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Resum 

 

Quan es tracta de robots que es desplacen, hi ha un gran inconvenient en la 
navegació autònoma, ja que afegir el sentit de la vista a una màquina pot ser 
molt complicat. Hi ha altres sensors que poden ajudar a un robot a interactuar 
amb l’entorn, com els sensors de distància d'ultrasons, utilitzats per evitar 
col·lisions amb objectes o sensors de pressió, per a conèixer l’altura del robot. 
A més, els mètodes de navegació amb GPS poden ser molt útils per gestionar 
els moviments del robot en un espai obert de manera més o menys precisa. 
 
Tanmateix, per a l'aplicació en interiors on el senyal GPS és deficient o 
inexistent, hem de confiar plenament en les dades dels nostres sensors. Un 
sensor que, per a aquest projecte, serà una càmera 2D sense cap informació 
de profunditat.  
 
En aquest document estudiarem el Sistema LSD-SLAM amb integració de la 
tecnologia ROS. Totes les proves es realitzaran usant el simulador Gazebo, en 
un espai virtual. Tots els procediments seguits en aquest projecte han sigut 
provats en Ubuntu 16.04. 
 
Al llarg d’aquest document es descriuen tots els passos seguits per instal·lar i 
configurar la tecnologia ROS, juntament amb el simulador esmentat 
anteriorment i el sistema LSD-SLAM. A més a més, es duran a terme unes 
proves de vol en espais interiors i exteriors on comprovarem l’efectivitat de 
l’algorisme. Aquesta serà quantificada i comparada entre els dos escenaris. 
 
Tots els paquets necessaris per poder reconstruir el projecte els podeu trobar a 
les referències del mateix. 
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Overview 

 
When it comes to moving robots, there is a major drawback in autonomous 
navigation, as adding the sense of sight to a machine can be very complicated. 
There are other sensors that can help a robot interact with the environment, 
such as ultrasonic distance sensors, used to prevent collisions with objects or 
pressure sensors, to know the height of the robot. In addition, GPS navigation 
methods can be very useful for managing robot movements in an open space 
more or less accurately. 
 
However, for indoor applications where the GPS signal is deficient or non-
existent, we must fully rely on the data from our sensors. A sensor that, for this 
project, will be a 2D camera without any depth information. 
 
In this paper we will study the LSD-SLAM System with integration with ROS 
technology. All tests will be performed using the Gazebo simulator, in a virtual 
space. All procedures followed in this project have been tested on Ubuntu 
16.04. 
 
This document describes all the steps to install and configure ROS technology, 
along with the aforementioned simulator and the LSD-SLAM system. In 
addition, flight tests will be carried out indoors and outdoors where we will 
check the effectiveness of the algorithm. This will be quantified and measured 
between the two scenarios. 
 
All the packages needed to be able to rebuild the project can be found in the 
references. 
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CHAPTER 1. INTRODUCTION AND OBJECTIVES 

 

1.1. Introduction 

 
Sight or vision is probably one of the most relevant senses when talking about 
how humans interact with the environment. Especially when walking or moving, 
having an image of the surrounding area will be crucial for evaluating not only 
our position, but also the next movements that we need to perform to complete 
a certain objective.  
 
When it comes to moving robots there is a big challenge in autonomous 
navigation, as adding sight to a machine can be very challenging. There are 
other sensors that can help a robot interact with the environment such as 
ultrasonic distance sensors, used to avoid collisions with objects, or pressure 
sensors, to know the robot height. Also, methods as GPS guidance can be very 
useful when managing the robot’s movements in an open space area in a more 
or less accurate way. 
 
However, for indoors application where there GPS signal is poor or inexistent, 
we need to fully rely on our sensors data. A sensor, that for this project is going 
to be a camera without any depth information, just the plane pixel data.  
 
All the testing and implementations will be done using a virtual environment in 
Gazebo simulator and using ROS technology. All the procedures and steps 
followed in this project have been tested in Ubuntu 16.04. 
 
 
 

1.2. Objectives 

 
The main objective of this project is to research and implement a Visual Slam 
system called LSD-SLAM and analyse its viability for the use in drones for 
autonomous navigation in indoors space. Also, it will be studied if the use of 
simulated environments could be a good option for demoing and learning about 
the self-navigation in drones.  
 
 
The task of processing and tracking video frames is commonly a very power 
consuming task and takes lots of processing time. The chosen SLAM system is 
one of the lightest available and therefore can be used in smaller drones. This 
make it even more attractive for indoors navigation, as the drone may need to 
fly through tiny areas. 
 
 
 
 



  

Another important objective for the project is to evaluate the SLAM system in 
indoors and outdoors environments. This way it will be possible to numerically 
determine the algorithm precision in both environments and obtain conclusions 
about the impact of having more and closer objects or facing an open space. 
 
The installation of all the technologies used in the project may sometimes be 
difficult. Building an environment that will work with all the programs needed will 
also be a challenge. It will be explored the best solution for the implementation 
of ROS technologies along with the simulator and the SLAM system. 
 
This project will also document all the steps and procedures needed to install 
and setup the working environment. It will also be explained the usage of the 
components of the system. 
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 CHAPTER 2. INITIAL DESCRIPTION 
 
In this chapter we will be taking about the concepts needed to understand the 
project. We will go through the evolution of the drones, we will introduce the 
Visual Odometry concept and the SLAM techniques. Finally, we will have a look 
into the Robot Operating System. 
 

2.1. The rise of the UAVs 

 
Like many other current technologies, the reason why the UAV’s were 
developed was for military purposes. This new technology led to the creation of 
the quadcopters, that nowadays anybody can own as a toy or experimental tool 
for a relatively small amount of money.  
 

 

Illustration 1 - Reaper UAV 

 
 

The word UAV means Unmanned Aerial Vehicle, which can be driven 
autonomously or remotely piloted by one or more operators. This is very useful 
and has many functionalities as surveilling war areas with dangerous access or 
launching missies without risking the life or the aircraft pilot. 
 

