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Resum

Estudiem els conjunts auto-reduibles per mots decreix-
ents amb una pregunta (1-md auto-reduibles), introduits per
Lozano i Toran. Es defineixen com els auto-reduibles usuals
amb la peculiaritat que la maquina que calcula I’auto-reduccié
nomes pregunta un mot i aquest és més petit que ’entrada en
ordre lexicografic. En primer lloc demostrem que per a totes
les classes de comptatge definides per un predicat sobre el
nombre de camins acceptadors, existeixen conjunts complets
1-md auto-reduibles. Fent servir aquest fet, demostrem que
per a qualsevol classe K presa de {NP, PP, C_P, MOD,P,
MODj3P, - - -} es compleix que (1) si existeix un conjunt espars
<F},,-dificil per a K llavors K = P, i (2) si existeix un conjunt
espars <pN -dificil per a K llavors K C NPNco-NP. El resultat
principal tambeé implica que es compleixen les mateixes propi-
etats per a la classe PSPACE. Aix0 generalitza un resultat
recent d’Ogiwarai Watanabe a totes les classes de complexitat
esmentades.

Abstract

We study one word-decreasing self-reducible sets, which
were introduced by Lozano and Toran. These are usual self-
reducible sets with the peculiarity that the self-reducibility
machine makes at most one query and this is a word lexico-
graphically smaller than the input. We show first that for
all counting classes defined by a predicate on the number of
accepting paths there exist complete sets which are one word-
decreasing self-reducible. Using this fact we can prove that for
any class K chosen from {NP, PP, C_P, MOD,P, MOD;P,

++} it holds that (1) if there is a sparse <F, -hard set for K
then K = P, and (2) if there is a sparse <$N-hard set for
K then K C NP N co-NP. The main result also shows that
the same facts hold for the class PSPACE. This generalizes a
recent result from Ogiwara and Watanabe to the mentioned
complexity classes.
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Abstract

We study one word-decreasing self-reducible sets, which
are introduced by Lozano and Tordn [21]. These are
usual self-reducible sets with the peculiarity that the self-
reducibility machine makes at most one query to a word
lexicographically smaller than the input. We show first
that for all counting classes defined by a predicate on
the number of accepting paths there exist complete sets
which are one word-decreasing self-reducible. Using this
fact we can prove that for any class K chosen from {NP,
PP, C_P, MOD,P, MOD3P, ---} it holds that (1) if
there is a sparse <P, -hard set for K then K = P, and
(2) if there is a sparse <{N-hard set for K then K C
NP Nco-NP. The main result also shows that the same
facts hold for the class PSPACE. This generalizes the
result from Ogiwara and Watanabe [24] to the mentioned
complexity classes.

1 Introduction

One of the central roles in the study of structural com-
plexity theory resides in finding structural differences
or similarities among complexity classes. Since almost
every complexity class is defined by using some re-
source bounded computational model, finding relation-
ships among such classes sometimes requires us to specify
different computational models, and therefore, it seems
tremendously hard to find such relationships. Above all,
as subclasses of PSPACE, there have been introduced
many complexity classes [4, 9, 12, 25, 28, 35]. For ex-
ample, Gill, and independently Simon defined PP as the
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class of sets having probabilistic polynomial-time accep-
tors with error probability < 1/2 [12, 28]. Papadim-
itriou and Zachos defined @P as the class of sets for
which there is a polynomial-time nondeterministic Tur-
ing machine such that a string is in the set if and only if
the machine has an odd number of accepting computa-
tion paths for the string [25]. Based on this definition,
Beigel, Gill, and Hertrampf, and independently, Cai and
Hemachandra defined MOD.P as the class of sets for
which there exists a polynomial-time nondeterministic
Turing machine such that for every z, « is in the set if
and only if the number of accepting computation paths
of the machine on input « is not a multiple of k, where
k > 2[4, 9]. Wagner introduced C_P (respectively, CP)
as the class of sets for which there exist a polynomial-
time computable function and a polynomial-time nonde-
terministic Turing machine such that a string z is in the
set if and only if the number of accepting computation
paths of the machine on the input z is equal to (respec-
tively, larger than or equal to) the value of the function
for z [35]. Also, he showed that CP is equal to PP. So,
concerning the classes that are located between NP and
PSPACE, the most important unsolved questions are the
following:

1. Does the polynomial-time hierarchy have infinite
levels?

2. Is any class defined above included in the

polynomial-time hierarchy?

Some results that settle these questions partially have
been obtained in [5, 6, 18, 29, 31, 32, 33]. Nevertheless,
until now, neither of the above questions is solved.

On the other hand, it is widely known that we can
classify sets into some categories by using different reduc-
ibilities to sets of small density [8, 16, 17]. Especially,



a set having a census function bounded above by some
polynomial is called sparse. Relative to this notion, the
following questions have been considered by many re-
searchers 7, 11, 14, 15, 22, 24, 34, 37, 39, 40].

1. For a class K and a reducibility <,, is there any
sparse set to which every set in K is <,-reducible?

2. Suppose that every set in K is <,-reducible to some
sparse set. Will then any unexpected inclusions fol-
low?

As a matter of fact, after Berman and Hartmanis
conjectured that all <P -complete sets for NP are P-
isomorphic, and thereby conjectured that there are nei-
ther sparse nor co-sparse <P -hard sets for NP [7], reduc-
ibilities of NP sets to sparse sets have been considered
for a long time [11, 22, 23, 34, 37, 40]. And the ques-
tion whether NP having sparse <}, -hard sets implies
P = NP or not had been left open for a long time until
Ogiwara and Watanabe solved the question affirmatively
[24].

In order to settle this question, they introduced
the notion of ‘left-sets’, which is a certain type of self-
reducible structure, and showed that every ‘left-set’ in
NP which is <F, -reducible to sparse sets is already in
P. The proof technique takes advantage of the structure
of left-sets and of the structure resulting from the re-
duction to a sparse set, to show that any set with these
two characteristics can be decided deterministically in
polynomial time. Furthermore, Ogiwara extended the
notion of left-sets and showed that the existence of <P,
(respectively, <{N) hard sets for PP implies PP = P
(respectively, PP = NP) [23]. So, in order to extend
the result to more classes, it can seem useful to consider
sets with a more rich internal structure than that of left-
sets. We consider, for this goal, one word-decreasing
self-reducible sets, which have the desired properties: its
time complexity decreases if they are reducible to sparse
sets, and we can find self-reducible sets of this type that
are complete for the classes NP, PP, MOD,P, C_P, and
PSPACE.

