

TREBALL FINAL DE GRAU

TÍTOL DEL TFG: Navegació autònoma per quadròpters voladors usant

VSLAM i intel·ligència artificial.

TITULACIÓ: Enginyeria tècnica aeronàutica, especialitat Aeronavegació

AUTOR: Pere Coll Fernández

DIRECTOR: Juan López Rubio

DATA: 04/08/2020

Introduction 1

Títol: Navegació autònoma per quadròpters voladors usant VSLAM.

Autor: Pere Coll Fernández

Director: Juan López Rubio

Data: 04/08/2020

Resum

Quan es tracta de robots que es desplacen, hi ha un gran inconvenient en la
navegació autònoma, ja que afegir el sentit de la vista a una màquina pot ser
molt complicat. Hi ha altres sensors que poden ajudar a un robot a interactuar
amb l’entorn, com els sensors de distància d'ultrasons, utilitzats per evitar
col·lisions amb objectes o sensors de pressió, per a conèixer l’altura del robot.
A més, els mètodes de navegació amb GPS poden ser molt útils per gestionar
els moviments del robot en un espai obert de manera més o menys precisa.

Tanmateix, per a l'aplicació en interiors on el senyal GPS és deficient o
inexistent, hem de confiar plenament en les dades dels nostres sensors. Un
sensor que, per a aquest projecte, serà una càmera 2D sense cap informació
de profunditat.

En aquest document estudiarem el Sistema LSD-SLAM amb integració de la
tecnologia ROS. Totes les proves es realitzaran usant el simulador Gazebo, en
un espai virtual. Tots els procediments seguits en aquest projecte han sigut
provats en Ubuntu 16.04.

Al llarg d’aquest document es descriuen tots els passos seguits per instal·lar i
configurar la tecnologia ROS, juntament amb el simulador esmentat
anteriorment i el sistema LSD-SLAM. A més a més, es duran a terme unes
proves de vol en espais interiors i exteriors on comprovarem l’efectivitat de
l’algorisme. Aquesta serà quantificada i comparada entre els dos escenaris.

Tots els paquets necessaris per poder reconstruir el projecte els podeu trobar a
les referències del mateix.

Introduction 3

Title: Autonomous navigation for flying quadcopters using VSLAM.

Author: Pere Coll Fernández

Director: Juan López Rubio

Date: 04/08/2020

Overview

When it comes to moving robots, there is a major drawback in autonomous
navigation, as adding the sense of sight to a machine can be very complicated.
There are other sensors that can help a robot interact with the environment,
such as ultrasonic distance sensors, used to prevent collisions with objects or
pressure sensors, to know the height of the robot. In addition, GPS navigation
methods can be very useful for managing robot movements in an open space
more or less accurately.

However, for indoor applications where the GPS signal is deficient or non-
existent, we must fully rely on the data from our sensors. A sensor that, for this
project, will be a 2D camera without any depth information.

In this paper we will study the LSD-SLAM System with integration with ROS
technology. All tests will be performed using the Gazebo simulator, in a virtual
space. All procedures followed in this project have been tested on Ubuntu
16.04.

This document describes all the steps to install and configure ROS technology,
along with the aforementioned simulator and the LSD-SLAM system. In
addition, flight tests will be carried out indoors and outdoors where we will
check the effectiveness of the algorithm. This will be quantified and measured
between the two scenarios.

All the packages needed to be able to rebuild the project can be found in the
references.

