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Abstract 

 

In rain-fed crops, nitrogen (N) is a key factor determining cereal productivity and grain quality. 

Assessment of the cereal N status permits to optimize N fertilizer input and reduce 

environmental impacts while improving N-use efficiency and both grain yield (GY) and protein 

content (GPC). Consumer-grade digital cameras are recognized as a cost-effective remote 

sensing technique of monitoring plant N status. To explore the feasibility of using consumer-

grade cameras to diagnose the N status and to predict grain yield, biomass, and protein content 

(GPC), a field experiment was conducted in Hordeum vulgare L and Triticum aestivum L at 

different N rates (0, 60, 120 and 180 kg.N.ha−1). Measurements were carried at the anthesis 

stage to determine biomass, grain yield, and protein content at harvest. The capacity of 

vegetation indices formulated using blue (B), green (G), red (R), and near-infrared (NIR) bands 

obtained with a consumer-grade camera to assess N status was evaluated. The results showed a 

high correlation between multiple vegetation indices and canopy biophysical attributes CCI and 

fIPAR (Chlorophyll Content Index and fractional Intercepted and Photosynthetic Active 

Radiation); The indices VARI and BR presented the higher correlation with CCI for barley with 

P<0,01 and r=0,786, r=0,800 successively, and BR was the only index which correlates with 

fIPAR with r=,583 and P<0,05. Whereas for wheat, all indices were highly correlated with CCI 

and fIPAR, and the indices which relate the NIR band to the R (NDVI) and G (GNDVI) bands 

in addition to the index that relates blue to red bands presented the best correlations in all 

parameters (r>0,800 and P<0,01). Moreover, the indices BR, VARI, and NDVIrgb permitted 

the estimation of GPC in both species, and in the estimation of biomass and grain yield, the 

correlations obtained through the modified conventional were high and significant. 

Consequently, consumer-grade cameras based on vegetation indices may have great potential 

for grain yield prediction and crop N status assessment.  

 

Keywords: Hordeum vulgare L, Triticum aestivum L, N status, grain protein content, consumer-

grade cameras, remote sensing 
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1. Introduction 
 

Barley (Hordeum vulgare L.) is a cereal belonging to the family Poaceae, the tribe Triticeae, 

and the genus Hordeum. It is the fourth most important cereal crop in the world after wheat, 

corn, and rice (Vasanthan & Hoover, 2009). Barley and wheat (Triticum aestivum L.), which 

is the third most important crop in terms of global production, have been important crops for 

thousands of years and continues to be widely used for human nutrition, animal feed, malting, 

and brewing in the present day (Wilkinson, 2019). Application of proper nutrients is necessary 

to get a high yield from a crop and generally nitrogen (N) is considered to be the most important 

factor for determining productivity and grain quality in the current cropping systems employed 

around the world (Ma et al., 2019). Nitrogen (N) availability is essential for obtaining high yield 

potential, as it influences the numbers of tillers emitted and those surviving, the number of 

grains per spike, the grain weight, and protein content (Mantai et al., 2016; Vian et al., 2018). 

The protein content of wheat is largely influenced by several factors including available N. If 

N supply remains constant, increased yield usually results in a decrease in protein content due 

to dilution of N by the larger biomass (Gauer et al., 1992). Plant growth dominantly depends 

on the N supply. A deficiency in N would reduce crop photosynthesis, whereas higher rates of 

N fertilization do not necessarily improve crop yield and can lead to serious groundwater 

pollution (Jiang et al., 2019; Mulla, 2013; Vitousek et al., 2009). 

 

Nitrogen deficiency negatively affects photosynthetic assimilation and crop yield both in terms 

of quantity and quality. Therefore, fertilizer application rates for optimal economic and 

environmental yield should be considered by taking into account the individual needs of 

genotypes as well as their actual uptake rates depending on growth stage, soil, and weather 

conditions (Berger et al., 2020; Jay et al., 2017). 

 

The functions of N are structural and osmotic. The structural ones are specific and are related 

to the synthesis of molecules essential for growth, such as nucleic acids, amino acids, proteins, 

chlorophylls, and alkaloids. The osmotic function is associated with the effect of nitrate ion and 

other reduced forms of N, in the reduction of the water potential (Ψω) of the vacuole, within 

the osmoregulation process. Considering that water is the main limiting factor in plant 

development and that it is the only substance capable of integrating growth and metabolic 

activity at the cellular level, the function of N as an osmotic agent, which allows water to be 
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retained in vacuoles, has been considered as important than its nutritional function (Cárdenas-

Navarro et al., 2004). 

 

 

 

 

 

Figure 1: Nitrogen as a key component of biomass (left) and its proportional allocation in a 

C3 plant leaf (right) (Berger et al., 2020). 

