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Summary 

The study of the 3D structural details of protein interactions is essential to understand biomolecular 
functions at the molecular level. In this context, the limited availability of experimental structures 
of protein-protein complexes at atomic resolution is propelling the development of computational 
docking methods that aim to complement current structural coverage of protein interactions. One 
of these docking approaches is pyDock, which uses van der Waals, electrostatics and desolvation 
energy to score docking poses generated by a variety of sampling methods, typically FTDock or 
ZDOCK. The method has shown a consistently good prediction performance in community wide 
assessment experiments like CAPRI or CASP, and has provided biological insights and insightful 
interpretation of experiments by modeling many biomolecular interactions of biomedical and 
biotechnological interest. Here we describe in detail how to perform structural modeling of protein 
assemblies with pyDock, and the application of its modules to different biomolecular recognition 
phenomena, such as modeling of binding mode, interface and hot-spot prediction, use of restraints 
based on experimental data, inclusion of low-resolution structural data, binding affinity estimation, 
or modeling of homo- and hetero-oligomeric assemblies. 
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1. Introduction 

Understanding the structure and energetics of protein interactions has potential applications in 
diverse fields such as biomedicine, biotechnology or agricultural sciences. However, the 
experimental determination of structural information on the interactome lags well behind the 
amount of proteomics and genomics data that are being produced at growing pace. In this 
context, computational structural prediction is a valuable complement to experimental data and 
an essential help to interpret genomics information. Indeed, a variety of protein-protein 
docking tools have been reported to model the atomic details of the interaction between two 
given proteins [1,2]. One of such docking approaches is pyDock [3], which uses energy-based 
function to score docking poses generated by a variety of sampling methods. The distributed 
version for local running is optimized to be automatically used with the sets of rigid-body 
docking poses obtained by FTDock 2.0 [4] or ZDOCK 2.1 [5] , but it has been applied to score 
either flexible or rigid docking models from other programs, such as RotBus [6], SwarmDock 
[7] , ZDOCK 3.0 [8], SDOCK [8], or LightDock [9]. The method is also available as a web 
server, pyDockWEB, using pyDock version 3 and including a custom parallel FTDock version 



based on MPI libraries, with grid size optimization for efficient use of FFTW libraries and 
multi-processor running [10].  

The key aspect of pyDock is a unique combination of electrostatics, desolvation and van 
der Waals terms, with weighting factors originally optimized for a small set of cases to avoid 
overfitting. Indeed, the method has shown to be robust throughout the years, in regards to its 
application to new benchmark cases and to different types of interactions. The method has been 
successfully tested in CAPRI (http://www.ebi.ac.uk/msd-srv/capri/capri.html) and CASP 
(http://predictioncenter.org/) community wide assessment experiments. Indeed, in the most 
recent CASP13 edition, the performance of our group in the multimeric targets, based on 
pyDock models, was ranked within the top 3 groups from a total of over 40 participants, 
showing the potential of pyDock to model multi-molecular assemblies, including oligomers 
and multi-domain proteins. 

In addition to docking prediction, pyDock provides a variety of additional modules to 
analyze fundamental problems in biomolecular recognition. The module pyDockNIP, which 
analyzes the frequency of interface residues in low-energy docking models from pyDock [11], 
has been reportedly applied to identify interface hot-spot residues [12], that is, residues that 
contribute the most to the binding affinity, which can be relevant for drug discovery targeting 
protein-protein interactions with small molecules. The module pyDockSAXS is the first 
systematically tested approach in using protein docking models to complement low-resolution 
structural data from Small Angle X-ray Scattering (SAXS) [13-15]. On the other side, interface 
residue data from bioinformatics predictions, mutational experiments, NMR, cross-linking, 
etc., can be included as distance restraints with pyDockRST module [16]. Although originally 
aimed to protein-protein docking, pyDock can be also applied to model protein interactions 
with other biomolecules, such as protein-RNA [17]. On a more practical side, the pyDock 
methodology has provided biological insights and helped to interpret experiments in different 
cases of biomedical and biotechnological interest. One remarkable example is the structural 
study of host-pathogen complexes, in which pyDock docking together with energetic analysis 
helped to interpret molecular mechanisms for [18]. Another case of interest is the application 
of pyDock within a broad structural analysis of members of the family of Hetero Aminoacid 
Transporters (HAT), such as the integrative modeling of the assembly of transmembrane LAT2 
and its ancillary protein 4F2hc, using a combination of modeling, docking, electron 
microscopy and cross-linking experiments [19].  

In this chapter, we will use a protein-protein case of known 3D structure to illustrate the 
use of the different modules in pyDock for the structural modeling of protein complexes and 
the characterization of molecular assemblies. 

 

2. Materials 



 
2.1. Input 

The pyDock software needs the coordinates of the two interacting proteins, usually as PDB 
files, but it can also take AMBER coordinate and topology files. When using PDB files, 
hydrogens are not needed, and if present, they will be removed and rebuilt again by pyDock. 
In addition, all HETATM coordinates will be removed in the docking calculations.  

The pyDock method can use AMBER coordinate files (with extension 
as .inpcrd, .restrt, .rs7, .crd) and topology files (with extension 
as .prmtop, .parm7, .top) created by the PARM, LeAP, SANDER, or GIBBS programs 
from AMBER [20]. In this case, the cofactors and other compounds will be included in pyDock 
calculations.  
 