Introduction 5

INDEX

CHAPTER 1. INTRODUCTION AND OBJECTIVES ... 9

1.1. Introduction ... 9

1.2. Objectives .. 9

CHAPTER 2. INITIAL DESCRIPTION ... 12

2.1. The rise of the UAVs .. 12

2.2. Visual Odometry (VO) .. 14

2.3. The beginning of the SLAM techniques ... 15

2.4. The Robot Operating System (ROS) ... 16

2.4.1. Description .. 16

2.4.2. Ubuntu Installation .. 18

CHAPTER 3. WORKING ENVIRONMENT .. 20

3.1. Gazebo ... 20

3.1.1. Description .. 20

3.1.2. Integration with ROS ... 21

3.1.3. Installation Commands .. 21

3.2. The Parrot AR drone .. 24

3.2.1. Description .. 24

3.3. AR drone Implementation for Gazebo .. 26

3.4. ROS development Studio .. 30

CHAPTER 4. THE LSD-SLAM TECHNOLOGY .. 31

4.1. LSD-SLAM: Large Direct Monocular SLAM .. 31

4.1.1. Description .. 31

4.1.2. The LSD-SLAM Algorithm ... 31

4.1.3. LSD-SLAM for ROS Kinetic ... 33

4.1. LSD-SLAM running and testing .. 34

4.1.1. Simulation Steps ... 34

4.2. Testing in a Simulated Environment ... 37

4.2.1. The Word Scale Ambiguity Problem .. 37

4.2.2. Path and environment setup .. 40

4.2.3. Simulation Results .. 43

4.3. Results ... 47

4.3.1. Performance Analysis ... 47

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 50

5.1. Conclusions ... 50

5.2. Future Work ... 51

BIBLIOGRAPHY .. 52

Introduction 7

LIST OF FIGURES

Illustration 1 - Reaper UAV ... 12

Illustration 2 - Control room for the Reaper Drone .. 12

Illustration 3 - Phantom 4 Pro design ... 13

Illustration 4 - Visual Odometry Visualization ... 14

Illustration 5 - Google driverless car or Waymo .. 15

Illustration 6 - Robot Operating System (ROS) logo ... 16

Illustration 7 - Gazebo Simulator .. 20

Illustration 8 - Empty Gazebo Simulation.. 22

Illustration 9 - Available ROS topics ... 23

Illustration 10 - Parrot AR done 2.0 with indoors configuration 24

Illustration 11 - All parts of the AR drone 2.0 .. 25

Illustration 12 - Directory tree structure at this point for our workspace 27

Illustration 13 - Gazebo Simulation with the Ardrone .. 28

Illustration 14 - Teleop keyboard control keys .. 29

Illustration 15 - ROS development studio interface .. 30

Illustration 16 - Block diagram showing the LSD-SLAM algorithm 32

Illustration 17 - LSD-SLAM obtained point cloud .. 36

Illustration 18 - Simulated environment .. 36

Illustration 19 - Scaling factor problem visualization ... 37

Illustration 20 - Height data comparison vs IMU data and vSLAM system 1. ... 38

Illustration 21 - Height data comparison vs IMU data and vSLAM system 2. ... 39

Illustration 22 - Height data comparison vs IMU data and vSLAM system in

different environment... 39

Illustration 23 - Experimental path 1 ... 40

Illustration 24 - Experimental path 2 ... 40

Illustration 25 - Experimental path 3 .. 40

Illustration 26 - Test Environment 1: Outdoors Scenario 42

Illustration 27 - Test Environment 2: Indoors Scenario 42

Illustration 28 - Path 1 results (3d view).. 44

Illustration 29 - Path 1 results (x-y view) ... 44

Illustration 30 - Path 2 results (3d view).. 45

Illustration 31 - Path 2 results (x-y view) ... 45

Illustration 32 - Path 3 results (3d view).. 46

Illustration 33 - Path 3 results (x-y view) ... 46

Ilustration 34 - LSD-SLAM system mapping and tracking visualization 47

Illustration 35 - Mean Absolute Deviation Formula ... 47

Illustration 36 - MAD error comparison (m) ... 48

Illustration 376 – Max error distance comparison (m) 49

Introduction 9

CHAPTER 1. INTRODUCTION AND OBJECTIVES

1.1. Introduction

Sight or vision is probably one of the most relevant senses when talking about
how humans interact with the environment. Especially when walking or moving,
having an image of the surrounding area will be crucial for evaluating not only
our position, but also the next movements that we need to perform to complete
a certain objective.

When it comes to moving robots there is a big challenge in autonomous
navigation, as adding sight to a machine can be very challenging. There are
other sensors that can help a robot interact with the environment such as
ultrasonic distance sensors, used to avoid collisions with objects, or pressure
sensors, to know the robot height. Also, methods as GPS guidance can be very
useful when managing the robot’s movements in an open space area in a more
or less accurate way.

However, for indoors application where there GPS signal is poor or inexistent,
we need to fully rely on our sensors data. A sensor, that for this project is going
to be a camera without any depth information, just the plane pixel data.

All the testing and implementations will be done using a virtual environment in
Gazebo simulator and using ROS technology. All the procedures and steps
followed in this project have been tested in Ubuntu 16.04.

1.2. Objectives

The main objective of this project is to research and implement a Visual Slam
system called LSD-SLAM and analyse its viability for the use in drones for
autonomous navigation in indoors space. Also, it will be studied if the use of
simulated environments could be a good option for demoing and learning about
the self-navigation in drones.

The task of processing and tracking video frames is commonly a very power
consuming task and takes lots of processing time. The chosen SLAM system is
one of the lightest available and therefore can be used in smaller drones. This
make it even more attractive for indoors navigation, as the drone may need to
fly through tiny areas.

Another important objective for the project is to evaluate the SLAM system in
indoors and outdoors environments. This way it will be possible to numerically
determine the algorithm precision in both environments and obtain conclusions
about the impact of having more and closer objects or facing an open space.

The installation of all the technologies used in the project may sometimes be
difficult. Building an environment that will work with all the programs needed will
also be a challenge. It will be explored the best solution for the implementation
of ROS technologies along with the simulator and the SLAM system.

This project will also document all the steps and procedures needed to install
and setup the working environment. It will also be explained the usage of the
components of the system.

12 Autonomous navigation for flying quadcopters using VSLAM

 CHAPTER 2. INITIAL DESCRIPTION

In this chapter we will be taking about the concepts needed to understand the
project. We will go through the evolution of the drones, we will introduce the
Visual Odometry concept and the SLAM techniques. Finally, we will have a look
into the Robot Operating System.

2.1. The rise of the UAVs

Like many other current technologies, the reason why the UAV’s were
developed was for military purposes. This new technology led to the creation of
the quadcopters, that nowadays anybody can own as a toy or experimental tool
for a relatively small amount of money.

Illustration 1 - Reaper UAV

The word UAV means Unmanned Aerial Vehicle, which can be driven
autonomously or remotely piloted by one or more operators. This is very useful
and has many functionalities as surveilling war areas with dangerous access or
launching missies without risking the life or the aircraft pilot.

Illustration 2 - Control room for the Reaper Drone

Introduction 13

As mentioned above, the fast technology evolution has brought these vehicles
to evolve to a commercial use, developing small multirotor vehicles such as the
parrot AR drone family [1], that is a quadcopter with four motors mainly
designed for development purposes, or the Phantom family [2], designed for
high quality footage.

Illustration 3 - Phantom 4 Pro design

Nowadays flying quadcopters are used for many applications: from sending
medical equipment to areas with difficult access, to recording videos of
ourselves doing sport. In this project we will be looking at flying quadcopters as
flying cameras, because we will be using them as another sensor for the robot.

When referring to indoor flight, those robots can help analysing the structure of
a building after a natural disaster hits, mapping buildings inside for architecture,
planning factories space distribution… among many others. All those tasks
have a thing in common: they require a skilled human pilot controlling the robot
at all times.

In this project we will be looking SLAM techniques in order to improve the flying
autonomy of these quadcopters in indoor flight and relieve stress from the pilot.

14 Autonomous navigation for flying quadcopters using VSLAM

2.2. Visual Odometry (VO)

Visual Odometry is the use of a camera to estimate its position and orientation
in real time by observing a sequence of images of its environment. This has a
wide variety of applications in robotics and it was first introduced for planetary
rovers operating in Mars.

In navigation, Odometry is used to estimate the position of the vehicle over time
by analysing the data from the motion sensors. The sensors need to be very
accurate and well calibrated in order to get a proper positioning. For large
periods of time this positioning method can lead to large errors due to the
integration of velocity over time.

Illustration 4 - Visual Odometry Visualization

The word Odometry has been taken from the Greeks meaning “Route
Measure”.

As we will be using visual Odometry for this project we need to look into
different types of data sensors, in our case cameras. In recent years the VO
methods proposed can be divided into monocular or stereo cameras. A stereo
camera such as an RGB-Depth camera has a sensitive device that provides the
depth information about an image. A monocular camera returns colour
information within each pixel.

Introduction 15

2.3. The beginning of the SLAM techniques

The Simultaneous Location and Mapping (SLAM) techniques aim to evaluate
the state of a robot equipped with the on-board sensors, while building and
updating a 3D map of the environment. This process can run in real time or
using datasets. SLAM techniques are very useful on spatial missions, undersea
or underground explorations and indoors navigation.