 

Excessive or improper nitrogen (N) application rates negatively affect crop production and 

thereby environmental quality. Therefore, it is very important to optimize N fertilizer input to 

balance grain yield, environmental risk, and benefits. Excessive N application does not 

significantly improve crop yields, and it can decrease N use efficiency (NUE) and also cause 

serious environmental problems due to the loss of a large amount of applied N into the 

environment (Ma et al., 2019; Vitousek et al., 2009). 
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In all crops, rapid uptake of N occurs during the maximum growth period. There is not much 

risk of N loss when fertilizer is applied at the beginning of the period of rapid growth (Scharf 

& Grundler, n.d.). N application after the booting has been shown to increase grain protein 

content (Nakano et al., 2008). In Ireland, the currently recommended timing for the first 

application of fertilizer N to winter wheat is between late tillering and the onset of stem 

elongation. In practice, many growers apply N in late February/early March, often in advance 

of significant spring growth, which may be leading to reduced nitrogen use efficiency (NUE) 

(Efretuei et al., 2016). (Fischbeck & Muller, 1990) reported that excess N applications before 

the wheat crop began stem extension, particularly in areas where there was high N supply from 

the soil, could lead to reductions in yield. The application of N fertilizer can increase both yield 

and protein content. If the wheat yield is limited due to N deficiency, small additions of N will 

increase crop yield without significantly increasing protein. The protein content is increased by 

N application above the point where N is no longer the factor most limiting to yield. The lag 

phase in protein response to N application increases as growth conditions and/or yield potential 

of the cultivar improve since a greater amount of N is required for production when yield 

potential is higher. Changes in protein content with the application of fertilizer N differ with 

cultivar(Gauer et al., 1992). 

 

Figure 2: Optimal periods for nitrogen fertilization application (Scharf & Grundler, n.d.)  



4 
 

Maximum nitrogen uptake occurs in periods of maximum growth (in corn roughly between 

vegetative growth stages V9 and V18, or from hip-high to just before tasseling). The risk of N 

loss is low during this period (Scharf & Grundler, n.d.). 

In some mainly developed countries, new technology is emerging applied to the management 

of agricultural production systems. This technology, called Precision Agriculture, involves 

intensive mapping of soil characteristics and crop monitoring with computerized data 

management methods, Global Positioning Systems (GPS), Geographical Information Systems 

(GIS), and Remote Sensing (RS)  for the determination of planting densities, as well as the 

amounts and frequency of application of pesticides and fertilizers (Cárdenas-Navarro et al., 

2004). Key components of precision agriculture are (i) identifying the site-specific factors that 

influence within-field crop yield variation and (ii) spatially characterizing those factors(Corwin 

et al., 2004). 

 

Precision agriculture has always been the research hotspot around the world. And the 

optimization of nitrogen fertilization for crops is the core concern. It is not only to improve the 

productivity of crops but also to avoid the environmental risks caused by overfertilization. 

Therefore, an accurate estimation of N status is crucial for determining an N recommendation. 

Remote sensing techniques have been widely used to monitor crops for years, and they could 

offer estimations for stress status diagnosis through obtaining vertical structure parameters and 

spectral reflectance properties of crops (Yang et al., 2014).  

 

The use of remote sensing data solely is not sufficient to assess the actual N need since plant 

nitrogen and water requirements are secondary variables. It is necessary to have supplementary 

information to describe the crop system and this is generally achieved in two ways: either by 

using statistical approaches or by assimilating remote sensing data into land surface models 

(e.g. crop functioning, SVAT). In the operational context, data assimilation systems are still not 

used due to their low flexibility and complexity. Therefore, most of the systems rely on simple 

relationships between indices and the variable of interest (Weiss et al., 2020). 

 

Information on vegetation development from satellite images commonly relies on indices which 

compare the reflectance of vegetation in multiple spectral regions. The most common indices 

use the differential response of vegetation in near-infrared (NIR) and red (R) or other visible 

bands. The normalized difference vegetation index (NDVI) is the most commonly used 
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(Liang et al., 2011; Nijland et al., 2014; Soudani et al., 2012). However, satellite imagery is 

often not the best option because of the low spatial resolution of images acquired and the 

restrictions of the temporal resolutions as satellites are not always available to capture the 

necessary images. Besides, it is often required to wait long periods between the acquisition and 

reception of images (Tsouros et al., 2019). As a result, the use of consumer-grade cameras to 

assess crop N status and monitor crops seems the best in terms of offering great possibilities to 

acquire field data in an easy, fast and cost-effective way 

 

The normalized difference vegetation index is computed as the normalized differences between 

NIR and red reflectance [NDVI = (RNIR–Rred) / (RNIR+Rred)], where RNIR and Rred are the 

reflectances measured in the NIR and the red region, respectively. NDVI value varies with the 

absorption of red light by plant chlorophyll and the reflection of NIR radiation by water-filled 

leaf cells (Cabrera-Bosquet et al., 2011; Chen & Brutsaert, 1998). NDVI is considered as the 

most studied index for many reasons including its positive correlation with intercepted photo-

synthetically active radiation and also correlates well with N content. It allows assessing grain 

yield in field canopies and N status assessment of wheat (Cabrera-Bosquet et al., 2011; 

Fernández et al., 2019; Li et al., 2008). 

The red-edge region is defined as the spectral region between 680 and 750 nm where there is a 

sharp change in the vegetation reflectance. This occurs due to the transition from chlorophyll 

absorption in the red region to cellular scattering in the NIR. The promise and potential of the 

red-edge spectral region for vegetation biophysical variable retrieval has motivated the design 

and also the launch of spaceborne imaging sensors involving red-edge bands, including 

hyperspectral satellites (Xie et al., 2018). 

Remote sensing with consumer-grade cameras has been largely used in the last decade thanks 

to their low cost and ease of use and system deployment over multispectral cameras and 

scientific-grade platforms (Fernández et al., 2019).  

To date, consumer-grade digital cameras comprise three major RGB bands and the full 

spectrum can range from 200 to 1,200 nm. The RGB ratio in each spectrum/corresponding 

wavelength and color is also different. A particular wavelength can be obtained using specific 

external or internal filters. Unlike a spectrometer, satellites, and multispectral cameras, only 

broadband VIs can be achieved using consumer-grade cameras. Nevertheless, previous studies 

have claimed that the information obtained using consumer-grade cameras is comparable to 
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that obtained from scientific equipment and other alternative devices, such as spectrometer and 

hyperspectral cameras (Putra et al., 2020). 