 

Illustration 2 - Control room for the Reaper Drone 
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As mentioned above, the fast technology evolution has brought these vehicles 
to evolve to a commercial use, developing small multirotor vehicles such as the 
parrot AR drone family [1], that is a quadcopter with four motors mainly 
designed for development purposes, or the Phantom family [2], designed for 
high quality footage. 
 

 

Illustration 3 - Phantom 4 Pro design 

 
 
Nowadays flying quadcopters are used for many applications: from sending 
medical equipment to areas with difficult access, to recording videos of 
ourselves doing sport. In this project we will be looking at flying quadcopters as 
flying cameras, because we will be using them as another sensor for the robot. 
 
 
When referring to indoor flight, those robots can help analysing the structure of 
a building after a natural disaster hits, mapping buildings inside for architecture, 
planning factories space distribution… among many others. All those tasks 
have a thing in common: they require a skilled human pilot controlling the robot 
at all times.  
 
 
In this project we will be looking SLAM techniques in order to improve the flying 
autonomy of these quadcopters in indoor flight and relieve stress from the pilot.  
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2.2. Visual Odometry (VO) 

 
Visual Odometry is the use of a camera to estimate its position and orientation 
in real time by observing a sequence of images of its environment. This has a 
wide variety of applications in robotics and it was first introduced for planetary 
rovers operating in Mars.  
 
In navigation, Odometry is used to estimate the position of the vehicle over time 
by analysing the data from the motion sensors. The sensors need to be very 
accurate and well calibrated in order to get a proper positioning. For large 
periods of time this positioning method can lead to large errors due to the 
integration of velocity over time. 
 
 

 

Illustration 4 - Visual Odometry Visualization 

 
 

The word Odometry has been taken from the Greeks meaning “Route 
Measure”. 
 
As we will be using visual Odometry for this project we need to look into 
different types of data sensors, in our case cameras. In recent years the VO 
methods proposed can be divided into monocular or stereo cameras. A stereo 
camera such as an RGB-Depth camera has a sensitive device that provides the 
depth information about an image. A monocular camera returns colour 
information within each pixel. 
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2.3. The beginning of the SLAM techniques 

 
The Simultaneous Location and Mapping (SLAM) techniques aim to evaluate 
the state of a robot equipped with the on-board sensors, while building and 
updating a 3D map of the environment. This process can run in real time or 
using datasets. SLAM techniques are very useful on spatial missions, undersea 
or underground explorations and indoors navigation.  
 
The state of the robot is described by its pose, composed by the position and 
orientation although there may also be additional parameters such as the linear 
or angular velocity. The 3D map is created by tracking the corners of the objects 
and landmarks [3]. 
 
A huge challenge when working with monocular cameras is the estimation of 
the world scale, as it cannot be observed and will drift all the time creating an 
important source of error.  On the other side, this leads to an important 
advantage, which is that no matter the size of the environment you are working 
in, allowing it to work in small rooms or in large-scale outdoors scenarios. It’s 
important to notice that stereo cameras have a limited range, making it useless 
for large environments. 
 
 

 

Illustration 5 - Google driverless car or Waymo 

 
 
In this project, as we will be looking on camera sensors the SLAM is going to be 
visual (vSLAM) although it can also be accomplished by using distance 
sensors. A very interesting application for vSLAM is augmented reality, as it’s 
becoming very popular in the mass-market.  
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2.4. The Robot Operating System (ROS) 

 
The robot Operating System is a flexible framework for writing robot software. 
It’s important to say that ROS is not a real operating system as it runs on top of 
a Linux Ubuntu. It was developed in 2007 in the Artificial Intelligence laboratory 
in Stanford and has continuously been under development. In the following 
pages we will see some definitions and the needed steps for its installation. 
 

2.4.1. Description 

 
ROS technology offers a set of libraries and tools to help software developers 
create robotics applications. It is one of the pioneer Multi-Robot Systems (MRS) 
that allows the implementation of multiple robots to perform certain tasks 
together. ROS environment is so flexible that includes multiple platforms, coding 
languages, compilers and many libraries developed by investigators. All it’s 
open source so any developer can use and modify them in order to improve or 
create new features. This way, ROS technology is in constant growth. 
 
Due to the constant expansion of ROS, there are many versions available. 
Some of the latest are: 
 

- ROS melodic (from May, 2018) 
- ROS lunar (from May, 2017) 
- ROS kinetic (from May, 2016) 
- ROS indigo (from July, 2014) 

 
 
It is important to mention that ROS license in under BSD, which means that it 
allows commercial or non-commercial use, making it very interesting for single 
developers or companies. 
 

 

Illustration 6 - Robot Operating System (ROS) logo 

 
 
To better understand how this technology works we will look through some 
basic concepts about ROS features. 
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- Package: The ROS software is organized in packages. These packages 

would be what it’s called projects for common programming languages. A 
package may contain ROS nodes, configuration files, datasets, ROS-
independent library or anything that constitutes a useful module [4]. The 
packages can be organized as stacks and can be easily downloaded from 
GitHub repositories and installed as you can see below: 
 
 

cd ~/catkin_ws/src 

git clone https://github.com/tum-vision/tum_simulator.git 

cd .. 

catkin_make 

 
 
- Node: A node is an executable file within a package. ROS has been 

designed to use multiple nodes simultaneously to control the robot. Nodes 
communicate with other nodes using a client library and can publish or 
subscribe a topic. As an example, there is a node that controls the camera 
of the robot. 
 
The nodes will be the processes that will perform all the computations. ROS 
nodes aim to build large process with many functionalities split into small 
and simple processes. This division also helps in being able to distribute the 
functionalities among different computers in the same system. 
 

