

(F.5)

(F.6)

(F.7)

(F.8)

(F.9)

(F.10)

(F.11)

(F.12)

(F.13)

(F.14)

(F.15)

(F.16)

(F.17)

(F.18)
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Table F.2
Coefficients for Bk in Eq. (F.17) [155].

k z1,k z1,k z1,k z1,k

1 2.417 0.748 − 0.919 121.720
2 − 0.509 − 1.509 − 49.991 69.983
3 6.611 5.621 64.760 27.039
4 14.543 − 8.914 − 5.638 74.344
5 0.793 0.820 − 0.694 6.317
6 − 5.863 12.801 9.589 65.529
7 91.089 128.110 − 54.217 523.810

forms that involve gradients of temperature, pressure and compo-
sition. Because of the functional dependence of the molar chem-
ical potential on pressure, temperature and composition,

given explicitly by Eqs. (B.23), (B.24),
and (C.47), the differential form

is satisfied. In addition, the Gibbs-Duhem Eq. (C.9) can be rewritten
on a molar basis at constant temperature as

which can be spatially differentiated yielding

Upon dividing Eq. (F.19) by Wk and subtracting it from Eq. (F.21)
divided by WN, the relation

is obtained, which connects the constant-temperature gradients of the
specific chemical potential with the gradients of pressure and compo-
sition, where δm,k is the Kronecker delta and k = 1,⋯N − 1. In writing
Eq. (F.22), use has been made of Eq. (B.18) to replace the partial de-
rivative of the chemical potential with respect to pressure by the par-
tial molar volume, and of Eq. (B.24) to express the partial derivative
of the chemical potential with respect to the molar fraction as

where fm is the fugacity of species m defined by the combination of
Eqs. (B.23) and (C.47).

The utilization of Eq. (F.22) in Eqs. (136)-(137) for replacing the
constant-temperature gradients of chemical potentials by gradients of
composition and pressure leads to the Stefan-Maxwell forms

and

for the standard diffusion fluxes of heat and species, respectively. In
Eq. (F.25), Di,j is the Fickian diffusion coefficient.

F4. Fickian diffusion coefficients

The Fickian portion of the standard diffusion flux (F.25) can be ex-
pressed in matrix form as

where and are vectors with N − 1 components,
and is a (N − 1)×(N − 1) matrix composed of the Fick-
ian diffusion coefficients. The latter are related to the Onsager co-
efficients Li,k through Eq. (F.30), which, in matrix form, can be ex

(F.19)

(F.20)

(F.21)

(F.23)

(F.24)

(F.25)

(F.26)
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pressed as

In Eq. (F.27), is the (N − 1)×(N − 1) subset of the
Onsager matrix denoted by dot-dashed lines in Eq. (143). This
subset contains only mass-transfer-related coefficients. In addition,

is a (N − 1)×(N − 1) matrix whose elements depend on
the local composition and are given by

Lastly, the (N − 1)×(N − 1) elements of the matrix rep-
resent high-pressure effects and are given by

At low pressures, the fugacity is equal to the partial pressure, and
therefore Γ becomes the identity matrix. Upon substituting Eqs. (F.29)
and (F.28) into (F.27), the expression

is obtained for the effective Fickian diffusion coefficient of species i
into j.

By definition, the binary diffusion coefficients satisfy the re-
lation

where is a (N − 1)×(N − 1) matrix given by [137,162]

and

Upon combining Eqs. (F.26), (F.27) and (F.31), the relations

and

are obtained. In particular, Eqs. (F.34) and (F.35) enable the calcula-
tion of the Onsager coefficients Li,k [from Eq. (F.34)] and the Fickian
diffusion coefficients Di,j [from Eq. (F.35)] by using the binary diffu-
sion coefficients described in Appendix F.5.

F5. Binary diffusion coefficients

The binary diffusion coefficients can be modeled using the ex-
pression

which follows the formulation described in Refs[162,171,172]. for
non-ideal and nonpolar multicomponent mixtures. In Eq. (F.36), (

) corresponds to the molecular diffusion coefficient of component
i (j) infinitely diluted in component j (i). These auxiliary coefficients
are given by

In this formulation, c [mol/m3] is the molar density,
and are the reduced temperature and pressure, η/η0 is the
ratio between high- and low-pressure viscosities, and are model
constants given by

with
and . The prod

(F.27)

(F.28)

(F.29)

(F.30)

(F.31)

(F.32)

(F.33)

(F.34)

(F.35)

(F.36)

(F.37)

(F.38)

(F.39)

(F.40)

(F.41)
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uct (cD)0 [mol/(m · s)] is calculated using [173]

where (∑ν)i is the diffusion-volume increment of component i given
by cm3 and cm3 for nitrogen
and dodecane, respectively [54].