As mentioned above, the use of images with visible and NIR bands is very common in remote 

sensing, especially for vegetation monitoring. Many vegetation indices such as the normalized 

difference vegetation index (NDVI) require spectral information in the NIR and red bands, even 

though the three visible bands could be sufficient for some applications. Since most consumer-

grade cameras only provide the three broad visible bands, NIR filtering techniques can be used 

to convert a color camera to a NIR camera. Most digital cameras are fitted with filters to block 

UV and infrared light. Therefore, it is possible to replace the blocking filter by a long-pass 

infrared filter on standard CCD or CMOS sensors for obtaining NIR images. Studies have been 

conducted on the use of NIR-converted digital cameras for monitoring plant conditions and 

results from these studies support their use as simple and affordable tools for plant stress 

detection and growth monitoring (Yang et al., 2014). 
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2. Objectives 
 

The general objective of this work is to study the potential of standard and modified consumer-

grade cameras at assessing canopy traits related to crop N status, Grain Yield, and Protein 

Content in Barley (Hordeum vulgare L.) and Wheat (Triticum aestivum L.) under 

Mediterranean conditions. 

The specific objectives are however multiple : 

1. To study the relationships among crop variables (biomass, grain yield, and grain 

protein content) and canopy biophysical attributes (fIPAR and CCI)  

2. To assess the relationships among spectral data (vegetation indices and color 

coordinates) derived from a standard and modified consumer-grade camera and optical 

estimates of leaf chlorophyll content (CCI) and fractional Intercepted Photosynthetic 

Active Radiation (fIPAR) 

3. To assess the capacity of the spectral data (vegetation indices and color coordinates) 

derived from a standard and modified consumer-grade camera to determine grain yield 

and protein content  

4. To compare the capability of optical and spectral data at detecting differences in crop 

N status and their effects on grain yield and protein content. 
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3. Materials and methods 

3.1 . Experimental site and crop management  

The study was carried out in a Mediterranean climate in the experimental fields of the Escola 

Superior de Agricultura de Barcelona (Universitat Politècnica de Catalunya) (41˚16’N 1˚59’E, 

4,2 m a.s.l.). 

Barley (cv. Gustav) and wheat (cv. Odiel) were sown at the end of the winter (2 March 2017) 

in 0,15cm wide rows at a sowing density of 425 and 375 seeds per m2, respectively. The 

experiment was organized into two randomized complete block design (wheat and barley) with 

Four N treatments (0 to 180 kg.N.ha−1 ) and three replications.  A plot was 10 by 1,2 m with 2 

m of the border between plots which either were sown with wheat and barley, correspondingly.   

3.2 . Field data collection  
Field measurements were made during the phenological stage of anthesis (Zadoks code 65). 

 

Fractional intercepted PAR was determined by measuring incident PAR above the canopy 

(PARabove) and below the canopy (PARbelow) at five locations per plot with an AccuPAR 

Ceptometer (Decagon Devices, Pullman, Washington, USA) and calculated as : 

 

                                        fIPAR = ( PARabove‐PARbelow)/PARabove 

 

A CCM-200 leaf chlorophyll meter (Opti-Sciences, Hudson, New Hampshire, USA) was used 

to monitor crop N status. The CCM‐200 has a 0.71‐cm2 measurement area and calculates a 

chlorophyll content index (CCI) based on absorbance measurements at two wavelengths: 653 

and 931 nm. The instrument processes the proportion of light transmitted at the two 

wavelengths and the proportion determined in the absence of a sample to produce a digital 

reading (Chlorophyll Content Index, CCI) wich’s highly correlated with the leaf chlorophyll 

content (Richardson et al., 2002). Measurements were taken at the leaf longitudinal center, on 

the upper side, and avoiding midribs. Eight chlorophyll-meter values (chlorophyll content 

index, CCI) were measured on the top-most fully expanded leaves and averaged for each plot. 

During this study, a modified Sony NEX-5N camera has been used. The VIS, NIR, and RED 

filters were used while taking the images of each plot, and the images obtained are in RAW 

form. These images are subsequently converted to the TIFF form using Fiji software to preserve 

a large part of the information (pixels) and to be able to analyze them. During the use of the Fiji 

software, the color space used as RGB (red, blue, green) and the extension 'color transformer 
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2' allowed the transformation of processed images into color coordinates to see the possibility 

of their use as spectral indices. The color spaces used in this study are the following: RGB, 

HSB/HSV, Lab, HSL (Table I).  

Table I: The several Color space used in images’ processing in this study 

(http://colorizer.org/;https://sensing.konicaminolta.asia/what‐is‐cie‐1976‐lab‐color‐space/) 

Color space Definition  

RGB The RGB (Red, Green, Blue) color model is the most known, and the most used every 

day. It defines a color space in terms of three components : 

 Red, which ranges from 0-255 

 Green, which ranges from 0-255 

 Blue, which ranges from 0-255 

 

 

Lab 

 

The CIE 1976 L*a*b* color space (also referred to as CIELAB) is one of the most 
popular color spaces for measuring object colors.  It was defined by CIE in 1976 for 
color communication and is widely adopted today in many industries for color control 
and management. 