One word-decreasing self-reducible sets were in-
troduced by Lozano and Tordn [21] as a variation of
Balcdzar’s wdq self-reducible sets [2], and they also
constitute a generalization of left-sets [23, 24]. A set
A is one word-decreasing self-reducible if there exists
a polynomial-time deterministic oracle Turing machine
which accepts A with oracle A itself in such a way that
for every input z, the machine queries at most one string
to its oracle and the query string is lexicographically
smaller than z. We define strict one word-decreasing

self-reducible sets as a restriction of these sets. In section
3, we will consider the existence of one-word decreasing
self-reducible sets in NP, C_P, PP, MOD.P, and show
that

1. PP and C-P have a <F -complete set which is one
word-decreasing self-reducible, and

2. NP, MOD;P, MOD3P, - - -, have a <P -complete set
which is strictly one word-decreasing self-reducible.

As for the reducibility, we will consider polynomial-
time bounded truth-table reducibility as well as strong
nondeterministic polynomial-time bounded truth-table
reducibility. The last one was introduced by Adleman
and Manders [1] as a reducibility having the computa-
tional power of NP N co-NP, and extended and studied
by Long [19, 20]. In section 4, we will prove the following
theorems:

Theorem 4.5 If a set A is 1-wd self-reducible and <{N

reducible to some sparse sel, then A is in NP Nco-NP.

Theorem 4.8 If a set A is strictly 1-wd self-reducible
and <P, reducible to some sparse set, then A is in P.

Then, by combining results in sections 3 and 4, we
will prove that for any class K chosen from {NP, PP,
C-P, MOD;P, MOD3P, -- -}, it holds that

1. if there is a sparse <},,-hard set for K then K is in
P, and

2. if there is a sparse <PN-hard set for K then K isin
NP Nco-NP.

Also, as PSPACE has 1-wd self-reducible complete
sets, Theorem 4.5 implies that

3. if there is a sparse <JN-hard set for PSPACE then
PSPACE = NP.

Finally, as the property of having sparse <P, -hard
sets propagates to the smaller classes, it follows that

4. if there is a sparse <}, -hard set for PSPACE then
PSPACE =P.

5. [36] there are not sparse <},,-hard sets for E.

2 Preliminaries

We fix now some of the notation that will be used
throughout this paper. We use the alphabet ¥ = {0, 1},
and define the basic notation about sets and words as
it is done in [3]. By ‘polynomials’ we mean monotone



nondecreasing polynomials. We will denote the cardi-
nality of a set 4 with #A. We assume the canonical
lexicographic order on £*. A string z is less than v
(write z < y) if either (1) |z| < |y| or (2) |z| = |y] and
there exist strings u,v,w € £* such that z = u0v and
y = ulw. For a string z € £* \ {1}, pred(z) denotes
the predecessor of z; that is, pred(z) is max{y: y < z}.
Also, for a string 2 € ©*, suc(z) denotes the successor
of z; that is, suc(z) is min{y : y > z}. For a string =,
ord(z) denotes #{y : |y| = |z| and y < z}. It is worth
noting that ord(-) is computable within time polynomial
in the length of the string. (,:) denotes a natural en-
coding of two strings into one string. We assume that
this function is polynomial-time computable and invert-
ible. We also assume that for every z,2',y and ¢/ in &~
with Ja| = [¢/] and [y] = |¢], () |(.9)] = |(=',¥)],
(i) if ¥ = pred(y), then pred((z,)) = (z,), and
(iii) if 2’ < =, then (z,y) > (z’,y/). For simplicity, for
k > 2 and k strings ¥1, ¥z, -+, %, (1, Y2, - -, u) denotes
((---(y1,v2),- ), ¥x). Furthermore, N denotes the set of
natural numbers.

Our computational model is the polynomial-time
Turing machine. We can assume w.l.o.g. that our non-
deterministic Turing machines have polynomial clocks,
that they have exactly 2°(I2]) computation paths on in-
put z, and any of these paths can be uniquely encoded by
a word of £=P(I=]), For each z € ©*, acen(z) and rejy (z)
denotes the set of all strings in ©=P(#]) representing
accepting computation paths of N on z and rejecting
computation paths of N on z, respectively. It is worth
noting that for every z € T*, {(,9) : y € accn(2)},
and {(z,y) : y € rejy(z)} are in P. Furthermore, for
¢ € £* and for y € B=rll=D), accy,<y(z) (respectively,
rejy, <y ()) denotes {z € accy(z) : z < y} (respectively,
{z € rein(2) : 2 < 4}).

In this paper, we will consider bounded truth-table
reducibility of sets to sparse sets. We start by defining
the notion of sparse sets.

Definition 2.1 A set S is sparse if there ezists a poly-
nomial p such that for every natural number n, #5<" <

p(n).

For a polynomial-time deterministic Turing trans-
ducer M and for a string z € £*, M(z) denotes the
output of M on z. For a polynomial-time nondetermi-
nistic Turing transducer N and for a string z € &*, N(z)
denotes the set of nonempty strings which some compu-
tation path of N outputs on input z. Next we define the
notion of one word-decreasing self-reducibility [21].

Definition 2.2 A set A is one word-decreasing self-
reducible (1-wd self-reducible, for short) if there ezists
a polynomialtime Turing transducer M such that for
every z € X*, the following conditions are satisfied:

(1) M(z) is of one of the following forms: either irue,
false, (id, y), or (=, y), where id (respectively, —) is
the identity function (respectively, negation) of one
argument, y € £* and y < z, and

(2) if M(z) € {true, false}, then = € A iff M(z) = true

and if M(z) = (a,y), then z € A iff a(xa(y)) =
true.

Next we define a restriction of 1-wd self-reducible
sets. Consider the self-reducibility chain from an input z,
consisting of z, the string printed by the self-reducibility
machine on input #, and so on, until we arrive to a string
that the machine decides directly (it writes true or false).
In a strictly 1-wd self-reducible set, every string in a
self-reducibility chain has two components: the first one
is the predecessor (in lexicographical order) of the first
component of the previous string in the chain, and the
second one is an extra information with only a poly-
nomial number of possible values. This structure will
allow to make a binary search in the chains in the proof
of Theorem 4.8,

Definition 2.3 A set A is strictly one word-decreasing
self-reducible (strictly 1-wd self-reducible, for short) if
there ezists a polynomial-time Turing transducer M and
a polynomial p such that for every z, M wilnesses that
A 15 1-wd self-reducible and for every z € T*,

(3) if M(z) is of the form (a,y), then there ezist z, 2',
w, and w’ in T* such that

(i) 2 =(z,2') and y = (w,w'),
(i) |z| = |w| and |2'| = |w'|, and
(#ii) w = pred(z) and ord(z'), ord(w') < p(|z|).