- Topic: As said above the nodes can publish or subscribe to a topic. The 
topics are the channel information between nodes, that allow identifying the 
message and generating the interactions between nodes. For example, the 
topic /AR drone/front/camera_info, would emit a topic which would be the 
camera specifications.  

 
- Message: The information emitted by a node that is listened by one or more 

nodes. The message channel is the topic mentioned above.  
 

The information between nodes is unidirectional, therefore for a proper 
communication the message type from the publisher and subscriber must 
be the same. 

 
 
In order to start the server and client to allow communication between nodes we 
need to run the ROS master. This provides naming and registration for all the 
nodes in the ROS server. This will allow the nodes locate one to each other. 
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2.4.2. Ubuntu Installation 

 
In this section we will see how to install ROS kinetic in Ubuntu 16.04. It’s 
important to notice that kinetic will only work with Ubuntu 15 (Wily) and 16 
(Xenial).  
 
First, we need to set up the source.list in order to allow the ROS packages from 
the ROS server. The following command feds the source.list: 
 

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release 

-sc) main" > /etc/apt/sources.list.d/ros-latest.list' 

 
The next step will be to set the keys, to make the repository trusted by Ubuntu.  
 

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --

recv-key 0xB01FA116 

 
To install we need to make sure we have the latest version of all Ubuntu 
packages. 
 

sudo apt-get update 

 
Now, we can download and install ROS, which in our case will be Kinetic full 
desktop version. This may take a while to install. 
 

sudo apt-get install ros-kinetic-desktop-full 

 
This will install the most important ROS packages. The installation of ROS is 
over, but there are few more steps that will be useful in the future. 
 
In order to install dependencies for ROS packages we need to initialize rosdep 
as follows: 
 

sudo rosdep  

init rosdep update 

 
It is also very convenient to have the terminal automatically set ROS variables 
whenever we open it. To do that we will run: 
 

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc  

source ~/.bashrc 
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And to finish, we need to install some more programs in order to be able to build 
ROS packages we will need in the future. 
 

sudo apt-get install python-rosinstall python-rosinstall-generator 

python-wstool build-essential 

 
As we have seen, installing and setting ROS basics may take some time and 
it’s somehow challenging if you are not familiar with Linux systems. It may also 
lead to errors if the steps are not followed carefully.  
 
Each version of ROS is only compatible with few Ubuntu versions, therefore 
upgrading from an old ROS version to a new one will mean a complete system 
upgrade that will probably lead to several errors. 
 
Also, using ROS technology in a Windows or MAC computer will lead to a very 
slow performance and continuous error fixing due to its low development and 
compatibility. In addition, there are not many forums to seek help and the traffic 
of those is very poor.  
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CHAPTER 3. WORKING ENVIRONMENT 

 
The initial intention for this project was to do the testing process using a Parrot 
Ardrone 2.0 in the real World, but due to the current country situation due to the 
Covid-19 Pandemics will be entirely carried out in a simulator.  
 
This hazard makes the project more tedious as in the simulated world you need 
to spend lots of computing time and face many errors making all the 
components work with the simulated environment. 
 
In this chapter we will describe and explain the software and its installation 
process for the simulation. 
 

3.1. Gazebo 

 

3.1.1. Description 

 
Gazebo is a 3D simulation system that allows testing the behaviour of robots on 
a simulated environment. This software also allows to generate robot models 
and create virtual worlds of indoors or outdoors scenarios. Its physics engines 
and wide variety of sensors allow the user to mimic the real world [5]. 
 
Beside all this, the importance of this simulator is in the fact that can be 
synchronized with ROS technologies. Therefore, the robots can publish the 
information from their sensors in the nodes and receive the commands back 
from the computer. 
 

 

Illustration 7 - Gazebo Simulator 

 
 
Gazebo inner functioning runs an Open Dynamics System (ODS), which is a 
physics engine with a set of high-performance libraries capable of cinematic 
and dynamic simulation of rigid bodies. For the 3D rendering uses a motor 
called OGRE. 
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Having a visual simulation tool is very important so it’s easier to test the 
algorithms and commands sent to the AR drone.  Gazebo also contains a 
simulation for the Ardrone robot so it won’t be needed to import it from 
somewhere else. 

 

3.1.2. Integration with ROS 

 
In order to run ROS technology in gazebo we need to install the meta-package 
called gazebo_ros_packages [6] that contains the following sub-packages: 
 
- gazebo_dev: Provides the configuration of the installed Gazebo version and 

allows the execution of Gazebo dependencies. 
 

- gazebo_msg: Contains the services (.srv) and messages (.msg) in order to 
interact with Gazebo form ROS.  

 
- gazebo_plugins: Groups the plugins to use all the sensors, motors and 

dynamic reconfigurations.  
 

- gazebo_ros: Is the package that wraps the Gazebo server and client and 
provides the ROS interface for messages, services and configuration. 

 
 

3.1.3. Installation Commands 

 
The fact that the AR drone 2.0 is already installed in the Gazebo simulator will 
make the installation steps easier. Despite, we will look through the installation 
commands and setup for Gazebo and its integration with ROS. It’s important to 
notice that we will be installing Gazebo version 7, as it’s the only version that 
supports LSD-SLAM package along with ROS kinetic. 
 