F6. Thermal-diffusion ratios

The calculation of the Onsager coefficients Lq,i, which partici-
pate in the Soret and Dufour effects in the standard diffusion fluxes
(F.24)-(F.25), is connected to the coefficients Li,i and the thermal-dif-
fusion ratio ki,T of species i by the expression [163]

where is the amount of energy that must be absorbed per mole of
component k while diffusing out that component in order to maintain
the temperature and pressure of the mixture locally constant.

Following the modeling approach described in Ref[163]., the ex-
pression

is employed here, with the departure function of the partial mo-
lar internal energy of component k defined in Eq. (C.42). Addition-
ally, ι is a model parameter corresponding to the ratio of vaporiza-
tion and viscous flow energies. The value (k = 1,⋯N) is em-
ployed here, which is slightly larger than the standard calibrated value

used in Ref[167]. This increase in ι is made to warrant a posi-
tive semidefinite Onsager matrix when ki,T is employed in conjunction
with the aforementioned models for λ and in the binary mixtures
considered in this study (see Fig. 19 and discussion in Section 5.5).

Appendix G. Numerical methods for the calculation of
transcritical interfaces

The solver employed to integrate the formulation presented in
Table 8 is based on: (a) a second-order central finite-difference
method for spatial discretization on one-dimensional non-uniform
grids (e.g., see Ref. [174] and Ch. 2 in Ref. [175] for details); and (b) a
fully-implicit variable-step second-order backward differentiation for-
mula (BDF2) especially suited for time integration of stiff equations
[176]. The resulting nonlinear system of equations is solved through
an iterative globally-convergent strategy based on the Newton-Raph-
son method [177] combined with line searches along the Newton di-
rection that are guaranteed to decrease the residual by incorporating
a backtracking routine [178]. Details are provided in this appendix
along with specific considerations for isothermal and non-isothermal
cases.

G1. Spatial and temporal discretizations

Consider the conservation equations expressed as the coupled dif-
ferential system subject to where y denotes
the vector of independent variables, represents the convection
and diffusion fluxes, and y0 is the initial value of y. The variable-step
BDF2 scheme advances the solution in time as

where the subscript n indicates time level, and

is the ratio of time steps.
The nonlinear implicit system of algebraic Eqs. (G.1) is iteratively

solved by means of the Newton-Raphson method at each time level.
Specifically, defining M as the number of independent variables mul-
tiplied by the number of spatial grid points, Eq. (G.1) can be recast
into with the vector of residuals and
the discrete representation of y. To obtain the distribution of at time

minimization approaches based on Newton’s method iteratively
find an updated solution from the previous
state by calculating the Newton step
where the subscript {k} refers to a sub-implicit iteration within the
time-level advancement, and is the Jacobian matrix.
In this way, the norm of the residuals, is reduced in every
iteration. At the beginning of each time step, is initiated with the
solution of the previous time level to efficiently start the iterative
process that provides .

Taking the full Newton step may not decrease the resid-
ual. This is the case, for example, when the solution state is not close
enough to the minimum where the quadratic convergence behavior
of the Newton method is achieved. The utilization of which is
constructed from local derivatives, only guarantees that r decreases
at the starting point of the Newton step, but not necessarily all the
way. Therefore, to ensure that the Newton iteration reduces the resid-
ual, the updating step is premultiplied by a factor as

with . Given that is
a local direction of descent, the full Newton step, i.e., is
tested first; this will lead to quadratic convergence when is suffi-
ciently close to the minimum. However, if the residual increases, i.e.,

is backtracked along the Newton direc-
tion testing smaller values of until a local minimum is found.
The details of this methodology, which is guaranteed to efficiently de-
crease the residual norm, are fully described in Ch. 6 of Ref. [178].

An important piece of the solution methodology is the efficient and
accurate calculation of at each sub-iteration of the Newton-Raph-
son solver. In an ideal scenario, the best option would be to analyt-
ically derive the expressions for all the terms in the Jacobian ma-
trix such that only analytical evaluations of functions are needed to
compute at runtime. This strategy would typically provide the
most accurate and computationally efficient calculation of the Ja-
cobian, which is important since the complexity of evaluating

(F.42)

(F.43)

(F.44)

(F.1)

(F.2)
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scales with its size as M3. However, such approach is not optimal for
transcritical flows due to the complex relations between the indepen-
dent variables and the residual expressions involving standard and dif-
fuse-interface fluxes, and real-gas thermodynamic functions. Instead,
a practical solution is to approximate the terms of with finite differ-
ences. Similarly to most Jacobian-based solvers [177,178], this work
utilizes first-order forward finite differences [175] to approximate the
terms of the Jacobian matrix as it provides a good balance between ac-
curacy and computational cost, whereas the inverse of the Jacobian is
calculated by means of a lower-upper (LU) decomposition.