The state of the robot is described by its pose, composed by the position and
orientation although there may also be additional parameters such as the linear
or angular velocity. The 3D map is created by tracking the corners of the objects
and landmarks [3].

A huge challenge when working with monocular cameras is the estimation of
the world scale, as it cannot be observed and will drift all the time creating an
important source of error. On the other side, this leads to an important
advantage, which is that no matter the size of the environment you are working
in, allowing it to work in small rooms or in large-scale outdoors scenarios. It’s
important to notice that stereo cameras have a limited range, making it useless
for large environments.

Illustration 5 - Google driverless car or Waymo

In this project, as we will be looking on camera sensors the SLAM is going to be
visual (vSLAM) although it can also be accomplished by using distance
sensors. A very interesting application for vSLAM is augmented reality, as it’s
becoming very popular in the mass-market.

16 Autonomous navigation for flying quadcopters using VSLAM

2.4. The Robot Operating System (ROS)

The robot Operating System is a flexible framework for writing robot software.
It’s important to say that ROS is not a real operating system as it runs on top of
a Linux Ubuntu. It was developed in 2007 in the Artificial Intelligence laboratory
in Stanford and has continuously been under development. In the following
pages we will see some definitions and the needed steps for its installation.

2.4.1. Description

ROS technology offers a set of libraries and tools to help software developers
create robotics applications. It is one of the pioneer Multi-Robot Systems (MRS)
that allows the implementation of multiple robots to perform certain tasks
together. ROS environment is so flexible that includes multiple platforms, coding
languages, compilers and many libraries developed by investigators. All it’s
open source so any developer can use and modify them in order to improve or
create new features. This way, ROS technology is in constant growth.

Due to the constant expansion of ROS, there are many versions available.
Some of the latest are:

- ROS melodic (from May, 2018)
- ROS lunar (from May, 2017)
- ROS kinetic (from May, 2016)
- ROS indigo (from July, 2014)

It is important to mention that ROS license in under BSD, which means that it
allows commercial or non-commercial use, making it very interesting for single
developers or companies.

Illustration 6 - Robot Operating System (ROS) logo

To better understand how this technology works we will look through some
basic concepts about ROS features.

Introduction 17

- Package: The ROS software is organized in packages. These packages

would be what it’s called projects for common programming languages. A
package may contain ROS nodes, configuration files, datasets, ROS-
independent library or anything that constitutes a useful module [4]. The
packages can be organized as stacks and can be easily downloaded from
GitHub repositories and installed as you can see below:

cd ~/catkin_ws/src

git clone https://github.com/tum-vision/tum_simulator.git

cd ..

catkin_make

- Node: A node is an executable file within a package. ROS has been

designed to use multiple nodes simultaneously to control the robot. Nodes
communicate with other nodes using a client library and can publish or
subscribe a topic. As an example, there is a node that controls the camera
of the robot.

The nodes will be the processes that will perform all the computations. ROS
nodes aim to build large process with many functionalities split into small
and simple processes. This division also helps in being able to distribute the
functionalities among different computers in the same system.

- Topic: As said above the nodes can publish or subscribe to a topic. The
topics are the channel information between nodes, that allow identifying the
message and generating the interactions between nodes. For example, the
topic /AR drone/front/camera_info, would emit a topic which would be the
camera specifications.

- Message: The information emitted by a node that is listened by one or more

nodes. The message channel is the topic mentioned above.

The information between nodes is unidirectional, therefore for a proper
communication the message type from the publisher and subscriber must
be the same.

In order to start the server and client to allow communication between nodes we
need to run the ROS master. This provides naming and registration for all the
nodes in the ROS server. This will allow the nodes locate one to each other.

18 Autonomous navigation for flying quadcopters using VSLAM

2.4.2. Ubuntu Installation

In this section we will see how to install ROS kinetic in Ubuntu 16.04. It’s
important to notice that kinetic will only work with Ubuntu 15 (Wily) and 16
(Xenial).

First, we need to set up the source.list in order to allow the ROS packages from
the ROS server. The following command feds the source.list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release

-sc) main" > /etc/apt/sources.list.d/ros-latest.list'

The next step will be to set the keys, to make the repository trusted by Ubuntu.

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --

recv-key 0xB01FA116

To install we need to make sure we have the latest version of all Ubuntu
packages.

sudo apt-get update

Now, we can download and install ROS, which in our case will be Kinetic full
desktop version. This may take a while to install.

sudo apt-get install ros-kinetic-desktop-full

This will install the most important ROS packages. The installation of ROS is
over, but there are few more steps that will be useful in the future.

In order to install dependencies for ROS packages we need to initialize rosdep
as follows:

sudo rosdep

init rosdep update

It is also very convenient to have the terminal automatically set ROS variables
whenever we open it. To do that we will run:

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

Introduction 19

And to finish, we need to install some more programs in order to be able to build
ROS packages we will need in the future.

sudo apt-get install python-rosinstall python-rosinstall-generator

python-wstool build-essential

As we have seen, installing and setting ROS basics may take some time and
it’s somehow challenging if you are not familiar with Linux systems. It may also
lead to errors if the steps are not followed carefully.

Each version of ROS is only compatible with few Ubuntu versions, therefore
upgrading from an old ROS version to a new one will mean a complete system
upgrade that will probably lead to several errors.

Also, using ROS technology in a Windows or MAC computer will lead to a very
slow performance and continuous error fixing due to its low development and
compatibility. In addition, there are not many forums to seek help and the traffic
of those is very poor.

20 Autonomous navigation for flying quadcopters using VSLAM

CHAPTER 3. WORKING ENVIRONMENT

The initial intention for this project was to do the testing process using a Parrot
Ardrone 2.0 in the real World, but due to the current country situation due to the
Covid-19 Pandemics will be entirely carried out in a simulator.

This hazard makes the project more tedious as in the simulated world you need
to spend lots of computing time and face many errors making all the
components work with the simulated environment.

In this chapter we will describe and explain the software and its installation
process for the simulation.

3.1. Gazebo

3.1.1. Description

Gazebo is a 3D simulation system that allows testing the behaviour of robots on
a simulated environment. This software also allows to generate robot models
and create virtual worlds of indoors or outdoors scenarios. Its physics engines
and wide variety of sensors allow the user to mimic the real world [5].

Beside all this, the importance of this simulator is in the fact that can be
synchronized with ROS technologies. Therefore, the robots can publish the
information from their sensors in the nodes and receive the commands back
from the computer.