In the L*a*b* color space, L* indicates lightness, and a* and b* are chromaticity 
coordinates.  a* and b* are color directions: +a* is the red axis, -a’ is the green axis, 
+b* is the yellow axis, and -b* is the blue axis. 
 

 

 

 

 

HSB/HSV 

 

The HSB (Hue, Saturation, Brightness) color model defines a color space in terms of 
three constituent components: 

Hue: the color type (such as red, blue, or yellow). 
Ranges from 0 to 360° in most applications. (each value corresponds to one color : 0 is 
red, 45 is a shade of orange and 55 is a shade of yellow). 

Saturation: the intensity of the color. 
Ranges from 0 to 100% (0 means no color, that is a shade of grey between black and 
white; 100 means intense color). 
Also sometimes called the "purity" by analogy to the colorimetric quantities 
excitation purity. 

Brightness (or Value): the brightness of the color. 
Ranges from 0 to 100% (0 is always black; depending on the saturation, 100 may be 
white or a more or less saturated color). 
 
The HSB model is also known as HSV (Hue, Saturation, Value) model. The HSV 
model was created in 1978 by Alvy Ray Smith. It is a nonlinear transformation of the 
RGB color space. In other words, color is not defined as a simple combination 

 

HSL The HSL color space, also called HLS or HSI, stands for: 

 Hue: the color type (such as red, blue, or yellow). 
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Ranges from 0 to 360° in most applications (each value corresponds to one color : 0 is 

red, 45 is a shade of orange and 55 is a shade of yellow). 

 Saturation: variation of the color depending on the lightness.  

Ranges from 0 to 100% (from the center of the black&white axis). 

 Lightness (also Luminance or Luminosity or Intensity). 

Ranges from 0 to 100% (from black to white). 

 

Conditions respected while field images were taken : 

 Cloudless days to control and take images ; 

 Positioning the camera 50cm above the canopy focusing on the center of each plot ; 

 No saturation and the best dynamic range (in terms of digital numbers for each channel) 

of settings manipulated ; 

 While taking images, a Fixed ISO value of 100 and a shutter speed of 1/1250 are used, 

and the white balance model was adjusted for daylight conditions ; 

 Two images are required in each plot: one in standard RGB color, and one with a 

modified camera fitted with a 900 nm long-pass infrared filter ; 

 

Camera’s characteristics : 

 Modified full-spectrum consumer-grade digital camera Sony NEX-5N ; 

 Sony NEX-5N was equipped with a CMOS (complementary metal-oxide-

semiconductor) sensor which is sensitive to wavelengths between 350nm and 1100nm, 

including ultraviolet (UV) and NIR rays ; 

 Sensor Exmor APS-C CMOS 8 bit (3 channel) ; 

 16.1 megapixels (4912 x 3264) ; 

 23.5 x 15.6 mm sensor and E16 mm F2.8 fixed lens. 

 

3.3 . Statistical analyses 
 

The data obtained were analyzed using the SPSS 22.0 statistical package (SPSS Inc., Chicago, 

IL, USA). Pearson’s correlation coefficients between the vegetation indices, canopy 

biophysical variables, and the agronomic variables were calculated using a so-called bivariable 

procedure. 

A statistical test (ANOVA) was used to test the effect of N fertilization treatments on the studied 

variables and means were compared using the Student-Newman-Keuls (SNK) test. 
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Table II: Vegetation indices derived from red (R), green (G), blue (B), and near-infrared 

(NIR) bands acquired with a consumer-grade camera used in this study. 

 

Band Name Acronym Formulation  Reference 

 

NIR/R 

Normalized Difference Vegetation Index NDVI 𝑵𝑰𝑹 𝑹
𝑵𝑰𝑹 𝑹

 
Rouse et al. (1974) and 

Tucker (1979) 

Simple Ratio SR 𝑵𝑰𝑹
𝑹

 
Jordan (1969), Pearson 
and Miller (1972) 

 

NIR/G 

Green Normalized Vegetation Index GNDVI 𝑵𝑰𝑹 𝑮
𝑵𝑰𝑹 𝑮

 
Gitelson et al. (1996) 

Green simple ratio GSR 𝑵𝑰𝑹
𝑮

 
Fernández et al. (2019) 

B/R Blue Red Simple Ratio BR 𝑩
𝑹

 
Fernández et al. (2019) 

B/G Green Blue Simple Ratio GB 𝑮
𝑩

 
(Fernández et al. 2019) 

 

 

G/R 

Green Red Simple Ratio GR 𝑮
𝑹

 
(Gamon and Surfus, 

1999) 

Normalized Difference Vegetation Index-

Green 

NDVIg 𝑮 𝑹
𝑮 𝑹

 
Tucker, (1979) and 

Gitelson, (2002) 

Soil Adjusted Vegetation Index-Green SAVIg 𝟏 𝟎. 𝟓 𝑮 𝑹
𝑮 𝑹 𝟎. 𝟓

Chen, (2010) 

Optimized Soil Adjusted Vegetation Index-

Green 

OSAVIg 𝟏. 𝟓 𝑮 𝑹
𝑮 𝑹 𝟎. 𝟏𝟔

 
Widjaja Putra and Soni 

(2018) 

 

 

R/G/B 

Visible Atmospherically Resistant Index VARI 𝑮 𝑹
𝑮 𝑹 𝑩

 
Gitelson et al. (2002)

Red-Green-blue Normalized Difference 

Vegetation Index 

NDVIrgb 𝑮 𝑩 𝑹
𝑮 𝑩 𝑹

 
Widjaja et al. (2008)

Red-Green-Blue Simple Ratio SRrgb 𝑮 𝑩
𝑹

 
Fernández et al.  (2019) 
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4. Results 

4.1 . Hordeum vulgare L 

4.1.1. Optical indices (fIPAR and CCI) values 

 

In Figure 3, Minor variations in fIPAR and CCI among N-treatments at the anthesis 

phenological stage (Zadocks 65) were observed. Average fIPAR values vary between 0,73± 

0,047 to 0,87± 0,047 (average± Standard deviation) and CCI values range from 20,81± 2,253 

to 26,94± 2,253 (average± Standard deviation. The differences among N treatments were not 

significant. 