Next we define bounded truth-table reductions.
For a natural number & > 0, a k-truth-lable is a
mapping from {irue, false}* to {irue, false}. For a k-
truth-table o and k strings v, -, %, (a,y1," ", %)
is called a k-t condition. For a k-tt condition
(a,%1,°,%) and a set B, (a, 91,7+, y) is satisfied
by B if a(xs(y1), --,xB(w)) = true. By conven-
tion, a O-truth-table is a constant boolean function of
O-arguments; that is, a O-truth-table is either ¢rue or
false. Furthermore, a 0-tt condition is either (true) or
(false), and a 0-tt condition o is satisfied by a set B if
o = (irue).



Definition 2.4 For a natural number k > 0, a set
A is polynomial-time k-truth-table reducible to a sei
B (pafynomml—ttme k-tt reducible, for short, and write
A <F .. B) if there ezists a polynomml—tzme determin-
istic Turing transducer M such that for every z € T,
the following conditions are satisfied:

(1) M(z) is a k-tt condition and
(2) z € A if and only if M(z) is satisfied by B.

Moreover, a set A is polynomial-time bounded truth-
table reducible to a set B (polynomial-time bit reducible,
for short, and write A <, B) if there ezists some k € N
such that A <}_,, B.

Definition 2.5 For a natural number k > 0, a set A is
strongly nondeterministic polynomial-time k-iruth-table
reducible to a set B (SN k-ii reducible, for shori, and
write A <§N . B) if there ezists o polynomzal-ttme non-
deterministic Turing transducer N such that for every
z € X7, the following conditions are satisfied:

(1) N(z) is not the empty set and
(2) for every string z € N(z),

(a) z is a k-1t condition and

(b) z € A if and only if z is satisfied by B.

Moreover, a set A is sirongly nondeterministic
polynomial-time bounded truth-table reducible io a set B
(SN bit reducible, for short and write A <N B) if there

ezisits some k € N such that A <2Nn B.

The following observation is immediate from the
definition.

Observation 2.6 For every two sets A and B,
1. if A is <§_,,-reducidle to B, then A is in P and

2. if A is <§N,,-reducible to B, then A is in NP N
co-NP.

Now we define the counting classes in a general set-
ting, using the notation in [13], and the main complex-
ity classes that we will use, in terms of the functions

#accy(-) and Frejy(-).

Definition 2.7 For a polynomial-time decidable two-
place predicate! Q on N x N, a set L is in {Q}P i
there ezists a polynomial-time nondeterministic Turing
machine N such that for every z € T,

z € L <= Q(#accn(z), #rejy(z)).

Let k > 2 and let Qplus; Qmap Qha]f: and Q(H be
two-place predicates such that for every a,b E N,
QPIUS(E b) [a' > 0]: Qmaj(a b) [a' > b] Qhal!’(a b)
[e = b], and Q(kg(a,b) = [a # 0 (mod k)], respec-
tively. Then, of these predicates are polynomial-
time decidable and NP = {Q1,}P, PP = {Qmaj}P,
C-P = {Qnar}P, and MODP = {Q (k)}P for every
k > 2. Especially, MOD,P is denoted by @P.

For a polynomial-time decidable two-place predicate
Q on N x N, define Kq to be the set of all strings of the
form (M, z, 0*) such that

(i) M is an encoding of a nondeterministic Turing ma-
chine and

(ii) by letting a and b denote the number of accepting
and rejecting computation paths of M on z within
time £ respectively, Q(a,b) = true holds.

Then, obviously, Kq is <F -complete for {Q}P. Thus,
for any predicate Q, {Q}P has a <P -complete set.

Concerning these classes, the following relationships
are well-known.

Proposition 2.8 1. [12, 35] NP Uco-NP C PP.

2. [26, 33] co-NP C C_P C PP.

3. [30, 38] For any k > 1, if £f = NIF, then PH =
S = 1P,

4. [33] PP C NPC=P,

3 Self-Reducible Complete Sets
for Counting Classes

In this section, we will show the existence of one word-
decreasing self-reducible sets that are complete for the
classes PP, NP, C_P, MOD,P, MOD3P, ..., and strict
word-decreasing self-reducible sets that are complete for
NP, MOD;P, MOD3P,.... In fact, for the non-strict
version of these self-reducibilities, the result holds for any
possible counting class. Here there are the mentioned
results.

! Throughout the present paper, we assume that each two-place
predicate is not trivial; that is, Q is neither constantly ¢rue nor
constantly false.



Lemma 3.1 Let Q be a polynomial-time decidable two-
place predicate on N x N. Then, there ezists a <%, -
complete set for the class {Q}P that is 1-wd self-
reducible.

Proof Let Q be as in the hypothesis and A4 be a <P.
complete set for {Q}P. Take a nondeterministic Tur-
ing machine N whose time is bounded by polynomial p,
and witnesses that A is in {Q}P. Since we can com-
pute the total number of paths of machine N on inputs
of a given length, we will use the predicate Q,(i) =
Q(3,2°P™) — 4), So, we have that Qz|(#acen(z)) =
Q(Facen (z), F#rejy (z)). Now define
PropQ = {(z,w1,w;) : |wi| = |wy| = p(z]),
ord(w;) + ord(w;) < 22D and

Qiz|(F#acen,<u, (2) + ord(w2))}.

This set is complete for the class {Q}P. It belongs
to the class because we can define a polynomial time
nondeterministic machine which, on input (2, wy, wy),
has #accy, <w, (2) + ord(wy) accepting paths. To see
that it is complete, notice that for every z € £*, it holds
that z € A if and only if (z, 17(21), 07(I=1)) € PropQ.

So, in order to establish the lemma, we only have
to show that PropQ is 1-wd self-reducible. Suppose we
have the string (z,w;,wz) with |wy| = |wy| = p(|z|)
and ord(w;) + ord(wz) < 27(7); and we would like to
find some smaller string to establish the self-reducibility
relation. There are four different cases:

(1) If wy # 070=D) and w, ¢ accy(z) then
(2, w1, w2) € PropQ <
(2, pred(w, ), w2) € PropQ.