To start with Gazebo installation, we will follow the same pattern we did in the 
ROS install, and we will set up the keys and update the source.list. The 
commands are the following: 
 

sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-

stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-

stable.list' 

 
 
And for the keys: 
 

wget http://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key 

add - 
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As in ROS install, once we have made sure that Debian database is up to date, 
we can proceed and install Gazebo 7. 
 

sudo apt-get install gazebo7 

sudo apt-get install -y libgazebo7-dev 

 
To check proper Gazebo install, we can run this command and Gazebo should 
prompt: 
 

gazebo 

 

 

Illustration 8 - Empty Gazebo Simulation 

 
 
  
Now that Gazebo and ROS are installed we can proceed with their integration. 
We will need to set our workspace in order to install the packages. To set our 
workspace, we will do the following: 
 

mkdir -p ~/simulation_ws/src 

cd ~/simulation_ws/src 

catkin_init_workspace 

cd ~/simulation_ws 

catkin_make 

 

We need to source to the setup script as follows: 
 

echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc 
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Now we can download the gazebo_ros_packages [6] from GitHub into our 
workspace src folder and check and install for any missing dependencies using 
rosdep: 
 

cd ~/simulation_ws/src  

git clone https://github.com/ros-simulation/gazebo_ros_pkgs.git -b 

kinetic-devel 

rosdep update  

rosdep check --from-paths . --ignore-src --rosdistro kinetic 

rosdep install --from-paths . --ignore-src --rosdistro kinetic -y 

 
Once the package is ready, we will proceed to build it with the catkin_make as 
follows: 
 

cd ~/simulation_ws/  

catkin_make 

 
The installation is over, and it’s time to open gazebo and look for the available 
ROS topic in order to confirm a proper install. 
 

rosrun gazebo_ros gazebo 

 
Gazebo should open as before, with now we should see the following available 
ROS topics when running rostopic list command: 
 
 
 

 

Illustration 9 - Available ROS topics 
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3.2. The Parrot AR drone 

 
In this section we will describe the drone we have selected for this project. The 
AR drone has been a great option as it is very affordable in terms of budget, it’s 
small, it’s modular and the university owns some of these drones for 
development purposes.  
 
Moreover, this drone is compatible with ROS technologies so we will be able to 
simulate in Gazebo and add the packages needed for the LSD-SLAM system.  
 

3.2.1. Description 

 
In this project we will be using the Parrot AR drone 2.0 for the simulations [1]. 
This model series was first shown on 2010 in the International Consumer 
Electronics Show with the purpose of civil recreational use. The builder of this 
drone is the French Parrot company.  
 
The control of this drone is very simple, as it can be operated by a computer but 
also a mobile or a tablet using an app. It communicates with the operator via 
WIFI and supports autonomous navigation via GPS.  
 
 
This model has a configuration of quadcopter (4 electric independent motors) 
with a very simple modular structure allowing easy and fast modifications of its 
parts. This structure is made of carbon fibre in a cross shape. To protect the 
propellers there is a foam structure to cover them that is typically used for 
indoor flight.  
 
 

 

Illustration 10 - Parrot AR done 2.0 with indoors configuration 
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The weight of the drone in outdoors configuration if of 380g. When the drone is 
equipped with the indoors protection the total mass of the robot is of 420g. The 
four brush motors have 14.5W power each and are capable of rotating at 
28.500 RPM. 
 
As CPU this drone has an ARM microprocessor with preinstalled linux system 
and many available sensors. Among these sensors we find two cameras, one 
pointing downwards and the other looking in the forwards direction.  
 
The forward camera has a resolution of 720p with 92º lens and can record 
video up to 30fps. The camera pointing downwards has a QVAG 60FPS sensor 
and it’s mainly used for the stabilization of the drone’s flight and measuring 
ground speed. 
 
Apart from the cameras, this robot has an ultrasound sensor pointing 
downwards that measures the ground altitude. Other sensors such ad an 
accelerometer, magnetometer, pressure sensor and gyroscope are also 
included in the drone.  

 

 

Illustration 11 - All parts of the AR drone 2.0 

 
 

The battery for this model is of 1000mah or 1500mah, and the approximate 
flight time (no matter what battery) is approximately of 12 minutes, depending 
on the conditions of the flight. 
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3.3. AR drone Implementation for Gazebo 

 
In order to run the AR drone in a Gazebo simulation we will need to install the 
following two packages:  
 
AR drone autonomy package [7]:  
 
      Contains the drivers to fly the quadcopter. 
 
Tum Simulator package [8]:  
 

This package contains the simulation for the AR drone 1.0 and 2.0 to run in 
the ROS environment using Gazebo Simulator. Contain the following files: 

 
- cvg_sim_gazebo: contains the models for objects, sensors and 

quadcopters.  
- cvg_sim_gazebo_plugins: contain the plugins for the quadcopter and for 

its sensors. 
- message_to_tlf: this package creates the ROS node. 
- cvg_sim_msgs: contains messages forms for the simulator. 
 
 
So, with these two packages we will be able to simulate and control an AR 
drone flying in different scenarios. To install those packages, we need to move 
to the catkin workspace we previously created. Inside that folder we will clone 
the two packages form Github. First, we will install the ardrone_autonomy 
package. 
 

cd ~/simulation_ws/src  

git clone https://github.com/AutonomyLab/ardrone_autonomy 

cd ..  

rosdep install --from-paths src --ignore-src  

catkin_make 

 
After that, we will proceed with the tum_simulator: 
 

cd ~/simulation_ws/src  

git clone https://github.com/iolyp/ardrone_simulator_gazebo7 

cd ..  

catkin_make 

 
 
 
 
 

https://github.com/AutonomyLab/ardrone_autonomy
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And finally we will source the environment. 
 

source devel/setup.bash 

 
 

At this point, our simulation workspace should look like this: 
 

 

Illustration 12 - Directory tree structure at this point for our workspace 

 
 
Initial running and testing 

 
Simulations launch commands: 
 

roslaunch <package_name> <world_launch_file> 

roslaunch cvg_sim_gazebo ardrone_testworld.launch 

 
With that command the Gazebo simulation should start and, if both packages 
are installed correctly, an AR drone 2.0 will appear in the middle of a small 
village. 
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Illustration 13 - Gazebo Simulation with the Ardrone 

 
 
- Moving the AR drone commands: 

 
To move the quadcopter in the simulated Gazebo world, we will be looking at 
two methodologies although there may be others. 
 