2.2. Programs 

2.2.1. pyDock 

The pyDock 3.0 package is available at https://life.bsc.es/pid/pydock/ (to get 
pyDock you need to apply for a license by filling in your data; for academic use, you will 
receive a link to the pyDock distribution file by e-mail; for commercial use, you will be 
contacted by the authors). Uncompress and untar the pyDock distribution file to extract the 
pyDock3 directory.  

Next, we need to change permissions of the pyDock3/data directory: 

chmod go+rx data 

The pyDock3 directory can be moved to any location of your choice. For instance, let say 
that it is moved to /usr/local/software/ directory, then you could call pyDock by: 

/usr/local/software/pyDock3/pyDock3 

Moreover, we can define the PYDOCK variable in your .bashrc file, as follows: 

export PYDOCK=/usr/local/software/pyDock3/ 

 so that the executable of pyDock can be called in a more convenient way: 

  $PYDOCK/pyDock3 

 The pyDock binary has been compiled for Linux 32-bit (see more installation details in 
Note 1). 

 

2.2.2. FTDock 



We need some external programs to generate a set of rigid-body docking poses. In this regard, 
pyDock is ready to process the output of FTDock 2.0, and we will show here how to install it. 
The first step is to install the FFTW libraries (see Note 2). Once they are properly installed, we 
can download the FTDock 2.0 installation file gnu_licensed_3D_Dock.tar.gz from 
http://www.sbg.bio.ic.ac.uk/docking/download.html (by clicking in the 
appropriate link). Uncompressing this file will extract its contents to a new directory called 
3D_Dock (which contains, among others, the folder progs with all the needed binaries). Now, 
within the new progs directory, open the Makefile file and edit the following lines: 

1. FFTW_DIR line: define the full path of the fftw-2.1.5 directory (see Note 2).  

(  e.g. FFTW_DIR= /<your-installation-directory>/fftw-2.1.5   ) 

2. CC_FLAGS line: remove the -malign-double argument. 

3. CC_FLAGS line: define   -mcpu=k8         # instead of the default   -mcpu=pentiumpro 

 

Now within the progs directory, compile the program with ./make (ignore WARNING 
messages). 

 

2.2.3. SCWRL 

In case of incomplete side-chains in the input PDB files, we can use SCWRL 
(http://dunbrack.fccc.edu/) to rebuild them. To use it automatically from pyDock (see 
Note 3), we need to install SCWRL 3.0. This version is outdated and cannot be directly 
downloaded from the above web, so you need to obtain the installation file 
scwrl3_lin.tar.gz from their authors. Uncompressing this file will extract its contents to 
a new directory called scwrl3_lin. Within this directory, run: 

  ./setup  

This will create a SCWRL 3.0 binary (scwrl3) in such directory. 

 

2.2.4. Other external programs 

We can also use ZDOCK (http://zdock.umassmed.edu/software/) for the generation 
of rigid-body docking poses. The pyDock pipeline is ready to process the output of ZDOCK 
2.1, so it is advisable to download and install that version. This and the other above programs 



can be run either manually following each program's instructions, or automatically within 
pyDock according to instructions herein (see Note 3). 

For some functions useful for the analysis of the docking results, as later explained, we 
will use ICM-Browser (www.molsoft.com). 

 

2.3. Server 
 The pyDock method is also available as a web service at 

https://life.bsc.es/pid/pydockweb. The web front-end acts as a proxy to the user, 
removing any complexity aroused from a local installation of the software. Via a user-friendly 
interface, the user is capable of uploading molecular structural information in PDB format. 
After finishing, the user will receive the results in a web page, together with all the files 
generated during the docking project. These files might also be useful for local execution of 
pyDock, in order to start from a given intermediate step.  

 
 
3. Methods 

pyDock has a highly modular architecture, with a series of modules performing the different 
functionalities of the program (Figure 1). The general syntax for running pyDock is: 

$PYDOCK/pyDock3 DOCKNAME modulename 

Thus, the executable pyDock3 usually needs two arguments: i) DOCKNAME, which is the 
name of the pyDock project and the base for all the files that will be created during the docking 
pipeline, and ii) modulename, which will call for the specific module. The details of the 
different pyDock modules are described in the running instructions below. 

 

3.1. Parameter file 

First, you need to create a text file called DOCKNAME.ini , in which DOCKNAME will be the 
name of the pyDock project. This file will contain all the needed information about the 
interacting proteins (PDB files, chain IDs...).  

We will illustrate this with an example, in which we will model the structure of the complex 
formed between the proteins TolB and Pal (PDB 2HQS) from E. coli, involved in maintaining 
the bacteria outer membrane stability [21]. For this example, we also have the structures of the 
unbound TolB and Pal proteins: PDB 1c5k (chain ID A) and 1oap (chain ID A), respectively. 
We will download the coordinate files of these proteins (1c5k.pdb and 1oap.pdb) from 
www.pdb.org. In that case, we will create a text file called Dock1.ini (we will use "Dock1" 
as base name for the docking files) with the following information: 



__________________________________ 

   [receptor] 
   pdb  = 1c5k.pdb 
   mol  = A 
   newmol = A 
 
   [ligand] 
   pdb  = 1oap.pdb 
   mol  = A 
   newmol = B 

_____________________________________ 

 

The mol field is the original chain ID (1 character) of the protein chain/s that will be used for 
docking, whereas the newmol will be the name of the chain ID of that protein in the docking 
output files (see Note 4). For convention, one of the proteins (usually the largest one) will be 
the receptor (static position), and the other the ligand (mobile position). 