(2) If wy # 0Pz and w, € accy(z) then
(®, w1, w;) € PropQ <=
(z, pred(w, ), suc(w,)) € PropQ.

(3) If w; = 0°U2zD) and w, ¢ accy(z) then
(2, w1, w3) € PropQ <= Q5 (ord(wz)).

(4) If wy; = 07U=D) and w, € accy(z) then
(z, w1, w2) € PropQ <= Q|zj(ord(wz) +1).

Note that a polynomial-time deterministic Turing
machine can check which of the four conditions is true
and then write a string related with the input (in cases
1 and 2) or decide the input (in cases 3 and 4), always
following the behaviour of a machine that witnesses the
1-wd self-reducibility of PropQ. O

Lemma 3.2 For any k > 2, there ezists a <P -complete
set for the class MODP that is sirictly 1-wd self-
reducible.

Proof Let A be a <P -complete set for MOD;P. Take
a nondeterministic Turing machine N whose time is
bounded by polynomial p, and witnesses that 4 is in
MOD;P. For each 4,0 < i < k — 1, define n; to be the
string in £=P(I#1) such that ord(n;) = i, and define
Mod = {(z,w,n):|w|=p(z])and 0<i<k-1

and #accy,<w(2) i (mod k)}.

This set is complete for the class MODiP. To see
that it belongs to the class, note that #acen,<w(z) #
i (mod k) if and only if #acey,<uw(z) +k —3 £ 0
(mod k), and then we can define a polynomial time non-
deterministic machine which, on input (z,w,n;), has
ffaccn,<w(z) + k — i accepting paths. To see that it
is complete, notice that for every z € £*, it holds that
z € A if and only if (2, 17(2]), ng) € Mod.

So, in order to prove the lemma, it is only left to
show that Mod is 1-wd self-reducible. Suppose we have
the string (z, w, n;), with |[w|=p(|z])and 0 < i< k-1,
and we would like to find some smaller string to establish
the self-reducibility relation. There are four cases:

(1) If w # 07012 and w ¢ accy(z) then
(z,w,n;) € Mod <= (z,pred(w),n;) € Mod.

(2) If w # 0P(I=) and w € accy(z) then

(z,w,n;) € Mod <= (,pred(w),n;) € Mod,
where j is the number such that 0 < j < k— 1 and
j=i—-1 (mod k).

(3) If w = 072 and w ¢ accy(z) then
(z,w,n;) € Mod <= n; 20 (mod k).

(4) If w=070=)) and w € accy(z) then
(z,w,n;) € Mod <= n; —1Z0 (mod k).

In the same way as in the previous theorem, these
four cases show how to define a machine that witnesses
that Mod is 1-wd self-reducible. But note that Mod
is also strictly 1-wd self-reducible, because in any self-
reducibility chain, every string (z,w, n;) can be decom-
posed in a first component, (z, w), that decreases (in lex-
icographical order) along the chain, and a second compo-
nent, n;, that is bounded by k — 1, thus fulfilling the con-
ditions in the definition of strict 1-wd self-reducibility. O

Lemma 3.3 There ezists a < -complete set for the
class NP that is sirictly 1-wd self-reducible.



Proof Let A be a <P -complete set for NP. Take a non-
deterministic Turing machine N whose time is bounded
by polynomial p, and witnesses that A is in NP. Define

Right = {(z, w) : |w| = p(|z[) and #accy,<w(z) > 1}

This set is complete for NP: it is in NP and for every
z € X%, it holds that z € A if and only if (z, 17(=1)) ¢
Right.

Now, suppose we have the string (z, w), with |w| =
»(|z]), and we want to find some smaller string to estab-
lish the self-reducibility relation. There are three cases:

(1) If w # 07(=D) and w ¢ accy(z) then
(z,w) € Right <= (z,pred(w)) € Right.

(2) If w # 07(=1) and w € accy(z) then (z, w) € Right.

(3) If w = 07(I=]) then
(z,w) € Right <= w € accy(z).

These relations show us that the set Right is 1-
wd self-reducible. A simple encoding of the set, as for
example Right x {)A}, is strictly 1-wd self-reducible and
<P -complete for NP, and then the theorem is proved. O

Note that if a set is strictly 1-wd self-reducible, then
its complement has the same self-reducibility structure.
So, from this and the above lemma it follows that co-NP
has, as NP, some <P -complete set that is strictly 1-wd
self-reducible.

4 The Main Technical Theorems

In this section, we prove that every one word-decre-
asing self-reducible set (respectively, strict one word-de-
creasing self-reducible set) which is <$N-reducible (re-
spectively, gf:u-reducible) to some sparse set is already
in NPNco-NP (respectively, P). The proof is inductive;
that is, we will show that if an 1-wd self-reducible set is
SET_ 1—w-Teducible to a sparse set S for some k € N, then
the set is <§N, -reducible to S. The same scheme applies
in the case of strict 1-wd self-reducibility. Then, by us-
ing the above argument repeatedly and thereby reducing
the number of queries to 0, we obtain the results.

We first study strong nondeterministic polynomial-
time bounded truth-table reducibility of 1-wd self-reduc-
ible sets to sparse sets. We prove the following theorem.

Theorem 4.1 Let A be an 1-wd self-reducible set. If for
somek € N, A is <N, -reducible 1o a sparse set S,
then A is S,S‘Ijtt-reducible to S.

Proof Let A be an 1-wd self-reducible set and S be
a sparse set to which A is <{, . -reducible. Then,
there exist a2 polynomial-time deterministic Turing trans-
ducer M and a polynomial-time nondeterministic Tur-
ing transducer N which witnesses that A is 1-wd self-
reducible and A is <Y, , -reducible to S, respectively.
We will construct a polynomial-time Turing machine
No which <N reduces A to S. Let z € £* and
A = [(y1,01),**, (¥m,om)] be a list of pairs of a string
and a k + 1-tt condition. A is called an (M, N)-chain
w.r.t. z if the following conditions are satisfied:

(c1) z =y, and for every 3,1 < i < m, yiy; < u;,
(c2) for every i,1 < i < m, o; € N(w),
(c3) for every 3,1 < i < m, either
¢ M(yi—1) = (a,u) for some a € {id, -} or
e g; € {01,---,0i_1}, and

(c4) for every i,1 < i < m, if oy € {7y,
Oit1 ¢ {‘TI) Tty 0','}.