Moving by directly sending the commands to the node: 
 

#take off 

rostopic pub -1 /ardrone/takeoff std_msgs/Empty 

 

#move forward 

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist  '{linear:  {x:1.0, 

y:0.0, z:0.0}, angular: {x:0.0, y:0.0, z:0.0}}' 

 

#land 

rostopic pub -1 /ardrone/land std_msgs/Empty 

 
Note here, that by modifying the x, y and z values we can move the AR drone in 
any direction. By changing the angular values, we will make the robot turn. In 
our case the robot will not turn at any moment, therefore we will only be 
changing the linear velocity values in order to move but not rotate. 
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- Moving by using keyboard commands: 

 
We will need to install the teleop_twist_keyboard application thought the “apt” 
command: 
 

sudo apt-get install ros-kinetic-teleop-twist-keyboard 

 
After that, by interacting with the keyboard the messages will be automatically 
sent to the correspondent node. Run the keyboard with the following command: 
 

rosrun teleop_twist_keyboard teleop_twist_keyboard.py 

 
 
See the available controls below: 
 
 

 

Illustration 14 - Teleop keyboard control keys 
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3.4. ROS development Studio 

 
Setting up ROS can be a very tricky process due to its long installation process 
and its lack of integrity with other installed packages versions. In addition, there 
is not much information in the Internet about how to solve those errors [9]. In 
addition, running a real time simulator requires a very powerful device, which 
makes the task not accessible to everyone.   
 
Therefore, after attempting to install all the required programs and facing with 
many errors and extremely poor performance we decided to use a service 
called the ROS development studio [10]. This is a free online platform that hosts 
an Ubuntu server with preinstalled ROS software. You can create your account 
and test your projects with a powerful CPU. It is a very user-friendly platform 
that incorporates tools such as Gazebo for simulation visualization, IDE, shell… 
among others.  
 
The ROS version chosen for this project is the Kinetic, which runs with an 
Ubuntu 16.04. This is because for the last ROS version (Melodic), the LSD-
SLAM packages are not updated. For previous versions of ROS the packages 
are outdated. 
 
This environment has been developed by the company The Construct Sim 
which is formed by a group on engineers located in Barcelona. 
 
 

 

Illustration 15 - ROS development studio interface 
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CHAPTER 4. The LSD-SLAM technology 

 

4.1. LSD-SLAM: Large Direct Monocular SLAM 

 

4.1.1. Description 

 
This technology was developed by Jakob Engel, Thomas Schöps and Daniel 
Cremers from the Technical University of Munich and presented in the 13th 
European Conference on Computer Vision, ECCV 2014, held in Zurich, 
Switzerland [11]. 
 
This project aims to build a visual SLAM method for monocular cameras, with 
the capabilities of building large-scale and consistent maps of the environment 
along with the highly accurate pose estimation [14].  
 
This method uses the contrast of the images for its functioning. It applies filters 
to the obtained image in greyscale. Also, it takes objects geometry information 
that can be very useful for augmented reality.  
 
This method represents the world by a number of key frames connected by 
position restrictions that can be optimized using an optimization graph. 
 
 

4.1.2. The LSD-SLAM Algorithm 

 
The LSD-SLAM algorith is divided in three main parts: the tracking, the depth 
map estimation and the map optimization. In this section we are going to have a 
look at which tasks are performed in each of them. 
 
To initialize the algorithm, the camera needs to have a translational movement 
in the first seconds in order to lock a certain depth configuration. In order for the 
algorith to obtain a correct depth configuration, it will need to receive more than 
one keyframes. 
 
In the image below, we can see the three algorithm modules. 
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Illustration 16 - Block diagram showing the LSD-SLAM algorithm 

 
 
Tracking Module 
 
The tracking module purpose is to try estimate the camera pose with respect to 
the current keyframe, using the previous frame for the initialization. Therefore, 
this part is constantly tracking the new images obtained by the camera.  
 
 
Depth Map Estimation 
 
In this part is where a decision between if an image should be taken as a new 
keyframe or should be used in order to refine the current keyframe. 
 
This decision is made taking into account two variables: the relative distance 
from the current frame and the relative angle to the current frame. If the 
weighted sum of both parameters is larger than a certain threshold, then the 
image will be taken as a new keyframe. 
 
In the case that the image is taken as a new keyframe it will be needed to 
propagate the depth map to the new frame. This is done by projecting the 
projecting the points from the previous frame to the new one. After that, some 
spatial regularization is done. 
 
In the other hand, the image is used to update the current frame. Therefore, 
multiple baseline stereo comparisons will be done where the accuracy is large 
enough in order to include then in the previous keyframe.  
 
 
Map optimization 
 
As each keyframe is scaled in the previous modules, all the keyframes may 
have different scale. So, when they are aligned it’s important to take this 
different scale into account. This will be accomplished minimizing an error 
function.  
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When the keyframe is added into the 3D map, the closest keyframes are used 
to detect a loop-close*. The map will be optimized using pose graph 
optimization. 
 
* A loop-close primary purpose is to correct the drift that has been accumulated 
in the pose calculations along the time, as the visual SLAM or Odometry are 
surely accumulating errors overtime. Therefore, using visual recognition, some 
places are detected in order to close the loop and match the position with 
previous images. 
 
 

4.1.3. LSD-SLAM for ROS Kinetic 

 
The last package that we need in order to perform the visual Odometry will be 
the LSD-SLAM package [12]. It has also been installed via the catkin_make 
command. It is important to notice that the repository can be found in the 
reference number [12] has been adapted for kinetic version and Ubuntu 16.04, 
otherwise there may be several compatibility errors. 
 
With these three packages installed we should be able to run an AR drone 
simulation and perform LSD-SLAM in order to generate a 3D map for the 
environment and guide the quadcopter.  
 
This package is divided into two sub packages, the lsd_slam_core and the 
lsd_slam_viewer. The lsd_slam_core is the one that will execute all the SLAM 
calculus while the viewer will display the optional 3D mapping. This process can 
be performed in real time or using your own dataset. In our case we will be 
interested in the first scenario. 
 