The program can also take a protein structure in AMBER format. To illustrate this with the 
above example, suppose we generate coordinate files (1c5k.inpcrd, 1oap.inpcrd) and 
topology files (1c5k.prmtop, 1oap.prmtop) for our receptor and ligand molecules with 
LEaP program from AMBER. Then, we should use the following initial file to define the input 
structures: 

  _____________________________________________ 

  [receptor] 
  pdb  = 1c5k.inpcrd,1c5k.prmtop 
  mol  = - 
  newmol = A 
 
  [ligand] 
  pdb  = 1oap.inpcrd,1oap.prmtop 
  mol  = - 
  newmol = B 

__________________________________________________ 

 

The order of the AMBER files in the pdb field is important: it should be first coordinate 
file, then topology file (with any valid extension as mentioned in section 2.1). We should also 
note that AMBER coordinate and topology files do not have chain ID. In a case like this, we 
can define "mol = - " or "mol =  ", and it will take all molecules with no chain ID in the 
corresponding file. 

 



 

3.2. Setup the receptor and ligand coordinate files for docking 

Before any docking calculation, we need to generate the coordinate files correctly parsed for 
pyDock, from the receptor and ligand PDB files indicated in the DOCKNAME.ini parameter 
file. For that, run the pyDock setup writing the following line in your console: 

  $PYDOCK/pyDock3 Dock1 setup 

This command will create the new PDB files for receptor and ligand Dock1_rec.pdb and 
Dock1_lig.pdb respectively, which are suitable as input for pyDock. 

Some PDBs may have incomplete side-chains, that is, there are missing atoms in the 
structures. These side-chains can be rebuilt with external programs. One of them is SCWRL, 
which can be run automatically from pyDock if its location is indicated in the pydock.conf 
file (see Note 3). 

 

3.3. Generating rigid-body docking poses 

pyDock can be applied to score rigid-body docking orientations generated by a variety of 
methods, but it is ready to automatically process the output from ZDOCK 2.1 or FTDock 2.0 
docking programs. These programs can be run independently, but we will describe here how 
to call them automatically from pyDock, for which they should be previously installed (see 
section 2.2) and their location indicated in pydock.conf file (see Note 3). 

3.3.1. Running FTDock within pyDock 

Before running FTDock within pyDock, the program expects the FTDock preprocessed files 
for receptor and ligand (in our example: Dock1_rec.parsed and Dock1_lig.parsed). 
These files should be created by using the FTDock utility preprocess-pdb.perl, but since 
we already have suitable files from the pyDock setup step (described in section 3.2), we can 
just create the parsed files by copying the pyDock receptor and ligand files: 

cp Dock1_rec.pdb Dock1_rec.parsed 

           cp Dock1_lig.pdb Dock1_lig.parsed 

 

Then, we can use the following commands to run FTDock with pyDock: 

  $PYDOCK/pyDock3 Dock1 ftdock 



This will produce the file Dock1.ftdock, where all the docking poses will be stored. 

FTDock parameters can be changed for higher precision (see Note 3). In case of multi-core 
computer architectures, it could be convenient to execute a FTDock MPI version (see Note 
5). 

 

3.3.2. Running ZDOCK within pyDock 

In our example, we can use the following commands to run ZDOCK (if previously installed) 
with pyDock: 

  $PYDOCK/pyDock3 Dock1 zdock 

This will produce the file Dock1.zdock, where all the resulting docking poses will be 
stored. 

 

3.4. Converting the rigid-body docking poses to pyDock format 

3.4.1. Converting FTDock output to pyDock format 

Now we need to transform the output data from FTDock (Dock1.ftdock in our example; in 
which each solution is represented by the position of the ligand in Cartesian coordinates, and 
its rotation based on Euler angles) to the rotation and translation matrix that transforms the 
original ligand coordinates into the different orientations generated by FTDock. This is done 
by using the following command: 

   $PYDOCK/pyDock3 Dock1 rotftdock 

This calculation is quite fast and will create a file (Dock1.rot in our example) containing 
the above mentioned transformation matrices for the ligand in all docking poses.  

 

3.4.2. Converting ZDOCK output to pyDock format 

We can also transform the output data from ZDOCK (Dock1.zdock in our example) to a file 
suitable for further pyDock scoring, containing the rotation and translation matrix for each 
docking solution: 

   $PYDOCK/pyDock3 Dock1 rotzdock 

This calculation is quite fast and will create a file (Dock1.rot in our example) containing 
the above mentioned transformation matrices for all docking poses. Note that the name of the 



file (Dock1.rot in our example) is the same as that from FTDock output, so to avoid 
overwriting files, it is advisable to rename the original files to keep them with different names 
(e.g. Dock1.rot.ftdock, Dock1.rot.zdock).  

The docking sets obtained from different docking programs (e.g. FTDock, ZDOCK...) can 
be scored independently (see section 3.5) by keeping their DOCKINGNAME.rot files separated, 
but they can also be merged into a single docking set for its further processing (see Note 6). 

 

3.5. Scoring the rigid-body docking poses with pyDock 

Next step is to use pyDock energy function to score and rank all positions by running dockser 
module with the following command: 

  $PYDOCK/pyDock3 T26 dockser  > dockser.log  & 

 In case of multi-core computer architectures, it could be convenient to execute this scoring 
step in parallel (see Note 7). 