] a'i—l}x then

Moreover, a list A = [(y1,01)," ", (Ym,om)] is called a
full (M, N)-chain w.r.t. zif A is an (M, N)-chain w.r.t.
z and

(¢5) M(ym) € {true, false}.

The following facts are easy to prove.

Fact 1 The seis

C = {(z,A):Aisan (M, N)-chain w.r.t. z} and
C = {(z,A):Aisaful (M, N)-chain w.r.t. z}
are in NP,

Fact 2 Letz € X* and A = [(y1,01),"**, (Ym,0m)] de
an (M, N)-chain w.r.t. z. Then, |(z,A)| is bounded
above by some polynomial in |z| + m.

The machine Ny performs in the following way:

{ The Description of Ny }

(1) For a given input z € X*, Ny nondeterminis-
tically guesses m,1 < m < 7(|z|) and a list
A = [(y1,01), -, (Ym,om)], and Ny nondetermin-
istically checks that A is an (M, N)-chain w.r.t. z,
and that

() if m < r(|z]), then A is full,

where r is a polynomial defined later. If the check
fails, then N halts immediately. Otherwise, N,
proceeds to the next step.



(2) If A is full, Ny deterministically computes x4(z)
from A and outputs true if x4(z) = true and false
otherwise. Otherwise, N proceeds to the next step.

(3) If A is not full (therefore, m = r(|z|)), then Np
deterministically computes an A-tt condition ¢ with
h < k such that z € A if and only if  is satisfied by
S, outputs ¢, and halts.

{ End of the Description of Ny }

It is not hard to show that there exists some
full (M,N)-chain w.rt. z. So, assume that A =
[(21,71), -+, (2m, Tm)] is one of such chains and take
now the subchain A’ = [(z1,71),, (2mq, T, )], Where
m; = min{my, r(|2])}, for some polynomial . Then,
obviously, A’ satisfies (). and, therefore, there exists
at least one computation path that leads to step (2).
Furthermore, from Facts 1 and 2, step (1) can be exe-
cuted within time polynomial in |z|. Therefore, in or-
der to establish the theorem, we only have to show that
there exist two polynomial-time algorithms 4; and A,
that implement steps (2) and (3), satisfying the following
conditions:

1. for a given z and a full (M, N)-chain A w.r.t. z, A,
computes x 4(z) and

2. for a given z and an (M, N)-chain A of length +(|z|),
Az computes an h-tt condition ¢ with k < k such
that z € A if and only if ( is satisfied by S.

In the following we will develop the above two algo-
rithms,

For two strings z and y, ®4(z, y] denotes the rela-
tionship between x4(z) and x.4(y). More precisely, for
every ¢ and y € I*,

_ [ id ifxa(z) = xa(v),
EBA[z,y]—{ - ifxi(z)¢xi(y)~

It is not hard to see that the following facts holds.

Fact 3 For every z,y, and 2z, ®a[z,2] = @alz,y] o
Daly, z], where v 0 § denotes the function 1(8(+))-

Fact 4 Letz € £* and A = [(y1,01),"**, (Ym, om)] be
an (M, N)-chain w.r.t. z. Then, for everyi,1 <i<m,
@ alz, yi] is computable within time polynomial in |z|+m.

Proof of Fact 4 Let 2 € ©* and A = [(y;,0),:--,
(Ym,om)] be an (M, N)-chain w.r.t. z. Since M wit-
nesses the 1-wd self-reducibility of A and N witnesses
the S,Sﬁl_n-reducibi]ity of A to S, the following prop-
erties hold:

o foreveryiand 5,1 <i<j<m,ifo; = oj, then
@4y, y;] = id because y; € A iff o; is satisfied by
S, yj € Aiff oy is satisfied by S, and o; = oj, and

o for every 4,1 < i < m, if M(%) = (@, %i41), then
@[t ¥i+1] = @ because y; € A iff a(xa(viz1)) =
true.

Recall that, from the definition of (M, N )-chain, for each
1,1 < 3 < m, either

(a) there exists some index j,1 < j < i, such that
oy = g; or

(b) M(yi—1) = (a, ) for some a € F,.

Note that o; = o; implies @ 4 [y, y;] = id and M(yi1) =
(@, %) implies @4 [yi—1, %] = a. So, for every i,1 < i <
m, @z, yi] is computable from {@,[z,y;] : 1 < j < i}
by testing conditions (a) and (b). Since y; = =, it holds
that @[z, 1] = id. Thus, starting from @[z, 1], we
can inductively compute all @4[z, v}, 1 < i < m, within
time polynomial in |(z, A)|, and thus, from Fact 2, they
are computable within time polynomial in |z| 4+ m.

O Proof of Fact 4

From the above fact, we can prove immediately the
existence of algorithm A;.

Lemma 4.2 There ezists a deierministic polynomial
time algorithm A; which, for a given z and a full
(M, N)-chain A, computes x ().

Proof of Lemma 4.2 For every z € ©* and for ev-
ery full (M, N)-chain A = [(y1,01)," -+, (¥m, om)] W.L.L.
z, it holds that M(yn) € {true, false}. So, xa(z) =
®a[2,Ym)(M(ym)). Then, from Fact 4 and from the
fact that M runs in polynomial time, y4(z) is com-
putable within time polynomial in |z| 4+ m. This proves
the lemma.

O Proof of Lemma 4.2

Next we define the polynomial r. Since N runs in
polynomial time and S is sparse, then there must exist
a polynomial g such that for every z € £* and for every
(M, N)-chain A = [(y1,01),- -, (Ym,om)] W.L.t. 2,

#{wes

w appears as an argument in oy
for some i,1<i<m} <g(|z|).

Define r(n) = 4-22""" . g(n)*+1 + 1. Now, our goal
is to show the existence of algorithm .4,.

Lemma 4.3 There ezists a deterministic polynomial-
time algorithm A, which, given z € £* and an (M, N)-
chain A = [(y1,01), -, (Ym)Om)] w.rt. 2z, with m =
r(|z|), computes an h-it condition {, with h < k, such
that z € A if and only if { is satisfied by S.