Illustration 7 - Gazebo Simulator

Gazebo inner functioning runs an Open Dynamics System (ODS), which is a
physics engine with a set of high-performance libraries capable of cinematic
and dynamic simulation of rigid bodies. For the 3D rendering uses a motor
called OGRE.

Working Environment 21

Having a visual simulation tool is very important so it’s easier to test the
algorithms and commands sent to the AR drone. Gazebo also contains a
simulation for the Ardrone robot so it won’t be needed to import it from
somewhere else.

3.1.2. Integration with ROS

In order to run ROS technology in gazebo we need to install the meta-package
called gazebo_ros_packages [6] that contains the following sub-packages:

- gazebo_dev: Provides the configuration of the installed Gazebo version and

allows the execution of Gazebo dependencies.

- gazebo_msg: Contains the services (.srv) and messages (.msg) in order to
interact with Gazebo form ROS.

- gazebo_plugins: Groups the plugins to use all the sensors, motors and

dynamic reconfigurations.

- gazebo_ros: Is the package that wraps the Gazebo server and client and
provides the ROS interface for messages, services and configuration.

3.1.3. Installation Commands

The fact that the AR drone 2.0 is already installed in the Gazebo simulator will
make the installation steps easier. Despite, we will look through the installation
commands and setup for Gazebo and its integration with ROS. It’s important to
notice that we will be installing Gazebo version 7, as it’s the only version that
supports LSD-SLAM package along with ROS kinetic.

To start with Gazebo installation, we will follow the same pattern we did in the
ROS install, and we will set up the keys and update the source.list. The
commands are the following:

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-

stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-

stable.list'

And for the keys:

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key

add -

22 Autonomous navigation for flying quadcopters using VSLAM

As in ROS install, once we have made sure that Debian database is up to date,
we can proceed and install Gazebo 7.

sudo apt-get install gazebo7

sudo apt-get install -y libgazebo7-dev

To check proper Gazebo install, we can run this command and Gazebo should
prompt:

gazebo

Illustration 8 - Empty Gazebo Simulation

Now that Gazebo and ROS are installed we can proceed with their integration.
We will need to set our workspace in order to install the packages. To set our
workspace, we will do the following:

mkdir -p ~/simulation_ws/src

cd ~/simulation_ws/src

catkin_init_workspace

cd ~/simulation_ws

catkin_make

We need to source to the setup script as follows:

echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

Working Environment 23

Now we can download the gazebo_ros_packages [6] from GitHub into our
workspace src folder and check and install for any missing dependencies using
rosdep:

cd ~/simulation_ws/src

git clone https://github.com/ros-simulation/gazebo_ros_pkgs.git -b

kinetic-devel

rosdep update

rosdep check --from-paths . --ignore-src --rosdistro kinetic

rosdep install --from-paths . --ignore-src --rosdistro kinetic -y

Once the package is ready, we will proceed to build it with the catkin_make as
follows:

cd ~/simulation_ws/

catkin_make

The installation is over, and it’s time to open gazebo and look for the available
ROS topic in order to confirm a proper install.

rosrun gazebo_ros gazebo

Gazebo should open as before, with now we should see the following available
ROS topics when running rostopic list command:

Illustration 9 - Available ROS topics

24 Autonomous navigation for flying quadcopters using VSLAM

3.2. The Parrot AR drone

In this section we will describe the drone we have selected for this project. The
AR drone has been a great option as it is very affordable in terms of budget, it’s
small, it’s modular and the university owns some of these drones for
development purposes.

Moreover, this drone is compatible with ROS technologies so we will be able to
simulate in Gazebo and add the packages needed for the LSD-SLAM system.

3.2.1. Description

In this project we will be using the Parrot AR drone 2.0 for the simulations [1].
This model series was first shown on 2010 in the International Consumer
Electronics Show with the purpose of civil recreational use. The builder of this
drone is the French Parrot company.

The control of this drone is very simple, as it can be operated by a computer but
also a mobile or a tablet using an app. It communicates with the operator via
WIFI and supports autonomous navigation via GPS.

This model has a configuration of quadcopter (4 electric independent motors)
with a very simple modular structure allowing easy and fast modifications of its
parts. This structure is made of carbon fibre in a cross shape. To protect the
propellers there is a foam structure to cover them that is typically used for
indoor flight.

Illustration 10 - Parrot AR done 2.0 with indoors configuration

Working Environment 25

The weight of the drone in outdoors configuration if of 380g. When the drone is
equipped with the indoors protection the total mass of the robot is of 420g. The
four brush motors have 14.5W power each and are capable of rotating at
28.500 RPM.

As CPU this drone has an ARM microprocessor with preinstalled linux system
and many available sensors. Among these sensors we find two cameras, one
pointing downwards and the other looking in the forwards direction.

The forward camera has a resolution of 720p with 92º lens and can record
video up to 30fps. The camera pointing downwards has a QVAG 60FPS sensor
and it’s mainly used for the stabilization of the drone’s flight and measuring
ground speed.

Apart from the cameras, this robot has an ultrasound sensor pointing
downwards that measures the ground altitude. Other sensors such ad an
accelerometer, magnetometer, pressure sensor and gyroscope are also
included in the drone.

Illustration 11 - All parts of the AR drone 2.0

The battery for this model is of 1000mah or 1500mah, and the approximate
flight time (no matter what battery) is approximately of 12 minutes, depending
on the conditions of the flight.

26 Autonomous navigation for flying quadcopters using VSLAM

3.3. AR drone Implementation for Gazebo

In order to run the AR drone in a Gazebo simulation we will need to install the
following two packages:

AR drone autonomy package [7]:

 Contains the drivers to fly the quadcopter.

Tum Simulator package [8]:

This package contains the simulation for the AR drone 1.0 and 2.0 to run in
the ROS environment using Gazebo Simulator. Contain the following files:

- cvg_sim_gazebo: contains the models for objects, sensors and

quadcopters.
- cvg_sim_gazebo_plugins: contain the plugins for the quadcopter and for

its sensors.
- message_to_tlf: this package creates the ROS node.
- cvg_sim_msgs: contains messages forms for the simulator.