The main output of the pyDock scoring step is a table (Dock1.ene in our example) with 
the detail of the different energy terms for each docking pose. See below the results obtained 
for this example when using FTDock with the default parameters in pydock.conf 
(calculate_grid=1.2 and no electrostatics): 

 

Conf(1)   Ele(2)      Desolv(3)   VDW(4)     Total(5)     RANK(6) 
------------------------------------------------------------------ 
3740     -15.199      -8.536      -1.041      -23.839        1 
3496     -15.801      -8.436       6.326      -23.604        2 
3847     -14.181      -9.301      21.455      -21.336        3 
7260      -8.081     -12.723      -1.873      -20.992        4 
(...) 
 

(1) Conformation number of the docking pose (same as that in the .rot file, last column) 
(2) Electrostatic energy term 
(3) Desolvation energy term 
(4) Van der Waals energy term  
(5) Total binding energy (Ele + Desolv + 0.1*VDW) 
(6) Rank of the docking pose according to its total binding energy 

 

  

3.6. Analysis of the docking results 



3.6.1. Generating the best-scoring docking models 

We can generate the PDB file of a selection of resulting docking poses with the makePDB 
pyDock module, by indicating a range of models as ranked in the docking energy file. In our 
example, we will build the PDB files for the docking poses ranked 1 to 3 in the Dock1.ene 
file, as follows:     

 

  $PYDOCK/pyDock3 Dock1 makePDB 1 3 

 This will create three files named Dock1_3740.pdb, Dock1_3496.pdb, and 
Dock1_3847.pdb, whose names will indicate the conformation numbers (Conf column in 
Dock1.ene file) of these top 3 ranked docking models. 

 

3.6.2. Comparing the results with reference complex structure 

In some cases, we would like to compare the docking models with a reference complex 
structure (for test purposes when the complex structure is known; in case of available structure 
of a complex involving homologous proteins, etc.). While there are different quality measures, 
one of the most popular is ligand RMSD, that is, the RMSD between the positions of the ligand 
in the reference and modelled complexes, after superimposing the receptor chains of both 
complexes. This value can be automatically computed by pyDock dockser module, if a 
suitable reference complex is indicated and properly setup in the DOCKNAME.ini file. 

In our example, we can use as reference the file 2hqs.pdb (PDB entry 2HQS downloaded 
from www.pdb.org), and define the following Dock1.ini file: 

__________________________________ 

   [receptor] 
   pdb  = 1c5k.pdb 
   mol  = A 
   newmol = A 
 
   [ligand] 
   pdb  = 1oap.pdb 
   mol  = A 
   newmol = B 
 
   [reference] 
   pdb  = 2hqs.pdb 

   recmol = A 
   ligmol = H 
   newrecmol  = A 



   newligmol  = B 
_____________________________________ 

 

The newrecmol field must indicate the same chain ID as newmol for the receptor, and 
the newligmol must be the same as newmol for the ligand. In this way, when running the 
setup module, the reference file Dock1_ref.pdb will be created. And, when running the 
dockser module, the ligand RMSD values for all docking poses in the Dock1.rot file will 
be calculated and shown in the Dock1.ene file, in the RMSD column. If we have an energy 
table without RMSD values from a previous execution, and we do not want to execute 
dockser again because of computational cost, we can run pyDock rmsd module to calculate 
and save RMSD values in a separate file Dock1.RMSD (which has to be manually added to 
Dock1.ene). 

For testing purposes, we usually consider a docking pose as acceptable (a.k.a. near-
native) when ligand RMSD < 10 Å, following CAPRI criteria [22]. In our example, the best-
ranked near-native model by pyDock (using FTDock within pyDock with the default 
parameters in pydock.conf) is ranked 61 (Figure 2). 

 

3.6.3. Interface and hot-spot prediction from docking 

Based on the docking results, it is possible to identify binding regions [11] and to estimate the 
most likely hot-spot residues [12], by using the pyDockNIP module, which can be called with 
pyDock patch argument. In our example: 

   $PYDOCK/pyDock3 Dock1 patch 

The resulting Dock1.ligNIP and Dock1.recNIP files contain the list of ligand and 
receptor residues with their corresponding NIP (Normalized Interface Propensity) values. The 
Dock1_rec.pdb.nip and Dock1_lig.pdb.nip files are PDB files in which the B-factor 
column is replaced by the NIP values, so that the results can be easily visualized with most 
molecular graphic programs (see Note 8). 

 

3.7. Additional pyDock features 

3.7.1. Improving docking with distance restraints 

In some cases, there is available information on residues of the interacting proteins that might 
be potentially located at the interface or directly involved in the interaction. Such data can be 
derived from a variety of sources: mutational experiments, NMR data, bioinformatics analysis, 



biophysical studies, etc. In those cases, we can use this information to define distance 
restraints between such potential interface residues in one of the proteins and any residue of 
the partner one. Then, we can evaluate to what extent such distance restraints are fulfilled in 
a given docking pose, and use this as a complementary score to the pyDock energy. 