Proof of Lemma 4.8 Let K denote the set of in-
dices {1,---,k + 1}. For a k + 1-tt condition o =
(B, wy, -+, wgty), let B(o) denote B; for £ € K, let
o[f] denote w;, and for a set Q C K, let o[Q] denote
{o[f] : £ € Q}. Note that, in consequence, o[K] denotes
the set of all the arguments of the k + 1-tt condition o-.
A;z performs in the following way:

{ The Description of A, }

For a given z € T* and a given (M, N)-chain A =
[(y1,01)s -+, (Ym, om)] w.rt. z with m = r(|z|), do the
following:

(1) Find I - {1!"'am} with #1 2 Q(|3|)+ 1, Q CK,
ap € {id, -}, and a k + 1-truth-table G such that

(a) for every i € I, @[z, 4] = ao,

(b) for every i € I, B(0i) = By,

(c) for every i and j € I and for every £ € Q,
oi[f] = o;[¢], and

(d) for every distinct i and j € I, o;[K\Q] N
o;[K\Q] = 0.

(2) Let h = #Q. Compute an h-truth-table 4 from
Bo by substituting every argument at the position
£ € K\Q with false at the same time.

(3) Compute an h-truth-table E such that for every
by, -+, by € {irue, false} it holds that

B(ba, -+, bn) = co(B(b1, -, ba)).

Set ¢ to (E, wy,, -+, wy, ), where £1,- -+, £y is an enu-
meration of all indices in Q in increasing order and
for every t,1 <t < h, wy, = 0[4;] for every i € I.

{ End of the Description of A; }

Notice that in order to find I, Q, ag, and B in step
(1), we only have to execute a brute-force search method
over @ and ip = min{i € I}. That is, we only have to
move Q over elements in 2K — {K} and iy from 1 to m
and enumerate all indices i # iy satisfying

(a’) ®alz, ui] = ®al=, yi,),

(b)) B(oi) = B(ai,),

(c’) for every £ € Q, o;[f] = 0y [4], and
(&) oi[K\Q] N i, [K\Q] = 9,

and test whether the number of such indices is > ¢(|z|)
or not. Obviously, this search can be executed within
time polynomial in |2|. Since steps (2) and (3) also have

this time bound, algorithm .4; runs in time polynomial
in |z|.

Therefore, in order to establish the lemma, we only
have to show that A; works correctly, that is to say,
that there always exist I, Q, ao, and G, that satisfy
conditions (a), (b), (c), and (d). This is seen as follows.
First define Lip; to be the set of all i € {1,-- -, m} such
that o; & {01, --,0i-1}. Then, it is not hard to see that

o #ILpn > 222" g(|z|)¥+* + 1, and
e for every distinct ¢ and j in Ly, 05 # ;.
Next, for each a € {id, -}, define
Io ={i € Lnit : ®alz, w) = a}.

Then, obviously, exactly one of #;q and #1_ is > 22"+,
q(Jz|)*+1 + 1. So, let ag be such a truth-table.
Furthermore, for each k + 1-truth-table 8, define

1(B) = {i € L, : B(oi) = B}

Since there are 22" possible 3, there is at least one g
such that #I(8) > g(|z|)**+! + 1. Let By be one of such
k 4 1-truth-tables. Then, by construction, the set I (Bo)
satisfies the conditions (a) and (b).

Finally, consider the set of arguments o;[K] of a
k + 1-tt condition oy, with ¢ € I(G;), as an ordered set
of cardinality k + 1. By a simple modification of the
theorem in [10], we obtain the following proposition, in
which, for an ordered set W, we denote with W(¢) its
{-th element.

Proposition 4.4 Let F be a family of ordered sets, each
one with cardinality t. If #F > d* + 1, then there ezist
GCF with#G >d+1 and a set Q C {1,---,t} such
that

(i) for every L € Q and for every U and V in G, U(t) =
V(¢) and

(3) for every distinct U and V in G, {U(f) : L €
{11"'1t}\Q} n {V(l) R4S {1""Jt}\Q} :0;

Then, from the above proposition, there exists a set
I C I(Bo) with #I > q(|z|)+ 1, h € {0,---,k} and a set
Q C K with #Q = h satisfying the conditions (c) and
(d). Since I C I(f3y), conditions (a) and (b) are satisfied.
Therefore, the search procedure is always successful.

On the other hand, {o;[K\Q] : i € I} is a family of
at least > g(|z[) +1 disjoint sets in 3*. Since g(|z|) is an
upper bound for the number of strings in S appearing as
an argument in 0y, 1 < i < m, there must exist an i such
that o;[K\Q] C S. Thus, we know that there is some



k+1-tt condition o, with i € I, such that the arguments
corresponding to the indices in K \ Q are not in S, and
so, we can omit these queries. As, by Proposition 4.4,
the rest of the queries (with indices in Q) are the same
for all the k+ 1-tt conditions o; with i € I, and the truth
table is also the same, we know that for some i € I, and
for the 3, B and ( defined in algorithm .4, it holds that

HeEA <= PBolxs(oill]), -, xs(oi[k + 1])) = true
= Blxs(eilts)), -, xs(oilta])) = true.

Since @4(z, ¥] = ao from (a), the above property implies

z€A = a(B(xs(oilts)), -, xs(oi[tn]))) = true

<= Blxs(oilta]), -, xs(oilta])) = true
<> ( is satisfied by S.

Therefore, ¢ is an h-tt condition such that z € A if and

only if ¢ is satisfied by S. Hence, A; works correctly.

This proves the lemma, and consequently, this proves
the theorem.

O Proof of Lemma 4.3

O Proof of Theorem 4.1

From Theorem 4.1, we obtain the following theorem.

Theorem 4.5 If a set A is 1-wd self-reducible and <gN.

reducible to some sparse sel, then A is in NP N co-NP.

Proof Let A be a set which is 1-wd self-reducible and
<3N .-reducible to a sparse set S for some k € N. Then,
by using Theorem 4.1 repeatedly, we have that A is

<§N,;-reducible to S. This implies A € NP N co-NP.
a

Next we consider <},,-reducibility of strict 1-wd
self-reducible sets to sparse sets.

Theorem 4.8 Let A be a strict 1-wd self-reducible set.
If for some k € N, A is <[, _, -reducible {o a sparse
set S, then A is <} _, -reducible to S.

Proof Let A be a strict 1-wd self-reducible set, M be
a machine witnessing this property and p be the polyno-
mial from the definition of strict 1-wd self-reducibility.
Furthermore, let S be a sparse set to which A is <kii-te
reducible via a polynomial-time deterministic machine
N. The proof is similar to that of Theorem 4.1. For a
string z € X7, call z a bottom if M(z) € {true, false} and
call z a median otherwise. For a median z € X%, let Q(z)
denote the unique string y such that M(z) = (a,y) for
some a € {id, ~}. Furthermore, define other notions, no-
tations, and polynomials as in the proof of Theorem 4.1.
Then, all Facts and Lemmas in the proof of Theorem 4.1
are established for this situation, too.