So, with these two packages we will be able to simulate and control an AR
drone flying in different scenarios. To install those packages, we need to move
to the catkin workspace we previously created. Inside that folder we will clone
the two packages form Github. First, we will install the ardrone_autonomy
package.

cd ~/simulation_ws/src

git clone https://github.com/AutonomyLab/ardrone_autonomy

cd ..

rosdep install --from-paths src --ignore-src

catkin_make

After that, we will proceed with the tum_simulator:

cd ~/simulation_ws/src

git clone https://github.com/iolyp/ardrone_simulator_gazebo7

cd ..

catkin_make

https://github.com/AutonomyLab/ardrone_autonomy

Working Environment 27

And finally we will source the environment.

source devel/setup.bash

At this point, our simulation workspace should look like this:

Illustration 12 - Directory tree structure at this point for our workspace

Initial running and testing

Simulations launch commands:

roslaunch <package_name> <world_launch_file>

roslaunch cvg_sim_gazebo ardrone_testworld.launch

With that command the Gazebo simulation should start and, if both packages
are installed correctly, an AR drone 2.0 will appear in the middle of a small
village.

28 Autonomous navigation for flying quadcopters using VSLAM

Illustration 13 - Gazebo Simulation with the Ardrone

- Moving the AR drone commands:

To move the quadcopter in the simulated Gazebo world, we will be looking at
two methodologies although there may be others.

Moving by directly sending the commands to the node:

#take off

rostopic pub -1 /ardrone/takeoff std_msgs/Empty

#move forward

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x:1.0,

y:0.0, z:0.0}, angular: {x:0.0, y:0.0, z:0.0}}'

#land

rostopic pub -1 /ardrone/land std_msgs/Empty

Note here, that by modifying the x, y and z values we can move the AR drone in
any direction. By changing the angular values, we will make the robot turn. In
our case the robot will not turn at any moment, therefore we will only be
changing the linear velocity values in order to move but not rotate.

Working Environment 29

- Moving by using keyboard commands:

We will need to install the teleop_twist_keyboard application thought the “apt”
command:

sudo apt-get install ros-kinetic-teleop-twist-keyboard

After that, by interacting with the keyboard the messages will be automatically
sent to the correspondent node. Run the keyboard with the following command:

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

See the available controls below:

Illustration 14 - Teleop keyboard control keys

30 Autonomous navigation for flying quadcopters using VSLAM

3.4. ROS development Studio

Setting up ROS can be a very tricky process due to its long installation process
and its lack of integrity with other installed packages versions. In addition, there
is not much information in the Internet about how to solve those errors [9]. In
addition, running a real time simulator requires a very powerful device, which
makes the task not accessible to everyone.

Therefore, after attempting to install all the required programs and facing with
many errors and extremely poor performance we decided to use a service
called the ROS development studio [10]. This is a free online platform that hosts
an Ubuntu server with preinstalled ROS software. You can create your account
and test your projects with a powerful CPU. It is a very user-friendly platform
that incorporates tools such as Gazebo for simulation visualization, IDE, shell…
among others.

The ROS version chosen for this project is the Kinetic, which runs with an
Ubuntu 16.04. This is because for the last ROS version (Melodic), the LSD-
SLAM packages are not updated. For previous versions of ROS the packages
are outdated.

This environment has been developed by the company The Construct Sim
which is formed by a group on engineers located in Barcelona.

Illustration 15 - ROS development studio interface

Working Environment 31

CHAPTER 4. The LSD-SLAM technology

4.1. LSD-SLAM: Large Direct Monocular SLAM

4.1.1. Description

This technology was developed by Jakob Engel, Thomas Schöps and Daniel
Cremers from the Technical University of Munich and presented in the 13th
European Conference on Computer Vision, ECCV 2014, held in Zurich,
Switzerland [11].

This project aims to build a visual SLAM method for monocular cameras, with
the capabilities of building large-scale and consistent maps of the environment
along with the highly accurate pose estimation [14].

This method uses the contrast of the images for its functioning. It applies filters
to the obtained image in greyscale. Also, it takes objects geometry information
that can be very useful for augmented reality.

This method represents the world by a number of key frames connected by
position restrictions that can be optimized using an optimization graph.

4.1.2. The LSD-SLAM Algorithm

The LSD-SLAM algorith is divided in three main parts: the tracking, the depth
map estimation and the map optimization. In this section we are going to have a
look at which tasks are performed in each of them.

To initialize the algorithm, the camera needs to have a translational movement
in the first seconds in order to lock a certain depth configuration. In order for the
algorith to obtain a correct depth configuration, it will need to receive more than
one keyframes.

In the image below, we can see the three algorithm modules.

32 Autonomous navigation for flying quadcopters using VSLAM

Illustration 16 - Block diagram showing the LSD-SLAM algorithm

Tracking Module

The tracking module purpose is to try estimate the camera pose with respect to
the current keyframe, using the previous frame for the initialization. Therefore,
this part is constantly tracking the new images obtained by the camera.

Depth Map Estimation

In this part is where a decision between if an image should be taken as a new
keyframe or should be used in order to refine the current keyframe.

This decision is made taking into account two variables: the relative distance
from the current frame and the relative angle to the current frame. If the
weighted sum of both parameters is larger than a certain threshold, then the
image will be taken as a new keyframe.

In the case that the image is taken as a new keyframe it will be needed to
propagate the depth map to the new frame. This is done by projecting the
projecting the points from the previous frame to the new one. After that, some
spatial regularization is done.

In the other hand, the image is used to update the current frame. Therefore,
multiple baseline stereo comparisons will be done where the accuracy is large
enough in order to include then in the previous keyframe.

Map optimization

As each keyframe is scaled in the previous modules, all the keyframes may
have different scale. So, when they are aligned it’s important to take this
different scale into account. This will be accomplished minimizing an error
function.

Working Environment 33

When the keyframe is added into the 3D map, the closest keyframes are used
to detect a loop-close*. The map will be optimized using pose graph
optimization.

* A loop-close primary purpose is to correct the drift that has been accumulated
in the pose calculations along the time, as the visual SLAM or Odometry are
surely accumulating errors overtime. Therefore, using visual recognition, some
places are detected in order to close the loop and match the position with
previous images.

4.1.3. LSD-SLAM for ROS Kinetic

The last package that we need in order to perform the visual Odometry will be
the LSD-SLAM package [12]. It has also been installed via the catkin_make
command. It is important to notice that the repository can be found in the
reference number [12] has been adapted for kinetic version and Ubuntu 16.04,
otherwise there may be several compatibility errors.