In our example, we know from mutagenesis experiments [23] that residues H246, A249 
and T292 from TolB, and A88 and E102 from Pal, seem to be directly involved in the 
interaction between these proteins. We can indicate these residues in the restr field of 
Dock1.ini file (see Note 9 for more details): 

______________________________________________ 

  [receptor] 
  pdb  = 1c5k.pdb 
  mol  = A 
  newmol = A 
  restr      = A.Hid.246,A.Ala.249,A.Thr.292 

 
  [ligand] 
  pdb  = 1oap.pdb 
  mol  = A 
  newmol = B 
  restr      = B.Ala.88,B.Glu.102 

___________________________________________________ 

 

Then, we can evaluate the fulfillment of the distance restraints of every docking model in 
Dock1.rot as follows: 

  $PYDOCK/pyDock3 Dock1 dockrst > dockrst.log   & 

The resulting file Dock1.rst contains the scoring of each docking model based on the 
distance restraints. This file will be automatically combined with the existing Dock1.ene file 
to produce the Dock1.eneRST file, in which the docking models will be ranked according to 
the total scoring (Total column), obtained from a combination of pyDock energy (Total 
column in Dock1.ene) and restraint-based scoring (relRST column). In our example, the 
near-native docking pose ranked 61 with pyDock, became ranked 6th after including distance 
restraints in the scoring, and there is another docking pose of even better quality that was 
ranked 3275 by pyDock alone and became rank 35 after including distance restraints (Figure 
2). 

 

3.7.2. Improving docking with SAXS data 



Small-angle X-ray scattering (SAXS) technique can provide low-resolution structural 
information to help characterizing biomolecules and macromolecular assemblies. If SAXS 
data is available for a given protein-protein complex, it can be used in combination with 
pyDock scoring to improve the identification of the correct docking models. This approach, 
called pyDockSAXS [13] has been implemented as a web server 
(https://life.bsc.es/pid/pydocksaxs) [14,15]. We need as input the PDB files with 
the atomic coordinates of the interacting proteins (either structures or models), and a file 
containing SAXS experimental data compatible with CRYSOL software version 2.8 [24]. 

 

3.7.3. Computing the docking energy score for a single complex structure 

Using the pyDock bindEy module, we can compute the pyDock docking energy for a given 
complex structure (either experimentally determined or modelled). In our example, if we want 
to compute the pyDock energy between receptor and ligand in the reference complex structure 
(PDB 2HQS), we will define a new Dock2.ini file, indicating the corresponding chains for 
receptor and ligand in such complex structure: 

__________________________________ 

   [receptor] 
   pdb  = 2hqs.pdb 
   mol  = A 
   newmol = A 
 
   [ligand] 
   pdb  = 2hqs.pdb 
   mol  = H 
   newmol = B 

_____________________________________ 

 

Now we just need to run the bindEy module as follows: 

$PYDOCK/pyDock3 Dock2 bindEy 

 This will create a Dock2.ene table, with the energy terms (individual and total) for only 
one row, corresponding to the complex structure. 

 

3.7.4. Structural modeling of multi-domain proteins by docking 



One of the pyDock applications is to model multi-domain proteins by applying a distance 
restraint between aminoacids. This can be done with pyDockTET method [25], which can be 
called by docktet module. 

To illustrate this, we can use our example, given that TolB protein is composed of two 
clear structural domains as defined by CATH: 

  http://www.cathdb.info/version/latest/domain/1c5kA02 

Thus, we can split PDB 1C5K in two files, representing the two domains: one called 
1c5k_D1.pdb with the first domain (D1) that can be defined by residues 1-158, and the other 
called 1c5k_D2.pdb with the second domain (D2) defined by residues 166-389. Now we 
will try to rebuild the entire 2-domain protein by docking the individual domains with 
pyDockTET, using distance restraints derived from the length of the linker between residues 
158-166 (7 residues). The parameter file Dock3.ini will be defined as follows: 

__________________________________ 

   [receptor] 
   pdb  = 1c5k_D1.pdb 
   mol  = A 
   newmol = A 
 
   [ligand] 
   pdb  = 1c5k_D2.pdb 
   mol  = A 
   newmol = B 
 
   [tether] 
   receptor = A.Thr.158 
   ligand = B.Thr.166 
   length     = 7 

__________________________________ 

Then, the following steps will be followed to complete the pyDockTET procedure, i.e. 
docking with linker-based distance restraints. 

$PYDOCK/pyDock3 Dock3 setup  
  $PYDOCK/pyDock3 Dock3 ftdock 

$PYDOCK/pyDock3 Dock3 rotftdock 
$PYDOCK/pyDock3 Dock3 dockser  
$PYDOCK/pyDock3 Dock3 docktet   

 

The output will be a Dock3.eneTET table, with the combined pyDock and linker-based 
restraint energies for each docking model. 