It is important to notice that the LSD-SLAM package needs QT version 4 
instead of the default installed version 5. 
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4.1. LSD-SLAM running and testing 

 

4.1.1. Simulation Steps 

 
In this section we will see how to run the LSD-SLAM while the live simulation is 
running. First of all, we will need to open the simulation as described in the 
previous section. 
 
After that we will open the LSD-SLAM viewer with the rosrun command: 
 

rosrun lsd_slam_viewer viewer 

This will open a grey window where the 3D point cloud representation will be 
displayed.  
 
Next will be to start the lsd_slam_core and feed it with the camera image and 
information. 

rosrun lsd_slam_core live_slam /image:=<camera_image_topic> 

/camera_info:=<camera_info_topic> 

In order to see the topics available, we can run the following command while the 
simulation is running: 
 

rostopic list 

 
So the command should look like this. 
 

rosrun lsd_slam_core live_slam /image:=/AR drone/front/image_raw 

/camera_info:=/AR drone/front/camera_info 

 
The first time you execute this previous command will lead to errors because 
the default camera calibration file image dimensions do not fulfill the required. 
The dimensions should both be a multiple of 16 in order for the software to 
scale it down. Moreover, the camera calibration parameters are not the ones 
that match the AR drone 2.0 camera. Therefore, we will need to create a new 
calibration file and specify it in the “rosrun” command. 
 
Camera configuration file 
 
This file must contain the following parameters: 
 

#focal lengths (fx, fy), camera optical centers (cx, cy) and lens 

distorsion matrix (d, composed by k1 k2 p1 p2) 

fx/width fy/height cx/width cy/height d  

#camera size in pixels 
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input_width input_height 

#camera image settings 

"crop" / "full" / "none" / "e1 e2 e3 e4 0" 

#output image size in pixels 

output_width output_height 

 
In order to obtain those parameters, we need to use a camera calibration 
package [13], and calibrate the AR drone monocular camera using a chess-type 
board.  
 
As the simulator AR drone 2.0 has known parameters we will be using them for 
our simulations. The parameters are the following: 
 
 

0.50355332 0.894045767 0.494061013 0.509863 0 

640 360 

crop 

400 288 

Where there is no lens distortion matrix and image is cropped to two multiple 
numbers of 16. 
 
To run this configuration with this specific calibration file we will run: 
 

rosrun lsd_slam_core live_slam /image:=/AR drone/front/image_raw 

/camera_info:=/AR drone/front/camera_info 

_calib:=<calibration_file_path.cfg> 

We will also run the viewer in order to see the live point cloud as we did before 
and we will be using the keyboard to move the quadcopter around: 
 

rosrun teleop_twist_keyboard teleop_twist_keyboard.py 

 
After some flying you can obtain results as the following: 
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Illustration 17 - LSD-SLAM obtained point cloud 

 
 
The point cloud above contains a set of points in the space. It is the mapping 
result of the contrast points followed by the SLAM system. Each point 
represents a solid portion of an element, and a set of points could be 
transformed into a solid object. The results of the mapping a relatively accurate 
and the solids can be detected easily. 
 
 

 

 

Illustration 18 - Simulated environment 

 
 

It is important to say that the tracking system is not very good as for turning 
movements the camera gets lost very quickly. You need to combine translation 
with slow rotation in order for the tracking module not to get lost. Also, as there 
is no background in the simulation it’s harder for the LSD-SLAM system to 
follow the tracking points. 
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4.2. Testing in a Simulated Environment 

 

4.2.1. The Word Scale Ambiguity Problem 

 
One of the major problems when using monocular cameras for gathering the 
environment information is the scale factor problem. The 2D cameras are not 
able to obtain the absolute distance of its displacement by just observation 
during the translational movement. This has a very clear explanation, as if you 
look to a chair without any depth information you will be unable to tell the size of 
that chair. Therefore, when calculating your own movement, the scale will be 
incorrect. 
 
In order to compute the trajectory these types of systems need to compute the 
key points from the images by comparing the features obtained in two 
consecutive video frames. As the distance from the key points to the camera is 
unknown, the system won’t be able to scale its movement properly. 
 
 

 

Illustration 19 - Scaling factor problem visualization 

 
 

However, there is one possible solution for this problem as we have the IMU 
data from the ultrasonic sensor. This sensor is pointing downwards and will be 
measuring the real distance in de Z axis. Thanks to that, we can perform a 
vertical movement and compare de distance measured by the sensor and by 
the LSD-SLAM system.  
 
In order to obtain the scaling factor, we will need to obtain the quotient between 
the real height measurement from the ultrasound sensor and the SLAM system 
as follows: 
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Find below a plot that shows the real height and the LSD-SLAM predicted 
height: 
 
 

 

Illustration 20 - Height data comparison vs IMU data and vSLAM system 1. 

 
 
 
In this particular example the real height (orange color) ranges between 0 and 
2.28m, while the LSD-SLAM data only arrives at 0.74m. This would mean a 
scaling factor of approximately 3.1. This means that the results obtained by the 
visual SLAM system need to be multiplied by a factor of 3.1. 
 
Nevertheless, if this experiment is performed in different simulations the scaling 
factor differs significantly from the other simulations. Even with the exact same 
simulation is carried out, the scaling factor may be different. 
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Illustration 21 - Height data comparison vs IMU data and vSLAM system 2. 

 
 
If we have a look to another environment, in wider area where the objects are 
further from the camera we can clearly see that the observed scale is even 
smaller. In the example below we can see a scaling factor about 20. 
 
 

 

Illustration 22 - Height data comparison vs IMU data and vSLAM system in different 
environment 

 
 
Therefore, if we want to get accurate data from the LSD-SLAM system we will 
need to perform the Z translational movement in order to compute the proper 
scale.  
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4.2.2. Path and environment setup 

 
4.3.2.1 The Paths 
 
In order to test the performance of the LSD-SLAM algorithm we will be testing 
different paths in an in an outdoors and indoors scenarios.  
 