With these three packages installed we should be able to run an AR drone
simulation and perform LSD-SLAM in order to generate a 3D map for the
environment and guide the quadcopter.

This package is divided into two sub packages, the lsd_slam_core and the
lsd_slam_viewer. The lsd_slam_core is the one that will execute all the SLAM
calculus while the viewer will display the optional 3D mapping. This process can
be performed in real time or using your own dataset. In our case we will be
interested in the first scenario.

It is important to notice that the LSD-SLAM package needs QT version 4
instead of the default installed version 5.

34 Autonomous navigation for flying quadcopters using VSLAM

4.1. LSD-SLAM running and testing

4.1.1. Simulation Steps

In this section we will see how to run the LSD-SLAM while the live simulation is
running. First of all, we will need to open the simulation as described in the
previous section.

After that we will open the LSD-SLAM viewer with the rosrun command:

rosrun lsd_slam_viewer viewer

This will open a grey window where the 3D point cloud representation will be
displayed.

Next will be to start the lsd_slam_core and feed it with the camera image and
information.

rosrun lsd_slam_core live_slam /image:=<camera_image_topic>

/camera_info:=<camera_info_topic>

In order to see the topics available, we can run the following command while the
simulation is running:

rostopic list

So the command should look like this.

rosrun lsd_slam_core live_slam /image:=/AR drone/front/image_raw

/camera_info:=/AR drone/front/camera_info

The first time you execute this previous command will lead to errors because
the default camera calibration file image dimensions do not fulfill the required.
The dimensions should both be a multiple of 16 in order for the software to
scale it down. Moreover, the camera calibration parameters are not the ones
that match the AR drone 2.0 camera. Therefore, we will need to create a new
calibration file and specify it in the “rosrun” command.

Camera configuration file

This file must contain the following parameters:

#focal lengths (fx, fy), camera optical centers (cx, cy) and lens

distorsion matrix (d, composed by k1 k2 p1 p2)

fx/width fy/height cx/width cy/height d

#camera size in pixels

Working Environment 35

input_width input_height

#camera image settings

"crop" / "full" / "none" / "e1 e2 e3 e4 0"

#output image size in pixels

output_width output_height

In order to obtain those parameters, we need to use a camera calibration
package [13], and calibrate the AR drone monocular camera using a chess-type
board.

As the simulator AR drone 2.0 has known parameters we will be using them for
our simulations. The parameters are the following:

0.50355332 0.894045767 0.494061013 0.509863 0

640 360

crop

400 288

Where there is no lens distortion matrix and image is cropped to two multiple
numbers of 16.

To run this configuration with this specific calibration file we will run:

rosrun lsd_slam_core live_slam /image:=/AR drone/front/image_raw

/camera_info:=/AR drone/front/camera_info

_calib:=<calibration_file_path.cfg>

We will also run the viewer in order to see the live point cloud as we did before
and we will be using the keyboard to move the quadcopter around:

rosrun teleop_twist_keyboard teleop_twist_keyboard.py

After some flying you can obtain results as the following:

36 Autonomous navigation for flying quadcopters using VSLAM

Illustration 17 - LSD-SLAM obtained point cloud

The point cloud above contains a set of points in the space. It is the mapping
result of the contrast points followed by the SLAM system. Each point
represents a solid portion of an element, and a set of points could be
transformed into a solid object. The results of the mapping a relatively accurate
and the solids can be detected easily.

Illustration 18 - Simulated environment

It is important to say that the tracking system is not very good as for turning
movements the camera gets lost very quickly. You need to combine translation
with slow rotation in order for the tracking module not to get lost. Also, as there
is no background in the simulation it’s harder for the LSD-SLAM system to
follow the tracking points.

Working Environment 37

4.2. Testing in a Simulated Environment

4.2.1. The Word Scale Ambiguity Problem

One of the major problems when using monocular cameras for gathering the
environment information is the scale factor problem. The 2D cameras are not
able to obtain the absolute distance of its displacement by just observation
during the translational movement. This has a very clear explanation, as if you
look to a chair without any depth information you will be unable to tell the size of
that chair. Therefore, when calculating your own movement, the scale will be
incorrect.

In order to compute the trajectory these types of systems need to compute the
key points from the images by comparing the features obtained in two
consecutive video frames. As the distance from the key points to the camera is
unknown, the system won’t be able to scale its movement properly.

Illustration 19 - Scaling factor problem visualization

However, there is one possible solution for this problem as we have the IMU
data from the ultrasonic sensor. This sensor is pointing downwards and will be
measuring the real distance in de Z axis. Thanks to that, we can perform a
vertical movement and compare de distance measured by the sensor and by
the LSD-SLAM system.

In order to obtain the scaling factor, we will need to obtain the quotient between
the real height measurement from the ultrasound sensor and the SLAM system
as follows:

38 Autonomous navigation for flying quadcopters using VSLAM

Find below a plot that shows the real height and the LSD-SLAM predicted
height:

Illustration 20 - Height data comparison vs IMU data and vSLAM system 1.

In this particular example the real height (orange color) ranges between 0 and
2.28m, while the LSD-SLAM data only arrives at 0.74m. This would mean a
scaling factor of approximately 3.1. This means that the results obtained by the
visual SLAM system need to be multiplied by a factor of 3.1.

Nevertheless, if this experiment is performed in different simulations the scaling
factor differs significantly from the other simulations. Even with the exact same
simulation is carried out, the scaling factor may be different.

Working Environment 39

Illustration 21 - Height data comparison vs IMU data and vSLAM system 2.

If we have a look to another environment, in wider area where the objects are
further from the camera we can clearly see that the observed scale is even
smaller. In the example below we can see a scaling factor about 20.

Illustration 22 - Height data comparison vs IMU data and vSLAM system in different
environment

Therefore, if we want to get accurate data from the LSD-SLAM system we will
need to perform the Z translational movement in order to compute the proper
scale.

40 Autonomous navigation for flying quadcopters using VSLAM

4.2.2. Path and environment setup

4.3.2.1 The Paths

In order to test the performance of the LSD-SLAM algorithm we will be testing
different paths in an in an outdoors and indoors scenarios.

The paths decided for this experiment will be the following:

Illustration 23 - Experimental path 1

Illustration 24 - Experimental path 2

Illustration 25 - Experimental path 3

Working Environment 41

The chosen paths are all formed by pure translational movement, meaning that
the drone will always be pointing to the same direction without turning in the
corners. This means, that the robot will be moving forward, to the left and right
and backwards.