 



4. Case Studies  

4.1. Integrative modelling with docking, cross-linking and EM data 

The pyDock method has been applied to model many complexes of biological interest, which 
usually requires a multidisciplinary effort and the integration of a variety of additional 
computational and experimental data. One interesting case was the first reported model for 
the assembly of the two subunits of a heteromeric amino acid transporter (HAT) [19]. In this 
case, an integrative modeling approach was applied to model the interaction between LAT2 
with is ancillary protein 4F2hc. First, the transmembrane LAT2 protein was computationally 
modelled with Modeller 8v1 [26], based on a template from the same HAT family (AdiC, 
PDB 3OB6). Modelling was challenging due to the low sequence identity (SI) with the 
template (around 20%), but multiple sequence alignments suggested that the transmembrane 
domains were highly conserved among the members of the family. Indeed, the models 
generated for LAT2 indicated high conservation in the topology of the transmembrane helices, 
but large flexibility in the extracellular loops. The 20 models with best DOPE score from 
Modeller were docked with the x-ray structure of 4F2hc extracellular domain (PDB 2DH2) 
by using FTDock 2.0 and ZDOCK 2.1. The resulting 240,000 docking poses were filtered 
based on distance restraints from a known disulfide bond between subunits, by using 
pyDockTET (with restraint distance 14 Å). Then, docking poses that would clash with the 
expected position of the membrane were also removed, which left 3,145 docking models. 
Finally, the docking model with the best pyDock energy (here we did not include van der 
Waals term due to the uncertainty in the transmembrane protein models) was found to be in 
line with the overall shape provided by transmission electron microscopy (TEM) data, and 
fully consistent with available cross-linking experiments. This model (Figure 3) was further 
confirmed with additional cross-linking experiments. Finally, by applying pyDock patch 
module, the most important LAT2 residues for the interaction with 4F2hc were identified. 
Overall, this integrative model generated by a variety of experimental and computational 
methods provided the first structural insights on the interactions between the two subunits in 
HAT proteins, helping to understand the stabilizing role of the light subunit by 4F2hc, and its 
implications for other transporters. 

 

4.2. Docking a homo-dimer with rotational symmetry 

The pyDock methodology can be also applied to model protein homo-oligomers, in which 
two important aspects should be considered. First, when modeling homo-oligomers usually 
the monomer needs to be modelled (either template-based or ab initio), since its unbound 
structure is rarely available. Second, for practical purposes, we should assume symmetric 
oligomerization, e.g. rotational symmetry C2, C3..., in order to filter the resulting docking 
models. Based on these considerations, pyDock has been successfully applied in blind 



conditions to the modeling of a variety of homo-oligomers in the 13th community wide 
experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP), 
as part of the common CASP13-CAPRI Assembly prediction challenge 
(http://predictioncenter.org/casp13/zscores_multimer.cgi).  

One interesting case study in this CASP13 edition is target T1009 (CAPRI code T154), 
consisting in the homodimeric assembly of α-xylosidase A (from Aspergillus niger), based 
on its monomer sequence formed by 718 residues. We obtained the monomer coordinates 
from the models already available at the CASP-hosted servers. More specifically, we took the 
rank #1 predictions from ZHANG-SERVER, BAKER-ROSETTA, and QUARK CASP-
hosted servers, which can be extracted from the following file: 

http://predictioncenter.org/download_area/CASP13/server_predictions/T1009.3D.srv.tar.gz  

We ran three different docking executions with FTDock 2.0 (with each one of the three 
monomer models against itself), and another three ones with ZDOCK 2.1, to obtain a total of 
36,000 docking poses. Each docking pose was checked for possible C2 symmetry, by applying 
the following ICM commands: 

icm> Rmsd(a_a a_b)     
 

This command produces the variable R_out, which is the rotation matrix that should be 
applied to move one of the molecules to the position of the other one. Now we can run: 

 
icm> Axis(R_out)      

 
After executing this command, we obtain two useful variables: r_out representing the 

rotation angle (°) between the two molecules around the rotation axis; and r_2out 
representing the translation (Å) along the rotation axis (values significantly different from 0 
might indicate screw axis symmetry). Thus, in a general case, a homodimeric docking pose 
with r_out ⁓ 360/n and r_2out ⁓ 0 will be compatible with n-mer homo-oligomerization 
following Cn rotational symmetry. Such n-mer homo-oligomer can be easily built from the 
dimeric docking model following symmetry rules.  

In particular, we can identify docking poses with C2 symmetry as those that satisfy 175° < 
|r_out| < 180°, and r_2out < 5 Å. In our CASP13 participation, we only used r_out 
value to select symmetric poses due to technical problems. These poses were further selected 
and evaluated by pyDock scoring, and the best eight models were submitted to CASP13-
CAPRI (two additional models based on an available template were included in the set, for 
the sake of diversity). The official assessment of results showed that pyDock docking yielded 
two acceptable models (see Figure 4), which were actually the only successful predictions for 
this target among all participants.  

 



4.3. Template-based docking 

Another interesting application of pyDock is the structural modeling of a protein-protein 
complex based on available templates. If a suitable template is found, the complex can be 
directly modelled based on the template, or alternatively, the structures (or models) of the 
unbound proteins can be directly superimposed onto the available template. In case of closely 
homologous templates, both approaches can provide reasonable docking models. However, 
when no clearly homologous templates are found, or when the unbound proteins cannot be 
easily modelled, the challenge is to build suitable models among the possible docking 
orientations that can be derived from a variety of remote template structures. The use of 
pyDock scoring can help to identify the correct models. 