Moreover, we claim the following:

Lemma 4.7 There ezists a polynomial-time algorithm
whick, for a given z € £* and a natural number n >1,
computes an (M, N)-chain A = [(y1,01),"*, (Ym, Tm)],
with 1 < m < n, satisfying that

() if m < n then A is full.

Proof of Lemma 4.7 Let z € £* and n > 1. Suppose
that z is a bottom. Then, obviously, A = [(z, N(z))] is
the desired chain. So, assume that z is a median. For
an (M, N)-chain A = [(y1,01),, (Ym, Om)], define (%)
to be the following property:

(*) Ym is a median and o, & {01, -, Om-1}

Note that [(z, N(z))] satisfies this property.

Moreover, suppose that there exists a polynomial-
time algorithm SEARCH which, for a given (M, N)-
chain A = [(y1,01),- -+, (Ym,om)), finds an element z <
Ym such that one of the following conditions hold: either

(a) {I:V(z) € {a'l,}- “*;0m}, z is a median and N(Q(z)) ¢

(b) N(z) € {o1,-:*,o0m} and z is a bottom, or

(c) N(2) ¢ {o1, -+ ,0m} and z = Q(ym).

Let A = [(v1,01),"*,(¥m,0om)] be the input to
SEARCH satisfying (*) and z be the output of SEARCH.
Define A’ to be [(v1,01), v (Ymy om), (2, N (2)),
(Q(2), N(Q(z))] if (a) is satisfied and [(y;,0y), ---,
(Y, m), (2, N(z))] otherwise. Then, A’ is an (M, N)-
chain of length > m and either is full or satisfies ().
So, for given z and =, if we start from A = [(z, N(z))]
and repeatedly execute SEARCH on A and set A to the
resulting (M, N)-chain until A is full or its length is > n,
we obtain an (M, N)-chain A = [(y1,01),"**, (Ym, om)]
w.rt. z such that either (i) A is full, (ii) m = n, or
(iii) m = n + 1. Then, by deleting the (n + 1)-th pair
from A if it exists, we obtain the desired (M, N)-chain
w.r.t. z. Furthermore, since SEARCH runs in polyno-
mial time, the total running time of the above algorithm
is bounded by a polynomial in |z| and n. So, in the
following, we will develop the method SEARCH.

Let A = [(v1,01)," -, (Ym,om)] be the input to
SEARCH satisfying (*). Let s, € N and u,v,w €
" be such that yn = (u,v), Q(ym) = (pred(u),w),
u € L7, and v,w € ©='. Let p be the polynomial
from the definition of strict 1-wd self-reducibility such
that ord(v),ord(w) < p(lym|). By convention, let W
denote {oy,-,0m} and D denote {d € Z=* : ord(d) <
P(|ym|)}. Forinput A, SEARCH first excludes some triv-
ial cases below:

Case 1 N(Q(ym)) € W. If this is the case, z = Q(yy,)
satisfies (c).



Case 2 N(Q(ym)) € W and Q(ym) is a bottom. If this
is the case, z = Q(ym) satisfies (b).

Case 3 N(Q(vm)) € W, Q(ym) is a median and
N(Q(Q(ym))) € W. If this is the case, z = Q(ym)
satisfies (a).

Case 4 Q(ym) is a median, Q(Q(ym)) is & bottom and
N(Q(ym)), N(Q(Q(ym))) € W. If this is the case,
z = Q(Q(ym)) satisfies (b).

Case 5 Both Q(ym) and Q(Q(ym)) are medians,
N(Q(ym)), N(Q(Q(ym))) € W and for some d € D,
N((0*,d)) € W. If this is the case, by letting d
be the smallest d € D such that N((0°,d)) € W,
z = (0%, do) satisfies (b).

Now assume that A passed all checks in the
above; that is, both Q(yn) and Q(Q(ym)) are medians,
N(Q(um)), N(Q(Q(n))) € W and for every d € D,
N((0%,d))  W. Then, we execute the following binary-
search-like procedure:

(1) Set a and b to 0* and pred(u), respectively.
(2) Repeat the following operations until a = pred(b):

(i) Set c to the string in £=* such that |(ord(a) +
ord(b))/2] = ord(c).

(ii) If for some d € D, N({c,d)) € W, then set b to
c. Otherwise set a to c.

(3) Set do to the smallest d € D such that N((b,d)) €
W and z to (b,do). Output z and halt.

Note that the following conditions hold:

(c1) From our assumption, when entering the above
step (2), for some d € D, N((b,d)) € W and for
everyd € D, N((a,d)) ¢ W.

(c2) In step (2), if b is set to ¢, then for some d € D,
N((b,d)) € W, and if a is set to ¢, then for every
d€ D, N((a,d)) ¢ W.

Therefore, the conditions (for some d € D, N((bo,d)) €
W) and (for every d € D, N({ao,d)) ¢ W) are always
preserved during the procedure. Let ag and by denote
a and b after SEARCH quitted (2), respectively. Then,
for some d € D, N((bo,d)) € W and for every d € D,
N((ao,d)) € W. Suppose that z is a bottom. Obviously,
z satisfies the condition (b). On the other hand, suppose
that z is a median. Since |(bo,d)| = |(u,v)| = |ym| for
every d € D and ap = pred(bo), Q((bo, do)) = (ao,d) for
some d € D. Thus, N(z) € W and N(Q(z)) ¢ W; that
is, z satisfies (a). Therefore, 2 satisfies either (a) or (b).

Moreover, the number of repetitions of the loop in
(2) is bounded by O(t), thus by O(|]A|). Therefore,
SEARCH runs in time polynomial in |A| and this proves
the lemma.

O Proof of Lemma 4.7

Now consider the following machine Ng.

{ The Description of Ny }

(1) For a given input z € £*, No computes an (M, N)-
chain A = [(y1,01),+*, (Ym,om)] W.r.t. = with 1 <
m < r(|z|) by using the above described method.

(2) If A is full, No computes x4(z) from A with algo-
rithm A;, outputs (x4(z)), and halts.

(3) If A is not full, as m = r(|z|), No computes ¢ with
algorithm A, outputs ¢ and halts.

{End of the Description of Ny }

From Lemma 4.7, Fact 4, and Lemma 4.3, it is not
hard to see that for every z € £*, Ny runs in time poly-
nomial in |z| and z € A if and only if Ny(z) is satisfied
by S. Therefore, A <f_,, S. This proves the theorem.