This way we will avoid losing the track, as we have said before that rotating the
drone within the same position may cause it.

The instructions sent to the drone to reproduce those paths will be simple
directive instructions to move in the desired direction. This will be done
programmatically using an executable batch file.

The maximum speed of the drone will be 0.2 m/s.

See below an example of the intructions file for the second track.

#!/bin/bash

rostopic pub -1 /ardrone/takeoff std_msgs/Empty;

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.0,

y: 0.2, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 20 ; kill

$!

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.0,

y: 0.0, z: 0.2}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 10 ; kill

$!

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.2,

y: 0.0, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 20 ; kill

$!

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.0,

y: -0.2, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 20 ; kill

$!

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: 0.0,

y: 0.0, z: -0.2}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 10 ; kill

$!

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist '{linear: {x: -0.2,

y: 0.0, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 20 ; kill

$!

rostopic pub -1 /ardrone/land std_msgs/Empty;

42 Autonomous navigation for flying quadcopters using VSLAM

4.3.2.2 The Environments

The scenarios chosen for the tests will be the following. Both scenarios were
prebuilt in the ROS packages and it’s implementation is very simple. The first
environment will be the outdoors, with the ardrone facing to a direction where
there are not many objects and data points to track. It’s important to notice that
the objects are far in the distance.

Illustration 26 - Test Environment 1: Outdoors Scenario

The second scenario will be the indoors, where a coffee place has been
chosen. In this environment there are many points to track and the objects are
closer than in the first case.

Illustration 27 - Test Environment 2: Indoors Scenario

Working Environment 43

4.2.3. Simulation Results

In order to analyse the accuracy of the LSD-SLAM method we will need to track
the real position of the drone along with the estimated position obtained by the
VO System.

To obtain those parameters we will need to save the data form the nodes
corresponding to the variables needed. In order to obtain the nodes, we need to
run the simulation with the SLAM System active. Then we will run the following
command to get the list of nodes:

rostopic list

After doing that, we will realise that the nodes we are looking for are the
following:

/ground_truth/state #Real position of the done

/lsd_slam/pose #Estimated position of the LSD-SLAM system

Therefore, we can create two batch executable files that echo the data from the
nodes and save it to a file.

bash -c 'rostopic echo /lsd_slam/pose > test.txt'

bash -c 'rostopic echo /ground_truth/state > test2.txt'

With all this set, we can proceed to perform the tests.

In order to visualise the results, we will plot a 3d plot of both paths and a 2d plot
for the x-y axis field. To do that, a simple python code was made that took into
account the scaling factor and arranged the coordinates at each timestamp.

44 Autonomous navigation for flying quadcopters using VSLAM

The orange line will always represent the real path followed by the quadcopter
while the blue line will be the estimated trajectory computed by the LSD-SLAM
algorithm.

Result Path 1:

Illustration 28 - Path 1 results (3d view)

Illustration 29 - Path 1 results (x-y view)

Working Environment 45

Result Path 2:

Illustration 30 - Path 2 results (3d view)

Illustration 31 - Path 2 results (x-y view)

It’s clear to see that the results obtained in the indoors scenario are more
accurate than the performance in the outdoors case. The precision of the
estimated path is way higher in a closed scenario, where there are more objects
and features to track in a closer distance from the drone.

We can also see that the estimated trajectory is smoother in the indoors case.

46 Autonomous navigation for flying quadcopters using VSLAM

Result Path 3:

Illustration 32 - Path 3 results (3d view)

Illustration 33 - Path 3 results (x-y view)

In this specific case we can see a very important hazard of the SLAM Systems
which is the cumulative error caused by an uncertainty in the beginning of the
tracking process. This problem can be solved by adding known areas in the
environment, where the SLAM System would revaluate the drone position and
mitigate the cumulative errors.

Working Environment 47

4.3. Results

4.3.1. Performance Analysis

In this section we will discuss the results obtained in the different tests
performed in the previous section. In order to have a numerical value for the
precision in each environment we will compute the Mean Absolute Deviation
(MAD) and the maximum deviation value for each case.

Illustration 34 - LSD-SLAM system mapping and tracking visualization

To start, we will have a look at the definition for the MAD to briefly explain how
is calculated.

- The Mean Absolute Deviation: it is a very good way to express the variation

within a dataset. Its value corresponds to the averaged value between all
the absolute errors within a dataset. In our case, the averaged number will
be the real position of the drone given by its navigation data. See the
formula below:

Illustration 35 - Mean Absolute Deviation Formula

48 Autonomous navigation for flying quadcopters using VSLAM

In the formula above, the x represents the drone pose value (x, y or z) that has
been given by the LSD-SLAM system for each time step. The A represents the
real position for the quadcopter, given by the simulation navigation data. The n
states for the number of data points studied in each scenario.

Now we will see the given error for each track and scenario, so we will be able
to evaluate each case:

 Outdoors Environment Indoors Environment

Track 1 (x value) 0.240 0.271

Track 1 (y value) 0.445 0.135
Track 1 (z value) 0.580 0.134

Track 2 (x value) 0.441 0.305

Track 2 (y value) 0.390 0.070
Track 2 (z value) 0.262 0.068

Track 3 (x value) 0.394 0.424

Track 3 (y value) 0.511 0.173

Track 3 (z value) 1.009 0.292

Illustration 36 - MAD error comparison (m)

As expected, the performance of the SLAM algorithm is more precise in the
indoors environment than in the open world environment. This is due to the
number of objects to track: the higher the features to track, the smaller the error
we will obtain.

In the open world scenario there is always the distance problem, where we can
have the blue sky without any possible tracking points. In the case of this
simulation there nothing else behind the near objects, showing an infinite white
wall. Therefore, the algorithm could not track many points what is clearly
reflected in the MAD results.

This problem gets even larger when we talk about cumulative errors, as the
beginning of the tracking is crucial in order not to have them. The fact of having
more objects and in different distances makes it easier to start a more accurate
pose estimation.

Working Environment 49

It can also be interesting to see the maximum deviation for each scenario. See
the values below:

 Outdoors Environment Indoors Environment

Track 1 (x value) 0.696 0.610
Track 1 (y value) 0.844 0.422

Track 1 (z value) 0.96 0.478

Track 2 (x value) 0.775 0.633
Track 2 (y value) 1.127 0.193

Track 2 (z value) 1.029 0.493

Track 3 (x value) 0.995 0.887

Track 3 (y value) 1.718 0.834
Track 3 (z value) 2.202 0.782

Illustration 376 – Max error distance comparison (m)

Again, the values obtained are better in the indoors scenario. However, for
autonomous navigation between small spaces such as going across a door or
navigating along a small corridor, could result in a drone crash.