 This strategy has been successfully applied in blind conditions to model target H0974 
(CAPRI code T142) in the CASP13-CAPRI experiment. This target consisted in the 
heterodimeric assembly of two proteins from part of the lysogeny switch of Lactococcus 
phage TP901-1: the repressor CI (72 residues) and the anti-repressor MOR (95 residues). The 
coordinates of the individual proteins were taken from the models available in the CASP-
hosted servers. More specifically, we took the rank #1 predictions from ZHANG-SERVER, 
BAKER-ROSETTA, and QUARK CASP-hosted servers, which can be extracted from the 
following files: 

http://predictioncenter.org/download_area/CASP13/server_predictions/T0974s1.3D.srv.tar.gz  

http://predictioncenter.org/download_area/CASP13/server_predictions/T0974s2.3D.srv.tar.gz 

To build the homodimer from these monomers, we found a total of 9 possible templates 
from the five CASP-hosted servers used (ZHANG, ROSETTA, QUARK, MULTICOM-
CONSTRUCT and RAPTOR Deep Modeller). These templates were actually homo-dimers, 
but were found to be suitable to build the hetero-dimer, given the structural similarity between 
the two interacting proteins. Among them, only the three most structurally conserved 
templates were used for modeling (PDB codes 1Y7Y, 1UTX, and 2B5A). All modelled 
monomers (3 for each protein) were structurally superimposed on the 3 different templates, 
in all possible combinations, thus building a total of 27 hetero-dimer models. Models with 
more than 300 interatomic clashes (i.e. pairs of non-hydrogen atoms from both proteins within 
3 Å distance) were removed. The remaining ones were further minimized with AMBER, and 
then scored with pyDock. 

The best two template-based models according to pyDock scoring were submitted to 
CASP13-CAPRI (the remaining 8 models were built by pyDock; the proportion of template-
based and docking models were based on the low reliability of the identified templates). One 
of these two template-based submitted models, actually the model #1, showed medium 
accuracy (see Figure 5). This was a challenging target, in which only 12 out of the 29 CAPRI 



participants were successful (incidentally, in this target, the submitted models built by pyDock 
alone were not successful). 

 

5. Notes 

1. In order to run pyDock in 64-bit Linux systems, we need to update the system regarding 
compatibility with 32-bit software. For this, in recent Debian-Like distribution type the 
following commands: 

sudo dpkg --add-architecture i386 
sudo apt-get update 
sudo apt-get install zlib1g:i386 

 

2. The FFTW libraries installation file fftw-2.1.5.tar.gz can be downloaded from 
http://www.fftw.org/download.html (by clicking in the appropriate link). 
Uncompressing this file will extract its contents to a new directory called fftw-2.1.5. Within 
this new directory, compile the libraries by: 

    ./configure --enable-float 
  make    
   

The argument --enable-float will make libraries to use single float precision, which 
implies faster execution. For double precision (slower), remove this argument. This fftw-
2.1.5 directory can be moved to any other location, as long as its location is indicated when 
installing FTDock (section 2.2.2). 

 

3.  For automatic use of FTDock, ZDOCK and SCWRL programs within pyDock, after installing 
them locally (see Materials section), indicate the full path of the FTDock and ZDOCK 
directories, and that of the SCWRL binary, by modifying the corresponding lines in the 
$PYDOCK/pyDock3/etc/pydock.conf file, as follows: 

  __________________________________________________________ 

    (...) 
ZDOCK=/<your-installation-directory>/zdock2.1_linux_64bit/ 
FTDOCK=/<your-installation-directory>/3D_Dock/ 
SCWRL=/<your-installation-directory>/scwrl3_lin/scwrl3 
(...) 
_____________________________________________________ 



In the pydock.conf file, there are also configuration parameters for FTDock. Some 
default parameters might need to be changed to yield the optimal results (for best pyDock 
results, it is advisable to use elec=1 and calculate_grid=0.7). 

 

4. The PDB names in the DOCKNAME.ini file must correspond to the exact names of the PDB 
files you are using (1C5K.pdb, 1c5k.pdb, pdb1c5k.ent.Z, etc...). If the chain ID in a PDB file is 
empty, use "-" or " " in the mol field to select that chain. If a PDB file contains several copies 
of the same protein, select only the desired chain by indicating its ID in the mol field. If a protein 
to dock contains several chains (for example L and H chains for antibodies) that are relevant 
for docking, you may indicate their chain IDs in the mol field, separated by comma. The 
newmol field can be used to rename a protein chain in the docking output file, assigning it a 
name different from mol, but it can be also left unchanged. The newmol chain IDs must be 
different for the receptor and the ligand molecules (so that their chains can be distinguished in 
the docking models).  

 

5.  In case of using a computer architecture with multi-core CPUs or a cluster, it is advisable to run 
FTDock in parallel, especially for large-size proteins. For this, we need first to compile the 
FFTW libraries to enable MPI. Before anything, install the MPI compilers if needed: 

sudo apt-get install mpi-default-dev 

Then, download the FFTW libraries installation file fftw-2.1.5.tar.gz from 
http://www.fftw.org/download.html (see Note 2). Uncompressing this file will extract 
its contents to a new directory called fftw-2.1.5. Within this new directory, compile the 
libraries by: 

./configure --enable-type-prefix --enable-mpi --prefix=/<fullpath>/fftw-2.1.5  
make install 

    
   

Now you can download the ftdock-mpi-master.zip file with the optimized FTDock 
distribution for parallel running [10] from the GitHub repository 
(https://github.com/brianjimenez/ftdock-mpi). Unpack this zipped file, and 
within the new ftdock-mpi-master directory, edit the Makefile file to set the FFTW_DIR 
variable to the full path of the above described fftw-2.1.5 directory. Now, within the 
ftdock-mpi-master directory, type: 

./make 



This will create the program binaries, such as ftdock. You can find more information in the 
README.md file.  