O Proof of Theorem 4.6

From this theorem, we can obtain the following one.

Theorem 4.8 If a set A is sirictly 1-wd self-reducible
and <}, reducible to some sparse set, then A is in P.

Proof Let Abe aset which is strictly 1-wd self-reducible
and <}_, -reducible to a sparse set S for some k € N.
Then, by using Theorem 4.6 repeatedly, we have that A
is <f_,;-reducible to S. This implies that 4 € P. a

5 Sparse Bounded Truth-Table
Hard Sets

In this section, we will consider the possibility of the ex-
istence of sparse bounded truth-table hard sets for some
complexity classes by using the theorems we showed in
the previous sections.

For <$N._reducibility to sparse sets, we obtain the
following theorem.

Theorem 5.1 Let K = {Q}P for some polynomial-time
decidable two-place predicate on N x N. If there is a
sparse <{N-hard set for K, then K C NP Nco-NP.



Proof Let K be as in the hypothesis of the theorem
and let S be a sparse <SN-hard set for K. Furthermore,
let A be the 1-wd self-reducible set that is <P m-complete
for K, as shown in Lemma 3.1. So, 4 is <{N-reducible
to S and then from Theorem 4.5, A is in NP N co-NP,
and consequently K C NP N co—NP. (]

For <[, -reducibility to sparse sets, from Theo-
rem 4.8 and the existence of strictly 1-wd self-reducible
sets that have been shown to be complete for different
classes in section 3, we obtain the following theorems.

Theorem 5.2 Let K = {Q}P for some polynomial-time
decidable two-place predicate Q on NxN such that NP -
K UcoK. If there is a sparse <, -hard set for K, then
K =P,

Proof Let K be as in the hypothesis of the theorem
and S be a sparse Sgu-hard set for K. Since NP C
KUcoK, Sis Sgu-ha.rd for NP. So, by Lemma 3.3 and
Theorem 4.8 we have P = NP.

Furthermore, since <P, -reducibility implies <$N.
reducibility, from Theorem 5.1, K C NP N co-NP. So,

NP Nco-NP = K, and this 1mphes K =P, m|

Theorem 5.3 For any k > 2, if MOD,P has a sparse
<b“-hard set then MOD.P =P,

Proof Let k > 2. Suppose that there is a sparse set S
that is <P ,-hard for MOD;P. Then, by Lemma 3.2 and
Theorem 4.8 we have MOD;P = P. O

Next we consider the consequences of theorems 5.1,
5.2 and 5.3. From Theorem 5.1, we obtain the following
corollaries first stated in [23].

Corollary 5.4 [23] If there is a sparse <b“-hard set for
NP, then PH = NP.

Proof Suppose that there is a sparse <$N._hard set
for NP. Then, from Theorem 5.1, NP C NP N co-NP,
and this implies NP = co-NP. Therefore, from Proposi-
tion 2.8, we have PH = NP. a

Corollary 5.5 [23] If there is a sparse <$N-hard set for
PP, then PH = NP = PP,

Proof Suppose that there is a sparse <bu-hard set
for PP. Then, from Theorem 5.1, PP C NP N co-NP.
Since NP U co-NP C PP from Proposition 2.8, we have
NP = co-NP = PP, and this implies PH = NP = PP. O

Moreover, we have a similar result for C_P.

Corollary 5.6 If there is a sparse <btt -hard set for
C_P, then PH = NP = PP = C_P.

Proof Suppose that there is a sparse <$N-hard set for
C=P. Then, from Theorem 5.1, C_P C NP N co-NP.
Since co-NP C C_P from Proposition 2.8, we have
NP = co-NP = C_P, and this implies PH = NP = C_P.
Furthermore, since PP C NP®=F from Proposition 2.8,
we have PP = NP. a

On the other hand, from Theorem 5.2, we obtain
the following corollaries.

Corollary 5.7 [24] If there is a sparse Sﬁtt-hard set for
NP, then NP = P.

Corollary 5.8 [23] If there is a sparse <[,,-hard set for
PP, then PP = P.

Corollary 5.9 If there is a sparse Sf,’tt-hard set for
C=P, then PP = C_P =P,

Finally, we consider the class MOD.P. For a class
K, aset Lisin BP: K if there exists a set A in K and
a polynomial p such that for every z € T*,

#{y S p=rll=D) ; XA((z,y>) = xL(z)} > - 9p(l=l),

Lo =

The BP-operator is first introduced in [27]. Also, BPP
is the class of sets for which there exists a probabilis-
tic polynomial-time acceptor with error probability <
1/3 {12]. The following relationships between the BP-
operator and the polynomial-time hierarchy are widely
known.

Theorem 5.10
ng,,.

2. [32) PH C BP - C_P, PH C BP - PP, and PH C
BP - MOD,P, where k > 2.

1. [27] For every k > 1, BP- P C

3. [27] BPP =BP - P.

4. [18, 29] BPP C XF nI}b.

From Proposition 2.8, Theorem 5.1 and Theo-
rem 5.10, we obtain the following corollaries.

Corollary 5.11 Let K be any class chosen from
{MOD;P, MOD3P, - --}. If K has sparse <SN-hard sets,
then PH C ©F n1Ib.

Corollary 5.12 Let K be any class chosen from
{MOD;,P, MOD3P, ---}. IfK has sparse <Pi-hard sets,
then PH = BPP.



Since there are complete sets for PSPACE that are
1-wd self-reducible [21], we can also derive the following
result from Theorem 4.5 and Corollary 5.7.

Corollary 6.183 1. If there is a sparse _<_€u-ha,rd set
Jor PSPACE, then PSPACE = P,

2. If there is a sparse <N -hard set for PSPACE, then
PSPACE = NP.

Note that this is the biggest class to which we can
directly apply our technique, since all 1-wd self-reducible
sets can be decided in PSPACE. However, although the
class E (i.e., | J, DTIME[2°"]) probably does not have 1-
wd self-reducible sets, we can apply our results to it in an
indirect way and show that E has not sparse <P.,-hard
sets. This is a particular case of the result of Watanabe
saying that all <}, -hard sets for E have bi-exponential
density [36].

Corollary 5.14 [36] There are not sparse <P..-hard
sets for E.

Proof This is proved by contradiction. Assume that E
has sparse Ssn-ha.rd sets. Then, E has polynomial size
circuits and, by [15], E = PSPACE. Also, by part 1. in
last corollary, we know that PSPACE = P. This leads
to the equality E = P, which is false. O
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