In order to get smaller navigation values we would need to add waypoints along
the track, where the system could recalibrate its position and mitigate the errors.

So, as overall results, the evaluation of the algorithm in indoors and outdoors
spaces has concluded as it was expected. The algorithm works better in an
indoors scenario. Also, we have learned how to obtain the data from the ROS
nodes in order to represent the flight plan of the drone.

50 Autonomous navigation for flying quadcopters using VSLAM

CHAPTER 5. Conclusions and Future Work

5.1. Conclusions

Along the project it has been used a Parrot AR drone quadcopter with ROS
integration and Gazebo Simulator. All the tests and results have been obtained
by using the simulated environment. The algorithm used for the position
estimation has been the LSD-SLAM.

The first thing to notice when working with the Robot Operating System is the
complicity on its installation. It’s lack of integration with another operating
system rather than Linux makes it harder to implement. Also during the setup
it’s very common to hit errors, due to different versions on the Ubuntu
preinstalled packages, or outdated ROS packages. The task of setting up the
ROS, the gazebo simulator and the LSD-SLAM system has been one of the
toughest parts of the project.

The use of RDS Studio has been a great tool for the research, avoiding the poor
performance of my laptop. The 8 free hours a day are more than enough to test
and implement your simulations. The LSD-SLAM package is extremely out-to-
date. It uses old package versions which will make you face many errors.

Leaving to a side the difficulties encountered in the installation process we can
conclude that the use of simulated environment for testing is a great tool,
especially if you cannot access a drone for any reason.

The data obtained from the indoors and outdoors tests show the expected
results: the algorithm is more accurate in closed spaces where there are closer
objects. Although being more accurate, the difference between the real and the
predicted trajectory is too large for the robot to have accurate navigation
through doors, for example.

An important problem of the LSD-SLAM is the loss of tracking when turning or
heavily shaking. The algorithm gets completely lost when that happens and the
re-tracking feature struggles to get the tracking back. This gets worst in
simulations, as the control of the drone is usually even trickier.

All the steps followed during the project have been described in order to make it
easy to reproduce in the future. All the packages with the proper version are
linked in the references so there are no errors in future simulations.

Working Environment 51

5.2. Future Work

This project opens many positions for upcoming and future work as the field of
the VO and the SLAM algorithm is very recent. Below I will propose some ideas
for future projects:

- The LSD-SLAM tracking works with a certain precision when the drone is

performing a translation movement but gets lost easily when turning.
Therefore, it could be studied the angular ratio for rotations in order not to
lose the track, along with trying to improve the algorithm in order to be
capable of improving accuracy when turning. That would be very interesting
as it is a big issue in the studied algorithm.

- The autonomous navigation for aerial robots is nowadays very unexplored,

as robots are commonly piloted by an operator. Combining the LSD-SLAM
system mapping with solid reconstruction the robot should be able to avoid
collision with the walls and be able to travel from a point A to a point B on its
own. Studying the possibilities of self-navigation using this SLAM system
can also be a very interesting topic to do some research on.

- The LSD-SLAM system studied uses a simple 2D camera to map and track

the drone position. It could also be a very attractive project doing a study
about the differences in building and implementing a monocular SLAM
system vs a stereo system. Doing some research on computational power
used, size of the drone, cost of the equipment, accuracy of both systems…

- The SLAM systems can also be mainly used mapping purposes. There are

applications such as game development or scene reconstruction where
being able to create a 3D design based on reality can be very useful. Doing
some research in which SLAM technique is better for this purpose could
also be an interesting project.

52 Autonomous navigation for flying quadcopters using VSLAM

Bibliography

[1] Parrot AR done 2.0 official site https://www.parrot.com/es/drones/parrot-

AR drone-20-elite-edition

[2] Phantom 4 Pro official site https://www.dji.com/es/phantom-4-pro-

v2?site=brandsite&from=landing_page

[3] Waymo or Google Self-driving car https://waymo.com/

[4] ROS Organization “ROS file system concepts”, http://wiki.ros.org/ .

[5] Gazebo Simulator Page http://gazebosim.org/

[6] Gazebo Integration with ROS https://github.com/ros-

simulation/gazebo_ros_pkgs

[7] AR drone Autonomy Package https://github.com/AutonomyLab/AR

drone_autonomy

[8] Tum AR drone Package

https://github.com/iolyp/ardrone_simulator_gazebo7

[9] ROS help forum https://answers.ros.org/questions/

[10] ROS Development Studio, https://www.theconstructsim.com/rds-ros-

development-studio/

[11] Engel, J., Sturm, J., Cremers, D. “Semi-dense visual Odometry for a

monocular camera.”, Intl. Conf. on Computer Vision (ICCV), (2013).

[12] LSD-LSAM ROS Kinetic https://github.com/kevin-george/lsd_slam.git

[13] Camera Calibration for AR drone

http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration

[14] LSD-SLAM: Large-Scale Direct Monocular SLAM (J. Engel, T. Schöps,

D. Cremers), ECCV 2014.
https://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf

https://www.parrot.com/es/drones/parrot-AR%20drone-20-elite-edition
https://www.parrot.com/es/drones/parrot-AR%20drone-20-elite-edition
https://www.dji.com/es/phantom-4-pro-v2?site=brandsite&from=landing_page
https://www.dji.com/es/phantom-4-pro-v2?site=brandsite&from=landing_page
https://waymo.com/
http://wiki.ros.org/
http://gazebosim.org/
https://github.com/ros-simulation/gazebo_ros_pkgs
https://github.com/ros-simulation/gazebo_ros_pkgs
https://github.com/AutonomyLab/AR%20drone_autonomy
https://github.com/AutonomyLab/AR%20drone_autonomy
https://github.com/iolyp/ardrone_simulator_gazebo7
https://answers.ros.org/questions/
https://www.theconstructsim.com/rds-ros-development-studio/
https://www.theconstructsim.com/rds-ros-development-studio/
https://github.com/kevin-george/lsd_slam.git
http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration
https://vision.in.tum.de/_media/spezial/bib/engel14eccv.pdf

Working Environment 53