 

Figure 3 : (A) Fractional Intercepted Photosynthetic Active Radiation (fIPAR) and (B) leaf 

Chlorophyll Content Index (CCI) at the anthesis phenological stage for barley. Data are 

average values for each treatment and bars represent the standard error of the mean (n = 3). 

 

4.1.2. Relationships among crop data (biomass, and grain yield and grain protein 
content) and canopy biophysical attributes  (fIPAR and CCI)  

 

The data obtained from fIPAR showed a highly significant correlation with yield parameters 

(Table III). On the other hand, the data obtained from the CCI showed a strong correlation with 

biomass yield and grain yield parameters, 
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Table III: Correlation coefficients between the fraction of intercepted PAR (fIPAR), the 
chlorophyll content index (CCI), biomass, yield, and protein content at the anthesis stage for 

barley (n = 12). 

 

 Biomass avg 

(kg.ha-1) 

Grain Yield (GY) avg 

(kg.ha-1) 

Protein Content (PC) avg 

 

fIPAR avg 0,300 ,578* 0,543 

CCI avg ,713** ,790** 0,600 

 
* and **  indicate significant correlation at P <0.05 and P < 0.01, respectively 

 

4.1.3. Relations between the fIPAR and CCI and spectral data (vegetation indices and 
color coordinates) 

 

The vegetation indices obtained from the combination of the visible (RGB) and infrared (NIR) 

bands showed a significant correlation with the biophysical variables of the canopy fIPAR and 

CCI (Table Ⅳ). Based on the RGB / NIR bands, the CCI correlation coefficients were slightly 

larger than those of fIPAR. 

Among these indices, the visible band with the B/R ratio outperformed the other indices when 

estimating the fIPAR, presenting a highly significant correlation r = 0.583; (P <0.01). 

For the CCI estimation, all calculated indices presented a highly significant correlation, the 

index that presented the highest correlation was VARI index with r = 0,800 (P <0.01) (in 

addition to BR in the same way as for fIPAR).  
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Table IV: Correlation coefficients between the fraction of intercepted PAR (fIPAR), the 

chlorophyll content index (CCI), and the vegetation indices (VI) obtained with a modified 

conventional digital camera for barley (n = 12). 

Bands Relation  VI fIPAR CCI 

 

 

NIR-VISIBLE 

NIR/R NDVI 0,375 ,694* 

SR 0,487 ,703* 

NIR/G GNDVI 0,239 ,582* 

GSR 0,264 ,595* 

 

 

VISIBLE 

B/R BR ,583* ,786** 

G/R GR 0,528 ,719** 

NDVIg 0,464 ,728** 

 

R/G/B 

VARI 0,561 ,800** 

NDVIrgb 0,488 ,753** 

SRrgb - - 

 
* and ** indicate significant correlation at P <0.05 and P < 0.01, respectively 
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Figure 4: Relationships derived from the conventional camera between the BR vegetation 

index with fIPAR (a), between BR and CCI (b), and between the VARI vegetation index with 

CCI (c) for barley (n = 12). 

                                      

The estimation of the biomass yield and grain yield, as well as grain protein content via the 

different plant indices grouped in Table Ⅴ, showed that the two indices VARI and BR had the 

best correlation for the three variables simultaneously. 

On the one hand, for GY, the two indices were very well correlated with values ranging from 

0,770 to 0,799 (P < 0.01). 

On the other hand, the VARI and BR indices show the best correlation with the protein content 

with 0,876 (P <0,01) and 0.658 (P <0,05) respectively. 

Table V: Barley correlation coefficients between biomass, yield, and protein content and 

vegetation indices obtained with a modified conventional digital camera (n = 12). 

 VI GY Biomass PC 

NIR/R NDVI ,662* ,620* 0,519 

SR ,731** ,649* 0,455 

NIR/G GNDVI ,611* ,624* 0,441 

GSR ,623* ,625* 0,449 

B/R BR ,799** ,690* ,658* 

G/R GR ,731** ,631* 0,447 

NDVIg ,685* ,604* 0,516 

R² = 0,64
P<0,01
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R/G/B 

 

 

VARI ,770** ,675* ,876** 

NDVIrgb ,710** ,625* 0,595 

SRrgb    

* and ** indicate significant correlation at P <0.05 and P < 0.01, respectively 

 

Table VI: The Pearson correlation values between the fIPAR and CCI and the parameters of 

different color coordinates. 

* and ** indicate significant correlation at P <0.05 and P < 0.01, respectively 

 

Table Ⅵ shows Pearson's correlations of color coordinates with Chlorophyll Content Index 
(CCI) and Fractional Intercepted Photosynthetic Active Radiation (fIPAR). 

No correlation was recorded for fIPAR, hence the difficulty in determining barley biomass 
using color coordinates. 