The paths decided for this experiment will be the following: 
 

 

Illustration 23 - Experimental path 1 

 
 

 

Illustration 24 - Experimental path 2 

 
 

 

Illustration 25 -  Experimental path 3 
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The chosen paths are all formed by pure translational movement, meaning that 
the drone will always be pointing to the same direction without turning in the 
corners. This means, that the robot will be moving forward, to the left and right 
and backwards.  
 
This way we will avoid losing the track, as we have said before that rotating the 
drone within the same position may cause it. 
 
The instructions sent to the drone to reproduce those paths will be simple 
directive instructions to move in the desired direction. This will be done 
programmatically using an executable batch file. 
 
The maximum speed of the drone will be 0.2 m/s. 
 
See below an example of the intructions file for the second track. 
 
 

#!/bin/bash 

rostopic pub -1 /ardrone/takeoff std_msgs/Empty; 

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist  '{linear:  {x: 0.0, 

y: 0.2, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 20 ; kill 

$! 

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist  '{linear:  {x: 0.0, 

y: 0.0, z: 0.2}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 10 ; kill 

$! 

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist  '{linear:  {x: 0.2, 

y: 0.0, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 20 ; kill 

$! 

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist  '{linear:  {x: 0.0, 

y: -0.2, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 20 ; kill 

$! 

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist  '{linear:  {x: 0.0, 

y: 0.0, z: -0.2}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 10 ; kill 

$! 

rostopic pub -r 10 /cmd_vel geometry_msgs/Twist  '{linear:  {x: -0.2, 

y: 0.0, z: 0.0}, angular: {x: 0.0,y: 0.0,z: 0.0}}' & sleep 20 ; kill 

$! 

rostopic pub -1 /ardrone/land std_msgs/Empty; 
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4.3.2.2 The Environments 

 
 
The scenarios chosen for the tests will be the following. Both scenarios were 
prebuilt in the ROS packages and it’s implementation is very simple. The first 
environment will be the outdoors, with the ardrone facing to a direction where 
there are not many objects and data points to track. It’s important to notice that 
the objects are far in the distance. 
 
 

 

Illustration 26 - Test Environment 1: Outdoors Scenario 

 
 
The second scenario will be the indoors, where a coffee place has been 
chosen. In this environment there are many points to track and the objects are 
closer than in the first case.  
 
 

 

Illustration 27 - Test Environment 2: Indoors Scenario 
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4.2.3. Simulation Results 

 
In order to analyse the accuracy of the LSD-SLAM method we will need to track 
the real position of the drone along with the estimated position obtained by the 
VO System.  
 
To obtain those parameters we will need to save the data form the nodes 
corresponding to the variables needed. In order to obtain the nodes, we need to 
run the simulation with the SLAM System active. Then we will run the following 
command to get the list of nodes: 
 
 

rostopic list 

 
After doing that, we will realise that the nodes we are looking for are the 
following: 
 
 

/ground_truth/state    #Real position of the done 

/lsd_slam/pose   #Estimated position of the LSD-SLAM system 

 
Therefore, we can create two batch executable files that echo the data from the 
nodes and save it to a file. 
 
 

bash -c 'rostopic echo /lsd_slam/pose > test.txt' 

bash -c 'rostopic echo /ground_truth/state > test2.txt' 

 
With all this set, we can proceed to perform the tests. 
 
In order to visualise the results, we will plot a 3d plot of both paths and a 2d plot 
for the x-y axis field. To do that, a simple python code was made that took into 
account the scaling factor and arranged the coordinates at each timestamp. 
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The orange line will always represent the real path followed by the quadcopter 
while the blue line will be the estimated trajectory computed by the LSD-SLAM 
algorithm.  
 
 
Result Path 1: 
 

 

 

 

Illustration 28 - Path 1 results (3d view) 

 
 

 

Illustration 29 - Path 1 results (x-y view) 
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Result Path 2: 

 
 

 

Illustration 30 - Path 2 results (3d view) 

 
 
 

 

Illustration 31 - Path 2 results (x-y view) 

 
 
It’s clear to see that the results obtained in the indoors scenario are more 
accurate than the performance in the outdoors case. The precision of the 
estimated path is way higher in a closed scenario, where there are more objects 
and features to track in a closer distance from the drone. 
 
We can also see that the estimated trajectory is smoother in the indoors case. 
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Result Path 3: 

 
 

 

Illustration 32 - Path 3 results (3d view) 

 
 

 

Illustration 33 - Path 3 results (x-y view) 

 
 
In this specific case we can see a very important hazard of the SLAM Systems 
which is the cumulative error caused by an uncertainty in the beginning of the 
tracking process. This problem can be solved by adding known areas in the 
environment, where the SLAM System would revaluate the drone position and 
mitigate the cumulative errors. 
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4.3. Results 

 

4.3.1. Performance Analysis 

 
In this section we will discuss the results obtained in the different tests 
performed in the previous section. In order to have a numerical value for the 
precision in each environment we will compute the Mean Absolute Deviation 
(MAD) and the maximum deviation value for each case. 
 
 

 

Illustration 34 - LSD-SLAM system mapping and tracking visualization 

 
 
To start, we will have a look at the definition for the MAD to briefly explain how 
is calculated. 
 
- The Mean Absolute Deviation: it is a very good way to express the variation 

within a dataset. Its value corresponds to the averaged value between all 
the absolute errors within a dataset. In our case, the averaged number will 
be the real position of the drone given by its navigation data. See the 
formula below: 

 
 

 

Illustration 35 - Mean Absolute Deviation Formula 
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In the formula above, the x represents the drone pose value (x, y or z) that has 
been given by the LSD-SLAM system for each time step. The A represents the 
real position for the quadcopter, given by the simulation navigation data. The n 
states for the number of data points studied in each scenario.  
 