G2. Numerical considerations for cases involving equilibrium
isothermal bicomponent systems

In isothermal cases, the solver used in this study integrates an un-
steady formulation that simplifies to that in Table 5 in steady state.
In particular, the code integrates the mechanical equilibrium condi-
tion (107) and relaxes a convectionless species conservation Eq. (46)
to the steady state. Correspondingly, corresponds to the residual
versions of these two equations. The boundary conditions away from
interfaces correspond to phase-equilibrium composition as given by
Eqs. (109) and (110). The resulting formulation, which is summa-
rized in Table G.1, is discretely solved on uniform 1D meshes with
approximately 50–75 grid points per interface thickness. The vector

is composed of the independent variables ρ and YF, whereas P is
a dependent function of ρ and YF through the equation of state (14).
Since the transient terms become zero at equilibrium conditions, the
steady state solutions are independent from the initial distributions.
However, to accelerate the convergence of the calculations, ρ and YF
are initialized following hyperbolic-tangent profiles with width val-
ues estimated by the scalings introduced in Section 4.4. Once the sys-
tem has been initialized, the discrete equations are integrated in time
by means of the BDF2 scheme (G.1) until a steady state solution is
obtained. This final state is defined as the distribution of ρ and YF
for which the solution does not change in time below a user-speci

Table G.1
Dimensional formulation integrated numerically by the solver for transcritical interfaces
in isothermal bicomponent systems. Pseudo-time variations are included in the solver to
relax the solution to the equilibrium steady state that satisfies the formulation in Table 5.
(‡) The steady solution of the problem is independent of the binary diffusion coefficient.

Conservation equations
Mechanical equilibrium

Fuel species

Transport fluxes
Standard (species)

Interfacial (species)

Boundary conditions
Phase-equilibrium

composition

Supplementary expressions (see Appendix B, Appendix C, and Appendix F for
details)

Equation of state Eq. (14),
Coefficients of the

equation of state
Eqs. (212), and (C.10)-(C.12),

Gradient-energy
coefficient

Eqs. (23), (C.17), and (C.18),

Binary diffusion
coefficient‡

Eq. (F.36),

Thermodynamic
relations

Eqs. (213), (214), (B.20), (B.21), (C.43), and (C.47).

fied threshold in the infinity-norm sense. The threshold utilized in the
calculations presented in this work is .

G3. Numerical considerations for cases involving non-isothermal
bicomponent systems

The non-equilibrium formulation integrated by the solver for tran-
scritical interfaces in non-isothermal bicomponent systems is summa-
rized in Table 8. It involves the time evolution of ρ, vn, P, YF, E, and T.
However, to reduce the computational complexity, the number of vari-
ables integrated implicitly in time is reduced to ρ, YF, and T by notic-
ing that P is a function of ρ, T and YF through the equation of state
(14), and that the total energy E is a function of ρ, vn, YF, and T through
Eq. (48). In addition, vn can be calculated from ρ at every time level
by advancing the continuity equation from the symmetry axis, where

. The vector is the residuals of momentum, species, and to-
tal-energy conservation equations, whereas is the discrete vector
of independent variables ρ, YF, and T. Once the distributions of these
independent variables are initialized, the full solution state at t = 0 is
evaluated and the discrete system of equations is advanced in time fol-
lowing the BDF2 scheme.

The numerical solutions are obtained by integrating the system of
equations in Table 8 in the domain which is dis-
cretized by 250 grid points on a stretched mesh [179]. The calculations
start with time steps of order . As the interface broad-
ens, the solver continuously increases Δt by satisfying the stability cri-
terion [180], where Δn is the time-step ratio defined

in Eq. (G.2). However, if more than five sub-iterations of the New-
ton-Raphson solver are required to converge the solution at a given
time level, the time-step size is frozen at the subsequent implicit iter-
ation of the system, thereby giving . This constraint optimizes
the computational performance of the solver by balancing the benefits
of larger Δt with the longer wall-clock times typically required to con-
verge the solution. The resulting evolution of the time-step size is such
that Δt is of order for most of the remainder of the cal-
culation. Downstream of the region where the interface vanishes, the
time-step size increases to values of order .
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