Among the color coordinates, only R (RGB), S (HSL), L (Lab), and S (HSB) which correlate 
with chlorophyll content; S (HSL) and S (HSB) show a positive correlation however R (RGB) 
and L (Lab) are negatively correlated with CCI. 

The S (HSL) and S (HSB) indicate the saturation level and the L (Lab) and R (RGB) reflect the 
brightness. From one hand, for brightness, the two-color coordinates have a negative 
correlation, so the brighter the image the less chlorophyll there is. On the other hand, for 
saturation the correlation is positive; the higher the intensity of the color, the more chlorophyll 
is detected. 

 

 

 fIPAR CCI 
R       -0,414 -,680* 

G -0,416 -0,542 
B -0,276 -0,425 
H 0,374 0,335 
S 0,512   0,716** 
L -0,418 -0,601* 
L -0,410 -0,545 
a 0,506 0,478 
b -0,394 -0,347 
H 0,374 0,335 
S 0,473    0,714** 
B -0,413 -0,540 
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4.1.4. The capability of spectral indices at distinguishing crop N status and their effects 
on grain yield and protein content 

 

Spectral indices are useful for estimating crop yield potential and basing in-season N fertilizer 

applications (Figure 5). For barley, the application of the four different treatments of N (0, 60, 

120, and 180) didn’t show any significant differences in spectral indices fIPAR, CCI, PC, BR, 

VARI, and GY. All the mentioned spectral indices didn’t show significant variation (P>0.05) 

among N-treatments during the anthesis phenological stage. 
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Figure 5 : (A) Fractional Intercepted Photosynthetic Active Radiation (fIPAR), (B) leaf 

Chlorophyll Content Index (CCI), (C) Protein content (PC), (D) grain yield (GY),(E) Blue Red 

Simple Ratio (BR) and (F) Visible Atmospherically Resistant Index (VARI) at anthesis 

phenological stage for barley. Data are average values for each treatment and bars represent the 

standard error of the mean (n = 3). 
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4.2 . Triticum aestivum L 

4.2. 1. Optical indices (fIPAR and CCI) values 
 

Minor variations in fIPAR and CCI among N-treatments at the anthesis phenological stage were 

observed (Figure 6). Fractional Intercepted Photosynthetic Active Radiation (fIPAR) average 

values varies between 0,58± 0,042 to 0,67± 0,042 (average± Standard deviation) and CCI 

values range from 26,39± 1,863 to 34,27± 1,863 (average± Standard deviation. The differences 

between N treatments weren’t significant for fIPAR (P>0,2) and weakly significant for CCI 

(P=0,067). 

 

Figure 6 : (A) Fractional Intercepted Photosynthetic Active Radiation (fIPAR) and (B) leaf 

Chlorophyll Content Index (CCI) at the anthesis phenological stage for wheat. Data are 

average values for each treatment and bars represent the standard error of the mean (n = 3). 

4.2. 2. Relationships among crop data (biomass, and grain yield and grain protein 
content) and canopy biophysical attributes (fIPAR and CCI)  

 

The data obtained from fIPAR showed a highly significant correlation with all parameters, and 

the higher correlation was with biomass and yield parameters with 0,673 and 0,672 (P<0,01) 

respectively (Table Ⅶ). On the other hand, the data obtained from the CCI showed a strong 

correlation with the PC with an average of 0,587 (P<0,01).  
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Table VII: Correlation coefficients between the fraction of intercepted PAR (fIPAR), the 

chlorophyll content index (CCI), biomass yield, grain yield, and protein content for wheat at 

anthesis phenological stage (n = 12). 

 

 

 

 

 

 

 

* and **  indicate significant correlation at P <0,05 and P < 0,01, respectively 

4.2. 3. Relationships between the fIPAR and CCI and spectral data (vegetation 
indices and color coordinates) 

 

The vegetation indices derived from the combination of the visible (RGB) and infrared (NIR) 

bands have shown a significant correlation with the biophysical variables of the canopy fIPAR 

and CCI (Table Ⅷ). The CCI and fIPAR correlation coefficients were almost of equal 

importance. 

Among these indices, the NIR/R and NIR/G ratios with the NDVI and GNDVI index, 

respectively, outperformed the other indices when estimating the fIPAR, presenting a highly 

significant correlation r = 0,818 ; (P <0,01). 

For the CCI estimation, all calculated indices presented a highly significant correlation, the 

index that presented the highest correlation was the BR index with r = 0,803 (P <0,01). 

 

Table VIII: Correlation coefficients between the fraction of intercepted PAR (fIPAR), the 

chlorophyll content index (CCI), and the vegetation indexes (VI) obtained for wheat with a 

modified conventional digital camera (n = 12). 

Bands Relation  VI fIPAR CCI 

 

 

NIR-VISIBLE 

NIR/R NDVI ,818** ,740** 

SR ,816** ,750** 

NIR/G GNDVI ,818** ,727** 

GSR ,817** ,730** 

 

 

B/R BR ,702* ,803** 

G/R GR ,727** ,713** 

 Biomass avg 

(kg.ha-1) 

Grain yield (GY) avg 

(kg.ha-1) 

Protein content  

PC avg  

FIPAR avg ,673*           ,672*          ,596* 

CCI avg ,768**            ,773**         ,587* 
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VISIBLE 

NDVIg ,725** ,705* 

 

R/G/B 

VARI ,561 ,800** 

NDVIrgb ,742** ,793** 

SRrgb   

 
* and ** indicate significant correlation at P <0,05 and P < 0,01, respectively 

 

 

Figure 7: Correlations between the different vegetation indices of wheat and fIPAR and CCI: 

between the NDVI and GNDVI indices and fIPAR (a) and (b), and between VARI and CCI 

(c) (n = 12).  
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Table Ⅸ shows that all the indices showed a good correlation with GY and biomass with values 

varying between 0,696 and 0,789. On the other hand, only the BR, VARI, and NDVIrgb indices 

correlate with GPC: 0,689 and 0,595 and 0,587 respectively (P <0,05). 