To execute FTDock in parallel within a given pyDock project, you can download the 
parallel-master.zip file with useful scripts from the GitHub repository 
(https://github.com/pyDock/parallel). Unpacking this zipped file within the 
$PYDOCK directory will create the parallel-master folder (alternatively, you can unzip 
the file from any location and copy the parallel-master folder to the $PYDOCK directory). 
In our example, assuming that we are using a 8-core computer, we can launch FTDOCK in 
parallel as follows: 

$PYDOCK/parallel-master/run_parallel_ftdock.sh Dock1 6 noelec 

  The run_parallel_ftdock.sh script has three arguments, the name of the pyDock 
project, the number of CPU threads (in case of multi-core processor, it is advisable to define a 
number slightly smaller than the total number of cores), and an optional noelec parameter to 
deactivate the electrostatic evaluation during the model generation.  

 

6. Let suppose we have two different .rot files from FTDock and ZDOCK (e.g. 
Dock1.rot_ftdock and Dock1.rot_zdock). We can join both files in one and renumber the 
conformation numbers as follows: 

cat Dock1.rot_ftdock Dock1.rot_zdock > tmp.rot 

awk '{$13=NR;print $0}' tmp.rot | column -t > Dock1.rot  

 This new Dock1.rot file can be scored by pyDock, effectively including docking poses 
from FTDock and ZDOCK in a single set. 

 

7.  In case of using multi-core computer architectures, the scoring module of pyDock can be run in 
parallel for faster execution times (especially with large-size proteins). For this, as described in 
Note 5, you will need to download the parallel-master.zip file with useful scripts from 
the GitHub repository (https://github.com/pyDock/parallel). Unpacking this zipped 
file within the $PYDOCK directory will create the parallel-master folder.  

 In our example, assuming that we are using a 8-core computer, we can launch the pyDock 
dockser module in parallel as follows: 

$PYDOCK/parallel-master/run_dockser_parallel.sh Dock1 6 

 



8. The NIP (Normalized Interface Propensity) value obtained from the docking represents the 
frequency of a given residue to be located at the interface among the 100 lowest-energy 
solutions of docking. 

If NIP = 0, the corresponding residue appears at the interface within the top 100 docking 
poses as expected by a random distribution. 

If NIP < 0, the corresponding residue appears at the interface within the top 100 docking 
poses less than expected by random. 

If NIP > 0.2, the corresponding residue is predicted to be at the interface as it appears 
significantly more often than expected by random. 

 

9.  To define a restraint residue in the restr field of DOCKNAME.ini, we need to indicate its chain 
ID, its 3 letter amino-acid code (first letter in uppercase), and its number, as found in the 
molecule file used in docking. Note that some residues might be named by its AMBER code in 
the file used in docking (e.g. Hid, Hie, Hip, Cyx), in which case, such notation should be used. 
When more than one restraint residues are used, they must be separated by comas with no space. 

A distance restraint defined from a potential interface residue is considered fulfilled when 
the center of coordinates of its side-chain lies within a distance of 6 Å from any non-hydrogen 
atom of the partner molecule. For each docking solution, the percentage of satisfied restraints 
is converted to pseudo-energy (just by multiplying by -1.0) and added to the final scoring 
function in the DOCKNAME.eneRST file. 
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Figure legends 

 

Figure 1. Scheme of pyDock pipeline. The pyDock pipeline with the different pyDock modules 
are shown. 

 

Figure 2. Docking results for the example case (TolB / Pal interaction). The position of the 
ligand molecule (in ribbon) in some near-native docking models is shown, after superimposing 
their receptor molecules (white surface). The best ranked acceptable docking pose (Conf #403; in 
orange) shows a ligand RMSD 9.3 Å from the x-ray complex structure (PDB 2HQS, in green). 
This docking model is ranked 61 when scored by pyDock energy alone (dockser module), and 
ranked 6 after including distance restraints with dockrst module (restraint residues in cpk). The 
docking model shown in red (Conf #6201; ligand RMSD 2.9 Å) is ranked 3275 by pyDock alone, 
and becomes rank 35 after including distance restraints.  

 

Figure 3. Docking model of the 4F2hc and LAT2 complex. Structural model obtained by 
docking of homology-based models of LAT2 (grey) and 4F2hc x-ray structure (red). The model 
shown is the best-energy docking pose, after filtering by disulfide bond restraints, and was further 
confirmed by EM and cross-linking experiments. Residues showing positive cross-linking in wet 
lab experiments are shown as blue spheres, while residues not showing cross-linking are shown as 
grey spheres. The distances between these residues in the model are fully consistent with the cross-
linking data. The membrane is shown only for visualization purposes. 

 

Figure 4. Models submitted by pyDock for CASP13-CAPRI target T154. The two acceptable 
models submitted to CASP13 are shown, after superimposing their receptors (white ribbon). The 
ligand in model #7 is shown in red (8.0 Å ligand RMSD from complex structure), and that of 
model #9 in orange (12.7 Å ligand RMSD). For comparison purposes, the complex structure (PDB 
6DRU) is shown, after superimposing its receptor onto that of the models, with ligand in green 
ribbon. 

 

Figure 5. Successful model submitted by pyDock for CASP13-CAPRI target T142. Receptor 
is shown in white, and ligand in red. According to CASP evaluation, the model shows 3.12 Å 
LocalRMSD, 3.12 Å GlobalRMSD, and 3.20 Å InterfaceRMSD (complex structure not yet 
released). 

 