 
Now we will see the given error for each track and scenario, so we will be able 
to evaluate each case: 
  

 Outdoors Environment Indoors Environment 

Track 1 (x value) 0.240 0.271 

Track 1 (y value) 0.445 0.135 
Track 1 (z value) 0.580 0.134 

   

Track 2 (x value) 0.441 0.305 

Track 2 (y value) 0.390 0.070 
Track 2 (z value) 0.262 0.068 

   

Track 3 (x value) 0.394 0.424 

Track 3 (y value) 0.511 0.173 

Track 3 (z value) 1.009 0.292 

Illustration 36 - MAD error comparison (m) 

 
 
As expected, the performance of the SLAM algorithm is more precise in the 
indoors environment than in the open world environment. This is due to the 
number of objects to track: the higher the features to track, the smaller the error 
we will obtain. 
 
In the open world scenario there is always the distance problem, where we can 
have the blue sky without any possible tracking points. In the case of this 
simulation there nothing else behind the near objects, showing an infinite white 
wall. Therefore, the algorithm could not track many points what is clearly 
reflected in the MAD results.  
 
This problem gets even larger when we talk about cumulative errors, as the 
beginning of the tracking is crucial in order not to have them. The fact of having 
more objects and in different distances makes it easier to start a more accurate 
pose estimation. 
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It can also be interesting to see the maximum deviation for each scenario. See 
the values below: 
 
 

 Outdoors Environment Indoors Environment 

Track 1 (x value) 0.696 0.610 
Track 1 (y value) 0.844 0.422 

Track 1 (z value) 0.96 0.478 
   

Track 2 (x value) 0.775 0.633 
Track 2 (y value) 1.127 0.193 

Track 2 (z value) 1.029 0.493 
   

Track 3 (x value) 0.995 0.887 

Track 3 (y value) 1.718 0.834 
Track 3 (z value) 2.202 0.782 

Illustration 376 – Max error distance comparison (m) 

 
 
Again, the values obtained are better in the indoors scenario. However, for 
autonomous navigation between small spaces such as going across a door or 
navigating along a small corridor, could result in a drone crash. 
 
In order to get smaller navigation values we would need to add waypoints along 
the track, where the system could recalibrate its position and mitigate the errors. 
 
So, as overall results, the evaluation of the algorithm in indoors and outdoors 
spaces has concluded as it was expected. The algorithm works better in an 
indoors scenario. Also, we have learned how to obtain the data from the ROS 
nodes in order to represent the flight plan of the drone.  
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CHAPTER 5. Conclusions and Future Work 

 

5.1. Conclusions 

 
Along the project it has been used a Parrot AR drone quadcopter with ROS 
integration and Gazebo Simulator. All the tests and results have been obtained 
by using the simulated environment. The algorithm used for the position 
estimation has been the LSD-SLAM. 
 
The first thing to notice when working with the Robot Operating System is the 
complicity on its installation. It’s lack of integration with another operating 
system rather than Linux makes it harder to implement. Also during the setup 
it’s very common to hit errors, due to different versions on the Ubuntu 
preinstalled packages, or outdated ROS packages. The task of setting up the 
ROS, the gazebo simulator and the LSD-SLAM system has been one of the 
toughest parts of the project. 
 
The use of RDS Studio has been a great tool for the research, avoiding the poor 
performance of my laptop. The 8 free hours a day are more than enough to test 
and implement your simulations. The LSD-SLAM package is extremely out-to-
date. It uses old package versions which will make you face many errors.  
 
Leaving to a side the difficulties encountered in the installation process we can 
conclude that the use of simulated environment for testing is a great tool, 
especially if you cannot access a drone for any reason. 
 
The data obtained from the indoors and outdoors tests show the expected 
results: the algorithm is more accurate in closed spaces where there are closer 
objects. Although being more accurate, the difference between the real and the 
predicted trajectory is too large for the robot to have accurate navigation 
through doors, for example. 
 
An important problem of the LSD-SLAM is the loss of tracking when turning or 
heavily shaking. The algorithm gets completely lost when that happens and the 
re-tracking feature struggles to get the tracking back. This gets worst in 
simulations, as the control of the drone is usually even trickier. 
 
All the steps followed during the project have been described in order to make it 
easy to reproduce in the future. All the packages with the proper version are 
linked in the references so there are no errors in future simulations.  
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5.2. Future Work 

 
This project opens many positions for upcoming and future work as the field of 
the VO and the SLAM algorithm is very recent. Below I will propose some ideas 
for future projects: 
 
- The LSD-SLAM tracking works with a certain precision when the drone is 

performing a translation movement but gets lost easily when turning. 
Therefore, it could be studied the angular ratio for rotations in order not to 
lose the track, along with trying to improve the algorithm in order to be 
capable of improving accuracy when turning. That would be very interesting 
as it is a big issue in the studied algorithm. 

 
- The autonomous navigation for aerial robots is nowadays very unexplored, 

as robots are commonly piloted by an operator. Combining the LSD-SLAM 
system mapping with solid reconstruction the robot should be able to avoid 
collision with the walls and be able to travel from a point A to a point B on its 
own. Studying the possibilities of self-navigation using this SLAM system 
can also be a very interesting topic to do some research on. 

 
- The LSD-SLAM system studied uses a simple 2D camera to map and track 

the drone position. It could also be a very attractive project doing a study 
about the differences in building and implementing a monocular SLAM 
system vs a stereo system. Doing some research on computational power 
used, size of the drone, cost of the equipment, accuracy of both systems…  

 
- The SLAM systems can also be mainly used mapping purposes. There are 

applications such as game development or scene reconstruction where 
being able to create a 3D design based on reality can be very useful. Doing 
some research in which SLAM technique is better for this purpose could 
also be an interesting project. 
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