Table IX: Correlation coefficients between biomass, yield, and protein content and vegetation 

indices (VI) obtained for wheat with a modified conventional digital camera (n = 12). 

 VI GY Biomass PC 

NIR/R NDVI ,785** ,748** 0,518 

SR ,781** ,738** 0,499 

NIR/G GNDVI ,789** ,762** 0,536 

GSR ,777** ,746** 0,528 

B/R BR ,802** ,762** ,689* 

G/R GR ,696* ,627* 0,386 

NDVIg ,688* ,620* 0,392 

R/G/B VARI ,794** ,741** ,595* 

NDVIrgb ,783** ,728** ,587* 

SRrgb    

 

* and ** indicate significant correlation at P <0,05 and P < 0,01, respectively 

Table X: The Pearson correlation values between the fIPAR and CCI and the parameters of 

different color coordinates of wheat. 

 

 fIPAR CCI 

R -,793** -,723** 

G -,765** -,686* 

B -,675* -0,519 

H ,667* ,665* 

S ,578 ,694* 

L -,661* -,728** 

L -,637* -,749** 

a ,820** ,820** 



23 
 

b -,787** -,691* 

H ,741** ,658* 

S ,682 ,744** 

B -,798** -,709** 

 

Pearson color coordinate correlations with Chlorophyll Content Index (CCI) and Fractional 

Intercepted Photosynthetic Active Radiation (fIPAR) are collated in Table X. 

For fIPAR, all color coordinates except S (HSL) and S (HSB) correlate strongly with fIPAR; 

H (HSL), a (Lab), and H (HSB) are positively correlated with fIPAR while the rest have a 

negative correlation. 

For CCI, strong correlations were recorded for all color coordinates except B (RGB); positive 

correlations were recorded for H (HSL), S (HSL), a (Lab), H (HSB), and S (HSB) coordinates, 

and other color coordinates were negatively correlated with chlorophyll content. 

In both cases, L (HSL), L (Lab), and B (HSB), which are reflected at image brightness, are 

negatively correlated with CCI and fIPAR; The higher the brightness of the image, the lower 

the biomass and chlorophyll content. 

For CCI, S (HSL) and S (HSB), a sign of saturation, showed a positive correlation; therefore 

the greater the intensity of the color, the more chlorophyll content is detected. 

4.2. 4. The capability of spectral indices at distinguishing crop N status and their 
effects on grain yield and protein content. 

 

The spectral indices including GY, GNDVI, and NDVI didn’t present significant differences, 

while fIPAR, CCI, PC presented minor significant variations between the four N-treatment 

(Figure 8). 
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Figure 8 : (A) Fractional Intercepted Photosynthetic Active Radiation (fIPAR), (B) leaf 

Chlorophyll Content Index (CCI), (C) grain yield (GY), (D) Protein content (PC), (E) 

Normalized Difference Vegetation Index (NDVI) and (F) Green Normalized Vegetation Index 

(GNDVI)at anthesis phenological stage for wheat according to SNK. Data are average values 

for each treatment and bars represent the standard error of the mean (n = 3). 
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5. Discussion 
 

The estimation of the nutrient content of plants is important in agricultural practices especially 

in enabling the application of precision farming. The overall aim of this study was mainly the 

estimation of N status and grain protein contents of Hordeum vulgare L and Triticum aestivum 

L from optical and spectral data extracted from a modified consumer-grade camera. Optical 

remote sensing methods were replaced by a conventional digital camera.  The capability of 

these optical and spectral data to detect differences in crop N status and their influences on grain 

yield and protein content was compared. 

Many recent studies have investigated the use of digital cameras to characterize crop growth 

and nutrient status. Multiple have already analyzed the potentiality of vegetation indices derived 

from modified conventional cameras (RGB) in the estimation of chlorophyll and nitrogenous 

status for wheat and barley (Fernández et al., 2019; Jiang et al., 2019). 

In the current study, the BR vegetation index showed a strong correlation with fIPAR for barley 

while, for wheat, all NIR and VISIBLE indices were highly correlated with fIPAR, with; NDVI 

and GNDVI among the most significant. These results are similar to those reported by other 

studies in which the combination of both NIR bands and red bands are the most optimal for 

adequately characterize fIPAR (Kyratzis et al., 2017; Liebisch et al., 2015; Quemada et al., 

2014).  

 

For CCI, all vegetation indices studied were highly correlated with CCI especially VARI and 

BR bands for both wheat and barley. Besides, vegetation indices derived from the combination 

of visible (RGB) and near-infrared (NIR) bands showed a significant correlation with canopy 

biophysical variables: fIPAR and CCI. These correlations were higher for CCI than for fIPAR 

in barley, and the opposite in wheat. 

 

According to Fernández et al.2019 who carried out a study on wheat, the big differences in CCI 

between non-fertilized and fertilized treatments were observed at the anthesis stage. Moreover, 

the correlations between vegetation indices and canopy biophysical variables (fIPAR and CCI) 

were higher with fIPAR than for CCI at anthesis, which is similar to this study’s results in the 

wheat section and dissimilar with the barley section. 
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In agreement with previous studies in wheat (Fernández et al., 2019; Filella et al., 1995), the 

blue to the red ratio (BR) was found to be significantly related to chlorophyll content. 

Contrastingly, Schirrman et al. (Schirrmann et al., 2016) did not find a significant correlation 

between BR and tissue total N content whereas BR captured variation in biomass and LAI.  

 

In addition to the chlorophyll content and fIPAR estimation, all ratios and several indices 

presented highly significant correlations with biomass and grain yield especially BR and VARI 

for both wheat and barley. For protein content, only VARI and BR successfully showed 

significant correlations in the barley case, whereas BR, VARI, and NDVIrgb had a good 

capacity to estimate the grain protein content in wheat. Other results found by Kyratzis et al 

(2017) and Quemada et al. (2014)  showed that the GNDVI index has a good capacity to 

estimate wheat aerial biomass and grain yield. RGB indices in this study showed comparable 

capability at assessing biomass and yield than NIR band based indices, while they presented 

dissimilar abilities to estimate CCI and fIPAR depending on the species. That might be related 

to the timing of image acquisition; Differences in crop status at the timing of image acquisition 

related to growth (soil cover and LAI), phenology (canopy greenness) as well as to the incidence 

of other stresses, particularly water stress, might mask the crop spectral response to N status 

(Gabriel et al., 2017). 

 

(Yamori et al., 2016) reported that leaf photosynthesis was the most significant factor for 

biomass and grain yield. In contrast, few studies have focused on the relationship between the 

photosynthetic capacity of crops and biochemical photosynthetic components such as leaf 

chlorophyll or carotenoid content to develop a biomass or yield model (Houborg et al., 2013). 

Chlorophyll is an important part of the Calvin–Benson cycle, and it is responsible for harvesting 

light during photosynthesis, which results in the excitation of electrons that are used to drive 

the production of nicotinamide adenine dinucleotide phosphate and chemical energy in the form 

of adenosine triphosphate (Palareti et al., 2016). It also indicates nutritional status as a result 

of N fertilizer, which serves as a reliable means to estimate the function of N fertilizer (Amalero 

et al., 2003).  

 

This study pointed out also the good correlation of CCI and fIPAR with biomass, and grain 

yield, and grain protein content in wheat treatments; CCI was highly correlated with biomass, 

grain yield, and grain protein content than fIPAR. For barley, fIPAR only permits the estimation 
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of Grain yield, and CCI is highly correlated to biomass and grain yield. Whereas grain protein 

content correlates with none of the two canopy biophysical variables. 

 

All calculated indices presented significant corrections in the estimation of the biomass and 

grain yield and just BR, VARI and NDVIrgb correlate with grain protein content. 

 

While using a modified consumer-grade camera, the modification of filters (IR) while taking 

images might be another factor that affects the information obtained through the cameras. The 

modification of the camera made by removing the IR filter negatively influences the operating 

capacity of the three RGB channels. This is since the energy captured by the CMOS sensor is 

less than in the unmodified camera, so that the exposure times are longer, leading to the 

acquisition of data becoming susceptible to interference by vibration frequencies (Lebourgeois 

et al., 2008; Mishra et al., 2016). 

N requirements as already mentioned can be estimated from chlorophyll concentration and 

remote sensing of crop N status is feasible in the visible spectral bands due to the close 

association between N and chlorophyll content. Anterior studies have explored the capability 

of vegetation indices derived from commercial-grade cameras (RGB) at estimating either N or 

chlorophyll content. In wheat, indices based on green and red bands have been related to N 

content(Fernández et al., 2019; Yousfi et al., 2016). Similarly, in this study, ratio and 

normalized difference indices based on green, blue, and red bands (i.e., GR, VARI, NDVIrgb) 

were found to be closely related to chlorophyll content. This study suggests other indices in 

chlorophyll estimation including NDVI, SR, and NDVIg; these three indices could be used, in 

addition to others, to estimate chlorophyll content. 

The results obtained in this study pointed out that vegetation indices based on modified 

conventional cameras can have great potential at assessing the N status of the crop. It highlighted 

the possible successful use of several and multiple vegetation indices to detect biophysical and 

agronomic parameters, indifference with what (Agapiou et al., 2012) reported where more than 

one vegetation index can be used successfully to attend and monitor N status.  
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6. CONCLUSIONS AND FUTURE LINES 
 

The vegetation indices derived from a modified conventional camera provided reliable 

estimates in the measurements of the different parameters (fIPAR, CCI, GYP, biomass, and 

grain yield) of the studied crops Hordeum vulgare L. and Triticum aestivum L. 

RGB-NIR based indices derived from a modified conventional camera were able to capture 

variation in fIPAR and chlorophyll content especially NDVI and GNDVI. Furthermore, RGB 

indices, particularly BR and VARI, provided also chlorophyll content and fIPAR estimates. 

 

To conclude, the results obtained in this study highlighted the potential of standard and 

modified consumer grande cameras as simple, affordable, fast, and low-cost tools for N status 

assessment as for the prediction of chlorophyll content, fIPAR, biomass, and grain yield protein. 

 

This study and the presented analyses could inspire future works, including : 

 The use of the aerial vehicle could be implemented to obtain ultra-high resolution areas 

with higher spatial resolution. 

 The development of low-cost remote sensing techniques to determine N nutrient could 

be a valuable tool to improve the management of fertilization, increase the efficiency of 

its use, and reduce the environmental impacts associated with its misuse. 
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